151
|
Koeberle A, Shindou H, Harayama T, Shimizu T. Palmitoleate is a mitogen, formed upon stimulation with growth factors, and converted to palmitoleoyl-phosphatidylinositol. J Biol Chem 2012; 287:27244-54. [PMID: 22700983 DOI: 10.1074/jbc.m111.274829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Controversial correlations between biological activity and concentration of the novel lipokine palmitoleate (9Z-hexadecenoate, 16:1) might depend on the formation of an active 16:1 metabolite. For its identification, we analyzed the glycerophospholipid composition of mouse Swiss 3T3 fibroblasts in response to 16:1 using LC-MS/MS. 16:1 was either supplemented to the cell culture medium or endogenously formed when cells were stimulated with insulin or growth factors as suggested by the enhanced mRNA expression of 16:1-biosynthetic enzymes. The proportion of 1-acyl-2-16:1-sn-phosphatidylinositol (16:1-PI) was time-dependently and specifically increased relative to other glycerophospholipids under both conditions and correlated with the proliferation of fatty acid (16:1, palmitate, oleate, or arachidonate)-supplemented cells. Accordingly, cell proliferation was impaired by blocking 16:1 biosynthesis using the selective stearoyl-CoA desaturase-1 inhibitor CAY10566 and restored by supplementation of 16:1. The accumulation of 16:1-PI occurred throughout cellular compartments and within diverse mouse cell lines (Swiss 3T3, NIH-3T3, and 3T3-L1 cells). To elucidate further whether 16:1-PI is formed through the de novo or remodeling pathway of PI biosynthesis, phosphatidate levels and lyso-PI-acyltransferase activities were analyzed as respective markers. The proportion of 16:1-phosphatidate was significantly increased by insulin and growth factors, whereas lyso-PI-acyltransferases showed negligible activity for 16:1-coenzyme A. The relevance of the de novo pathway for 16:1-PI biosynthesis is supported further by the comparable incorporation rate of deuterium-labeled 16:1 and tritium-labeled inositol into PI for growth factor-stimulated cells. In conclusion, we identified 16:1 or 16:1-PI as mitogen whose biosynthesis is induced by growth factors.
Collapse
Affiliation(s)
- Andreas Koeberle
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
152
|
Sampey BP, Freemerman AJ, Zhang J, Kuan PF, Galanko JA, O'Connell TM, Ilkayeva OR, Muehlbauer MJ, Stevens RD, Newgard CB, Brauer HA, Troester MA, Makowski L. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS One 2012; 7:e38812. [PMID: 22701716 PMCID: PMC3373493 DOI: 10.1371/journal.pone.0038812] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/10/2012] [Indexed: 12/27/2022] Open
Abstract
Obesity has reached epidemic proportions worldwide. Several animal models of obesity exist, but studies are lacking that compare traditional lard-based high fat diets (HFD) to “Cafeteria diets" (CAF) consisting of nutrient poor human junk food. Our previous work demonstrated the rapid and severe obesogenic and inflammatory consequences of CAF compared to HFD including rapid weight gain, markers of Metabolic Syndrome, multi-tissue lipid accumulation, and dramatic inflammation. To identify potential mediators of CAF-induced obesity and Metabolic Syndrome, we used metabolomic analysis to profile serum, muscle, and white adipose from rats fed CAF, HFD, or standard control diets. Principle component analysis identified elevations in clusters of fatty acids and acylcarnitines. These increases in metabolites were associated with systemic mitochondrial dysfunction that paralleled weight gain, physiologic measures of Metabolic Syndrome, and tissue inflammation in CAF-fed rats. Spearman pairwise correlations between metabolites, physiologic, and histologic findings revealed strong correlations between elevated markers of inflammation in CAF-fed animals, measured as crown like structures in adipose, and specifically the pro-inflammatory saturated fatty acids and oxidation intermediates laurate and lauroyl carnitine. Treatment of bone marrow-derived macrophages with lauroyl carnitine polarized macrophages towards the M1 pro-inflammatory phenotype through downregulation of AMPK and secretion of pro-inflammatory cytokines. Results presented herein demonstrate that compared to a traditional HFD model, the CAF diet provides a robust model for diet-induced human obesity, which models Metabolic Syndrome-related mitochondrial dysfunction in serum, muscle, and adipose, along with pro-inflammatory metabolite alterations. These data also suggest that modifying the availability or metabolism of saturated fatty acids may limit the inflammation associated with obesity leading to Metabolic Syndrome.
Collapse
Affiliation(s)
- Brante P. Sampey
- Department of Nutrition, Gillings School of Global Public Health, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alex J. Freemerman
- Department of Nutrition, Gillings School of Global Public Health, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jimmy Zhang
- Department of Nutrition, Gillings School of Global Public Health, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Pei-Fen Kuan
- Department of Biostatistics, Gillings School of Global Public Health, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph A. Galanko
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Olga R. Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael J. Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robert D. Stevens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Heather A. Brauer
- Department of Epidemiology, Gillings School of Global Public Health, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Melissa A. Troester
- Department of Epidemiology, Gillings School of Global Public Health, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Liza Makowski
- Department of Nutrition, Gillings School of Global Public Health, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
153
|
Escobar-Morreale HF, Samino S, Insenser M, Vinaixa M, Luque-Ramírez M, Lasunción MA, Correig X. Metabolic Heterogeneity in Polycystic Ovary Syndrome Is Determined by Obesity: Plasma Metabolomic Approach Using GC-MS. Clin Chem 2012; 58:999-1009. [DOI: 10.1373/clinchem.2011.176396] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
BACKGROUND
Abdominal adiposity and obesity influence the association of polycystic ovary syndrome (PCOS) with insulin resistance and diabetes. We aimed to characterize the intermediate metabolism phenotypes associated with PCOS and obesity.
METHODS
We applied a nontargeted GC-MS metabolomic approach to plasma samples from 36 patients with PCOS and 39 control women without androgen excess, matched for age, body mass index, and frequency of obesity.
RESULTS
Patients with PCOS were hyperinsulinemic and insulin resistant compared with the controls. The increase in plasma long-chain fatty acids, such as linoleic and oleic acid, and glycerol in the obese patients with PCOS suggests increased lipolysis, possibly secondary to impaired insulin action at adipose tissue. Conversely, nonobese patients with PCOS showed a metabolic profile consisting of suppression of lipolysis and increased glucose utilization (increased lactic acid concentrations) in peripheral tissues, and PCOS patients as a whole showed decreased 2-ketoisocaproic and alanine concentrations, suggesting utilization of branched-chain amino acids for protein synthesis and not for gluconeogenesis. These metabolic processes required effective insulin signaling; therefore, insulin resistance was not universal in all tissues of these women, and different mechanisms possibly contributed to their hyperinsulinemia. PCOS was also associated with decreased α-tocopherol and cholesterol concentrations irrespective of obesity.
CONCLUSIONS
Substantial metabolic heterogeneity, strongly influenced by obesity, underlies PCOS. The possibility that hyperinsulinemia may occur in the absence of universal insulin resistance in nonobese women with PCOS should be considered when designing diagnostic and therapeutic strategies for the management of this prevalent disorder.
Collapse
Affiliation(s)
- Héctor F Escobar-Morreale
- Diabetes, Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal & Universidad de Alcalá, Madrid, Spain
- CIBER Diabetes y Enfermedades Metabólicas Asociadas, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Sara Samino
- CIBER Diabetes y Enfermedades Metabólicas Asociadas, Spain
- Metabolomics Platform, Universitat Rovira i Virgili & Institut d'Investigació Sanitaria Pere Virgili, Tarragona, Spain
| | - María Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal & Universidad de Alcalá, Madrid, Spain
- CIBER Diabetes y Enfermedades Metabólicas Asociadas, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - María Vinaixa
- CIBER Diabetes y Enfermedades Metabólicas Asociadas, Spain
- Metabolomics Platform, Universitat Rovira i Virgili & Institut d'Investigació Sanitaria Pere Virgili, Tarragona, Spain
| | - Manuel Luque-Ramírez
- Diabetes, Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal & Universidad de Alcalá, Madrid, Spain
- CIBER Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | - Miguel A Lasunción
- Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal & Universidad de Alcalá, Madrid, Spain, and CIBER Fisiopatología de la Obesidad y la Nutrición, Spain
| | - Xavier Correig
- CIBER Diabetes y Enfermedades Metabólicas Asociadas, Spain
- Metabolomics Platform, Universitat Rovira i Virgili & Institut d'Investigació Sanitaria Pere Virgili, Tarragona, Spain
| |
Collapse
|
154
|
Pinnick KE, Neville MJ, Fielding BA, Frayn KN, Karpe F, Hodson L. Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans. Diabetes 2012; 61:1399-403. [PMID: 22492525 PMCID: PMC3357300 DOI: 10.2337/db11-1810] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The expansion of lower-body adipose tissue (AT) is paradoxically associated with reduced cardiovascular disease and diabetes risk. We examined whether the beneficial metabolic properties of lower-body AT are related to the production and release of the insulin-sensitizing lipokine palmitoleate (16:1n-7). Using venoarterial difference sampling, we investigated the relative release of 16:1n-7 from lower-body (gluteofemoral) and upper-body (abdominal subcutaneous) AT depots. Paired gluteofemoral and abdominal subcutaneous AT samples were analyzed for triglyceride fatty acid composition and mRNA expression. Finally, the triglyceride fatty acid composition of isolated human preadipocytes was determined. Relative release of 16:1n-7 was markedly higher from gluteofemoral AT compared with abdominal subcutaneous AT. Stearoyl-CoA desaturase 1 (SCD1), the key enzyme involved in endogenous 16:1n-7 production, was more highly expressed in gluteofemoral AT and was associated with greater enrichment of 16:1n-7. Furthermore, isolated human preadipocytes from gluteofemoral AT displayed a higher content of SCD1-derived fatty acids. We demonstrate that human gluteofemoral AT plays a major role in determining systemic concentrations of the lipokine palmitoleate. Moreover, this appears to be an inherent feature of gluteofemoral AT. We propose that the beneficial metabolic properties of lower-body AT may be partly explained by the intrinsically greater production and release of palmitoleate.
Collapse
Affiliation(s)
- Katherine E. Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, U.K
| | - Matt J. Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, U.K
| | - Barbara A. Fielding
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, U.K
- Postgraduate Medical School, University of Surrey, Surrey, U.K
| | - Keith N. Frayn
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, U.K
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, U.K
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford Radcliffe Hospitals Trust, Oxford, U.K
- Corresponding author: Leanne Hodson, , or Fredrik Karpe,
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, U.K
- Corresponding author: Leanne Hodson, , or Fredrik Karpe,
| |
Collapse
|
155
|
Wu Y, Li R, Hildebrand DF. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry. Prog Lipid Res 2012; 51:340-9. [PMID: 22658963 DOI: 10.1016/j.plipres.2012.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 02/06/2023]
Abstract
Palmitoleate (cis-Δ9-16:1) shows numerous health benefits such as increased cell membrane fluidity, reduced inflammation, protection of the cardiovascular system, and inhibition of oncogenesis. Plant oils containing this unusual fatty acid can also be sustainable feedstocks for producing industrially important and high-demand 1-octene. Vegetable oils rich in palmitoleate are the ideal candidates for biodiesel production. Several wild plants are known that can synthesize high levels of palmitoleate in seeds. However, low yields and poor agronomic characteristics of these plants limit their commercialization. Metabolic engineering has been developed to create oilseed crops that accumulate high levels of palmitoleate or other unusual fatty acids, and significant advances have been made recently in this field, particularly using the model plant Arabidopsis as the host. The engineered targets for enhancing palmitoleate synthesis include overexpression of Δ9 desaturase from mammals, yeast, fungi, and plants, down-regulating KASII, coexpression of an ACP-Δ9 desaturase in plastids and CoA-Δ9 desaturase in endoplasmic reticulum (ER), and optimizing the metabolic flux into triacylglycerols (TAGs). This review will mainly describe the recent progress towards producing palmitoleate in transgenic plants by metabolic engineering along with our current understanding of palmitoleate biosynthesis and its regulation, as well as highlighting the bottlenecks that require additional investigation by combining lipidomics, transgenics and other "-omics" tools. A brief review of reported health benefits and non-food uses of palmitoleate will also be covered.
Collapse
Affiliation(s)
- Yongmei Wu
- Shanxi Agricultural University, Taigu 030801, China
| | | | | |
Collapse
|
156
|
Affiliation(s)
- Oswald Quehenberger
- Departments of Medicine and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
157
|
Furuhashi M, Ishimura S, Ota H, Miura T. Lipid chaperones and metabolic inflammation. Int J Inflam 2011; 2011:642612. [PMID: 22121495 PMCID: PMC3206330 DOI: 10.4061/2011/642612] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/18/2011] [Indexed: 11/28/2022] Open
Abstract
Over the past decade, a large body of evidence has emerged demonstrating an integration of metabolic and immune response pathways. It is now clear that obesity and associated disorders such as insulin resistance and type 2 diabetes are associated with a metabolically driven, low-grade, chronic inflammatory state, referred to as “metaflammation.” Several inflammatory cytokines as well as lipids and metabolic stress pathways can activate metaflammation, which targets metabolically critical organs and tissues including adipocytes and macrophages to adversely affect systemic homeostasis. On the other hand, inside the cell, fatty acid-binding proteins (FABPs), a family of lipid chaperones, as well as endoplasmic reticulum (ER) stress, and reactive oxygen species derived from mitochondria play significant roles in promotion of metabolically triggered inflammation. Here, we discuss the molecular and cellular basis of the roles of FABPs, especially FABP4 and FABP5, in metaflammation and related diseases including obesity, diabetes, and atherosclerosis.
Collapse
Affiliation(s)
- Masato Furuhashi
- Second Department of Internal Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Japan
| | | | | | | |
Collapse
|
158
|
Scherer T, Buettner C. Yin and Yang of hypothalamic insulin and leptin signaling in regulating white adipose tissue metabolism. Rev Endocr Metab Disord 2011; 12:235-43. [PMID: 21713385 PMCID: PMC3253350 DOI: 10.1007/s11154-011-9190-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fatty acids released from white adipose tissue (WAT) provide important energy substrates during fasting. However, uncontrolled fatty acid release from WAT during non-fasting states causes lipotoxicity and promotes inflammation and insulin resistance, which can lead to and worsen type 2 diabetes (DM2). WAT is also a source for insulin sensitizing fatty acids such as palmitoleate produced during de novo lipogenesis. Insulin and leptin are two major hormonal adiposity signals that control energy homeostasis through signaling in the central nervous system. Both hormones have been implicated to regulate both WAT lipolysis and de novo lipogenesis through the mediobasal hypothalamus (MBH) in an opposing fashion independent of their respective peripheral receptors. Here, we review the current literature on brain leptin and insulin action in regulating WAT metabolism and discuss potential mechanisms and neuro-anatomical substrates that could explain the opposing effects of central leptin and insulin. Finally, we discuss the role of impaired hypothalamic control of WAT metabolism in the pathogenesis of insulin resistance, metabolic inflexibility and type 2 diabetes.
Collapse
|
159
|
Wu JHY, Lemaitre RN, Imamura F, King IB, Song X, Spiegelman D, Siscovick DS, Mozaffarian D. Fatty acids in the de novo lipogenesis pathway and risk of coronary heart disease: the Cardiovascular Health Study. Am J Clin Nutr 2011; 94:431-8. [PMID: 21697077 PMCID: PMC3142722 DOI: 10.3945/ajcn.111.012054] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND De novo lipogenesis (DNL) is an endogenous pathway whereby carbohydrates and proteins are converted to fatty acids. DNL could affect coronary heart disease (CHD) or sudden cardiac arrest (SCA) via generation of specific fatty acids. Whether these fatty acids are prospectively associated with SCA or other CHD events is unknown. OBJECTIVE The objective was to investigate the relations of 4 fatty acids in the DNL pathway-palmitic acid (16:0), palmitoleic acid (16:1n-7), 7-hexadecenoic acid (16:1n-9), and cis-vaccenic acid (18:1n-7)-with incident CHD, including fatal CHD, nonfatal myocardial infarction (NFMI), and SCA. DESIGN A community-based prospective study was conducted in 2890 men and women aged ≥65 y, who were free of known CHD at baseline and who were followed from 1992 to 2006. Cardiovascular disease risk factors and plasma phospholipid fatty acids were measured at baseline by using standardized methods. Incident CHD was ascertained prospectively and was centrally adjudicated by using medical records. Risk was assessed by using multivariable-adjusted Cox proportional hazards. RESULTS During 29,835 person-years of follow-up, 631 CHD and 71 SCA events occurred. Both 18:1n-7 and 16:1n-9 were associated with a higher risk of SCA [multivariable-adjusted hazard ratio (95% CI) for the interquintile range: 7.63 (2.58, 22.6) for 18:1n-7 and 2.30 (1.16, 4.55) for 16:1n-9] but not of total CHD, fatal CHD, or NFMI. In secondary analyses censored to mid-follow-up (7 y) to minimize the effects of changes in concentrations over time, 16:1n-9 was also associated with a significantly higher risk of total CHD (2.11; 1.76, 2.54), including a higher risk of CHD death, NFMI, and SCA; 16:0 and 16:1n-7 were not associated with clinical CHD outcomes. CONCLUSION Higher plasma phospholipid 18:1n-7 and 16:1n-9 concentrations were prospectively associated with an elevated risk of SCA but not of other CHD events, except in secondary analyses.
Collapse
Affiliation(s)
- Jason H Y Wu
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
160
|
|
161
|
Maurantonio M, Ballestri S, Odoardi MR, Lonardo A, Loria P. Treatment of atherogenic liver based on the pathogenesis of nonalcoholic fatty liver disease: a novel approach to reduce cardiovascular risk? Arch Med Res 2011; 42:337-353. [PMID: 21843565 DOI: 10.1016/j.arcmed.2011.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/18/2011] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which spans a spectrum of conditions ranging from simple steatosis to progressive nonalcoholic steatohepatitis (NASH), is the most common chronic liver disease and a relevant public health issue. The prevalence of NAFLD depends on adiposity, age, gender and ethnicity. The natural history of liver disease in those with NAFLD critically depends on liver histological changes. However, cardiovascular mortality is increased in NAFLD, particularly in middle-aged adults. Against such a background, this review consists of three sections. First, data on NAFLD as a novel mechanism of increased cardiovascular risk via hyperinsulinism, pro-thrombotic potential, and subclinical inflammation are summarized. Next, the role of atherogenic liver in the development of manifestations of oxidative stress and atherosclerosis is emphasized. Finally, whether and how treating NAFLD will mechanistically result in reduced cardiovascular risk through ameliorated metabolic syndrome is discussed.
Collapse
Affiliation(s)
- Mauro Maurantonio
- Department of Internal Medicine, Endocrinology, Metabolism and Geriatrics, Nuovo Ospedale Civile Sant'Agostino-Estense di Modena, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | |
Collapse
|
162
|
Abstract
The modern rise in obesity and its strong association with insulin resistance and type 2 diabetes have elicited interest in the underlying mechanisms of these pathologies. The discovery that obesity itself results in an inflammatory state in metabolic tissues ushered in a research field that examines the inflammatory mechanisms in obesity. Here, we summarize the unique features of this metabolic inflammatory state, termed metaflammation and defined as low-grade, chronic inflammation orchestrated by metabolic cells in response to excess nutrients and energy. We explore the effects of such inflammation in metabolic tissues including adipose, liver, muscle, pancreas, and brain and its contribution to insulin resistance and metabolic dysfunction. Another area in which many unknowns still exist is the origin or mechanism of initiation of inflammatory signaling in obesity. We discuss signals or triggers to the inflammatory response, including the possibility of endoplasmic reticulum stress as an important contributor to metaflammation. Finally, we examine anti-inflammatory therapies for their potential in the treatment of obesity-related insulin resistance and glucose intolerance.
Collapse
Affiliation(s)
- Margaret F Gregor
- Departments of Genetics and Complex Diseases and Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
163
|
Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, Hotamisligil GS. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: a cohort study. Ann Intern Med 2010; 153:790-9. [PMID: 21173413 PMCID: PMC3056495 DOI: 10.7326/0003-4819-153-12-201012210-00005] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Palmitoleic acid (cis-16:1n-7), which is produced by endogenous fat synthesis, has been linked to both beneficial and deleterious metabolic effects, potentially confounded by diverse determinants and tissue sources of endogenous production. Trans-palmitoleate (trans-16:1n-7) represents a distinctly exogenous source of 16:1n-7, unconfounded by endogenous synthesis or its determinants, that may be uniquely informative. OBJECTIVE To investigate whether circulating trans-palmitoleate is independently related to lower metabolic risk and incident type 2 diabetes. DESIGN Prospective cohort study from 1992 to 2006. SETTING Four U.S. communities. PATIENTS 3736 adults in the Cardiovascular Health Study. MEASUREMENTS Anthropometric characteristics and levels of plasma phospholipid fatty acids, blood lipids, inflammatory markers, and glucose-insulin measured at baseline in 1992 and dietary habits measured 3 years earlier. Multivariate-adjusted models were used to investigate how demographic, clinical, and lifestyle factors independently related to plasma phospholipid trans-palmitoleate; how trans-palmitoleate related to major metabolic risk factors; and how trans-palmitoleate related to new-onset diabetes (304 incident cases). Findings were validated for metabolic risk factors in an independent cohort of 327 women. RESULTS In multivariate analyses, whole-fat dairy consumption was most strongly associated with higher trans-palmitoleate levels. Higher trans-palmitoleate levels were associated with slightly lower adiposity and, independently, with higher high-density lipoprotein cholesterol levels (1.9% across quintiles; P = 0.040), lower triglyceride levels (-19.0%; P < 0.001), a lower total cholesterol-HDL cholesterol ratio (-4.7%; P < 0.001), lower C-reactive protein levels (-13.8%; P = 0.05), and lower insulin resistance (-16.7%, P < 0.001). Trans-palmitoleate was also associated with a substantially lower incidence of diabetes, with multivariate hazard ratios of 0.41 (95% CI, 0.27 to 0.64) and 0.38 (CI, 0.24 to 0.62) in quintiles 4 and 5 versus quintile 1 (P for trend < 0.001). Findings were independent of estimated dairy consumption or other fatty acid dairy biomarkers. Protective associations with metabolic risk factors were confirmed in the validation cohort. LIMITATION Results could be affected by measurement error or residual confounding. CONCLUSION Circulating trans-palmitoleate is associated with lower insulin resistance, presence of atherogenic dyslipidemia, and incident diabetes. Our findings may explain previously observed metabolic benefits of dairy consumption and support the need for detailed further experimental and clinical investigation. PRIMARY FUNDING SOURCE National Heart, Lung, and Blood Institute and National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health.
Collapse
Affiliation(s)
- Dariush Mozaffarian
- Brigham and Women's Hospital, Harvard Medical School, and Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
164
|
Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, Hotamisligil GS. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: a cohort study. Ann Intern Med 2010; 153:790-799. [PMID: 21173413 PMCID: PMC3056495 DOI: 10.1059/0003-4819-153-12-201012210-00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2025] Open
Abstract
BACKGROUND Palmitoleic acid (cis-16:1n-7), which is produced by endogenous fat synthesis, has been linked to both beneficial and deleterious metabolic effects, potentially confounded by diverse determinants and tissue sources of endogenous production. Trans-palmitoleate (trans-16:1n-7) represents a distinctly exogenous source of 16:1n-7, unconfounded by endogenous synthesis or its determinants, that may be uniquely informative. OBJECTIVE To investigate whether circulating trans-palmitoleate is independently related to lower metabolic risk and incident type 2 diabetes. DESIGN Prospective cohort study from 1992 to 2006. SETTING Four U.S. communities. PATIENTS 3736 adults in the Cardiovascular Health Study. MEASUREMENTS Anthropometric characteristics and levels of plasma phospholipid fatty acids, blood lipids, inflammatory markers, and glucose-insulin measured at baseline in 1992 and dietary habits measured 3 years earlier. Multivariate-adjusted models were used to investigate how demographic, clinical, and lifestyle factors independently related to plasma phospholipid trans-palmitoleate; how trans-palmitoleate related to major metabolic risk factors; and how trans-palmitoleate related to new-onset diabetes (304 incident cases). Findings were validated for metabolic risk factors in an independent cohort of 327 women. RESULTS In multivariate analyses, whole-fat dairy consumption was most strongly associated with higher trans-palmitoleate levels. Higher trans-palmitoleate levels were associated with slightly lower adiposity and, independently, with higher high-density lipoprotein cholesterol levels (1.9% across quintiles; P = 0.040), lower triglyceride levels (-19.0%; P < 0.001), a lower total cholesterol-HDL cholesterol ratio (-4.7%; P < 0.001), lower C-reactive protein levels (-13.8%; P = 0.05), and lower insulin resistance (-16.7%, P < 0.001). Trans-palmitoleate was also associated with a substantially lower incidence of diabetes, with multivariate hazard ratios of 0.41 (95% CI, 0.27 to 0.64) and 0.38 (CI, 0.24 to 0.62) in quintiles 4 and 5 versus quintile 1 (P for trend < 0.001). Findings were independent of estimated dairy consumption or other fatty acid dairy biomarkers. Protective associations with metabolic risk factors were confirmed in the validation cohort. LIMITATION Results could be affected by measurement error or residual confounding. CONCLUSION Circulating trans-palmitoleate is associated with lower insulin resistance, presence of atherogenic dyslipidemia, and incident diabetes. Our findings may explain previously observed metabolic benefits of dairy consumption and support the need for detailed further experimental and clinical investigation. PRIMARY FUNDING SOURCE National Heart, Lung, and Blood Institute and National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health.
Collapse
Affiliation(s)
- Dariush Mozaffarian
- Brigham and Women's Hospital, Harvard Medical School, and Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|