151
|
Petibon C, Malik Ghulam M, Catala M, Abou Elela S. Regulation of ribosomal protein genes: An ordered anarchy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1632. [PMID: 33038057 PMCID: PMC8047918 DOI: 10.1002/wrna.1632] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Ribosomal protein genes are among the most highly expressed genes in most cell types. Their products are generally essential for ribosome synthesis, which is the cornerstone for cell growth and proliferation. Many cellular resources are dedicated to producing ribosomal proteins and thus this process needs to be regulated in ways that carefully balance the supply of nascent ribosomal proteins with the demand for new ribosomes. Ribosomal protein genes have classically been viewed as a uniform interconnected regulon regulated in eukaryotic cells by target of rapamycin and protein kinase A pathway in response to changes in growth conditions and/or cellular status. However, recent literature depicts a more complex picture in which the amount of ribosomal proteins produced varies between genes in response to two overlapping regulatory circuits. The first includes the classical general ribosome‐producing program and the second is a gene‐specific feature responsible for fine‐tuning the amount of ribosomal proteins produced from each individual ribosomal gene. Unlike the general pathway that is mainly controlled at the level of transcription and translation, this specific regulation of ribosomal protein genes is largely achieved through changes in pre‐mRNA splicing efficiency and mRNA stability. By combining general and specific regulation, the cell can coordinate ribosome production, while allowing functional specialization and diversity. Here we review the many ways ribosomal protein genes are regulated, with special focus on the emerging role of posttranscriptional regulatory events in fine‐tuning the expression of ribosomal protein genes and its role in controlling the potential variation in ribosome functions. This article is categorized under:Translation > Ribosome Biogenesis Translation > Ribosome Structure/Function Translation > Translation Regulation
Collapse
Affiliation(s)
- Cyrielle Petibon
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mustafa Malik Ghulam
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mathieu Catala
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| |
Collapse
|
152
|
Zhang Y, Li S, Li X, Yang Y, Li W, Xiao X, Li M, Lv L, Luo X. Convergent lines of evidence support NOTCH4 as a schizophrenia risk gene. J Med Genet 2020; 58:666-678. [PMID: 32900838 DOI: 10.1136/jmedgenet-2020-106830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/04/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022]
Abstract
The association between NOTCH4 and schizophrenia has been repeatedly reported. However, the results from different genetic studies are inconsistent, and the role of NOTCH4 in schizophrenia pathogenesis remains unknown. Here, we provide convergent lines of evidence that support NOTCH4 as a schizophrenia risk gene. We first performed a meta-analysis and found that a genetic variant (rs2071287) in NOTCH4 was significantly associated with schizophrenia (a total of 125 848 subjects, p=8.31×10-17), with the same risk allele across all tested samples. Expression quantitative trait loci (eQTL) analysis showed that rs2071287 was significantly associated with NOTCH4 expression (p=1.08×10-14) in human brain tissues, suggesting that rs2071287 may confer schizophrenia risk through regulating NOTCH4 expression. Sherlock integrative analysis using a large-scale schizophrenia GWAS and eQTL data from human brain tissues further revealed that NOTCH4 was significantly associated with schizophrenia (p=4.03×10-7 in CMC dataset and p=3.06×10-6 in xQTL dataset), implying that genetic variants confer schizophrenia risk through modulating NOTCH4 expression. Consistently, we found that NOTCH4 was significantly downregulated in brains of schizophrenia patients compared with controls (p=2.53×10-3), further suggesting that dysregulation of NOTCH4 may have a role in schizophrenia. Finally, we showed that NOTCH4 regulates proliferation, self-renewal, differentiation and migration of neural stem cells, suggesting that NOTCH4 may confer schizophrenia risk through affecting neurodevelopment. Our study provides convergent lines of evidence that support the involvement of NOTCH4 in schizophrenia. In addition, our study also elucidates a possible mechanism for the role of NOTCH4 in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, Henan 453002, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, Henan 453002, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, Henan 453002, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, Henan 453002, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China .,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, Henan 453002, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, Henan 453002, China
| | - XiongJian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
153
|
Akhatayeva Z, Mao C, Jiang F, Pan C, Lin C, Hao K, Lan T, Chen H, Zhang Q, Lan X. Indel variants within the PRL and GHR genes associated with sheep litter size. Reprod Domest Anim 2020; 55:1470-1478. [PMID: 32762057 DOI: 10.1111/rda.13796] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Growth hormone and prolactin belong to the class of peptide hormones that have a wide range of regulatory functions. In this study, polymorphisms of growth hormone receptor (GHR) and prolactin (PRL) genes were analysed as candidate genes, which are responsible for the litter size in Australian White (AUW) sheep. According to the statistical analyses results, the polymorphism information content (PIC) values of the PRL-P1-ins-23 bp, GHR-P2-del-23 bp and GHR-P8-del-23 bp were 0.371, 0.366 and 0.375, respectively, which indicates the high genetic polymorphism in AUW sheep. Moreover, all indel loci are not conformed to the HWE (p < .05). Further, our findings revealed that the PRL-P1-ins-23 bp polymorphism in the ovine PRL gene was significantly related to the first parity litter size (p = .001) and the DD genotype displaying the highest genotypic mean. Meanwhile, the GHR-P2-del-23 bp and GHR-P8-23 bp indels in the ovine GHR gene were significantly correlated with first parity litter size (p < .05), and the individuals with the genotype II showed significantly higher litter size than others. Collectively, these results demonstrated that our findings could be useful for future sheep breeding strategies based on the molecular-assisted selection (MAS).
Collapse
Affiliation(s)
- Zhanerke Akhatayeva
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Cui Mao
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Fugui Jiang
- Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China.,Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chunjian Lin
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Kunjie Hao
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Tianxin Lan
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd., Tianjin, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
154
|
Paredes-Sánchez FA, Sifuentes-Rincón AM, Casas E, Arellano-Vera W, Parra-Bracamonte GM, Riley DG, Welsh TH, Randel RD. Novel genes involved in the genetic architecture of temperament in Brahman cattle. PLoS One 2020; 15:e0237825. [PMID: 32822435 PMCID: PMC7446865 DOI: 10.1371/journal.pone.0237825] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cattle temperament is a complex and economically relevant trait. The objective of this study was to identify genomic regions and genes associated with cattle temperament. From a Brahman cattle population of 1,370 animals evaluated for temperament traits (Exit velocity-EV, Pen Score-PS, Temperament Score-TS), two groups of temperament-contrasting animals were identified based on their EV-average values ±1/2 standard deviation (SD). To be considered in the calm group, the EV of females ranged between 0.16–1.82 m/s (n = 50) and the EV of males ranged between 0.4–1.56 m/s (n = 48). Females were classified as temperamental if their EV ranged between 3.13–7.66 m/s (n = 46) and males were classified as temperamental if their EV ranged between 3.05–10.83 m/s (n = 45). Selected animals were genotyped using a total of 139,376 SNPs (GGP-HD-150K), evaluated for their association with EV. The Genome-Wide Association analysis (GWAS) identified fourteen SNPs: rs135340276, rs134895560, rs110190635, rs42949831, rs135982573, rs109393235, rs109531929, rs135087545, rs41839733, rs42486577, rs136661522, rs110882543, rs110864071, rs109722627, (P<8.1E-05), nine of them were located on intergenic regions, harboring seventeen genes, of which only ACER3, VRK2, FANCL and SLCO3A1 were considered candidate associated with bovine temperament due to their reported biological functions. Five SNPs were located at introns of the NRXN3, EXOC4, CACNG4 and SLC9A4 genes. The indicated candidate genes are implicated in a wide range of behavioural phenotypes and complex cognitive functions. The association of the fourteen SNPs on bovine temperament traits (EV, PS and TS) was evaluated; all these SNPs were significant for EV; only some were associated with PS and TS. Fourteen SNPs were associated with EV which allowed the identification of twenty-one candidate genes for Brahman temperament. From a functional point of view, the five intronic SNPs identified in this study, are candidates to address control of bovine temperament, further investigation will probe their role in expression of this trait.
Collapse
Affiliation(s)
| | | | - Eduardo Casas
- USDA, ARS, National Animal Disease Center, Ames, IA, United States of America
| | | | | | - David G. Riley
- Texas A&M University, College Station, TX, United States of America
| | - Thomas H. Welsh
- Texas A&M University, College Station, TX, United States of America
| | - Ronald D. Randel
- Texas A&M AgriLife Research, Overton, TX, United States of America
| |
Collapse
|
155
|
Do SK, Choi SH, Lee SY, Choi JE, Kang HG, Hong MJ, Kim JH, Baek SA, Lee JH, Lee WK, Do YW, Lee EB, Shin KM, Jeong JY, Lee YH, Seo H, Yoo SS, Lee J, Cha SI, Kim CH, Seok Y, Cho S, Jheon S, Park JY. Genetic Variants in One-Carbon Metabolism Pathway Predict Survival Outcomes of Early-Stage Non-Small Cell Lung Cancer. Oncology 2020; 98:897-904. [PMID: 32791502 DOI: 10.1159/000509658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND This study was conducted to investigate the association between genetic variants in one-carbon metabolism and survival outcomes of surgically resected non-small cell lung cancer (NSCLC). METHODS We genotyped 41 potentially functional variants of 19 key genes in the one-carbon metabolism pathway among 750 NSCLC patients who underwent curative surgery. The association between genetic variants and overall survival (OS)/disease-free survival (DFS) were analyzed. RESULTS Among the 41 single-nucleotide polymorphisms (SNPs) analyzed, 4 SNPs (MTHFD1L rs6919680T>G and rs3849794T>C, MTR rs2853523C>A, and MTHFR rs4846049G>T) were significantly associated with survival outcomes. MTHFD1L rs6919680T>G and MTR rs2853523C>A were significantly associated with better OS (adjusted hazard ratio [aHR] = 0.73, 95% confidence interval [CI] = 0.54-0.99, p = 0.04) and worse OS (aHR = 2.14, 95% CI = 1.13-4.07, p = 0.02), respectively. MTHFD1L rs3849794T>C and MTHFR rs4846049G>T were significantly associated with worse DFS (aHR = 1.41, 95% CI = 1.08-1.83, p = 0.01; and aHR = 1.97, 95% CI = 1.10-3.53, p = 0.02, respectively). When the patients were divided according to histology, the associations were significant only in squamous cell carcinoma (SCC), but not in adenocarcinoma (AC). In SCC, MTHFD1L rs6919680T>G and MTR rs2853523C>A were significantly associated with better OS (aHR = 0.64, 95% CI = 0.41-1.00, p = 0.05) and worse OS (aHR = 2.77, 95% CI = 1.11-6.91, p = 0.03), respectively, and MTHFD1L rs3849794T>C and MTHFR rs4846049G>T were significantly associated with worse DFS (aHR = 1.73, 95% CI = 1.17-2.56, p = 0.01; and aHR = 2.78, 95% CI = 1.12-6.88, p = 0.03, respectively). CONCLUSIONS Our results suggest that the genetic variants in the one-carbon metabolism pathway could be used as biomarkers for predicting the clinical outcomes of patients with early-stage NSCLC.
Collapse
Affiliation(s)
- Sook Kyung Do
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Tumor Heterogeneity and Network (THEN) Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea, .,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea,
| | - Jin Eun Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo-Gyoung Kang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Jeong Hong
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Hyun Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Ah Baek
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jang Hyuck Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Won Kee Lee
- Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young Woo Do
- Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.,Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eung Bae Lee
- Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.,Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Min Shin
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyewon Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yangki Seok
- Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.,Department of Thoracic Surgery, Soonchunhyang University Gumi Hospital, Gumi, Republic of Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University School of Medicine, Seoul, Republic of Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University School of Medicine, Seoul, Republic of Korea
| | - Jae Yong Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Tumor Heterogeneity and Network (THEN) Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
156
|
Variants in taste genes on caries risk and caries activity status. Med Mol Morphol 2020; 53:244-251. [DOI: 10.1007/s00795-020-00263-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/24/2020] [Indexed: 10/25/2022]
|
157
|
Sharma B, Taganna J. Genome-wide analysis of the U-box E3 ubiquitin ligase enzyme gene family in tomato. Sci Rep 2020; 10:9581. [PMID: 32533036 PMCID: PMC7293263 DOI: 10.1038/s41598-020-66553-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
E3 ubiquitin ligases are a central modifier of plant signaling pathways that act through targeting proteins to the degradation pathway. U-box E3 ubiquitin ligases are a distinct class of E3 ligases that utilize intramolecular interactions for its scaffold stabilization. U-box E3 ubiquitin ligases are prevalent in plants in comparison to animals. However, the evolutionary aspects, genetic organizations, and functional fate of the U-box E3 gene family in plant development, especially in tomato is not well understood. In the present study, we have performed in-silico genome-wide analysis of the U-box E3 ubiquitin ligase gene family in Solanum lycopersicum. We have identified 62 U-box genes with U-box/Ub Fusion Degradation 2 (UFD2) domain. The chromosomal localization, phylogenetic analysis, gene structure, motifs, gene duplication, syntenic regions, promoter, physicochemical properties, and ontology were investigated. The U-box gene family showed significant conservation of the U-box domain throughout the gene family. Duplicated genes discerned noticeable functional transitions among duplicated genes. The gene expression profiles of U-box E3 family members show involvement in abiotic and biotic stress signaling as well as hormonal pathways. We found remarkable participation of the U-box gene family in the vegetative and reproductive tissue development. It is predicted to be actively regulating flowering time and endosperm formation. Our study provides a comprehensive picture of distribution, structural features, promoter elements, evolutionary relationship, and gene expression of the U-box gene family in the tomato. We predict the crucial participation of the U-box gene family in tomato plant development and stress responses.
Collapse
Affiliation(s)
- Bhaskar Sharma
- TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India.
- School of Life and Environmental Sciences, Faculty of Science, Engineering, and Built Environment, Deakin University, Geelong, VIC-3220, Australia.
| | - Joemar Taganna
- SciBiz Informatics, 2/F Unit 3 CFI Building, Maharlika Highway, Brgy. Guindapunan, Palo, Leyte, 6501, Philippines
| |
Collapse
|
158
|
Kumar A, Sharma S, Chunduri V, Kaur A, Kaur S, Malhotra N, Kumar A, Kapoor P, Kumari A, Kaur J, Sonah H, Garg M. Genome-wide Identification and Characterization of Heat Shock Protein Family Reveals Role in Development and Stress Conditions in Triticum aestivum L. Sci Rep 2020; 10:7858. [PMID: 32398647 PMCID: PMC7217896 DOI: 10.1038/s41598-020-64746-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 04/01/2020] [Indexed: 12/02/2022] Open
Abstract
Heat shock proteins (HSPs) have a significant role in protein folding and are considered as prominent candidates for development of heat-tolerant crops. Understanding of wheat HSPs has great importance since wheat is severely affected by heat stress, particularly during the grain filling stage. In the present study, efforts were made to identify HSPs in wheat and to understand their role during plant development and under different stress conditions. HSPs in wheat genome were first identified by using Position-Specific Scoring Matrix (PSSMs) of known HSP domains and then also confirmed by sequence homology with already known HSPs. Collectively, 753 TaHSPs including 169 TaSHSP, 273 TaHSP40, 95 TaHSP60, 114 TaHSP70, 18 TaHSP90 and 84 TaHSP100 were identified in the wheat genome. Compared with other grass species, number of HSPs in wheat was relatively high probably due to the higher ploidy level. Large number of tandem duplication was identified in TaHSPs, especially TaSHSPs. The TaHSP genes showed random distribution on chromosomes, however, there were more TaHSPs in B and D sub-genomes as compared to the A sub-genome. Extensive computational analysis was performed using the available genomic resources to understand gene structure, gene expression and phylogentic relationship of TaHSPs. Interestingly, apart from high expression under heat stress, high expression of TaSHSP was also observed during seed development. The study provided a list of candidate HSP genes for improving thermo tolerance during developmental stages and also for understanding the seed development process in bread wheat.
Collapse
Affiliation(s)
- Ashish Kumar
- South Asian University, Chankyapuri, New Delhi, 110021, India
| | - Saloni Sharma
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar (Mohali), Punjab, India
| | - Venkatesh Chunduri
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar (Mohali), Punjab, India
| | - Amandeep Kaur
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar (Mohali), Punjab, India
| | - Satinder Kaur
- Punjab Agricultural University, Ludhiana, 141004, India
| | - Nikhil Malhotra
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar (Mohali), Punjab, India
| | - Aman Kumar
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar (Mohali), Punjab, India
| | - Payal Kapoor
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar (Mohali), Punjab, India
| | - Anita Kumari
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar (Mohali), Punjab, India
| | | | - Humira Sonah
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar (Mohali), Punjab, India.
| | - Monika Garg
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar (Mohali), Punjab, India.
| |
Collapse
|
159
|
Pruchniak MP, Ostafin M, Wachowska M, Jakubaszek M, Kwiatkowska B, Olesinska M, Zycinska K, Demkow U. Neutrophil extracellular traps generation and degradation in patients with granulomatosis with polyangiitis and systemic lupus erythematosus. Autoimmunity 2020; 52:126-135. [PMID: 31257985 DOI: 10.1080/08916934.2019.1631812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neutrophils are one of the first cells to arrive at the site of infection, where they apply several strategies to kill pathogens: degranulation, respiratory burst, phagocytosis, and release of neutrophil extracellular traps (NETs). Recent discoveries try to connect NETs formation with autoimmune diseases, like systemic lupus erythematosus (SLE) or granulomatosis with polyangiitis (GPA) and place them among one of the factors responsible for disease pathogenesis. The aim of the study was to assess the NETotic capabilities of neutrophils obtained from freshly diagnosed autoimmune patients versus healthy controls. Further investigation involved assessing NETs production among treated patients. In the latter step, NETs degradation potency of collected sera from non-treated patients was checked. Lastly, the polymorphisms of the DNASE I gene among tested subjects were checked. NETs formation was measured in a neutrophil culture by fluorometry, while degradation assessment was performed with patients' sera and extracellular source of DNA. Additionally, Sanger sequencing was used to check potential SNP mutations between patients. About 121 subjects were enrolled into this study, 54 of them with a diagnosed autoimmune disorder. Neutrophils stimulated with NETosis inducers were able to release NETs in all cases. We have found that disease affected patients produce NETs more rapidly and in larger quantities than control groups, with up to 82.5% more released. Most importantly, we showed a difference between the diseases themselves. NETs release was 68.5% higher in GPA samples when compared to SLE ones while stimulated with Calcium Ionophore. Serum nucleases were less effective at degrading NETs in both autoimmune diseases, with a reduction in degradation of 20.9% observed for GPA and 18.2% for SLE when compared with the controls. Potential therapies targeting neutrophils and NETs should be specifically tailored to the type of the disease. Since there are significant differences between NETs release and disease type, a standard neutrophil targeted therapy could prevent over-generation of traps in some cases, while in others it would deplete the cells, leaving the immune system unresponsive to primary infections.
Collapse
Affiliation(s)
- Michal Przemyslaw Pruchniak
- a Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age , Medical University of Warsaw , Warsaw , Poland.,b Postgraduate School of Molecular Medicine , Medical University of Warsaw , Warsaw , Poland
| | - Magdalena Ostafin
- a Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age , Medical University of Warsaw , Warsaw , Poland
| | - Malgorzata Wachowska
- a Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age , Medical University of Warsaw , Warsaw , Poland
| | - Michal Jakubaszek
- c National Institute of Geriatrics, Rheumatology and Rehabilitation, Early Arthritis Clinic , Warsaw , Poland
| | - Brygida Kwiatkowska
- c National Institute of Geriatrics, Rheumatology and Rehabilitation, Early Arthritis Clinic , Warsaw , Poland
| | - Marzena Olesinska
- d Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation , Warsaw , Poland
| | - Katarzyna Zycinska
- e Department of Family Medicine, Internal and Metabolic Diseases , Medical University of Warsaw , Warsaw , Poland
| | - Urszula Demkow
- a Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age , Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
160
|
Polymorphisms in JAK2 Gene are Associated with Production Traits and Mastitis Resistance in Dairy Cattle. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The present study was designed to investigate the effects of single nucleotide polymorphisms (SNPs) in the JAK2 gene on the production and mastitis related traits in dairy cattle. Blood and milk samples were collected from 201 lactating dairy cattle of three breeds, i.e. Holstein Friesian (HF), Jersey (J) and Achai (A) and their crosses maintained at well-established dairy farms in Khyber Pakhtunkhwa, Pakistan. Generalized linear model was used to evaluate the association between genotypes and the studied traits. A DNA pool was made from randomly selected 30 samples which revealed three SNPs, i.e. SNP 1 in 5’ upstream region (G>A, rs379754157), SNP 2 in intron 15 (A>G, rs134192265), and SNP 3 in exon 20 (A>G, rs110298451) that were further validated in the population under study using SNaPshot technique. Of the three SNPs, SNP 1 did not obey Hardy-Weinberg equilibrium (P<0.05). SNP 2 and SNP 3 were found to be in strong linkage disequilibrium and allele G was highly prevalent compared to allele A in these SNPs. in SNP 1, the GG genotype was associated with significantly (P<0.01) higher SCC, whereas SNP 2 and SNP 3 were significantly (P<0.01) associated with higher lactose percentage compared to the other geno-types. The haplogroups association analysis revealed that H1H2 (GG GG AG) has significantly lower SCC than H2H2 (GG GG GG). The results infer that JAK2 could be an important candidate gene and the studied SNPs might be useful genetic markers for production and mastitis related traits.
Collapse
|
161
|
Gokuladhas S, Schierding W, Cameron-Smith D, Wake M, Scotter EL, O’Sullivan J. Shared Regulatory Pathways Reveal Novel Genetic Correlations Between Grip Strength and Neuromuscular Disorders. Front Genet 2020; 11:393. [PMID: 32391060 PMCID: PMC7194178 DOI: 10.3389/fgene.2020.00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Muscle weakness is a common consequence of both aging (sarcopenia) and neuromuscular disorders (NMD). Whilst genome-wide association (GWA) studies have identified genetic variants associated with grip strength (GS; measure of muscle strength/weakness) and NMDs, including multiple sclerosis (MS), myasthenia gravis (MG) and amyotrophic lateral sclerosis (ALS), it is not known whether there are common mechanisms between these phenotypes. To examine this, we have integrated GS and NMD associated genetic variants (single nucleotide polymorphisms; SNPs) in a multimorbid analysis that leverages high-throughput chromatin interaction (Hi-C) data and expression quantitative trait loci data to identify target genes (i.e., SNP-mediated gene regulation). Biological pathways enriched by these genes were then identified using next-generation pathway enrichment analysis. Lastly, druggable genes were identified using drug gene interaction (DGI) database. We identified gene regulatory mechanisms associated with GS, MG, MS, and ALS. The SNPs associated with GS regulate a subset of genes that are also regulated by the SNPs of MS, MG, and ALS. Yet, we did not find any genes commonly regulated by all four phenotype associated SNPs. By contrast, we identified significant enrichment in three pathways (mTOR signaling, axon guidance, and alcoholism) that are commonly affected by the gene regulatory mechanisms associated with all four phenotypes. 13% of the genes we identified were known drug targets, and GS shares at least one druggable gene and pathway with each of the NMD phenotypes. We have identified significant biological overlaps between GS and NMD, demonstrating the potential for spatial genetic analysis to identify common mechanisms between potential multimorbid phenotypes. Collectively, our results form the foundation for a shift from a gene to a pathway-based approach to the rationale design of therapeutic interventions and treatments for NMD.
Collapse
Affiliation(s)
| | | | - David Cameron-Smith
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Melissa Wake
- Murdoch Children’s Research Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Emma L. Scotter
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Justin O’Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
162
|
Wang H, Liu J, Liu K, Liu Y, Wen J, Wang Z, Wen S. Association of ECE1 gene polymorphisms and essential hypertension risk in the Northern Han Chinese: A case-control study. Mol Genet Genomic Med 2020; 8:e1188. [PMID: 32107880 PMCID: PMC7196447 DOI: 10.1002/mgg3.1188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/30/2023] Open
Abstract
Background The ECE1 gene polymorphisms have been studied as a candidate gene in essential hypertension, but no consensus has been reached. To systematically explore their possible association, a case‒control study was conducted. Methods This study included 398 hypertensive subjects and 596 healthy volunteers as control subjects in the Northern Han Chinese. A total of 10 tag SNPs of ECE1 gene were genotyped successfully by TaqMan assay. Results A total of 10 SNPs (rs212544, rs2076280, rs115071, rs2076283, rs9426748, rs11590928, rs212515, rs2236847, rs2282715, and rs2774028) were identified as the tag SNPs for ECE1 gene. Although no positive connection has been found in general population, several SNPs have been found to be related to EH risk in gender‐stratified subgroup analysis. In males, rs115071 T allele influenced EH risk in a protective manner, with dominant model (TT+TC vs. CC: p = .032, OR = 0.655, 95% CI = 0.445–0.965), additive model (TT vs. TC vs. CC: p = .019, OR = 0.616, 95% CI = 0.411–0.924), as well as allele comparison (T vs. C: p = .045, OR = 0.702, 95% CI = 0.496–0.992). While, in females, rs212544 AA genotype would increase the onset risk of EH (recessive model: AA vs. GA+GG, p = .024, OR = 1.847, 95% CI = 1.086–3.142). In the three haplotype blocks identified, rs2076283‐rs2236847 C‐T haplotype was associated with a decreased risk of EH (OR = 0.558, p = .046). Conclusion The current case‒control study suggested that several SNPs and related haplotypes on ECE1 gene might be associated with the susceptibility of EH in certain gender subgroups in the Northern Han Chinese population.
Collapse
Affiliation(s)
- Hao Wang
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jielin Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Kuo Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Ya Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jie Wen
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Zuoguang Wang
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Shaojun Wen
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
163
|
Zhu SY, Xu Y, Yu XW. Improved Homologous Expression of the Acidic Lipase from Aspergillus niger. J Microbiol Biotechnol 2020; 30:196-205. [PMID: 31752069 PMCID: PMC9728306 DOI: 10.4014/jmb.1906.06028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, the acidic lipase from Aspergillus niger (ANL) was homologously expressed in A. niger. The expression of ANL was significantly improved by the expression of the native ANL with the introns, the addition of the Kozak sequence and the optimization of the signal sequences. When the cDNA sequence of ANL fused with the glaA signal was expressed under the gpdA promoter in A. niger, no lipase activity could be detected. We then tried to improve the expression by using the full-length ANL gene containing three introns, and the lipase activity in the supernatant reached 75.80 U/ml, probably as a result of a more stable mRNA structure. The expression was further improved to 100.60 U/ml by introducing a Kozak sequence around the start codon due to a higher translation efficiency. Finally, the effects of three signal sequences including the cbhI signal, the ANL signal and the glaA signal on the lipase expression were evaluated. The transformant with the cbhI signal showed the highest lipase activity (314.67 U/ml), which was 1.90-fold and 3.13-fold higher than those with the ANL signal and the glaA signal, respectively. The acidic lipase was characterized and its highest activity was detected at pH 3.0 and a temperature of 45°C. These results provided promising strategies for the production of the acidic lipase from A. niger.
Collapse
Affiliation(s)
- Si-Yuan Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,Corresponding author Phone: +86-510-85918201 Fax: +86-510-85918201 E-mail:
| |
Collapse
|
164
|
Toraih EA, Ameen HM, Hussein MH, Youssef Elabd AA, Mohamed AM, Abdel-Gawad AR, Fawzy MS. Association of Autoimmune Regulator Gene Rs2075876 Variant, but Not Gene Expression with Alopecia Areata in Males: A Case-control Study. Immunol Invest 2020; 49:146-165. [PMID: 31601134 DOI: 10.1080/08820139.2019.1671450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alopecia areata (AA) is a non-scarring hair loss of autoimmune etiology. The autoimmune regulator (AIRE) gene is believed to be an important driver in AA pathogenesis. Genetic variants can alter mRNA expression levels which may provoke an autoimmune response. A total of 337 males (97 AA patients and 240 controls) were enrolled in the current case-control study. On screening of the most frequent variants in the gene, rs2075876 (A/G) polymorphism in intron 5 was selected and genotyped using Real-Time PCR (polymerase chain reaction) technology. Additionally, circulatory AIRE expression levels were quantified by quantitative reverse-transcription PCR (qRT-PCR). Allelic discrimination analysis revealed GG genotype to be more frequent in patients (90.7% in AA compared to 32.5% in controls, p < .001). G variant conferred increased risk to alopecia under homozygote comparison (GG versus AA: OR = 16.1, 95%CI = 5.57-46.3), dominant model (GG+AG versus AA: OR = 7.24, 95%CI = 2.5-20.5), recessive model (GG versus AG+AA: OR = 20.3, 95%CI = 9.7-42.4), and allelic model (G versus A: OR = 11.6, 95%CI = 6.47-21.1). The expression levels of AIRE gene did not differ significantly between patients and controls and were not related to rs2075876 variant. In conclusion, the intronic variant (rs2075876) is suggested to be a potent susceptibility variant for AA development in the studied population.Abbreviations: AA: Alopecia areata; AIRE: Autoimmune Regulator; APECED: Autoimmune, Polyendocrinopathy Candidiasis Ectodermal Dystrophy; DLQI: Dermatology life quality index questionnaire; MIQE: Minimum information for publication of quantitative real-time PCR experiments; mTEC: Medullary thymic epithelial cells; PHD: Plant homeodomain; qRT-PCR: Quantitative reversetranscription-polymerase chain reaction; RA: Rheumatoid arthritis.
Collapse
Affiliation(s)
- Eman A Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Hatem M Ameen
- Department of Dermatology, Al Qantara East Central Hospital, Ismailia, Egypt
| | - Mohammad H Hussein
- Department of Chest Diseases, Ministry of Health and Population, Cairo, Egypt
| | - Ahmed A Youssef Elabd
- Department of Dermatology, El-Sheikh Zaied Aal Nahyan hospital, Cairo, Egypt
- Department of Dermatology, Emirates Medical Center, Salalah Oman, Oman
| | - Abeer M Mohamed
- Department of Clinical Pathology and Clinical Chemistry, Faculty of Medicine, Sohag University, Sohag, Egypt
- Department of Clinical Laboratory Sciences, Al-Ghad International College for Applied Medical Sciences, Abha, Saudi Arabia
| | | | - Manal S Fawzy
- Deprtment of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
165
|
Słomińska-Durdasiak KM, Kollers S, Korzun V, Nowara D, Schweizer P, Djamei A, Reif JC. Association mapping of wheat Fusarium head blight resistance-related regions using a candidate-gene approach and their verification in a biparental population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:341-351. [PMID: 31646363 DOI: 10.1007/s00122-019-03463-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Markers, located in Dicer1 and Ara6 genes, which are likely involved in cross-kingdom RNA trafficking, are associated with FHB resistance in GABI wheat population and were validated in biparental population. Association studies are a common approach to detect marker-trait associations for Fusarium head blight (FHB) resistance in wheat (Triticum aestivum), although verification of detected associations is exceptional. In the present study, candidate-gene association mapping (CG) of genes from silencing and secretory pathways, which may be involved in wheat resistance against FHB and cross-kingdom RNA trafficking, was performed. Fourteen markers, located in nine genes, were tested for association with FHB resistance in 356 lines from the GABI (genome analysis of the biological system of plants) wheat population. Three markers located in the genes Dicer1 and Ara6 were shown to be significantly associated with the studied trait. Verification of this finding was performed using the recombinant inbred lines (RILs) population 'Apache × Biscay', segregating for four of our 14 selected markers. We could show association of the Ara6 marker with plant height as well as association with FHB resistance for three markers located in Rab5-like GTPase gene Ara6 and Dicer1. These results confirmed the trait-marker associations detected also in the CG approach. Gene products of the associated genes are involved in response of the plant to pathogens, plant metabolism and may be involved in cross-kingdom RNA trafficking efficiency. The markers detected in the GABI wheat population, which were also validated in the biparental population, can potentially be used in wheat breeding.
Collapse
Affiliation(s)
- Karolina Maria Słomińska-Durdasiak
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany.
| | - Sonja Kollers
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Straße 5, 29303, Bergen, Germany
| | - Viktor Korzun
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Straße 5, 29303, Bergen, Germany
| | - Daniela Nowara
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Patrick Schweizer
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Armin Djamei
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Jochen Christoph Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| |
Collapse
|
166
|
Schmidt CA, Matera AG. tRNA introns: Presence, processing, and purpose. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1583. [DOI: 10.1002/wrna.1583] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Casey A. Schmidt
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
- Department of Biology, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
- Department of Genetics, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
167
|
Cardiello JF, Sanchez GJ, Allen MA, Dowell RD. Lessons from eRNAs: understanding transcriptional regulation through the lens of nascent RNAs. Transcription 2019; 11:3-18. [PMID: 31856658 DOI: 10.1080/21541264.2019.1704128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nascent transcription assays, such as global run-on sequencing (GRO-seq) and precision run-on sequencing (PRO-seq), have uncovered a myriad of unstable RNAs being actively produced from numerous sites genome-wide. These transcripts provide a more complete and immediate picture of the impact of regulatory events. Transcription factors recruit RNA polymerase II, effectively initiating the process of transcription; repressors inhibit polymerase recruitment. Efficiency of recruitment is dictated by sequence elements in and around the RNA polymerase loading zone. A combination of sequence elements and RNA binding proteins subsequently influence the ultimate stability of the resulting transcript. Some of these transcripts are capable of providing feedback on the process, influencing subsequent transcription. By monitoring RNA polymerase activity, nascent assays provide insights into every step of the regulated process of transcription.
Collapse
Affiliation(s)
| | - Gilson J Sanchez
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
168
|
Pan B, Chen X, Hou L, Zhang Q, Qu Z, Warren A, Miao M. Comparative Genomics Analysis of Ciliates Provides Insights on the Evolutionary History Within "Nassophorea-Synhymenia-Phyllopharyngea" Assemblage. Front Microbiol 2019; 10:2819. [PMID: 31921016 PMCID: PMC6920121 DOI: 10.3389/fmicb.2019.02819] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/20/2019] [Indexed: 11/13/2022] Open
Abstract
Ciliated protists (ciliates) are widely used for investigating evolution, mostly due to their successful radiation after their early evolutionary branching. In this study, we employed high-throughput sequencing technology to reveal the phylogenetic position of Synhymenia, as well as two classes Nassophorea and Phyllopharyngea, which have been a long-standing puzzle in the field of ciliate systematics and evolution. We obtained genomic and transcriptomic data from single cells of one synhymenian (Chilodontopsis depressa) and six other species of phyllopharyngeans (Chilodochona sp., Dysteria derouxi, Hartmannula sinica, Trithigmostoma cucullulus, Trochilia petrani, and Trochilia sp.). Phylogenomic analysis based on 157 orthologous genes comprising 173,835 amino acid residues revealed the affiliation of C. depressa within the class Phyllopharyngea, and the monophyly of Nassophorea, which strongly support the assignment of Synhymenia as a subclass within the class Phyllopharyngea. Comparative genomic analyses further revealed that C. depressa shares more orthologous genes with the class Nassophorea than with Phyllopharyngea, and the stop codon usage in C. depressa resembles that of Phyllopharyngea. Functional enrichment analysis demonstrated that biological pathways in C. depressa are more similar to Phyllopharyngea than Nassophorea. These results suggest that genomic and transcriptomic data can be used to provide insights into the evolutionary relationships within the "Nassophorea-Synhymenia-Phyllopharyngea" assemblage.
Collapse
Affiliation(s)
- Bo Pan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States
| | - Lina Hou
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhishuai Qu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,Ecology Group, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Miao Miao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
169
|
Chen Y, Zhu L, Fang Z, Jin Y, Shen C, Yao Y, Zhou C. Soluble guanylate cyclase contribute genetic susceptibility to essential hypertension in the Han Chinese population. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:620. [PMID: 31930021 DOI: 10.21037/atm.2019.11.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Animal study found that soluble guanylate cyclase (sGC) plays an important role in development of hypertension (HT) by affecting the NO-sGC-CGMP signaling pathway. This study aims to evaluate the association of sGC with essential hypertension (EH) in the Han Chinese population. Methods This case-control study included 2,012 hypertensive cases and 2,210 controls, and 6 tagging single nucleotide polymorphisms (SNPs) were selected (rs3806777, rs3806782, rs3796576 and rs7698460 in GUCY1A3, as well as rs2229202 and rs1459853 in GUCY1B3). Then the association of the six SNPs with EH was further evaluated in this study. Results The results indicated that the A/A genotype of rs1459853 in GUCY1B3 was associated with higher HT risk, and the odds ratio (OR) of its recessive model was 1.191 (P=0.044). After adjusting for covariates, the association was still significant. Further stratification analyses showed that rs1459853 in non-drinking subjects and rs7698460 in women were associated with EH. In the follow-up study, rs1459853 were related to increased HT risk in men and smoker subjects. In adolescents, rs2229202 that in GUCY1B3 had significant association with prehypertension (Pre-HT), HT, and prehypertension with hypertension (Pre-HT + HT). After adjusted for covariates, the association was remaining significant. And in girls, rs3806782 was significantly connected with HT and Pre-HT + HT. Conclusions Overall, our findings suggest that sGC may contribute to the genetic susceptibility to EH, and it was validated for the first time in adolescents.
Collapse
Affiliation(s)
- Yan Chen
- Department of Social Medicine and Maternal & Child Health, School of Public Health, Shandong University, Jinan 250012, China.,Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Lijun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Zhengmei Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Yuelong Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingshui Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Chengchao Zhou
- Department of Social Medicine and Maternal & Child Health, School of Public Health, Shandong University, Jinan 250012, China.,NHC Key Laboratory of Health Economics and Policy Research, Shandong University, Jinan 250012, China
| |
Collapse
|
170
|
Parenteau J, Abou Elela S. Introns: Good Day Junk Is Bad Day Treasure. Trends Genet 2019; 35:923-934. [PMID: 31668856 DOI: 10.1016/j.tig.2019.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 02/01/2023]
Abstract
Introns are ubiquitous in eukaryotic transcripts. They are often viewed as junk RNA but the huge energetic burden of transcribing, removing, and degrading them suggests a significant evolutionary advantage. Ostensibly, an intron functions within the host pre-mRNA to regulate its splicing, transport, and degradation. However, recent studies have revealed an entirely new class of trans-acting functions where the presence of intronic RNA in the cell impacts the expression of other genes in trans. Here, we review possible new mechanisms of intron functions, with a focus on the role of yeast introns in regulating the cell growth response to starvation.
Collapse
Affiliation(s)
- Julie Parenteau
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
171
|
An Evaluation of DNA Methyltransferase 1 (DNMT1) Single Nucleotide Polymorphisms and Chemotherapy-Associated Cognitive Impairment: A Prospective, Longitudinal Study. Sci Rep 2019; 9:14570. [PMID: 31601979 PMCID: PMC6787348 DOI: 10.1038/s41598-019-51203-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/26/2019] [Indexed: 01/31/2023] Open
Abstract
Strong evidence suggests that genetic variations in DNA methyltransferases (DNMTs) may alter the downstream expression and DNA methylation patterns of neuronal genes and influence cognition. This study investigates the association between a DNMT1 polymorphism, rs2162560, and chemotherapy-associated cognitive impairment (CACI) in a cohort of breast cancer patients. This is a prospective, longitudinal cohort study. From 2011 to 2017, 351 early-stage breast cancer patients receiving chemotherapy were assessed at baseline, the midpoint, and the end of chemotherapy. DNA was extracted from whole blood, and genotyping was performed using Sanger sequencing. Patients' self-perceived cognitive function and cognitive performance were assessed at three different time points using FACT-Cog (v.3) and a neuropsychological battery, respectively. The association between DNMT1 rs2162560 and cognitive function was evaluated using logistic regression analyses. Overall, 33.3% of the patients reported impairment relative to baseline in one or more cognitive domains. Cognitive impairment was observed in various objective cognitive domains, with incidences ranging from 7.2% to 36.9%. The DNMT1 rs2162560 A allele was observed in 21.8% of patients and this was associated with lower odds of self-reported cognitive decline in the concentration (OR = 0.45, 95% CI: 0.25-0.82, P = 0.01) and functional interference (OR = 0.48, 95% CI: 0.24-0.95, P = 0.03) domains. No significant association was observed between DNMT1 rs2162560 and objective cognitive impairment. This is the first study to show a significant association between the DNMT1 rs2162560 polymorphism and CACI. Our data suggest that epigenetic processes could contribute to CACI, and further studies are needed to validate these findings.
Collapse
|
172
|
Hong S, Wang TY, Secombes CJ, Wang T. Different origins of paralogues of salmonid TNR1 and TNFR2: Characterisation and expression analysis of four TNF receptor genes in rainbow trout Oncorhynchus mykiss. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103403. [PMID: 31150658 DOI: 10.1016/j.dci.2019.103403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Mammalian TNFR1 and TNFR2 bind TNFα and TNFβ, and provide key communication signals to a variety of cell types during development and immune responses that are crucial for cell survival, proliferation and apoptosis. In teleost fish TNFβ is absent but TNFα has been expanded by the third whole genome duplication (3R WGD) and again by a 4R WGD in some lineages, leading to the four TNFα paralogues known in salmonids. Two paralogues for each of TNFR1 and TNFR2 have been cloned in rainbow trout in this study and are present in other salmonid genomes. Whilst the TNFR2 paralogues were generated via the 4R salmonid WGD, the TNFR1 paralogues arose from a local en bloc duplication. Functional diversification of TNFR paralogues was evidenced by differential gene expression and modulation, upstream ATGs affecting translation, ATTTA motifs in the 3'-UTR regulating mRNA stability, and post-translational modification by N-glycosylation. Trout TNFR are highly expressed in immune tissues/organs, and other tissues, in a gene- and tissue-specific manner. Furthermore, their expression is differentially modulated by PAMPs and cytokines in a cell type- and stimulant-specific manner. Such findings suggest an important role of the TNF/TNFR axis in the immune response and other physiological processes in fish.
Collapse
Affiliation(s)
- Suhee Hong
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK; Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Ting-Yu Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
173
|
Solomonova E, Lee YEA, Robins S, King L, Feeley N, Gold I, Hayton B, Libman E, Nagy C, Turecki G, Zelkowitz P. Sleep quality is associated with vasopressin methylation in pregnant and postpartum women with a history of psychosocial stress. Psychoneuroendocrinology 2019; 107:160-168. [PMID: 31132568 DOI: 10.1016/j.psyneuen.2019.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The relationship between disturbed sleep and stress is well-documented. Sleep disorders and stress are highly prevalent during the perinatal period, and both are known to contribute to a number of adverse maternal and foetal outcomes. Arginine vasopressin (AVP) is a hormone and a neuropeptide that is involved in stress response, social bonding and circadian regulation of the sleep-wake cycle. Whether the AVP system is involved in regulation of stress response and sleep quality in the context of the perinatal mental health is currently unknown. The objective of the present study was to assess the relationship between levels of cumulative and ongoing psychosocial risk, levels of disordered sleep and AVP methylation in a community sample of pregnant and postpartum women. METHODS A sample of 316 participants completed a battery of questionnaires during the second trimester of pregnancy (PN2, 12-14 weeks gestation), third trimester (PN3, 32-34 weeks gestation), and at 7-9 weeks postpartum (PP). Disordered sleep was measured using the Sleep Symptom Checklist at PN2, PN3 and PP; cumulative psychosocial risk was assessed with the Antenatal Risk Questionnaire (ANRQ) at PN2; salivary DNA was collected at the follow-up (FU, 2.9 years postpartum); and % methylation were calculated for AVP and for two of the three AVP receptor genes (AVPR1a and AVPR1b). Women were separated into high (HighPR) and low (LowPR) psychosocial risk groups, based on their scores on the ANRQ. RESULTS Women in the HighPR group had significantly worse sleep disturbances during PN2 (p < .001) and PN3 (p < .001), but not at PP (p = .146) than women in the LowPR group. In HighPR participants only, methylation of AVP at intron 1 negatively correlated with sleep disturbances at PN2 (rs=-.390, p = .001), PN3 (rs=-.384, p = .002) and at PP (rs= -.269, p = .032). There was no association between sleep disturbances and AVPR1a or AVPR1b methylation, or between sleep disturbances and any of the AVP methylation for the LowPR group. Lastly, cumulative psychosocial stress was a moderator for the relationship between AVP intron 1 methylation and disordered sleep at PN2 (p < .001, adjusted R2 = .105), PN2 (p < .001, adjusted R2 = .088) and PP (p = .003, adjusted R2 = .064). CONCLUSIONS Our results suggest that cumulative psychosocial stress exacerbates sleep disorders in pregnant women, and that salivary DNA methylation patterns of the AVP gene may be seen as a marker of biological predisposition to stress and sleep reactivity during the perinatal period. Further research is needed to establish causal links between AVP methylation, sleep and stress.
Collapse
Affiliation(s)
- E Solomonova
- Department of Psychiatry, McGill University, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Canada; Department of Psychiatry, Jewish General Hospital, Canada
| | - Y E A Lee
- Lady Davis Institute for Medical Research, Jewish General Hospital, Canada
| | - S Robins
- Lady Davis Institute for Medical Research, Jewish General Hospital, Canada; Department of Psychiatry, Jewish General Hospital, Canada
| | - L King
- Department of Psychiatry, McGill University, Canada; Department of Psychiatry, Jewish General Hospital, Canada
| | - N Feeley
- Lady Davis Institute for Medical Research, Jewish General Hospital, Canada; Center for Nursing Research, Jewish General Hospital, Canada; Ingram School of Nursing, McGill University, Canada
| | - I Gold
- Department of Psychiatry, McGill University, Canada; Department of Philosophy, McGill University, Canada
| | - B Hayton
- Department of Psychiatry, McGill University, Canada; Department of Psychiatry, Jewish General Hospital, Canada
| | - E Libman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Canada; Department of Psychiatry, Jewish General Hospital, Canada
| | - C Nagy
- Department of Neurology and Neurosurgery, McGill University, Canada; McGill Group for Suicide Studies, Canada; Douglas Mental Health University Institute, Canada
| | - G Turecki
- Department of Psychiatry, McGill University, Canada; McGill Group for Suicide Studies, Canada; Douglas Mental Health University Institute, Canada
| | - P Zelkowitz
- Department of Psychiatry, McGill University, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Canada; Department of Psychiatry, Jewish General Hospital, Canada.
| |
Collapse
|
174
|
Moreira GCM, Salvian M, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Ledur MC, Garrick D, Mourão GB, Coutinho LL. Genome-wide association scan for QTL and their positional candidate genes associated with internal organ traits in chickens. BMC Genomics 2019; 20:669. [PMID: 31438838 PMCID: PMC6704653 DOI: 10.1186/s12864-019-6040-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Poultry breeding programs have been focused on improvement of growth and carcass traits, however, this has resulted in correlated changes in internal organ weights and increased incidence of metabolic disorders. These disorders can affect feed efficiency or even cause death. We used a high density SNP array (600 K, Affymetrix) to estimate genomic heritability, perform genome-wide association analysis, and identify genomic regions and positional candidate genes (PCGs) associated with internal organ traits in an F2 chicken population. We integrated knowledge of haplotype blocks, selection signature regions and sequencing data to refine the list of PCGs. RESULTS Estimated genomic heritability for internal organ traits in chickens ranged from low (LUNGWT, 0.06) to high (GIZZWT, 0.45). A total of 20 unique 1 Mb windows identified on GGA1, 2, 4, 7, 12, 15, 18, 19, 21, 27 and 28 were significantly associated with intestine length, and weights or percentages of liver, gizzard or lungs. Within these windows, 14 PCGs were identified based on their biological functions: TNFSF11, GTF2F2, SPERT, KCTD4, HTR2A, RB1, PCDH7, LCORL, LDB2, NR4A2, GPD2, PTPN11, ITGB4 and SLC6A4. From those genes, two were located within haplotype blocks and three overlapped with selection signature regions. A total of 13,748 annotated sequence SNPs were in the 14 PCGs, including 156 SNPs in coding regions (124 synonymous, 26 non-synonymous, and 6 splice variants). Seven deleterious SNPs were identified in TNFSF11, NR4A2 or ITGB4 genes. CONCLUSIONS The results from this study provide novel insights to understand the genetic architecture of internal organ traits in chickens. The QTL detection performed using a high density SNP array covered the whole genome allowing the discovery of novel QTL associated with organ traits. We identified PCGs within the QTL involved in biological processes that may regulate internal organ growth and development. Potential functional genetic variations were identified generating crucial information that, after validation, might be used in poultry breeding programs to reduce the occurrence of metabolic disorders.
Collapse
Affiliation(s)
| | - Mayara Salvian
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Clarissa Boschiero
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Aline Silva Mello Cesar
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - James M. Reecy
- Department of Animal Science, Iowa State University (ISU), Ames, Iowa USA
| | - Thaís Fernanda Godoy
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | | | - Dorian Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton, New Zealand
| | - Gerson Barreto Mourão
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Luiz L. Coutinho
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| |
Collapse
|
175
|
Kirungu JN, Magwanga RO, Lu P, Cai X, Zhou Z, Wang X, Peng R, Wang K, Liu F. Functional characterization of Gh_A08G1120 (GH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton. BMC Genet 2019; 20:62. [PMID: 31337336 PMCID: PMC6651995 DOI: 10.1186/s12863-019-0756-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Auxins play an important role in plant growth and development; the auxins responsive gene; auxin/indole-3-acetic acid (Aux/IAA), small auxin-up RNAs (SAUR) and Gretchen Hagen3 (GH3) control their mechanisms. The GH3 genes function in homeostasis by the catalytic activities in auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. RESULTS In our study, we identified the GH3 genes in three cotton species; Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii, analyzed their chromosomal distribution, phylogenetic relationships, cis-regulatory element function and performed virus induced gene silencing of the novel Gh_A08G1120 (GH3.5) gene. The phylogenetic tree showed four clusters of genes with clade 1, 3 and 4 having mainly members of the GH3 of the cotton species while clade 2 was mainly members belonging to Arabidopsis. There were no paralogous genes, and few orthologous genes were observed between Gossypium and other species. All the GO terms were detected, but only 14 genes were found to have described GO terms in upland cotton, more biological functions were detected, as compared to the other functions. The GH3.17 subfamily harbored the highest number of the cis-regulatory elements, most having promoters towards dehydration-responsiveness. The RNA expression analysis revealed that 10 and 8 genes in drought and salinity stress conditions respectively were upregulated in G. hirsutum. All the genes that were upregulated in plants under salt stress conditions were also upregulated in drought stress; moreover, Gh_A08G1120 (GH3.5) exhibited a significant upregulation across the two stress factors. Functional characterization of Gh_A08G1120 (GH3.5) through virus-induced gene silencing (VIGS) revealed that the VIGS plants ability to tolerate drought and salt stresses was significantly reduced compared to the wild types. The chlorophyll content, relative leaf water content (RLWC), and superoxide dismutase (SOD) concentration level were reduced significantly while malondialdehyde concentration and ion leakage as a measure of cell membrane stability (CMS) increased in VIGS plants under drought and salt stress conditions. CONCLUSION This study revealed the significance of the GH3 genes in enabling the plant's adaptation to drought and salt stress conditions as evidenced by the VIGS results and RT-qPCR analysis.
Collapse
Affiliation(s)
- Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China.,School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Main Campus, 210-40601, Bondo, Kenya
| | - Pu Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Renhai Peng
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/ Anyang Institute of technology, Anyang, 455000, Henan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China.
| |
Collapse
|
176
|
Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize. Genomics 2019; 112:1233-1244. [PMID: 31323298 DOI: 10.1016/j.ygeno.2019.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 11/23/2022]
Abstract
AT-hook motif nuclear localized (AHL) genes have diverse but poorly understood biological functions. We identified and analyzed 37 AHL genes in maize. We also discovered four and one additional AHLs in rice and sorghum, respectively, besides those reported earlier. The maize AHLs were classified into two clades (A and B) and three distinct types (I, II, and III) as also reported in Arabidopsis. Phylogenetic and ortholog analyses showed that, while the evolutionary classification was conserved in plants, expansion of the AHL gene family in maize was accompanied with new biological functions. Gene structure analysis showed that, while all but one Type-I AHLs lacked an intron, origin of Type-II and Type-III AHLs was associated with the gain of introns suggesting evolutionarily distinct temporal and spatial expression patterns and, likely, neofunctionalization. Gene duplication analysis revealed that AHLs in maize expanded via dispersive duplication further supporting their functional diversity. To discern these functions, we analyzed 71 transcriptomes from diverse tissues and developmental stages of maize and classified AHLs into eight groups with distinct temporal/spatial expression profiles. Coexpression analysis implicated 5 AHLs and 33 novel genes in networks specific to endosperm, seed, root, leaf, and reproductive tissues indicating their role in the development of these organs. Major processes coregulated by AHLs include pollen development, drought response, senescence, and wound response. We also identified interactions of AHL proteins in coregulating important processes including stress response. These novel insights into the role of AHLs in plant development provide a platform for functional analyses in maize and related grasses.
Collapse
|
177
|
Crane MM, Sands B, Battaglia C, Johnson B, Yun S, Kaeberlein M, Brent R, Mendenhall A. In vivo measurements reveal a single 5'-intron is sufficient to increase protein expression level in Caenorhabditis elegans. Sci Rep 2019; 9:9192. [PMID: 31235724 PMCID: PMC6591249 DOI: 10.1038/s41598-019-45517-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/06/2019] [Indexed: 11/29/2022] Open
Abstract
Introns can increase gene expression levels using a variety of mechanisms collectively referred to as Intron Mediated Enhancement (IME). IME has been measured in cell culture and plant models by quantifying expression of intronless and intron-bearing reporter genes in vitro. We developed hardware and software to implement microfluidic chip-based gene expression quantification in vivo. We altered position, number and sequence of introns in reporter genes controlled by the hsp-90 promoter. Consistent with plant and mammalian studies, we determined a single, natural or synthetic, 5'-intron is sufficient for the full IME effect conferred by three synthetic introns, while a 3'-intron is not. We found coding sequence can affect IME; the same three synthetic introns that increase mcherry protein concentration by approximately 50%, increase mEGFP by 80%. We determined IME effect size is not greatly affected by the stronger vit-2 promoter. Our microfluidic imaging approach should facilitate screens for factors affecting IME and other intron-dependent processes.
Collapse
Affiliation(s)
- Matthew M Crane
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Bryan Sands
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Christian Battaglia
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Brock Johnson
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Soo Yun
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Matt Kaeberlein
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Roger Brent
- Fred Hutchinson Cancer Research Center, Division of Basic Science, Seattle, WA, USA
| | - Alex Mendenhall
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA.
| |
Collapse
|
178
|
Dvorak P, Leupen S, Soucek P. Functionally Significant Features in the 5' Untranslated Region of the ABCA1 Gene and Their Comparison in Vertebrates. Cells 2019; 8:cells8060623. [PMID: 31234415 PMCID: PMC6627321 DOI: 10.3390/cells8060623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Single nucleotide polymorphisms located in 5′ untranslated regions (5′UTRs) can regulate gene expression and have clinical impact. Recognition of functionally significant sequences within 5′UTRs is crucial in next-generation sequencing applications. Furthermore, information about the behavior of 5′UTRs during gene evolution is scarce. Using the example of the ATP-binding cassette transporter A1 (ABCA1) gene (Tangier disease), we describe our algorithm for functionally significant sequence finding. 5′UTR features (upstream start and stop codons, open reading frames (ORFs), GC content, motifs, and secondary structures) were studied using freely available bioinformatics tools in 55 vertebrate orthologous genes obtained from Ensembl and UCSC. The most conserved sequences were suggested as hot spots. Exon and intron enhancers and silencers (sc35, ighg2 cgamma2, ctnt, gh-1, and fibronectin eda exon), transcription factors (TFIIA, TATA, NFAT1, NFAT4, and HOXA13), some of them cancer related, and microRNA (hsa-miR-4474-3p) were localized to these regions. An upstream ORF, overlapping with the main ORF in primates and possibly coding for a small bioactive peptide, was also detected. Moreover, we showed several features of 5′UTRs, such as GC content variation, hairpin structure conservation or 5′UTR segmentation, which are interesting from a phylogenetic point of view and can stimulate further evolutionary oriented research.
Collapse
Affiliation(s)
- Pavel Dvorak
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Sarah Leupen
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic.
| |
Collapse
|
179
|
Wang B, Wangkahart E, Secombes CJ, Wang T. Insights into the Evolution of the Suppressors of Cytokine Signaling (SOCS) Gene Family in Vertebrates. Mol Biol Evol 2019; 36:393-411. [PMID: 30521052 PMCID: PMC6368001 DOI: 10.1093/molbev/msy230] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The SOCS family are key negative regulators of cytokine and growth factor signaling. Typically, 8-17 SOCS genes are present in vertebrate species with eight known in mammals, classified as type I (SOCS4-7) and type II (CISH and SOCS1-3) SOCS. It was believed that the type II SOCS were expanded through the two rounds of whole genome duplication (1R and 2R WGDs) from a single CISH/SOCS1-3 precursor. Previously, 12 genes were identified in rainbow trout but here we report 15 additional loci are present, and confirm 26 of the genes are expressed, giving rainbow trout the largest SOCS gene repertoire identified to date. The discovery of the additional SOCS genes in trout has led to a novel model of SOCS family evolution, whereby the vertebrate SOCS gene family was derived from CISH/SOCS2, SOCS1/SOCS3, SOCS4/5, SOCS6, and SOCS7 ancestors likely present before the two WGD events. It is also apparent that teleost SOCS2b, SOCS4, and SOCS5b molecules are not true orthologues of mammalian SOCS2, SOCS4, and SOCS5, respectively. The rate of SOCS gene structural changes increased from 2R vertebrates, to 4R rainbow trout, and the genes with structural changes show large differences and low correlation coefficient of expression levels relative to their paralogues, suggesting a role of structural changes in expression and functional diversification. This study has important impacts in the functional prediction and understanding of the SOCS gene family in different vertebrates, and provides a framework for determining how many SOCS genes could be expected in a particular vertebrate species/lineage.
Collapse
Affiliation(s)
- Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P.R. China.,Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Research Unit of Excellence for Tropical Fisheries and Technology, Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, Thailand
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
180
|
Jo SS, Choi SS. Analysis of the Functional Relevance of Epigenetic Chromatin Marks in the First Intron Associated with Specific Gene Expression Patterns. Genome Biol Evol 2019; 11:786-797. [PMID: 30753418 PMCID: PMC6424223 DOI: 10.1093/gbe/evz033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 01/03/2023] Open
Abstract
We previously showed that the first intron of genes exhibits several interesting characteristics not seen in other introns: 1) it is the longest intron on average in almost all eukaryotes, 2) it presents the highest number of conserved sites, and 3) it exhibits the highest density of regulatory chromatin marks. Here, we expand on our previous study by integrating various multiomics data, leading to further evidence supporting the functionality of sites in the first intron. We first show that trait-associated single-nucleotide polymorphisms (TASs) are significantly enriched in the first intron. We also show that within the first intron, the density of epigenetic chromatin signals is higher near TASs than in distant regions. Furthermore, the distribution of several chromatin regulatory marks is investigated in relation to gene expression specificity (i.e., housekeeping vs. tissue-specific expression), essentiality (essential genes vs. nonessential genes), and levels of gene expression; housekeeping genes or essential genes contain greater proportions of active chromatin marks than tissue-specific genes or nonessential genes, and highly expressed genes exhibit a greater density of chromatin regulatory marks than genes with low expression. Moreover, we observe that genes carrying multiple first-intron TASs interact with each other within a large protein-protein interaction network, ultimately connecting to the UBC protein, a well-established protein involved in ubiquitination. We believe that our results shed light on the functionality of first introns as a genomic entity involved in gene expression regulation.
Collapse
Affiliation(s)
- Shin-Sang Jo
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
181
|
Kabuye D, Chu Y, Lao W, Jin G, Kang H. Association between CLEC4E gene polymorphism of mincle and pulmonary tuberculosis infection in a northern Chinese population. Gene 2019; 710:24-29. [PMID: 31075410 DOI: 10.1016/j.gene.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Pulmonary tuberculosis caused by an intracellular pathogen, Mycobacterium tuberculosis continues to exist as a hazardous disease to human life globally. Genetic polymorphisms regulate resistance and susceptibility to tuberculosis. The C-type lectin receptor of family 4 member E (CLEC4E) confers protection against tuberculosis in laboratory animals but its function in influencing exposure or resistance to pulmonary tuberculosis (PTB) in humans remains obscure. AIM We conducted this research to analyze the effects or concomitance of CLEC4E gene variations with susceptibility to pulmonary tuberculosis in a northern Chinese population. METHOD In this study, 202 participants with pulmonary tuberculosis and 214 controls without PTB were enrolled. Two single nucleotide polymorphisms (SNPs) for CLEC4E on chromosome 12 were selected with a minor allele frequency of >0.05. All the SNPs were genotyped using high resolution melting analysis-PCR. RESULTS We estimated and compared two SNPs, rs10841845 and rs10841847. From our study findings, CLEC4E rs10841845 conferred protection against the development of pulmonary TB with a P value of <0.05 and odds ratio of <1 for all models of genetic inheritance. CLEC4E rs10841847 genotypes in co-dominant, Recessive, Dominant models and alleles had a significant statistical difference between patients and controls associated with resistance against the development of PTB (P<0.05 and OR<1). CONCLUSION Our findings suggest that variations at rs10841845 and rs10841847 of CLEC4E genes are associated with increased individual protection against PTB.
Collapse
Affiliation(s)
- Deo Kabuye
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yang Chu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wenting Lao
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Guojiang Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hui Kang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China.
| |
Collapse
|
182
|
Pogoda CS, Keepers KG, Nadiadi AY, Bailey DW, Lendemer JC, Tripp EA, Kane NC. Genome streamlining via complete loss of introns has occurred multiple times in lichenized fungal mitochondria. Ecol Evol 2019; 9:4245-4263. [PMID: 31016002 PMCID: PMC6467859 DOI: 10.1002/ece3.5056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
Reductions in genome size and complexity are a hallmark of obligate symbioses. The mitochondrial genome displays clear examples of these reductions, with the ancestral alpha-proteobacterial genome size and gene number having been reduced by orders of magnitude in most descendent modern mitochondrial genomes. Here, we examine patterns of mitochondrial evolution specifically looking at intron size, number, and position across 58 species from 21 genera of lichenized Ascomycete fungi, representing a broad range of fungal diversity and niches. Our results show that the cox1gene always contained the highest number of introns out of all the mitochondrial protein-coding genes, that high intron sequence similarity (>90%) can be maintained between different genera, and that lichens have undergone at least two instances of complete, genome-wide intron loss consistent with evidence for genome streamlining via loss of parasitic, noncoding DNA, in Phlyctis boliviensisand Graphis lineola. Notably, however, lichenized fungi have not only undergone intron loss but in some instances have expanded considerably in size due to intron proliferation (e.g., Alectoria fallacina and Parmotrema neotropicum), even between closely related sister species (e.g., Cladonia). These results shed light on the highly dynamic mitochondrial evolution that is occurring in lichens and suggest that these obligate symbiotic organisms are in some cases undergoing recent, broad-scale genome streamlining via loss of protein-coding genes as well as noncoding, parasitic DNA elements.
Collapse
Affiliation(s)
- Cloe S. Pogoda
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| | - Kyle G. Keepers
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| | - Arif Y. Nadiadi
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| | - Dustin W. Bailey
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| | - James C. Lendemer
- Institute of Systematic BotanyThe New York Botanical GardenBronxNew York
| | - Erin A. Tripp
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
- Museum of Natural HistoryUniversity of ColoradoBoulderColorado
| | - Nolan C. Kane
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| |
Collapse
|
183
|
Jo SS, Choi SS. Enrichment of rare alleles within epigenetic chromatin marks in the first intron. Genomics Inform 2019; 17:e9. [PMID: 30929410 PMCID: PMC6459166 DOI: 10.5808/gi.2019.17.1.e9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/10/2019] [Indexed: 11/20/2022] Open
Abstract
In previous studies, we demonstrated that some sites in the first intron likely regulate gene expression. In the present work, we sought to further confirm the functional relevance of first intron sites by estimating the quantity of rare alleles in the first intron. A basic hypothesis posited herein is that genomic regions carrying more functionally important sites will have a higher proportion of rare alleles. We estimated the proportions of rare single nucleotide polymorphisms with a minor allele frequency < 0.01 located in several histone marks in the first introns of various genes, and compared them with those in other introns and those in 2-kb upstream regions. As expected, rare alleles were found to be significantly enriched in most of the regulatory sites located in the first introns. Meanwhile, transcription factor binding sites were significantly more enriched in the 2-kb upstream regions (i.e., the regions of putative promoters of genes) than in the first introns. These results strongly support our proposal that the first intron sites of genes may have important regulatory functions in gene expression independent of promoters.
Collapse
Affiliation(s)
- Shin-Sang Jo
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
184
|
Yang EW, Bahn JH, Hsiao EYH, Tan BX, Sun Y, Fu T, Zhou B, Van Nostrand EL, Pratt GA, Freese P, Wei X, Quinones-Valdez G, Urban AE, Graveley BR, Burge CB, Yeo GW, Xiao X. Allele-specific binding of RNA-binding proteins reveals functional genetic variants in the RNA. Nat Commun 2019; 10:1338. [PMID: 30902979 PMCID: PMC6430814 DOI: 10.1038/s41467-019-09292-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
Allele-specific protein-RNA binding is an essential aspect that may reveal functional genetic variants (GVs) mediating post-transcriptional regulation. Recently, genome-wide detection of in vivo binding of RNA-binding proteins is greatly facilitated by the enhanced crosslinking and immunoprecipitation (eCLIP) method. We developed a new computational approach, called BEAPR, to identify allele-specific binding (ASB) events in eCLIP-Seq data. BEAPR takes into account crosslinking-induced sequence propensity and variations between replicated experiments. Using simulated and actual data, we show that BEAPR largely outperforms often-used count analysis methods. Importantly, BEAPR overcomes the inherent overdispersion problem of these methods. Complemented by experimental validations, we demonstrate that the application of BEAPR to ENCODE eCLIP-Seq data of 154 proteins helps to predict functional GVs that alter splicing or mRNA abundance. Moreover, many GVs with ASB patterns have known disease relevance. Overall, BEAPR is an effective method that helps to address the outstanding challenge of functional interpretation of GVs.
Collapse
Affiliation(s)
- Ei-Wen Yang
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Esther Yun-Hua Hsiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA
| | - Boon Xin Tan
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Yiwei Sun
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Ting Fu
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA
| | - Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, 92093, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, 92093, USA
| | - Peter Freese
- Department of Biology, MIT, Cambridge, MA, 02139, USA
| | - Xintao Wei
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, 06030, USA
| | | | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, 06030, USA
| | | | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, 92093, USA
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Molecular Engineering Laboratory, A*STAR, Singapore, 138673, Singapore
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA.
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
185
|
Li M, Wang R, Liang Z, Wu X, Wang J. Genome-wide identification and analysis of the EIN3/EIL gene family in allotetraploid Brassica napus reveal its potential advantages during polyploidization. BMC PLANT BIOLOGY 2019; 19:110. [PMID: 30898097 PMCID: PMC6429743 DOI: 10.1186/s12870-019-1716-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/12/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Polyploidization is a common event in the evolutionary history of angiosperms, and there will be some changes in the genomes of plants other than a simple genomic doubling after polyploidization. Allotetraploid Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are a good group for studying the problems associated with polyploidization. On the other hand, the EIN3/EIL gene family is an important gene family in plants, all members of which are key genes in the ethylene signaling pathway. Until now, the EIN3/EIL gene family in B. napus and its diploid progenitors have been largely unknown, so it is necessary to comprehensively identify and analyze this gene family. RESULTS In this study, 13, 7 and 7 EIN3/EIL genes were identified in B. napus (2n = 4x = 38, AnCn), B. rapa (2n = 2x = 20, Ar) and B. oleracea (2n = 2x = 18, Co). All of the identified EIN3/EIL proteins were divided into 3 clades and further divided into 8 sub-clades. Ka/Ks analysis showed that all identified EIN3/EIL genes underwent purifying selection after the duplication events. Moreover, gene structure analysis showed that some EIN3/EIL genes in B. napus acquired introns during polyploidization, and homolog expression bias analysis showed that B. napus was biased towards its diploid progenitor B. rapa. The promoters of the EIN3/EIL genes in B. napus contained more cis-acting elements, which were mainly involved in endosperm gene expression and light responsiveness, than its diploid progenitors. Thus, B. napus might have potential advantages in some biological aspects. CONCLUSIONS The results indicated allotetraploid B. napus might have potential advantages in some biological aspects. Moreover, our results can increase the understanding of the evolution of the EIN3/EIL gene family in B. napus, and provided more reference for future research about polyploidization.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ziwei Liang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
186
|
Abstract
BACKGROUND The cultivated potato Solanum tuberosum L. is the fourth most important crop worldwide. Anthocyanins synthesis and accumulation in potato tissues are considered as one of important traits related to stress resistance and nutritional value. It is considered that the major regulatory gene for anthocyanin biosynthesis is R2R3 MYB-encoding gene StAN1. However, the genetic control of pigmentation of different potato tissues is substantially under investigated. The development of genetic markers for breeding of potato with specific pigmentation pattern remains an actual task. RESULTS We investigated 36 potato varieties and hybrids with different pigmentation of tubers and leaves. Sequence organization of regulatory R2R3 MYB (StAN1, StMYBA1, StMYB113), bHLH (StbHLH1, StJAF13) and WD40 (StWD40) genes potentially controlling anthocyanin biosynthesis has been evaluated. The results demonstrated a high variability in the StAN1 third exon and promoter region with the exception for 35 bp, containing elements for the transcription start and activation of gene expression in roots. The analysis of transcriptional activity of genes coding R2R3 MYBs, bHLHs and WD40 transcriptional factors in leaves of eight potato genotypes with different anthocyanin pigmentation was performed. The results showed a relation between the gene expression level and plant pigmentation only for the StAN1 and StWD40 genes, while other studied genes had either strong expression in all varieties and hybrids (StMYBA1, StbHLH1 and StJAF13) or they were not expressed at all (StMYB113). CONCLUSIONS It was found that StAN1 is the major regulatory gene controlling potato anthocyanin synthesis. However, diagnostic markers developed for the functional StAN1 alleles (StAN1777 and StAN1816) can not be used efficiently for prediction of potato pigmentation patterns. It is likely that the sequence organization of StAN1 promoter is important for anthocyanin synthesis control and the development of additional diagnostic markers is necessary.
Collapse
Affiliation(s)
- Ksenia V. Strygina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090 Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya Str., 42-44, St. Petersburg, 190000 Russia
| | - Alex V. Kochetov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, Pirogova Str., 1, Novosibirsk, 630090 Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, Pirogova Str., 1, Novosibirsk, 630090 Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya Str., 42-44, St. Petersburg, 190000 Russia
| |
Collapse
|
187
|
Features of a novel protein, rusticalin, from the ascidian Styela rustica reveal ancestral horizontal gene transfer event. Mob DNA 2019; 10:4. [PMID: 30675192 PMCID: PMC6339383 DOI: 10.1186/s13100-019-0146-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022] Open
Abstract
Background The transfer of genetic material from non-parent organisms is called horizontal gene transfer (HGT). One of the most conclusive cases of HGT in metazoans was previously described for the cellulose synthase gene in ascidians. Results In this study we identified a new protein, rusticalin, from the ascidian Styela rustica and presented evidence for its likely origin by HGT. Discernible homologues of rusticalin were found in placozoans, coral, and basal Chordates. Rusticalin was predicted to consist of two distinct regions, an N-terminal domain and a C-terminal domain. The N-terminal domain comprises two cysteine-rich repeats and shows remote similarity to the tick carboxypeptidase inhibitor. The C-terminal domain shares significant sequence similarity with bacterial MD peptidases and bacteriophage A500 L-alanyl-D-glutamate peptidase. A possible transfer of the C-terminal domain by bacteriophage was confirmed by an analysis of noncoding sequences of C. intestinalis rusticalin-like gene, which was found to contain a sequence similar to the bacteriophage A500 recombination site. Moreover, a sequence similar to the bacteriophage recombination site was found to be adjacent to the cellulose synthase catalytic subunit gene in the genome of Streptomices sp., the donor of ascidian cellulose synthase. Conclusions The C-terminal domain of rusticalin and rusticalin-like proteins is likely to be horizontally transferred by the bacteriophage A500. A common mechanism involving bacteriophage mediated gene transfer can be proposed for at least two HGT events in ascidians.
Collapse
|
188
|
Understanding human DNA variants affecting pre-mRNA splicing in the NGS era. ADVANCES IN GENETICS 2019; 103:39-90. [PMID: 30904096 DOI: 10.1016/bs.adgen.2018.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pre-mRNA splicing, an essential step in eukaryotic gene expression, relies on recognition of short sequences on the primary transcript intron ends and takes place along transcription by RNA polymerase II. Exonic and intronic auxiliary elements may modify the strength of exon definition and intron recognition. Splicing DNA variants (SV) have been associated with human genetic diseases at canonical intron sites, as well as exonic substitutions putatively classified as nonsense, missense or synonymous variants. Their effects on mRNA may be modulated by cryptic splice sites associated to the SV allele, comprehending exon skipping or shortening, and partial or complete intron retention. As splicing mRNA outputs result from combinatorial effects of both intrinsic and extrinsic factors, in vitro functional assays supported by computational analyses are recommended to assist SV pathogenicity assessment for human Mendelian inheritance diseases. The increasing use of next-generating sequencing (NGS) targeting full genomic gene sequence has raised awareness of the relevance of deep intronic SV in genetic diseases and inclusion of pseudo-exons into mRNA. Finally, we take advantage of recent advances in sequencing and computational technologies to analyze alternative splicing in cancer. We explore the Catalog of Somatic Mutations in Cancer (COSMIC) to describe the proportion of splice-site mutations in cis and trans regulatory elements. Genomic data from large cohorts of different cancer types are increasingly available, in addition to repositories of normal and somatic genetic variations. These are likely to bring new insights to understanding the genetic control of alternative splicing by mapping splicing quantitative trait loci in tumors.
Collapse
|
189
|
Parenteau J, Maignon L, Berthoumieux M, Catala M, Gagnon V, Abou Elela S. Introns are mediators of cell response to starvation. Nature 2019; 565:612-617. [DOI: 10.1038/s41586-018-0859-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022]
|
190
|
Rigau M, Juan D, Valencia A, Rico D. Intronic CNVs and gene expression variation in human populations. PLoS Genet 2019; 15:e1007902. [PMID: 30677042 PMCID: PMC6345438 DOI: 10.1371/journal.pgen.1007902] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
Introns can be extraordinarily large and they account for the majority of the DNA sequence in human genes. However, little is known about their population patterns of structural variation and their functional implication. By combining the most extensive maps of CNVs in human populations, we have found that intronic losses are the most frequent copy number variants (CNVs) in protein-coding genes in human, with 12,986 intronic deletions, affecting 4,147 genes (including 1,154 essential genes and 1,638 disease-related genes). This intronic length variation results in dozens of genes showing extreme population variability in size, with 40 genes with 10 or more different sizes and up to 150 allelic sizes. Intronic losses are frequent in evolutionarily ancient genes that are highly conserved at the protein sequence level. This result contrasts with losses overlapping exons, which are observed less often than expected by chance and almost exclusively affect primate-specific genes. An integrated analysis of CNVs and RNA-seq data showed that intronic loss can be associated with significant differences in gene expression levels in the population (CNV-eQTLs). These intronic CNV-eQTLs regions are enriched for intronic enhancers and can be associated with expression differences of other genes showing long distance intron-promoter 3D interactions. Our data suggests that intronic structural variation of protein-coding genes makes an important contribution to the variability of gene expression and splicing in human populations.
Collapse
Affiliation(s)
- Maria Rigau
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - David Juan
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas–Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
191
|
Pucker B, Brockington SF. Genome-wide analyses supported by RNA-Seq reveal non-canonical splice sites in plant genomes. BMC Genomics 2018; 19:980. [PMID: 30594132 PMCID: PMC6310983 DOI: 10.1186/s12864-018-5360-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Most eukaryotic genes comprise exons and introns thus requiring the precise removal of introns from pre-mRNAs to enable protein biosynthesis. U2 and U12 spliceosomes catalyze this step by recognizing motifs on the transcript in order to remove the introns. A process which is dependent on precise definition of exon-intron borders by splice sites, which are consequently highly conserved across species. Only very few combinations of terminal dinucleotides are frequently observed at intron ends, dominated by the canonical GT-AG splice sites on the DNA level. RESULTS Here we investigate the occurrence of diverse combinations of dinucleotides at predicted splice sites. Analyzing 121 plant genome sequences based on their annotation revealed strong splice site conservation across species, annotation errors, and true biological divergence from canonical splice sites. The frequency of non-canonical splice sites clearly correlates with their divergence from canonical ones indicating either an accumulation of probably neutral mutations, or evolution towards canonical splice sites. Strong conservation across multiple species and non-random accumulation of substitutions in splice sites indicate a functional relevance of non-canonical splice sites. The average composition of splice sites across all investigated species is 98.7% for GT-AG, 1.2% for GC-AG, 0.06% for AT-AC, and 0.09% for minor non-canonical splice sites. RNA-Seq data sets of 35 species were incorporated to validate non-canonical splice site predictions through gaps in sequencing reads alignments and to demonstrate the expression of affected genes. CONCLUSION We conclude that bona fide non-canonical splice sites are present and appear to be functionally relevant in most plant genomes, although at low abundance.
Collapse
Affiliation(s)
- Boas Pucker
- Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Samuel F. Brockington
- Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
192
|
Andreou S, Panayiotou E, Michailidou K, Pirpa P, Hadjisavvas A, El Salloukh A, Barnes D, Antoniou A, Agathangelou P, Papastavrou K, Christodoulou K, Tanteles GA, Kyriakides T. Epidemiology of ATTRV30M neuropathy in Cyprus and the modifier effect of complement C1q on the age of disease onset. Amyloid 2018; 25:220-226. [PMID: 30572722 DOI: 10.1080/13506129.2018.1534731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND ATTRV30M amyloidosis is a lethal autosomal dominant sensorimotor and autonomic neuropathy caused by amyloid deposition composed of aggregated misfolded TTR monomers with the V30M mutation. The age of onset in patients with ATTRV30M varies in different foci and the mechanism behind it is still unknown. METHODS The tertiary neurology center following all ATTRV30M patients in Cyprus was used to collect demographic data to estimate; prevalence, incidence, penetrance, anticipation, time from disease onset to diagnosis and transplantation. Ocular, cardiac and leptomeningeal involvement in transplanted patients was explored. Correlation of C1q tagging SNPs with age of disease onset was carried out. RESULTS Prevalence and incidence for ATTRV30M neuropathy in Cyprus are 5.4/100,000 and 0.3/100,000 respectively. Mean age of onset is 40.6 years and anticipation is 8.3 years. Penetrance reaches 51% and 75% by the ages of 50 and 80 years respectively. In liver transplanted patients rates of ocular, cardiac and leptomeningeal involvement were estimated to be 60%, 20% and 16%, respectively. C1q polymorphisms correlated with age of disease onset. CONCLUSIONS ATTRV30M neuropathy has a rising prevalence in Cyprus due to improved survival of patients. Late onset complications are becoming a major problem. Complement C1q appears to be a modifier in this disease.
Collapse
Affiliation(s)
- Savanna Andreou
- a Department of Neuropathology/Neurology Clinic A , The Cyprus Institute of Neurology & Genetics , Nicosia , Cyprus
| | - Elena Panayiotou
- a Department of Neuropathology/Neurology Clinic A , The Cyprus Institute of Neurology & Genetics , Nicosia , Cyprus
| | - Kyriaki Michailidou
- b Department of Electron Microscopy/Molecular Pathology , The Cyprus Institute of Neurology & Genetics , Nicosia , Cyprus
| | - Panayiota Pirpa
- b Department of Electron Microscopy/Molecular Pathology , The Cyprus Institute of Neurology & Genetics , Nicosia , Cyprus
| | - Andreas Hadjisavvas
- b Department of Electron Microscopy/Molecular Pathology , The Cyprus Institute of Neurology & Genetics , Nicosia , Cyprus
| | | | - Daniel Barnes
- d Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology , University of Cambridge , Cambridge , UK
| | - Antonis Antoniou
- d Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology , University of Cambridge , Cambridge , UK
| | - Petros Agathangelou
- a Department of Neuropathology/Neurology Clinic A , The Cyprus Institute of Neurology & Genetics , Nicosia , Cyprus
| | | | - Kyproula Christodoulou
- f Neurogenetics Department , The Cyprus Institute of Neurology & Genetics , Nicosia , Cyprus
| | - George A Tanteles
- g Clinical Genetics Clinic , The Cyprus Institute of Neurology & Genetics , Nicosia , Cyprus
| | - Theodoros Kyriakides
- a Department of Neuropathology/Neurology Clinic A , The Cyprus Institute of Neurology & Genetics , Nicosia , Cyprus
| |
Collapse
|
193
|
Wang Y, Liu Y, Li Z, Yan X, Huang C, Ye X, Sun X, Qin S, Zhong X, Zeng C, Liu D, Zou X, Liu Y, Wu J, Wen Z, Yang G, Jing C, Wei X. Association Between MALAT1 and THRIL Polymorphisms and Precancerous Cervical Lesions. Genet Test Mol Biomarkers 2018; 22:509-517. [PMID: 30188187 DOI: 10.1089/gtmb.2018.0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The occurrence of cervical cancer is a complex process, for which human papillomavirus (HPV) infection is a risk factor, although not all women infected with HPV will develop the disease. Knockout of mammalian lung metastasis associated transcript 1 (MALAT1) is associated with increased risk for several cancer types, whereas the long non-coding RNA (lncRNA) THRIL is essential for induction of tumor necrosis factor-α expression, which plays important roles in HPV infection. MATERIALS AND METHODS To investigate the effects of polymorphisms in the lncRNAs MALAT1 and THRIL on the susceptibility to precancerous cervical lesions, 12 single nucleotide polymorphisms (SNPs) were analyzed from 164 cervical precancerous lesion cases and 428 controls. Gene-gene and gene-environment interactions and haplotype associations were also evaluated. RESULTS We found a significantly decreased risk of precancerous cervical lesions for the THRIL rs7133268 AG genotype (odds ratio adjusted = 0.63, 95% confidence interval: 0.42-0.94, p = 0.025). Multifactor dimensionality reduction analysis identified a significant two-locus interaction model involved in HPV infection and THRIL rs7133268 (training balanced accuracy = 0.6957, testing balanced accuracy = 0.6948, cross-validation consistency = 10/10, p = 0.0046). Other SNPs, including the two identified for MALAT1, were not significantly related to the risk of precancerous cervical lesions. CONCLUSION Our results suggest that the rs7133268 polymorphism of the lncRNA THRIL gene can reduce the genetic susceptibility of precancerous cervical lesions and in turn reduce the risk of HPV infection.
Collapse
Affiliation(s)
- Yao Wang
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China .,2 Guangdong Women and Children Hospital , Guangzhou, China
| | - Yang Liu
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Zhongyi Li
- 2 Guangdong Women and Children Hospital , Guangzhou, China .,3 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiumin Yan
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China .,2 Guangdong Women and Children Hospital , Guangzhou, China
| | - Chuican Huang
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China .,2 Guangdong Women and Children Hospital , Guangzhou, China
| | - Xingguang Ye
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Xiuhong Sun
- 2 Guangdong Women and Children Hospital , Guangzhou, China .,3 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Shuang Qin
- 2 Guangdong Women and Children Hospital , Guangzhou, China .,3 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xingming Zhong
- 2 Guangdong Women and Children Hospital , Guangzhou, China
| | - Chengli Zeng
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Dandan Liu
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Xiaoqian Zou
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Yumei Liu
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Jing Wu
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Zihao Wen
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China
| | - Guang Yang
- 4 Department of Pathogen Biology, School of Medicine, Jinan University , Guangzhou, China .,5 Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou, China
| | - Chunxia Jing
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China .,5 Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou, China
| | - Xiangcai Wei
- 1 Department of Epidemiology, School of Medicine, Jinan University , Guangzhou, China .,2 Guangdong Women and Children Hospital , Guangzhou, China
| |
Collapse
|
194
|
Mukherjee D, Saha D, Acharya D, Mukherjee A, Chakraborty S, Ghosh TC. The role of introns in the conservation of the metabolic genes of Arabidopsis thaliana. Genomics 2018; 110:310-317. [DOI: 10.1016/j.ygeno.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
195
|
Pydiura N, Pirko Y, Galinousky D, Postovoitova A, Yemets A, Kilchevsky A, Blume Y. Genome‐wide identification, phylogenetic classification, and exon–intron structure characterization of the tubulin and actin genes in flax (Linum usitatissimum). Cell Biol Int 2018; 43:1010-1019. [DOI: 10.1002/cbin.11001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 05/31/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Nikolay Pydiura
- Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv Osipovskogo St. 2a04123 Ukraine
| | - Yaroslav Pirko
- Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv Osipovskogo St. 2a04123 Ukraine
| | - Dmitry Galinousky
- Institute of Genetics and CytologyNational Academy of Sciences of BelarusMinsk Akademicheskaya st., 27220072 Belarus
| | - Anastasiia Postovoitova
- Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv Osipovskogo St. 2a04123 Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv Osipovskogo St. 2a04123 Ukraine
| | - Aleksandr Kilchevsky
- Institute of Genetics and CytologyNational Academy of Sciences of BelarusMinsk Akademicheskaya st., 27220072 Belarus
| | - Yaroslav Blume
- Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv Osipovskogo St. 2a04123 Ukraine
| |
Collapse
|
196
|
Zhong XL, Li JQ, Sun L, Li YQ, Wang HF, Cao XP, Tan CC, Wang L, Tan L, Yu JT. A Genome-Wide Association Study of α-Synuclein Levels in Cerebrospinal Fluid. Neurotox Res 2018; 35:41-48. [PMID: 29959729 DOI: 10.1007/s12640-018-9922-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 01/13/2023]
Abstract
α-Synuclein is a 140-amino acid protein produced predominantly by neurons in the brain which plays a role in the regulation of neurotransmitter release, synaptic function, and plasticity, thus making it the focus in understanding the etiology of a group of neurodegenerative diseases. We conducted genome-wide association studies (GWAS) of α-synuclein levels in cerebrospinal fluid (CSF) with 209 non-Hispanic white participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI-1) cohort using a linear regression model to identify novel variants associated with α-synuclein concentration. The minor allele (T) of rs7072338 in the long intergenic non-protein coding RNA 1515 (LINC01515) and the minor allele (T) of rs17794023 in clusterin-associated protein 1 (CLUAP1) were associated with higher CSF α-synuclein levels at genome-wide significance (P = 4.167 × 10-9 and 9.56 × 10-9, respectively). In addition, single nucleotide polymorphisms (SNPs) near amyloid beta precursor protein (APP) (rs1394839) (P = 2.31 × 10-7), Rap guanine nucleotide exchange factor 1 (RAPGEF1) (rs10901091) (P = 8.07 × 10-7), and two intergenic loci on chromosome 2 and 14 (rs11687064 P = 2.50 × 10-7and rs7147386 P = 4.05 × 10-7) were identified as suggestive loci associated with CSF α-synuclein levels. We have identified significantly associated SNPs for CSF α-synuclein. These associations have important implications for a better understanding of α-synuclein regulation and allow researchers to further explore the relationships between these SNPs and α-synuclein-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiao-Ling Zhong
- Department of Neurology, Qingdao Central Hospital, Qingdao University, No.127 Siliu South Road, Qingdao, 266042, Shandong Province, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Li Sun
- Department of Neurology, Qingdao Central Hospital, Qingdao University, No.127 Siliu South Road, Qingdao, 266042, Shandong Province, China
| | - Ya-Qing Li
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.,Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ling Wang
- Department of Neurology, Qingdao Central Hospital, Qingdao University, No.127 Siliu South Road, Qingdao, 266042, Shandong Province, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China. .,Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China. .,Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China. .,Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, Box 1207, San Francisco, CA, 94158, USA.
| | | |
Collapse
|
197
|
Kim M, Kim M, Yoo HJ, Shon J, Lee JH. Associations between hypertension and the peroxisome proliferator-activated receptor-δ (PPARD) gene rs7770619 C>T polymorphism in a Korean population. Hum Genomics 2018; 12:28. [PMID: 29914579 PMCID: PMC6006737 DOI: 10.1186/s40246-018-0162-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023] Open
Abstract
Background Oxidative stress is associated with the increased risk of hypertension (HTN). This cross-sectional study is aimed to identify the association between the peroxisome proliferator-activated receptor-δ (PPARD) polymorphism and plasma malondialdehyde (MDA), an oxidative stress marker which is related to HTN development, and to determine whether PPARD gene is a candidate gene for HTN. Results One thousand seven hundred ninety-three individuals with normal blood pressure (BP) and HTN were included in this cross-sectional study. The Korean Chip was used to obtain genotype data. Through the analysis, the ten most strongly associated single-nucleotide polymorphisms (SNPs) were nominated for an MDA-related SNP. Among them, the rs7770619 polymorphism was identified in the PPARD gene. The CT genotype of the PPARD rs7770619 C>T polymorphism was associated with a lower risk of HTN before and after adjustments for age, sex, body mass index, smoking, and drinking. Significant associations were observed between plasma MDA and the PPARD rs7770619 C>T polymorphism and between systolic BP and the PPARD rs7770619 SNP in the controls. The CT controls showed significantly lower systolic BP and plasma MDA than the CC controls. Additionally, in both controls and HTN patients, the CT subjects showed significantly lower serum glucose and higher adiponectin levels than the CC subjects. Furthermore, the CT subjects showed significantly higher serum free fatty acid levels than the CC subjects among the HTN patients. Conclusion This is a new finding that the PPARD rs7770619 C>T SNP is a novel candidate variant for HTN based on the association between PPARD and plasma MDA in a Korean population. Electronic supplementary material The online version of this article (10.1186/s40246-018-0162-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minjoo Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Korea
| | - Minkyung Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Korea
| | - Hye Jin Yoo
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jayoung Shon
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.,Department of Food and Nutrition, National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, College of Human Ecology, Yonsei University, Seoul, 03722, Korea
| | - Jong Ho Lee
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Korea. .,Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea. .,Department of Food and Nutrition, National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, College of Human Ecology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
198
|
Moreira GCM, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Trevisoli PA, Cantão ME, Ledur MC, Ibelli AMG, Peixoto JDO, Moura ASAMT, Garrick D, Coutinho LL. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens. BMC Genomics 2018; 19:374. [PMID: 29783939 PMCID: PMC5963092 DOI: 10.1186/s12864-018-4779-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/10/2018] [Indexed: 12/21/2022] Open
Abstract
Background Excess fat content in chickens has a negative impact on poultry production. The discovery of QTL associated with fat deposition in the carcass allows the identification of positional candidate genes (PCGs) that might regulate fat deposition and be useful for selection against excess fat content in chicken’s carcass. This study aimed to estimate genomic heritability coefficients and to identify QTLs and PCGs for abdominal fat (ABF) and skin (SKIN) traits in a broiler chicken population, originated from the White Plymouth Rock and White Cornish breeds. Results ABF and SKIN are moderately heritable traits in our broiler population with estimates ranging from 0.23 to 0.33. Using a high density SNP panel (355,027 informative SNPs), we detected nine unique QTLs that were associated with these fat traits. Among these, four QTL were novel, while five have been previously reported in the literature. Thirteen PCGs were identified that might regulate fat deposition in these QTL regions: JDP2, PLCG1, HNF4A, FITM2, ADIPOR1, PTPN11, MVK, APOA1, APOA4, APOA5, ENSGALG00000000477, ENSGALG00000000483, and ENSGALG00000005043. We used sequence information from founder animals to detect 4843 SNPs in the 13 PCGs. Among those, two were classified as potentially deleterious and two as high impact SNPs. Conclusions This study generated novel results that can contribute to a better understanding of fat deposition in chickens. The use of high density array of SNPs increases genome coverage and improves QTL resolution than would have been achieved with low density. The identified PCGs were involved in many biological processes that regulate lipid storage. The SNPs identified in the PCGs, especially those predicted as potentially deleterious and high impact, may affect fat deposition. Validation should be undertaken before using these SNPs for selection against carcass fat accumulation and to improve feed efficiency in broiler chicken production. Electronic supplementary material The online version of this article (10.1186/s12864-018-4779-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriel Costa Monteiro Moreira
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - Clarissa Boschiero
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - Aline Silva Mello Cesar
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - James M Reecy
- Department of Animal Science, Iowa State University (ISU), Ames, Iowa, USA
| | - Thaís Fernanda Godoy
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - Priscila Anchieta Trevisoli
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | | | | | | | | | | | - Dorian Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton, New Zealand
| | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
199
|
Lim CS, T. Wardell SJ, Kleffmann T, Brown CM. The exon-intron gene structure upstream of the initiation codon predicts translation efficiency. Nucleic Acids Res 2018; 46:4575-4591. [PMID: 29684192 PMCID: PMC5961209 DOI: 10.1093/nar/gky282] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Introns in mRNA leaders are common in complex eukaryotes, but often overlooked. These introns are spliced out before translation, leaving exon-exon junctions in the mRNA leaders (leader EEJs). Our multi-omic approach shows that the number of leader EEJs inversely correlates with the main protein translation, as does the number of upstream open reading frames (uORFs). Across the five species studied, the lowest levels of translation were observed for mRNAs with both leader EEJs and uORFs (29%). This class of mRNAs also have ribosome footprints on uORFs, with strong triplet periodicity indicating uORF translation. Furthermore, the positions of both leader EEJ and uORF are conserved between human and mouse. Thus, the uORF, in combination with leader EEJ predicts lower expression for nearly one-third of eukaryotic proteins.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Samuel J T. Wardell
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Torsten Kleffmann
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
200
|
Alternative mRNA Splicing in the Pathogenesis of Obesity. Int J Mol Sci 2018; 19:ijms19020632. [PMID: 29473878 PMCID: PMC5855854 DOI: 10.3390/ijms19020632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Alternative mRNA splicing is an important mechanism in expansion of proteome diversity by production of multiple protein isoforms. However, emerging evidence indicates that only a limited number of annotated protein isoforms by alternative splicing are detected, and the coding sequence of alternative splice variants usually is only slightly different from that of the canonical sequence. Nevertheless, mis-splicing is associated with a large array of human diseases. Previous reviews mainly focused on hereditary and somatic mutations in cis-acting RNA sequence elements and trans-acting splicing factors. The importance of environmental perturbations contributed to mis-splicing is not assessed. As significant changes in exon skipping and splicing factors expression levels are observed with diet-induced obesity, this review focuses on several well-known alternatively spliced metabolic factors and discusses recent advances in the regulation of the expressions of splice variants under the pathophysiological conditions of obesity. The potential of targeting the alternative mRNA mis-splicing for obesity-associated diseases therapies will also be discussed.
Collapse
|