151
|
Pillarisetti S, Vijayan V, Rangasamy J, Bardhan R, Uthaman S, Park IK. A Multi-Stimuli Responsive Alginate Nanogel for Anticancer Chemo-Photodynamic Therapy. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
152
|
Tumor microenvironment double-responsive shrinkable nanoparticles fabricated via facile assembly of laponite with a bioactive oligosaccharide for anticancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
153
|
Ordered mesoporous silica nanocarriers: An innovative paradigm and a promising therapeutic efficient carrier for delivery of drugs. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
154
|
Thirupathi K, Santhamoorthy M, Radhakrishnan S, Ulagesan S, Nam TJ, Phan TTV, Kim SC. Thermosensitive Polymer-Modified Mesoporous Silica for pH and Temperature-Responsive Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15030795. [PMID: 36986656 PMCID: PMC10051764 DOI: 10.3390/pharmaceutics15030795] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
A mesoporous silica-based drug delivery system (MS@PNIPAm-PAAm NPs) was synthesized by conjugating the PNIPAm-PAAm copolymer onto the mesoporous silica (MS) surface as a gatekeeper that responds to temperature and pH changes. The drug delivery studies are carried out in vitro at different pH (7.4, 6.5, and 5.0) and temperatures (such as 25 °C and 42 °C, respectively). The surface conjugated copolymer (PNIPAm-PAAm) acts as a gatekeeper below the lower critical solution temperature (LCST) (<32 °C) and as a collapsed globule structure above LCST (>32 °C), resulting in controlled drug delivery from the MS@PNIPAm-PAAm system. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cellular internalization results support the prepared MS@PNIPAm-PAAm NPs being biocompatible and readily taken up by MDA-MB-231 cells. The prepared MS@PNIPAm-PAAm NPs, with their pH-responsive drug release behavior and good biocompatibility, could be used as a drug delivery vehicle where sustained drug release at higher temperatures is required.
Collapse
Affiliation(s)
- Kokila Thirupathi
- Department of Physics, Government Arts and Science College for Women, Karimangalam, Dharmapuri 635111, Tamil Nadu, India
| | | | - Sivaprakasam Radhakrishnan
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Correspondence: (T.T.V.P.); (S.-C.K.)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (T.T.V.P.); (S.-C.K.)
| |
Collapse
|
155
|
Jiao Q, Liu B, Xu X, Huang T, Cao B, Wang L, Wang Q, Du A, Li J, Zhou B, Wang T. Biodegradable porous polymeric drug as a drug delivery system: alleviation of doxorubicin-induced cardiotoxicity via passive targeted release. RSC Adv 2023; 13:5444-5456. [PMID: 36793291 PMCID: PMC9923820 DOI: 10.1039/d2ra07410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug developed against a broad range of cancers, and its clinical applications are greatly restricted by the side effects of severe cardiotoxicity during tumour treatment. Herein, the DOX-loaded biodegradable porous polymeric drug, namely, Fc-Ma-DOX, which was stable in the circulation, but easy to compose in the acidic medium, was used as the drug delivery system avoiding the indiscriminate release of DOX. Fc-Ma was constructed via the copolymerization of 1,1'-ferrocenecarbaldehyde with d-mannitol (Ma) through the pH-sensitive acetal bonds. Echocardiography, biochemical parameters, pathological examination, and western blot results showed that DOX treatment caused increased myocardial injury and oxidative stress damage. In contrast, treatment with Fc-Ma-DOX significantly reduced myocardial injury and oxidative stress by DOX treatment. Notably, in the Fc-Ma-DOX treatment group, we observed a significant decrease in the uptake of DOX by H9C2 cells and a significant decrease in reactive oxygen species (ROS) production.
Collapse
Affiliation(s)
- Qiuhong Jiao
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Baoting Liu
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Xiufeng Xu
- Department of Geriatrics, Affiliated Hospital of Weifang Medical UniversityWeifang 261031ShandongChina
| | - Tao Huang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Bufan Cao
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Lide Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Qingguo Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Ailing Du
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Jingtian Li
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University Weifang 261031 Shandong China
| | - Tao Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| |
Collapse
|
156
|
Su Y, Jin G, Zhou H, Yang Z, Wang L, Mei Z, Jin Q, Lv S, Chen X. Development of stimuli responsive polymeric nanomedicines modulating tumor microenvironment for improved cancer therapy. MEDICAL REVIEW (2021) 2023; 3:4-30. [PMID: 37724108 PMCID: PMC10471091 DOI: 10.1515/mr-2022-0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/16/2023] [Indexed: 09/20/2023]
Abstract
The complexity of the tumor microenvironment (TME) severely hinders the therapeutic effects of various cancer treatment modalities. The TME differs from normal tissues owing to the presence of hypoxia, low pH, and immune-suppressive characteristics. Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors. Recently, polymeric nanomedicines have been widely used in cancer therapy, because their synthesis can be controlled and they are highly modifiable, and have demonstrated great potential to remodel the TME. In this review, we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME, aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Yuanzhen Su
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Guanyu Jin
- School of Materials Science and Engineering, Peking University, Beijing, China
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Huicong Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhaofan Yang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lanqing Wang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zi Mei
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Qionghua Jin
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
157
|
Nano-enabled agglomerates and compact: Design aspects of challenges. Asian J Pharm Sci 2023; 18:100794. [PMID: 37035131 PMCID: PMC10074506 DOI: 10.1016/j.ajps.2023.100794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Nanoscale medicine confers passive and active targeting potential. The development of nanomedicine is however met with processing, handling and administration hurdles. Excessive solid nanoparticle aggregation and caking result in low product yield, poor particle flowability and inefficient drug administration. These are overcome by converting the nanoparticles into a microscale dosage form via agglomeration or compaction techniques. Agglomeration and compaction nonetheless predispose the nanoparticles to risks of losing their nanogeometry, surface composition or chemistry being altered and negating biological performance. This study reviews risk factors faced during agglomeration and compaction that could result in these changes to nanoparticles. The potential risk factors pertain to materials choice in nanoparticle and microscale dosage form development, and their interplay effects with process temperature, physical forces and environmental stresses. To render the physicochemical and biological behaviour of the nanoparticles unaffected by agglomeration or compaction, modes to modulate the interplay effects of material and formulation with processing and environment variables are discussed.
Collapse
|
158
|
Hughes KA, Misra B, Maghareh M, Bobbala S. Use of stimulatory responsive soft nanoparticles for intracellular drug delivery. NANO RESEARCH 2023; 16:6974-6990. [PMID: 36685637 PMCID: PMC9840428 DOI: 10.1007/s12274-022-5267-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
Drug delivery has made tremendous advances in the last decade. Targeted therapies are increasingly common, with intracellular delivery highly impactful and sought after. Intracellular drug delivery systems have limitations due to imprecise and non-targeted release profiles. One way this can be addressed is through using stimuli-responsive soft nanoparticles, which contain materials with an organic backbone such as lipids and polymers. The choice of biomaterial is essential for soft nanoparticles to be responsive to internal or external stimuli. The nanoparticle must retain its integrity and payload in non-targeted physiological conditions while responding to particular intracellular environments where payload release is desired. Multiple internal and external factors could stimulate the intracellular release of drugs from nanoparticles. Internal stimuli include pH, oxidation, and enzymes, while external stimuli include ultrasound, light, electricity, and magnetic fields. Stimulatory responsive soft nanoparticulate systems specifically utilized to modulate intracellular delivery of drugs are explored in this review.
Collapse
Affiliation(s)
- Krystal A. Hughes
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Bishal Misra
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Maryam Maghareh
- Department of Clinical Pharmacy, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| |
Collapse
|
159
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
160
|
Rana A, Adhikary M, Singh PK, Das BC, Bhatnagar S. "Smart" drug delivery: A window to future of translational medicine. Front Chem 2023; 10:1095598. [PMID: 36688039 PMCID: PMC9846181 DOI: 10.3389/fchem.2022.1095598] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Chemotherapy is the mainstay of cancer treatment today. Chemotherapeutic drugs are non-selective and can harm both cancer and healthy cells, causing a variety of adverse effects such as lack of specificity, cytotoxicity, short half-life, poor solubility, multidrug resistance, and acquiring cancer stem-like characteristics. There is a paradigm shift in drug delivery systems (DDS) with the advent of smarter ways of targeted cancer treatment. Smart Drug Delivery Systems (SDDSs) are stimuli responsive and can be modified in chemical structure in response to light, pH, redox, magnetic fields, and enzyme degradation can be future of translational medicine. Therefore, SDDSs have the potential to be used as a viable cancer treatment alternative to traditional chemotherapy. This review focuses mostly on stimuli responsive drug delivery, inorganic nanocarriers (Carbon nanotubes, gold nanoparticles, Meso-porous silica nanoparticles, quantum dots etc.), organic nanocarriers (Dendrimers, liposomes, micelles), antibody-drug conjugates (ADC) and small molecule drug conjugates (SMDC) based SDDSs for targeted cancer therapy and strategies of targeted drug delivery systems in cancer cells.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Meheli Adhikary
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Praveen Kumar Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C. Das
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Seema Bhatnagar,
| |
Collapse
|
161
|
Wang M, Xu P, Lei B. Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioact Mater 2023; 19:511-537. [PMID: 35600971 PMCID: PMC9096270 DOI: 10.1016/j.bioactmat.2022.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/21/2022] Open
Abstract
Developing bioactive biomaterials with highly controlled functions is crucial to enhancing their applications in regenerative medicine. Citrate-based polymers are the few bioactive polymer biomaterials used in biomedicine because of their facile synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, and functional groups available for modification. In recent years, various multifunctional designs and biomedical applications, including cardiovascular, orthopedic, muscle tissue, skin tissue, nerve and spinal cord, bioimaging, and drug or gene delivery based on citrate-based polymers, have been extensively studied, and many of them have good clinical application potential. In this review, we summarize recent progress in the multifunctional design and biomedical applications of citrate-based polymers. We also discuss the further development of multifunctional citrate-based polymers with tailored properties to meet the requirements of various biomedical applications.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710000, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
162
|
Xu J, Chen M, Li M, Xu S, Liu H. Integration of chemotherapy and phototherapy based on a pH/ROS/NIR multi-responsive polymer-modified MSN drug delivery system for improved antitumor cells efficacy. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
163
|
Neves AR, Biswas S, Sousa Â, Costa D. Nanoconjugates and nanoconjugate formulations for improving drug delivery and therapeutic efficacy. ADVANCED NANOFORMULATIONS 2023:397-430. [DOI: 10.1016/b978-0-323-85785-7.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
164
|
Macchione MA, Strumia MC. Stimuli-responsive nanosystems as smart nanotheranostics. ADVANCED NANOFORMULATIONS 2023:363-396. [DOI: 10.1016/b978-0-323-85785-7.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
165
|
Swetha KL, Maravajjala KS, Li SD, Singh MS, Roy A. Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation. Drug Deliv Transl Res 2023; 13:105-134. [PMID: 35697894 DOI: 10.1007/s13346-022-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Most of the current antitumor therapeutics were developed targeting the cancer cells only. Unfortunately, in the majority of tumors, this single-dimensional therapy is found to be ineffective. Advanced research has shown that cancer is a multicellular disorder. The tumor microenvironment (TME), which is made by a complex network of the bulk tumor cells and other supporting cells, plays a crucial role in tumor progression. Understanding the importance of the TME in tumor growth, different treatment modalities have been developed targeting these supporting cells. Recent clinical results suggest that simultaneously targeting multiple components of the tumor ecosystem with drug combinations can be highly effective. This type of "multidimensional" therapy has a high potential for cancer treatment. However, tumor-specific delivery of such multi-drug combinations remains a challenge. Nanomedicine could be utilized for the tumor-targeted delivery of such multidimensional therapeutics. In this review, we first give a brief overview of the major components of TME. We then highlight the latest developments in nanoparticle-based combination therapies, where one drug targets cancer cells and other drug targets tumor-supporting components in the TME for a synergistic effect. We include the latest preclinical and clinical studies and discuss innovative nanoparticle-mediated targeting strategies.
Collapse
Affiliation(s)
- K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, Canada
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India. .,Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, 201310, India.
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
166
|
Zhang Q, Qiang L, Liu Y, Fan M, Si X, Zheng P. Biomaterial-assisted tumor therapy: A brief review of hydroxyapatite nanoparticles and its composites used in bone tumors therapy. Front Bioeng Biotechnol 2023; 11:1167474. [PMID: 37091350 PMCID: PMC10119417 DOI: 10.3389/fbioe.2023.1167474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Malignant bone tumors can inflict significant damage to affected bones, leaving patients to contend with issues like residual tumor cells, bone defects, and bacterial infections post-surgery. However, hydroxyapatite nanoparticles (nHAp), the principal inorganic constituent of natural bone, possess numerous advantages such as high biocompatibility, bone conduction ability, and a large surface area. Moreover, nHAp's nanoscale particle size enables it to impede the growth of various tumor cells via diverse pathways. This article presents a comprehensive review of relevant literature spanning the past 2 decades concerning nHAp and bone tumors. The primary goal is to explore the mechanisms responsible for nHAp's ability to hinder tumor initiation and progression, as well as to investigate the potential of integrating other drugs and components for bone tumor diagnosis and treatment. Lastly, the article discusses future prospects for the development of hydroxyapatite materials as a promising modality for tumor therapy.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Lei Qiang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minjie Fan
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Xinxin Si, ; Pengfei Zheng,
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xinxin Si, ; Pengfei Zheng,
| |
Collapse
|
167
|
Yan B, Wang S, Liu C, Wen N, Li H, Zhang Y, Wang H, Xi Z, Lv Y, Fan H, Liu X. Engineering magnetic nano-manipulators for boosting cancer immunotherapy. J Nanobiotechnology 2022; 20:547. [PMID: 36587223 PMCID: PMC9805281 DOI: 10.1186/s12951-022-01760-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Cancer immunotherapy has shown promising therapeutic results in the clinic, albeit only in a limited number of cancer types, and its efficacy remains less than satisfactory. Nanoparticle-based approaches have been shown to increase the response to immunotherapies to address this limitation. In particular, magnetic nanoparticles (MNPs) as a powerful manipulator are an appealing option for comprehensively regulating the immune system in vivo due to their unique magnetically responsive properties and high biocompatibility. This review focuses on assessing the potential applications of MNPs in enhancing tumor accumulation of immunotherapeutic agents and immunogenicity, improving immune cell infiltration, and creating an immunotherapy-sensitive environment. We summarize recent progress in the application of MNP-based manipulators to augment the efficacy of immunotherapy, by MNPs and their multiple magnetically responsive effects under different types of external magnetic field. Furthermore, we highlight the mechanisms underlying the promotion of antitumor immunity, including magnetically actuated delivery and controlled release of immunotherapeutic agents, tracking and visualization of immune response in real time, and magnetic regulation of innate/adaptive immune cells. Finally, we consider perspectives and challenges in MNP-based immunotherapy.
Collapse
Affiliation(s)
- Bin Yan
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Siyao Wang
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Chen Liu
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Nana Wen
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Hugang Li
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yihan Zhang
- grid.412262.10000 0004 1761 5538College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 Shaanxi China
| | - Hao Wang
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Ziyi Xi
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yi Lv
- grid.452438.c0000 0004 1760 8119Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China ,grid.452438.c0000 0004 1760 8119National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Haiming Fan
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 Shaanxi China
| | - Xiaoli Liu
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China ,grid.452438.c0000 0004 1760 8119Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China ,grid.452438.c0000 0004 1760 8119National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
168
|
Xiong H, Ye J, Wang M, Wang Y, Liu X, Jiang H, Wang X. In-situ bio-assembled specific Au NCs-Aptamer-Pyro conjugates nanoprobe for tumor imaging and mitochondria-targeted photodynamic therapy. Biosens Bioelectron 2022; 218:114763. [PMID: 36240628 DOI: 10.1016/j.bios.2022.114763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
Abstract
Mitochondrion has emerged as a promising drug target for photodynamic therapy (PDT), due to its significant role in supporting life activities and being reactive oxygen species (ROS)-sensitive. Herein, we establish a new strategy that in-situ bio-synthesized Au NCs combine with mitochondria-targeted aptamer-Pyro conjugates (ApPCs) for specific tumor imaging and PDT. The prepared ApPCs can serve as template for the in-situ bio-synthesis of Au NCs, thereby facilitating the generation of Au NCs-ApPCs assemblies in unique tumor microenvironment. Compared with highly negatively charged ApPCs, bio-synthesized nanoscale Au NCs-ApPCs assemblies are conducive to cell uptake, which consequently benefits the delivery of ApPCs. After dissociated from Au NCs-ApPCs, internalized ApPCs can selectively accumulate in mitochondria and generate excess ROS to disrupt the mitochondrial membrane upon irradiation, thus inducing efficient cell killing. In vitro assays demonstrated that the fluorescent Au NCs-ApPCs assemblies could be specifically produced in cancerous cells, indicating the specific tumor imaging ability, while intracellular ApPCs co-localized well with mitochondria. CCK-8 results revealed over 80% cell death after PDT. In vivo study showed that fluorescent Au NCs-ApPCs assemblies were exclusively generated in tumor and achieved long-term retention; tumor growth was significantly inhibited after 15-day PDT treatment. All these evidences suggest that in-situ bio-synthesized Au NCs-ApPCs assembly is a potent mitochondria-targeted nanoprobe to boost the PDT efficacy of cancers.
Collapse
Affiliation(s)
- Hongjie Xiong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Maonan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
169
|
Song P, Lu Z, Jiang T, Han W, Chen X, Zhao X. Chitosan coated pH/redox-responsive hyaluronic acid micelles for enhanced tumor targeted co-delivery of doxorubicin and siPD-L1. Int J Biol Macromol 2022; 222:1078-1091. [DOI: 10.1016/j.ijbiomac.2022.09.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
170
|
Shao Y, Xiang L, Zhang W, Chen Y. Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy. J Control Release 2022; 352:600-618. [PMID: 36341936 DOI: 10.1016/j.jconrel.2022.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100-200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics.
Collapse
Affiliation(s)
- Yaru Shao
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Li Xiang
- Hengyang Medical School, University of South China, Hengyang 410001, China
| | - Wenhui Zhang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
171
|
Sana B, Ferrentino N, Behroozi Kohlan T, Liu Y, Pasiskevicius V, Finne-Wistrand A, Pappalardo D. Coumarin end-capped poly(ε-caprolactone)-poly(ethylene glycol) tri-block copolymer: synthesis, characterization and light-response behavior. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
172
|
Panda S, Hajra S, Kaushik A, Rubahn H, Mishra Y, Kim H. Smart nanomaterials as the foundation of a combination approach for efficient cancer theranostics. MATERIALS TODAY CHEMISTRY 2022; 26:101182. [DOI: 10.1016/j.mtchem.2022.101182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
173
|
Yildiz D, Göstl R, Herrmann A. Sonopharmacology: controlling pharmacotherapy and diagnosis by ultrasound-induced polymer mechanochemistry. Chem Sci 2022; 13:13708-13719. [PMID: 36544723 PMCID: PMC9709924 DOI: 10.1039/d2sc05196f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Active pharmaceutical ingredients are the most consequential and widely employed treatment in medicine although they suffer from many systematic limitations, particularly off-target activity and toxicity. To mitigate these effects, stimuli-responsive controlled delivery and release strategies for drugs are being developed. Fueled by the field of polymer mechanochemistry, recently new molecular technologies enabled the emergence of force as an unprecedented stimulus for this purpose by using ultrasound. In this research area, termed sonopharmacology, mechanophores bearing drug molecules are incorporated within biocompatible macromolecular scaffolds as preprogrammed, latent moieties. This review presents the novelties in controlling drug activation, monitoring, and release by ultrasound, while discussing the limitations and challenges for future developments.
Collapse
Affiliation(s)
- Deniz Yildiz
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Robert Göstl
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| |
Collapse
|
174
|
Duan W, Liu X, Zhao J, Zheng Y, Wu J. Porous Silicon Carrier Endowed with Photothermal and Therapeutic Effects for Synergistic Wound Disinfection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48368-48383. [PMID: 36278256 DOI: 10.1021/acsami.2c12012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drug carriers endowed with photothermal effects will allow the drug delivery system to release drugs in a thermal-stimuli manner. In addition, the photothermal therapy (PTT) will also interplay with therapeutic drugs loaded in the carrier to exhibit synergistic bioactivity for various disease treatment. However, endowing the drug carrier with photothermal and synergistic therapeutic effects still has challenge. Herein, we demonstrate that surface modification of porous silicon (PSi) with polydopamine (PDA) could endow the classical drug carrier with a significant photothermal effect for advanced antibacterial therapy and wound disinfection. Specifically, the PSi surface interacts with a Cu2+/PDA complex via a simple and fast surface reduction-induced deposition method, forming the unique CuPDA coated PSi microcarrier (CuPPSi) without blocking the mesoporous structure. The CuPPSi carrier generates a higher near-infrared (NIR) photothermal efficiency and improved drug loading capacity owing to the abundant functional groups of PDA. Stimuli-responsive release of antibacterial Cu2+ and loaded curcumin (Cur) from CuPPSi can be realized under multiple stimuli including pH, reactive oxygen species and NIR laser irradition. Benefited from the carrier's intrinsic multimodal therapy, the CuPPSi-Cur platform exhibits amplified, broad-spectrum, and synergistic antibacterial effect, killing more than 98% for both Staphylococcus aureus and Escherichia coli at a mild PTT temperature (∼45 °C). Notably, the combined therapy promotes migration of fibroblasts with no significant cytotoxicity as revealed through cell experiments in vitro. In bacteria-infected mice model, efficient bacterial ablation and wound healing are further demonstrated with negligible side effects in vivo. Overall, the rational design of a drug carrier with photothermal and therapeutic effects provides a novel intervention for amplifing wound disinfection clinically.
Collapse
Affiliation(s)
- Wei Duan
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou310058, China
| | - Xingyue Liu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou310058, China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou310058, China
| | - Yongke Zheng
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
175
|
Yang M, Abdalkarim SYH, Yu HY, Asad RA, Ge D, Zhou Y. Thermo-sensitive composite microspheres incorporating cellulose nanocrystals for regulated drug release kinetics. Carbohydr Polym 2022; 301:120350. [DOI: 10.1016/j.carbpol.2022.120350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
|
176
|
Muthwill MS, Kong P, Dinu IA, Necula D, John C, Palivan CG. Tailoring Polymer-Based Nanoassemblies for Stimuli-Responsive Theranostic Applications. Macromol Biosci 2022; 22:e2200270. [PMID: 36100461 DOI: 10.1002/mabi.202200270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/28/2022] [Indexed: 12/25/2022]
Abstract
Polymer assemblies on the nanoscale represent a powerful toolbox for the design of theranostic systems when combined with both therapeutic compounds and diagnostic reporting ones. Here, recent advances in the design of theranostic systems for various diseases, containing-in their architecture-either polymers or polymer assemblies as one of the building blocks are presented. This review encompasses the general principles of polymer self-assembly, from the production of adequate copolymers up to supramolecular assemblies with theranostic functionality. Such polymer nanoassemblies can be further tailored through the incorporation of inorganic nanoparticles to endow them with multifunctional therapeutic and/or diagnostic features. Systems that change their architecture or properties in the presence of stimuli are selected, as responsivity to changes in the environment is a key factor for enhancing efficiency. Such theranostic systems are based on the intrinsic properties of copolymers or one of the other components. In addition, systems with a more complex architecture, such as multicompartments, are presented. Selected systems indicate the advantages of such theranostic approaches and provide a basis for further developments in the field.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| | - Phally Kong
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Danut Necula
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Christoph John
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| |
Collapse
|
177
|
Agnihotri TG, Gomte SS, Jain A. Emerging theranostics to combat cancer: a perspective on metal-based nanomaterials. Drug Dev Ind Pharm 2022; 48:585-601. [PMID: 36448770 DOI: 10.1080/03639045.2022.2153862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
OBJECTIVE Theranostics, encompassing diagnostics and therapeutics, has emerged as a critical component of cancer treatment. Metal-based theranostics is one such next-generation nanotechnology-based drug delivery system with a myriad of benefits in pre-clinical and clinical medication for the deadly diseases like cancer, where early detection can actually be life-saving. SIGNIFICANCE Metal theranostics have shown promising outcomes in terms of anticancer medication monitoring, targeted drug delivery, and simultaneous detection and treatment of early-stage cancer. METHODS For collection of literature data, different search engines including Google scholar, SciFinder, PubMed, ScienceDirect have been employed. With key words like, cancer, theranostics, metal nanoparticles relevant and appropriate data have been generated. RESULTS Noninvasive administration of the active drug is made possible by theranostics nanoparticulate systems' ability to aggregate at the tumor site and offer morphological and biochemical characteristics of the tumor site. The recent advancement of metal-based theranostics including metallic nanoparticles, metal oxides, metal sulfides, nanocomposites, etc. has been explored at length in this article. CONCLUSION The review highlights emerging applications in terms of molecular imaging, targeted therapy and different diagnostic approaches of metal theranostics. Possible challenges faced by nanotheranostics in terms of clinical immersion and toxicological aspects which need to be addressed at depth are also discussed at the end.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
178
|
Panjwani D, Mishra D, Patel S, Patel V, Dharamsi A, Patel A. A Perspective on EGFR and Proteasome-based Targeted Therapy for Cancer. Curr Drug Targets 2022; 23:1406-1417. [PMID: 36089785 DOI: 10.2174/1389450123666220908095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cancer is known to be the most leading cause of death worldwide. It is understood that the sources causing cancer mainly include the activity of endogenous oncogenes, nonviral compounds and the fundamental portion of these oncogenes; the tyrosine kinase activity and proteasome activity are the main biomarkers responsible for cell proliferation. These biomarkers can be used as main targets and are believed to be the 'prime switches' for the signal communication activity to regulate cell death and cell cycle. Thus, signal transduction inhibitors (ligandreceptor tyrosine kinase inhibitors) and proteasome inhibitors can be used as a therapeutic modality to block the action of signaling between the cells as well as protein breakdown in order to induce cell apoptosis. AIMS This article highlights the key points and provides an overview of the recent patents on EGFR and proteosome-based inhibitors having therapeutic efficacy. This review focuses on the patents related to therapeutic agents, their preparation process and the final outcome. OBJECTIVE The main objective of this study is to facilitate the advancement and current perspectives in the treatment of cancer. CONCLUSION There are numerous strategies discussed in these patents to improve the pharmacokinetics and pharmacodynamics of EGFR and proteasome inhibitors. Further, the resistance to targeted therapy after long-term treatment can be overcome by using various excipients that can be used as a strategy to carry the drug. However, there is a need and scope for improving targeted therapeutics for cancer treatment with better fundamentals and characteristics. The widespread research on cancer therapy can create the path for future advancements in therapy with more prominent outcomes.
Collapse
Affiliation(s)
- Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Deepak Mishra
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Viral Patel
- Department of Civil and Petroleum Engineering, University of Alberta, Edmonten, Canada
| | - Abhay Dharamsi
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Asha Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| |
Collapse
|
179
|
Liu N, Su X, Sun X. Cerenkov radiation-activated probes for deep cancer theranostics: a review. Theranostics 2022; 12:7404-7419. [PMID: 36438500 PMCID: PMC9691350 DOI: 10.7150/thno.75279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022] Open
Abstract
Cerenkov radiation (CR) from radionuclides and megavoltage X-ray radiation can act as an in situ light source for deep cancer theranostics, overcoming the limitations of external light sources. Despite the blue-weighted emission and low quantum yield of CR, activatable probes-mediated CR can enhance the in-vivo diagnostic signals by Cerenkov resonance energy transfer and also can produce therapeutic effects by reactive species generation/drug release, greatly promoting the biomedical applications of CR. In this review, we describe the principles and sources of CR, construction of CR-activated probes and their application to tumor optical imaging and therapy. Finally, future prospects for the design and biomedical application of CR-activated probes are discussed.
Collapse
Affiliation(s)
- Nian Liu
- PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinhui Su
- PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
180
|
Ali AA, Abuwatfa WH, Al-Sayah MH, Husseini GA. Gold-Nanoparticle Hybrid Nanostructures for Multimodal Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203706. [PMID: 36296896 PMCID: PMC9608376 DOI: 10.3390/nano12203706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/01/2023]
Abstract
With the urgent need for bio-nanomaterials to improve the currently available cancer treatments, gold nanoparticle (GNP) hybrid nanostructures are rapidly rising as promising multimodal candidates for cancer therapy. Gold nanoparticles (GNPs) have been hybridized with several nanocarriers, including liposomes and polymers, to achieve chemotherapy, photothermal therapy, radiotherapy, and imaging using a single composite. The GNP nanohybrids used for targeted chemotherapy can be designed to respond to external stimuli such as heat or internal stimuli such as intratumoral pH. Despite their promise for multimodal cancer therapy, there are currently no reviews summarizing the current status of GNP nanohybrid use for cancer theragnostics. Therefore, this review fulfills this gap in the literature by providing a critical analysis of the data available on the use of GNP nanohybrids for cancer treatment with a specific focus on synergistic approaches (i.e., triggered drug release, photothermal therapy, and radiotherapy). It also highlights some of the challenges that hinder the clinical translation of GNP hybrid nanostructures from bench to bedside. Future studies that could expedite the clinical progress of GNPs, as well as the future possibility of improving GNP nanohybrids for cancer theragnostics, are also summarized.
Collapse
Affiliation(s)
- Amaal Abdulraqeb Ali
- Biomedical Engineering Graduate Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad H. Al-Sayah
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
181
|
Liu W, Ma X, Kheyr SM, Dong A, Zhang J. Covalent Organic Frameworks as Nanocarriers for Improved Delivery of Chemotherapeutic Agents. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7215. [PMID: 36295281 PMCID: PMC9611971 DOI: 10.3390/ma15207215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Cancer has become one of the main causes of death worldwide. Chemotherapy as one of the main therapy modalities is very unsatisfactory. The various nanocarriers have brought new opportunities for effective tumor treatment. However, most of the current nanocarriers still suffer from low efficiency and confront significant challenges in overcoming multiple biological barriers. Compared with conventional nanocarriers, covalent organic frameworks (COFs) with unique and attractive features exhibited great potential to serve as a promising platform for anticancer drug delivery. In this review, we first summarize the strategies and challenges of nanocarriers for cancer chemotherapy and then highlight the recent advances in COF-based nanocarriers for improved delivery of chemotherapeutic agents. Finally, the challenges remaining for COF-based nanocarriers for clinical applications are outlined.
Collapse
Affiliation(s)
- Weiming Liu
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xinyu Ma
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shuayb Mohamed Kheyr
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Anjie Dong
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jianhua Zhang
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
182
|
Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14102195. [PMID: 36297630 PMCID: PMC9608678 DOI: 10.3390/pharmaceutics14102195] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Liposomes are well-known nanoparticles with a non-toxic nature and the ability to incorporate both hydrophilic and hydrophobic drugs simultaneously. As modern drug delivery formulations are produced by emerging technologies, numerous advantages of liposomal drug delivery systems over conventional liposomes or free drug treatment of cancer have been reported. Recently, liposome nanocarriers have exhibited high drug loading capacity, drug protection, improved bioavailability, enhanced intercellular delivery, and better therapeutic effect because of resounding success in targeting delivery. The site targeting of smart responsive liposomes, achieved through changes in their physicochemical and morphological properties, allows for the controlled release of active compounds under certain endogenous or exogenous stimuli. In that way, the multifunctional and stimuli-responsive nanocarriers for the drug delivery of cancer therapeutics enhance the efficacy of treatment prevention and fighting over metastases, while limiting the systemic side effects on healthy tissues and organs. Since liposomes constitute promising nanocarriers for site-targeted and controlled anticancer drug release, this review focuses on the recent progress of smart liposome achievements for anticancer drug delivery applications.
Collapse
|
183
|
Chen X, Lei S, Lin J, Huang P. Stimuli-responsive image-guided nanocarriers as smart drug delivery platforms. Expert Opin Drug Deliv 2022; 19:1487-1504. [PMID: 36214740 DOI: 10.1080/17425247.2022.2134853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION In recent years, to improve the precision of drug delivery and reduce toxicity associated from the uncontrolled drug release at off-target locations, extensive efforts have been paid to develop stimuli-responsive nanocarriers, which enable precise control over on-demand drug release due to internal stimuli like pH, redox, enzyme and external stimuli like light, magnetic field, and ultrasound. Moreover, some stimuli-responsive nanocarriers have been strategically incorporated with imaging probes for simultaneous monitoring of the drug delivery process and region of interest for treatment optimization. AREAS COVERED In this review, the state-of-art progress in developing stimuli-responsive image-guided nanocarriers are summarized, including their designed strategies, synergistic mechanism, and biomedical applications in cancer therapy, and the current challenges and new perspectives are discussed. EXPERT OPINION The stimuli-responsive nanocarriers provide assurance for precise release of drugs and imaging probes, and the molecular imaging techniques can monitor the pharmacokinetics, biodistribution and bioavailability of drugs in vivo, and feedback the drug delivery profile. Therefore, stimuli-responsive image-guided nanocarriers can integrate diagnosis and therapy in one nanoplatform and facilitate optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Xin Chen
- Shenzhen University, Shenzhen, China, 518071
| | - Shan Lei
- Shenzhen University, Shenzhen, China, 518060
| | - Jing Lin
- Shenzhen University, Shenzhen, China, 518060
| | | |
Collapse
|
184
|
Moreno S, Hübner H, Effenberg C, Boye S, Ramuglia A, Schmitt D, Voit B, Weidinger IM, Gallei M, Appelhans D. Redox- and pH-Responsive Polymersomes with Ferrocene Moieties Exhibiting Peroxidase-like, Chemoenzymatic Activity and H 2O 2-Responsive Release Behavior. Biomacromolecules 2022; 23:4655-4667. [PMID: 36215725 DOI: 10.1021/acs.biomac.2c00901] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of compartments for the design of cascade reactions in a local space requires a selective spatiotemporal control. The combination of enzyme-loaded polymersomes with enzymelike units shows a great potential in further refining the diffusion barrier and the type of reactions in nanoreactors. Herein, pH-responsive and ferrocene-containing block copolymers were synthesized to realize pH-stable and multiresponsive polymersomes. Permeable membrane, peroxidase-like behavior induced by the redox-responsive ferrocene moieties and release properties were validated using cyclovoltammetry, dye TMB assay, and rupture of host-guest interactions with β-cyclodextrin, respectively. Due to the incorporation of different block copolymers, the membrane permeability of glucose oxidase-loaded polymersomes was changed by increasing extracellular glucose concentration and in TMB assay, allowing for the chemoenzymatic cascade reaction. This study presents a potent synthetic, multiresponsive nanoreactor platform with tunable (e.g., redox-responsive) membrane properties for potential application in therapeutics.
Collapse
Affiliation(s)
- Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Hanna Hübner
- Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, Saarbrücken 66123, Germany
| | - Christiane Effenberg
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Anthony Ramuglia
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Deborah Schmitt
- Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, Saarbrücken 66123, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Inez M Weidinger
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, Saarbrücken 66123, Germany.,Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, Saarbrücken 66123, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| |
Collapse
|
185
|
Yang R, Ouyang Z, Guo H, Qu J, Xia J, Shen M, Shi X. Microfluidic synthesis of intelligent nanoclusters of ultrasmall iron oxide nanoparticles with improved tumor microenvironment regulation for dynamic MR imaging-guided tumor photothermo-chemo-chemodynamic therapy. NANO TODAY 2022; 46:101615. [DOI: 10.1016/j.nantod.2022.101615] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
186
|
Nazli A, He DL, Liao D, Khan MZI, Huang C, He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv Drug Deliv Rev 2022; 189:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance is a global health issue and a potential risk for society. Antibiotics administered through conventional formulations are devoid of targeting effect and often spread to various undesired body sites, leading to sub-lethal concentrations at the site of action and thus resulting in emergence of resistance, as well as side effects. Moreover, we have a very slim antibiotic pipeline. Drug-delivery systems have been designed to control the rate, time, and site of drug release, and innovative approaches for antibiotic delivery provide a glint of hope for addressing these issues. This review elaborates different delivery strategies and approaches employed to overcome the limitations of conventional antibiotic therapy. These include antibiotic conjugates, prodrugs, and nanocarriers for local and targeted antibiotic release. In addition, a wide range of stimuli-responsive nanocarriers and biological carriers for targeted antibiotic delivery are discussed. The potential advantages and limitations of targeted antibiotic delivery strategies are described along with possible solutions to avoid these limitations. A number of antibiotics successfully delivered through these approaches with attained outcomes and potentials are reviewed.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - David L He
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Dandan Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | | | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
187
|
Rasel MSI, Mohona FA, Akter W, Kabir S, Chowdhury AA, Chowdhury JA, Hassan MA, Al Mamun A, Ghose DK, Ahmad Z, Khan FS, Bari MF, Rahman MS, Amran MS. Exploration of Site-Specific Drug Targeting-A Review on EPR-, Stimuli-, Chemical-, and Receptor-Based Approaches as Potential Drug Targeting Methods in Cancer Treatment. JOURNAL OF ONCOLOGY 2022; 2022:9396760. [PMID: 36284633 PMCID: PMC9588330 DOI: 10.1155/2022/9396760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Cancer has been one of the most dominant causes of mortality globally over the last few decades. In cancer treatment, the selective targeting of tumor cells is indispensable, making it a better replacement for conventional chemotherapies by diminishing their adverse side effects. While designing a drug to be delivered selectively in the target organ, the drug development scientists should focus on various factors such as the type of cancer they are dealing with according to which drug, targeting moieties, and pharmaceutical carriers should be targeted. All published articles have been collected regarding cancer and drug-targeting approaches from well reputed databases including MEDLINE, Embase, Cochrane Library, CENTRAL and ClinicalTrials.gov, Science Direct, PubMed, Scopus, Wiley, and Springer. The articles published between January 2010 and December 2020 were considered. Due to the existence of various mechanisms, it is challenging to choose which one is appropriate for a specific case. Moreover, a combination of more than one approach is often utilized to achieve optimal drug effects. In this review, we have summarized and highlighted central mechanisms of how the targeted drug delivery system works in the specific diseased microenvironment, along with the strategies to make an approach more effective. We have also included some pictorial illustrations to have a precise idea about different types of drug targeting. The core contribution of this work includes providing a cancer drug development scientist with a broad preliminary idea to choose the appropriate approach among the various targeted drug delivery mechanisms. Also, the study will contribute to improving anticancer treatment approaches by providing a pathway for lesser side effects observed in conventional chemotherapeutic techniques.
Collapse
Affiliation(s)
- Md. Shamiul Islam Rasel
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Farhana Afrin Mohona
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Wahida Akter
- College of Pharmacy, University of Houston, Houston, USA
| | - Shaila Kabir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Abu Asad Chowdhury
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Jakir Ahmed Chowdhury
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Md. Abul Hassan
- Department of Science & Technology, Tokushima University Graduate School, Tokushima, Japan
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Dipayon Krisna Ghose
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Md. Fazlul Bari
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| |
Collapse
|
188
|
Chen J, Yu X, Liu X, Ni J, Yang G, Zhang K. Advances in nanobiotechnology-propelled multidrug resistance circumvention of cancer. NANOSCALE 2022; 14:12984-12998. [PMID: 36056710 DOI: 10.1039/d2nr04418h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multidrug resistance (MDR) is one of the main reasons for the failure of tumor chemotherapy and has a negative influence on the therapeutic effect. MDR is primarily attributable to two mechanisms: the activation of efflux pumps for drugs, which can transport intracellular drug molecules from cells, and other mechanisms not related to efflux pumps, e.g., apoptosis prevention, strengthened DNA repair, and strong oxidation resistance. Nanodrug-delivery systems have recently attracted much attention, showing some unparalleled advantages such as drug targeting and reduced drug efflux, drug toxicity and side effects in reversing MDR. Notably, in drug-delivery platforms based on nanotechnology, multiple therapeutic strategies are integrated into one system, which can compensate for the limitations of individual strategies. In this review, the mechanisms of tumor MDR as well as common vectors and nanocarrier-combined therapy strategies to reverse MDR were summarized to promote the understanding of the latest progress in improving the efficiency of chemotherapy and synergistic strategies. In particular, the adoption of nanotechnology has been highlighted and the principles underlying this phenomenon have been elucidated, which may provide guidance for the development of more effective anticancer strategies.
Collapse
Affiliation(s)
- Jie Chen
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
- Department of Medical Ultrasound, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 West Huaihai Road, Shanghai 200030, P. R. China
| | - Xin Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, No. 507 Zheng-Min Road, Shanghai 200433, P. R. China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, No. 507 Zheng-Min Road, Shanghai 200433, P. R. China
| | - Jinliang Ni
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Guangcan Yang
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| |
Collapse
|
189
|
Cai S, Liu J, Ding J, Fu Z, Li H, Xiong Y, Lian Z, Yang R, Chen C. Tumor‐Microenvironment‐Responsive Cascade Reactions by a Cobalt‐Single‐Atom Nanozyme for Synergistic Nanocatalytic Chemotherapy. Angew Chem Int Ed Engl 2022; 61:e202204502. [DOI: 10.1002/anie.202204502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shuangfei Cai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Jiaming Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27607 USA
| | - Jianwei Ding
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Zhao Fu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Haolin Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
- Sino-Danish College Sino-Danish Center for Education and Research University of Chinese Academy of Sciences Beijing 100049 China
| | - Youlin Xiong
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Zheng Lian
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
- Sino-Danish College Sino-Danish Center for Education and Research University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunying Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
- GBA National Institute for Nanotechnology Innovation Guangzhou 510700, Guangdong China
| |
Collapse
|
190
|
Lin KY, Tsay YG, Chang CA. Effects of polyallylamine-coated nanoparticles on the optical and photochemical properties of rose bengal. J Chin Med Assoc 2022; 85:901-908. [PMID: 35666599 DOI: 10.1097/jcma.0000000000000762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Inasmuch as optical and photochemical properties of a photosensitizer can be modified upon association with the nanoparticle (NP), we wondered whether the effectiveness of phototherapeutic rose bengal (RB) was affected upon tethering to the sodium lanthanide fluoride NP with an outer polyallylamine (PAH) coat. METHODS RB molecules were electrostatically bound to the NaYF 4 :Gd 3+ :Nd 3+ NPs with inner silica and outer PAH coats. The products were analyzed for their size, shape and zeta potential using transmission electron microscopy and dynamic light scattering instrument. Ultraviolet-visible absorption spectrometry and fluorescence spectrometry were used to examine the spectral properties. Photodynamic effect in terms of singlet oxygen generation was quantitatively determined using the indicator 1,3-diphenylisobenzofuran (DPBF). Photocytotoxicity mediated by NP-bound RB was tested using A549 cells (Student's t test was used for statistical evaluation). RESULTS NP-bound RB had the major absorbance peak at 561 nm, in comparison with 549 nm for free RB, accompanied with a significant decrease in absorptivity. The molar extinction coefficient becomes 36 000 M -1 cm -1 , only ~35% of that for free RB. Fluorescence spectral analyses showed a paradoxical decrease in the emission with higher NP concentrations even at very low dilutions. Most importantly, the association of RB with these NPs drastically increased its singlet oxygen production upon irradiation. The interaction of RB with PAH coat could partly account for this enhancement, given our finding that PAH in solution also caused a drastic rise in DPBF reactivity by free RB. These NPs exhibited strong photocytotoxic effects, and their promise in photodynamic therapy was addressed. CONCLUSION Our findings provide evidence that the PAH coat plays a key role in enhanced biological activities of RB delivered via NPs, including the increase in singlet oxygen production and photocytotoxic effects.
Collapse
Affiliation(s)
- Kai-Ying Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yeou-Guang Tsay
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Biochemistry & Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Metabolomics-Proteomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - C Allen Chang
- Metabolomics-Proteomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Biomedical Engineering Research and Development Center (BERDC), National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
191
|
Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
192
|
Seitz I, Ijäs H, Linko V, Kostiainen MA. Optically Responsive Protein Coating of DNA Origami for Triggered Antigen Targeting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38515-38524. [PMID: 35984232 PMCID: PMC9437894 DOI: 10.1021/acsami.2c10058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA nanostructures have emerged as modular building blocks in several research fields including biomedicine and nanofabrication. Their proneness to degradation in various environments has led to the development of a variety of nature-inspired protection strategies. Coating of DNA origami nanostructures with proteins can circumvent degradation and alter their properties. Here, we have used a single-chain variable antibody fragment and serum albumin to construct positively charged and stimuli-responsive protein-dendron conjugates, which were complexed with DNA origami through electrostatic interactions. Using a stepwise assembly approach, the coated nanostructures were studied for their interaction with the corresponding antigen in fluorescence-based immunoassays. The results suggest that the antibody-antigen interaction can be disturbed by the addition of the bulky serum albumin. However, this effect is fully reversible upon irradiation of the structures with an optical stimulus. This leads to a selective dissociation of the serum albumin from the nanostructure due to cleavage of a photolabile group integrated in the dendron structure, exposing the antibody fragment and enabling triggered binding to the antigen, demonstrating that serum albumin can be considered as an externally controlled "camouflaging" agent. The presented stimuli-responsive complexation approach is highly versatile regarding the choice of protein components and could, therefore, find use in DNA origami protection, targeting, and delivery as well as their spatiotemporal control.
Collapse
Affiliation(s)
- Iris Seitz
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Heini Ijäs
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Veikko Linko
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- LIBER
Center of Excellence, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Mauri A. Kostiainen
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- LIBER
Center of Excellence, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
193
|
Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022; 6:400-423. [PMID: 36051855 PMCID: PMC9428923 DOI: 10.7150/ntno.74613] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Over the last few years, progress has been made across the nanomedicine landscape, in particular, the invention of contemporary nanostructures for cancer diagnosis and overcoming complexities in the clinical treatment of cancerous tissues. Thanks to their small diameter and large surface-to-volume proportions, nanomaterials have special physicochemical properties that empower them to bind, absorb and transport high-efficiency substances, such as small molecular drugs, DNA, proteins, RNAs, and probes. They also have excellent durability, high carrier potential, the ability to integrate both hydrophobic and hydrophilic compounds, and compatibility with various transport routes, making them especially appealing over a wide range of oncology fields. This is also due to their configurable scale, structure, and surface properties. This review paper discusses how nanostructures can function as therapeutic vectors to enhance the therapeutic value of molecules; how nanomaterials can be used as medicinal products in gene therapy, photodynamics, and thermal treatment; and finally, the application of nanomaterials in the form of molecular imaging agents to diagnose and map tumor growth.
Collapse
Affiliation(s)
- Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad reza Moaddeli
- Assistant Professor, Department of Oral and Maxillofacial Surgery, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Reza Kasaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hatam
- Assistant Lecturer, Azad University, Zarghan Branch, Shiraz, Iran
- ExirBitanic, Science and Technology Park of Fars, Shiraz, Iran
| |
Collapse
|
194
|
Cai S, Liu J, Ding J, Fu Z, Li H, Xiong Y, Lian Z, Yang R, Chen C. Tumor‐Microenvironment‐Responsive Cascade Reactions by a Cobalt‐Single‐Atom Nanozyme for Synergistic Nanocatalytic Chemotherapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuangfei Cai
- Chinese Academy of Sciences National Center for Nanoscience and Technology CHINA
| | - Jiaming Liu
- North Carolina State University Joint Department of Biomedical Engineering UNITED STATES
| | - Jianwei Ding
- Chinese Academy of Sciences National Center for Nanoscience and Technology CHINA
| | - Zhao Fu
- Chinese Academy of Sciences National Center for Nanoscience and Technology CHINA
| | - Haolin Li
- Chinese Academy of Sciences National Center for Nanoscience and Technology CHINA
| | - Youlin Xiong
- Chinese Academy of Sciences National Center for Nanoscience and Technology CHINA
| | - Zheng Lian
- Chinese Academy of Sciences National Center for Nanoscience and Technology CHINA
| | - Rong Yang
- Chinese Academy of Sciences National Center for Nanoscience and Technology CHINA
| | - Chunying Chen
- National Center for Nanoscience and Technology of China No 11, Zhongguancun Beiyitiao, Haidian 100190 Beijing CHINA
| |
Collapse
|
195
|
Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, Zhou W, Li L, Teng L, Yu H, Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharm Sin B 2022; 12:4098-4121. [DOI: 10.1016/j.apsb.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
|
196
|
Sastri KT, Gupta NV, M S, Chakraborty S, Kumar H, Chand P, Balamuralidhara V, Gowda D. Nanocarrier facilitated drug delivery to the brain through intranasal route: A promising approach to transcend bio-obstacles and alleviate neurodegenerative conditions. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
197
|
Radhakrishnan D, Mohanan S, Choi G, Choy JH, Tiburcius S, Trinh HT, Bolan S, Verrills N, Tanwar P, Karakoti A, Vinu A. The emergence of nanoporous materials in lung cancer therapy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:225-274. [PMID: 35875329 PMCID: PMC9307116 DOI: 10.1080/14686996.2022.2052181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Lung cancer is one of the most common cancers, affecting more than 2.1 million people across the globe every year. A very high occurrence and mortality rate of lung cancer have prompted active research in this area with both conventional and novel forms of therapies including the use of nanomaterials based drug delivery agents. Specifically, the unique physico-chemical and biological properties of porous nanomaterials have gained significant momentum as drug delivery agents for delivering a combination of drugs or merging diagnosis with targeted therapy for cancer treatment. This review focuses on the emergence of nano-porous materials for drug delivery in lung cancer. The review analyses the currently used nanoporous materials, including inorganic, organic and hybrid porous materials for delivering drugs for various types of therapies, including chemo, radio and phototherapy. It also analyses the selected research on stimuli-responsive nanoporous materials for drug delivery in lung cancer before summarizing the various findings and projecting the future of emerging trends. This review provides a strong foundation for the current status of the research on nanoporous materials, their limitations and the potential for improving their design to overcome the unique challenges of delivering drugs for the treatment of lung cancer.
Collapse
Affiliation(s)
- Deepika Radhakrishnan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Goeun Choi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- College of Science and Technology, Dankook University, Cheonan31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan31116, Korea
| | - Jin-Ho Choy
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- Course, College of Medicine, Dankook UniversityDepartment of Pre-medical, Cheonan31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| | - Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hoang Trung Trinh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shankar Bolan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nikki Verrills
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Pradeep Tanwar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
198
|
Yan Y, Li H, Yao H, Cheng X. Nanodelivery Systems Delivering Hypoxia-Inducible Factor-1 Alpha Short Interfering RNA and Antisense Oligonucleotide for Cancer Treatment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.932976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-inducible factor (HIF), which plays a crucial role in oxygen homeostasis, contributes to immunosuppression, tumor angiogenesis, multidrug resistance, photodynamic therapy resistance, and metastasis. HIF as a therapeutic target has attracted scientists’ strong academic research interests. Short interfering RNA (siRNA) and antisense oligonucleotide (ASO) are the more promising and broadly utilized methods for oligonucleotide-based therapy. Their physicochemical characteristics such as hydrophilicity, negative charge, and high molecular weight make them impossible to cross the cell membrane. Moreover, siRNA and ASO are subjected to a rapid deterioration in circulation and cannot translocate into nuclear. Delivery of siRNA and ASO to specific gene targets should be realized without off-target gene silencing and affecting the healthy cells. Nanoparticles as vectors for delivery of siRNA and ASO possess great advantages and flourish in academic research. In this review, we summarized and analyzed regulation mechanisms of HIF under hypoxia, the significant role of HIF in promoting tumor progression, and recent academic research on nanoparticle-based delivery of HIF siRNA and ASO for cancer immunotherapy, antiangiogenesis, reversal of multidrug resistance and radioresistance, potentiating photodynamic therapy, inhibiting tumor metastasis and proliferation, and enhancing apoptosis are reviewed in this thesis. Furthermore, we hope to provide some rewarding suggestions and enlightenments for targeting HIF gene therapy.
Collapse
|
199
|
Baumann KN, Schröder T, Ciryam PS, Morzy D, Tinnefeld P, Knowles TPJ, Hernández-Ainsa S. DNA-Liposome Hybrid Carriers for Triggered Cargo Release. ACS APPLIED BIO MATERIALS 2022; 5:3713-3721. [PMID: 35838663 PMCID: PMC9382633 DOI: 10.1021/acsabm.2c00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The design of simple and versatile synthetic routes to
accomplish
triggered-release properties in carriers is of particular interest
for drug delivery purposes. In this context, the programmability and
adaptability of DNA nanoarchitectures in combination with liposomes
have great potential to render biocompatible hybrid carriers for triggered
cargo release. We present an approach to form a DNA mesh on large
unilamellar liposomes incorporating a stimuli-responsive DNA building
block. Upon incubation with a single-stranded DNA trigger sequence,
a hairpin closes, and the DNA building block is allowed to self-contract.
We demonstrate the actuation of this building block by single-molecule
Förster resonance energy transfer (FRET), fluorescence recovery
after photobleaching, and fluorescence quenching measurements. By
triggering this process, we demonstrate the elevated release of the
dye calcein from the DNA–liposome hybrid carriers. Interestingly,
the incubation of the doxorubicin-laden active hybrid carrier with
HEK293T cells suggests increased cytotoxicity relative to a control
carrier without the triggered-release mechanism. In the future, the
trigger could be provided by peritumoral nucleic acid sequences and
lead to site-selective release of encapsulated chemotherapeutics.
Collapse
Affiliation(s)
- Kevin N Baumann
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Prashanth S Ciryam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Diana Morzy
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Silvia Hernández-Ainsa
- Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Government of Aragon, ARAID Foundation, Zaragoza 50018, Spain
| |
Collapse
|
200
|
Baghbanbashi M, Yong HW, Zhang I, Lotocki V, Yuan Z, Pazuki G, Maysinger D, Kakkar A. Stimuli-Responsive Miktoarm Polymer-Based Formulations for Fisetin Delivery and Regulatory Effects in Hyperactive Human Microglia. Macromol Biosci 2022; 22:e2200174. [PMID: 35817026 DOI: 10.1002/mabi.202200174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Branched star polymers offer exciting opportunities in enhancing the efficacy of nanocarriers in delivering biologically active lipophilic agents. We demonstrate that the star polymeric architecture can be leveraged to yield soft nanoparticles of vesicular morphology with precisely located stimuli-sensitive chemical entities. Amphiphilic stars of AB2 (A = PEG, B = PCL) composition with/without oxidative stress or reduction responsive units at the core junction of A and B arms, are constructed using synthetic articulation. Fisetin, a natural flavonoid with remarkable anti-inflammatory and antioxidant properties, but of limited clinical value due to its poor aqueous solubility, was physically encapsulated into miktoarm star-derived aqueous polymersomes. We evaluated polymersomes and fisetin separately, and in combination, in human microglia (HMC3), to show if (i) polymersomes are toxic; (ii) fisetin reduces the abundance of reactive oxygen species (ROS); and (iii) fisetin modulates the activation of ERK1/2. These signaling molecules and pathways are implicated in inflammatory processes and cell survival. Fisetin, both incorporated and non-incorporated into polymersomes, reduced ROS and ERK1/2 phosphorylation in lipopolysaccharide-treated human microglia, normalizing excessive oxidative stress and ERK-mediated signaling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada.,Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, 1591634311, Iran
| | - Hui Wen Yong
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Victor Lotocki
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Zhuoer Yuan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, 1591634311, Iran
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|