151
|
Halliday M, Radford H, Zents KAM, Molloy C, Moreno JA, Verity NC, Smith E, Ortori CA, Barrett DA, Bushell M, Mallucci GR. Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain 2017; 140:1768-1783. [PMID: 28430857 PMCID: PMC5445255 DOI: 10.1093/brain/awx074] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/21/2016] [Accepted: 01/31/2017] [Indexed: 01/06/2023] Open
Abstract
See Mercado and Hetz (doi:10.1093/brain/awx107) for a scientific commentary on this article.Signalling through the PERK/eIF2α-P branch of the unfolded protein response plays a critical role in controlling protein synthesis rates in cells. This pathway is overactivated in brains of patients with Alzheimer’s disease and related disorders and has recently emerged as a promising therapeutic target for these currently untreatable conditions. Thus, in mouse models of neurodegenerative disease, prolonged overactivation of PERK/eIF2α-P signalling causes sustained attenuation of protein synthesis, leading to memory impairment and neuronal loss. Re-establishing translation rates by inhibition of eIF2α-P activity, genetically or pharmacologically, restores memory and prevents neurodegeneration and extends survival. However, the experimental compounds used preclinically are unsuitable for use in humans, due to associated toxicity or poor pharmacokinetic properties. To discover compounds that have anti-eIF2α-P activity suitable for clinical use, we performed phenotypic screens on a NINDS small molecule library of 1040 drugs. We identified two compounds, trazodone hydrochloride and dibenzoylmethane, which reversed eIF2α-P-mediated translational attenuation in vitro and in vivo. Both drugs were markedly neuroprotective in two mouse models of neurodegeneration, using clinically relevant doses over a prolonged period of time, without systemic toxicity. Thus, in prion-diseased mice, both trazodone and dibenzoylmethane treatment restored memory deficits, abrogated development of neurological signs, prevented neurodegeneration and significantly prolonged survival. In tauopathy-frontotemporal dementia mice, both drugs were neuroprotective, rescued memory deficits and reduced hippocampal atrophy. Further, trazodone reduced p-tau burden. These compounds therefore represent potential new disease-modifying treatments for dementia. Trazodone in particular, a licensed drug, should now be tested in clinical trials in patients.
Collapse
Affiliation(s)
- Mark Halliday
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Helois Radford
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Karlijn A M Zents
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK
| | - Collin Molloy
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Julie A Moreno
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Nicholas C Verity
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Ewan Smith
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Catharine A Ortori
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin Bushell
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Giovanna R Mallucci
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK
| |
Collapse
|
152
|
Kampmann M. A CRISPR Approach to Neurodegenerative Diseases. Trends Mol Med 2017; 23:483-485. [PMID: 28478951 DOI: 10.1016/j.molmed.2017.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/26/2022]
Abstract
A major barrier to developing effective therapies for neurodegenerative diseases is our incomplete understanding of the underlying cellular mechanisms. Genetic screens in human-induced pluripotent stem cell-derived neurons can elucidate such mechanisms. Genome-wide screens using CRISPR interference and CRISPR activation provide complementary biological insights and may reveal potential therapeutic targets.
Collapse
Affiliation(s)
- Martin Kampmann
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA; California Institute for Quantitative Biomedical Research (QB3), University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
153
|
Larhammar M, Huntwork-Rodriguez S, Jiang Z, Solanoy H, Sengupta Ghosh A, Wang B, Kaminker JS, Huang K, Eastham-Anderson J, Siu M, Modrusan Z, Farley MM, Tessier-Lavigne M, Lewcock JW, Watkins TA. Dual leucine zipper kinase-dependent PERK activation contributes to neuronal degeneration following insult. eLife 2017; 6. [PMID: 28440222 PMCID: PMC5404924 DOI: 10.7554/elife.20725] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/20/2017] [Indexed: 01/24/2023] Open
Abstract
The PKR-like endoplasmic reticulum kinase (PERK) arm of the Integrated Stress Response (ISR) is implicated in neurodegenerative disease, although the regulators and consequences of PERK activation following neuronal injury are poorly understood. Here we show that PERK signaling is a component of the mouse MAP kinase neuronal stress response controlled by the Dual Leucine Zipper Kinase (DLK) and contributes to DLK-mediated neurodegeneration. We find that DLK-activating insults ranging from nerve injury to neurotrophin deprivation result in both c-Jun N-terminal Kinase (JNK) signaling and the PERK- and ISR-dependent upregulation of the Activating Transcription Factor 4 (ATF4). Disruption of PERK signaling delays neurodegeneration without reducing JNK signaling. Furthermore, DLK is both sufficient for PERK activation and necessary for engaging the ISR subsequent to JNK-mediated retrograde injury signaling. These findings identify DLK as a central regulator of not only JNK but also PERK stress signaling in neurons, with both pathways contributing to neurodegeneration.
Collapse
Affiliation(s)
- Martin Larhammar
- Department of Neuroscience, Genentech, Inc., San Francisco, United States
| | | | - Zhiyu Jiang
- Department of Neuroscience, Genentech, Inc., San Francisco, United States
| | - Hilda Solanoy
- Department of Neuroscience, Genentech, Inc., San Francisco, United States
| | | | - Bei Wang
- Department of Neuroscience, Genentech, Inc., San Francisco, United States
| | | | - Kevin Huang
- Bioinformatics, Genentech, Inc., San Francisco, United States
| | | | - Michael Siu
- Discovery Chemistry, Genentech, Inc., San Francisco, United States
| | - Zora Modrusan
- Molecular Biology, Genentech, Inc., San Francisco, United States
| | - Madeline M Farley
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Marc Tessier-Lavigne
- Department of Neuroscience, Genentech, Inc., San Francisco, United States.,Laboratory of Brain Development and Repair, The Rockefeller University, New York, United States
| | - Joseph W Lewcock
- Department of Neuroscience, Genentech, Inc., San Francisco, United States
| | - Trent A Watkins
- Department of Neuroscience, Genentech, Inc., San Francisco, United States.,Department of Neurosurgery, Baylor College of Medicine, Houston, Texas.,OMNI Biomarkers Development, Genentech, Inc., San Francisco, United States
| |
Collapse
|
154
|
Molecular Determinants of the Regulation of Development and Metabolism by Neuronal eIF2α Phosphorylation in Caenorhabditis elegans. Genetics 2017; 206:251-263. [PMID: 28292919 DOI: 10.1534/genetics.117.200568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022] Open
Abstract
Cell-nonautonomous effects of signaling in the nervous system of animals can influence diverse aspects of organismal physiology. We previously showed that phosphorylation of Ser49 of the α-subunit of eukaryotic translation initiation factor 2 (eIF2α) in two chemosensory neurons by PEK-1/PERK promotes entry of Caenorhabditis elegans into dauer diapause. Here, we identified and characterized the molecular determinants that confer sensitivity to effects of neuronal eIF2α phosphorylation on development and physiology of C. elegans Isolation and characterization of mutations in eif-2Ba encoding the α-subunit of eIF2B support a conserved role, previously established by studies in yeast, for eIF2Bα in providing a binding site for phosphorylated eIF2α to inhibit the exchange factor eIF2B catalytic activity that is required for translation initiation. We also identified a mutation in eif-2c, encoding the γ-subunit of eIF2, which confers insensitivity to the effects of phosphorylated eIF2α while also altering the requirement for eIF2Bγ. In addition, we show that constitutive expression of eIF2α carrying a phosphomimetic S49D mutation in the ASI pair of sensory neurons confers dramatic effects on growth, metabolism, and reproduction in adult transgenic animals, phenocopying systemic responses to starvation. Furthermore, we show that constitutive expression of eIF2α carrying a phosphomimetic S49D mutation in the ASI neurons enhances dauer entry through bypassing the requirement for nutritionally deficient conditions. Our data suggest that the state of eIF2α phosphorylation in the ASI sensory neuron pair may modulate internal nutrient sensing and signaling pathways, with corresponding organismal effects on development and metabolism.
Collapse
|
155
|
Obacz J, Avril T, Le Reste PJ, Urra H, Quillien V, Hetz C, Chevet E. Endoplasmic reticulum proteostasis in glioblastoma—From molecular mechanisms to therapeutic perspectives. Sci Signal 2017; 10:10/470/eaal2323. [DOI: 10.1126/scisignal.aal2323] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
156
|
|
157
|
Falletta P, Sanchez-Del-Campo L, Chauhan J, Effern M, Kenyon A, Kershaw CJ, Siddaway R, Lisle R, Freter R, Daniels MJ, Lu X, Tüting T, Middleton M, Buffa FM, Willis AE, Pavitt G, Ronai ZA, Sauka-Spengler T, Hölzel M, Goding CR. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev 2017; 31:18-33. [PMID: 28096186 PMCID: PMC5287109 DOI: 10.1101/gad.290940.116] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/21/2016] [Indexed: 12/22/2022]
Abstract
The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcription factor (MITF) correlates with invasion, senescence, and drug resistance. However, how MITF is suppressed in vivo and how MITF-low cells in tumors escape senescence are poorly understood. Here we show that microenvironmental cues, including inflammation-mediated resistance to adoptive T-cell immunotherapy, transcriptionally repress MITF via ATF4 in response to inhibition of translation initiation factor eIF2B. ATF4, a key transcription mediator of the integrated stress response, also activates AXL and suppresses senescence to impose the MITF-low/AXL-high drug-resistant phenotype observed in human tumors. However, unexpectedly, without translation reprogramming an ATF4-high/MITF-low state is insufficient to drive invasion. Importantly, translation reprogramming dramatically enhances tumorigenesis and is linked to a previously unexplained gene expression program associated with anti-PD-1 immunotherapy resistance. Since we show that inhibition of eIF2B also drives neural crest migration and yeast invasiveness, our results suggest that translation reprogramming, an evolutionarily conserved starvation response, has been hijacked by microenvironmental stress signals in melanoma to drive phenotypic plasticity and invasion and determine therapeutic outcome.
Collapse
Affiliation(s)
- Paola Falletta
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Luis Sanchez-Del-Campo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Maike Effern
- Department of Clinical Chemistry and Clinical Pharmacology, Unit for RNA Biology, University Hospital of Bonn, D-53127 Bonn, Germany
| | - Amy Kenyon
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | - Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Robert Siddaway
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Richard Lisle
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Rasmus Freter
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Matthew J Daniels
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Mark Middleton
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Francesca M Buffa
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Anne E Willis
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Graham Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ze'ev A Ronai
- Tumour Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Perbys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Tatjana Sauka-Spengler
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | - Michael Hölzel
- Department of Clinical Chemistry and Clinical Pharmacology, Unit for RNA Biology, University Hospital of Bonn, D-53127 Bonn, Germany
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
158
|
Papaioannou A, Chevet E. Driving Cancer Tumorigenesis and Metastasis Through UPR Signaling. Curr Top Microbiol Immunol 2017; 414:159-192. [PMID: 28710693 DOI: 10.1007/82_2017_36] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the tumor microenvironment, cancer cells encounter both external and internal factors that can lead to the accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER) lumen, thus causing ER stress. When this happens, an adaptive mechanism named the Unfolded Protein Response (UPR) is triggered to help the cell cope with this change and restore protein homeostasis in the ER. Sequentially, one would expect that the activation of the three UPR branches, driven namely by IRE1, PERK, and ATF6, are crucial for the adaptation of cancer cells to the changing environment and thus for their survival and further propagation. Indeed, in the last few years, an increasing amount of studies has shown the implication of UPR signaling in different aspects of carcinogenesis and tumor progression. Features such as sustaining proliferation and resistance to cell death, genomic instability, altered metabolism, increased inflammation and tumor-immune infiltration, invasion and metastasis, and angiogenesis, defined as "the hallmarks of cancer", can be regulated by the UPR machinery. At the same time, new potential therapeutic interventions applicable to different kinds of cancers are being revealed. In order to describe the emerging role of UPR in cancer biology, these are the points that will be discussed in this chapter.
Collapse
Affiliation(s)
- Alexandra Papaioannou
- Inserm U1242 «Chemistry, Oncogenesis, Stress and Signaling», University of Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Avenue de la bataille Flandres Dunkerque, 35000, Rennes, France
| | - Eric Chevet
- Inserm U1242 «Chemistry, Oncogenesis, Stress and Signaling», University of Rennes 1, Rennes, France.
| |
Collapse
|
159
|
Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK, Chen Y, Villalta JE, Gilbert LA, Horlbeck MA, Hein MY, Pak RA, Gray AN, Gross CA, Dixit A, Parnas O, Regev A, Weissman JS. A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell 2016; 167:1867-1882.e21. [PMID: 27984733 PMCID: PMC5315571 DOI: 10.1016/j.cell.2016.11.048] [Citation(s) in RCA: 736] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/14/2016] [Accepted: 11/19/2016] [Indexed: 12/20/2022]
Abstract
Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.
Collapse
Affiliation(s)
- Britt Adamson
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas M Norman
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marco Jost
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Min Y Cho
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James K Nuñez
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuwen Chen
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline E Villalta
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luke A Gilbert
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Max A Horlbeck
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marco Y Hein
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan A Pak
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Innovative Genomics Initiative, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew N Gray
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Atray Dixit
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Oren Parnas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Jonathan S Weissman
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
160
|
Placzek AN, Prisco GVD, Khatiwada S, Sgritta M, Huang W, Krnjević K, Kaufman RJ, Dani JA, Walter P, Costa-Mattioli M. eIF2α-mediated translational control regulates the persistence of cocaine-induced LTP in midbrain dopamine neurons. eLife 2016; 5. [PMID: 27960077 PMCID: PMC5154759 DOI: 10.7554/elife.17517] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/13/2016] [Indexed: 11/13/2022] Open
Abstract
Recreational drug use leads to compulsive substance abuse in some individuals. Studies on animal models of drug addiction indicate that persistent long-term potentiation (LTP) of excitatory synaptic transmission onto ventral tegmental area (VTA) dopamine (DA) neurons is a critical component of sustained drug seeking. However, little is known about the mechanism regulating such long-lasting changes in synaptic strength. Previously, we identified that translational control by eIF2α phosphorylation (p-eIF2α) regulates cocaine-induced LTP in the VTA (Huang et al., 2016). Here we report that in mice with reduced p-eIF2α-mediated translation, cocaine induces persistent LTP in VTA DA neurons. Moreover, selectively inhibiting eIF2α-mediated translational control with a small molecule ISRIB, or knocking down oligophrenin-1-an mRNA whose translation is controlled by p-eIF2α-in the VTA also prolongs cocaine-induced LTP. This persistent LTP is mediated by the insertion of GluR2-lacking AMPARs. Collectively, our findings suggest that eIF2α-mediated translational control regulates the progression from transient to persistent cocaine-induced LTP.
Collapse
Affiliation(s)
- Andon N Placzek
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Memory and Brain Research Center, Baylor College of Medicine, Houston, United States
| | - Gonzalo Viana Di Prisco
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Memory and Brain Research Center, Baylor College of Medicine, Houston, United States
| | - Sanjeev Khatiwada
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Memory and Brain Research Center, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Martina Sgritta
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Memory and Brain Research Center, Baylor College of Medicine, Houston, United States
| | - Wei Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Memory and Brain Research Center, Baylor College of Medicine, Houston, United States
| | | | - Randal J Kaufman
- Degenerative Diseases Program, SBP Medical Discovery Institute, La Jolla, United States
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, United States
| | - Peter Walter
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, United States
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Memory and Brain Research Center, Baylor College of Medicine, Houston, United States
| |
Collapse
|
161
|
Oakes SA. Endoplasmic reticulum proteostasis: a key checkpoint in cancer. Am J Physiol Cell Physiol 2016; 312:C93-C102. [PMID: 27856431 DOI: 10.1152/ajpcell.00266.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/24/2023]
Abstract
The unfolded protein response (UPR) is an intracellular signaling network largely controlled by three endoplasmic reticulum (ER) transmembrane proteins, inositol-requiring enzyme 1α, PRK-like ER kinase, and activating transcription factor 6, that monitor the protein-folding status of the ER and initiate corrective measures to maintain ER homeostasis. Hypoxia, nutrient deprivation, proteasome dysfunction, sustained demands on the secretory pathway or somatic mutations in its client proteins, conditions often encountered by cancer cells, can lead to the accumulation of misfolded proteins in the ER and cause "ER stress." Under remediable levels of ER stress, the homeostatic UPR outputs activate transcriptional and translational changes that promote cellular adaptation. However, if the ER stress is irreversible despite these measures, a terminal UPR program supersedes that actively signals cell destruction. In addition to its prosurvival and prodeath outputs, the UPR is now recognized to play a major role in the differentiation and activation of specific immune cells, as well as proinflammatory cytokine production in many cell types. Given the numerous intrinsic and extrinsic factors that threaten the fidelity of the secretory pathway in cancer cells, it is not surprising that ER stress is documented in many solid and hematopoietic malignancies, but whether ongoing UPR signaling is beneficial or detrimental to tumor growth remains hotly debated. Here I review recent evidence that cancer cells are prone to loss of proteostasis within the ER, and hence may be susceptible to targeted interventions that either reduce homeostatic UPR outputs or alternatively trigger the terminal UPR.
Collapse
Affiliation(s)
- Scott A Oakes
- Department of Pathology, Diabetes Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
162
|
Vega H, Agellon LB, Michalak M. The rise of proteostasis promoters. IUBMB Life 2016; 68:943-954. [PMID: 27797166 DOI: 10.1002/iub.1576] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023]
Abstract
Molecular chaperones are specialized proteins essential for facilitating the correct folding, assembly, and disassembly of many cellular proteins and for assuring proteostasis. Genetic mutations or metabolic extremes that cause long-term alteration of cellular homeostasis compromise protein folding efficiency. To maintain proteostasis, cells mobilized stress coping responses that include the unfolded protein response in order to prevent accumulation of improperly folded proteins that forms the basis of many diseases. In recent years, several small molecules commonly referred to as "chemical chaperones" (e.g., 4-phenylbutyric acid or 4-PBA, a modified fatty acid; tauroursodeoxycholic acid or TUDCA, a bile acid) have been identified that function to attenuate cellular stress and enhance protein processing. Here we illustrate that molecular chaperones and the so called "chemical chaperones" are distinct entities. We propose the term "proteostasis promoters" as a more accurate descriptor for a class of compounds that demonstrate ability to promote proteostasis by modulating the UPR and/or the function of chaperones. © 2016 IUBMB Life, 68(12):943-954, 2016.
Collapse
Affiliation(s)
- Hector Vega
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill University, Quebec, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
163
|
Johnson ECB, Kang J. A small molecule targeting protein translation does not rescue spatial learning and memory deficits in the hAPP-J20 mouse model of Alzheimer's disease. PeerJ 2016; 4:e2565. [PMID: 27781164 PMCID: PMC5075699 DOI: 10.7717/peerj.2565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/14/2016] [Indexed: 01/04/2023] Open
Abstract
A small molecule named ISRIB has recently been described to enhance memory in rodents. In this study we aimed to test whether ISRIB would reverse learning and memory deficits in the J20 mouse model of human amyloid precursor protein (hAPP) overexpression, a model that simulates many aspects of Alzheimer’s disease in which memory deficits are a hallmark feature. We did not observe a significant rescue effect with ISRIB treatment on spatial learning and memory as assessed in the Morris water maze in J20 mice. We also did not observe a significant enhancement of spatial learning or memory in nontransgenic mice with ISRIB treatment, although a trend emerged for memory enhancement in one cohort of mice. Future preclinical studies with ISRIB would benefit from additional robust markers of target engagement in the brain.
Collapse
Affiliation(s)
- Erik C B Johnson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, United States; Department of Neurology, University of California -San Francisco, San Francisco, CA, United States
| | - Jing Kang
- Gladstone Institute of Neurological Disease, Gladstone Institutes , San Francisco , CA , United States
| |
Collapse
|
164
|
Garaeva AA, Kovaleva IE, Chumakov PM, Evstafieva AG. Mitochondrial dysfunction induces SESN2 gene expression through Activating Transcription Factor 4. Cell Cycle 2016; 15:64-71. [PMID: 26771712 DOI: 10.1080/15384101.2015.1120929] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We found that inhibitors of mitochondrial respiratory chain complexes III (myxothiazol) and I (piericidin A) in some epithelial carcinoma cell lines induce transcription of the p53-responsive SESN2 gene that plays an important role in stress response and homeostatic regulation. However, the effect did not depend on p53 because i) there was no induction of p53 after the treatment with piericidin A; ii) after the treatment with myxothiazol the peak of SESN2 gene upregulation occurred as early as 5h, before the onset of p53 activation (13h); iii) a supplementation with uridine that abolishes the p53 activation in response to myxothiazol did not abrogate the induction of SESN2 transcripts; iv) in the p53 negative HCT116 p53 -/- cells SESN2 transcription could be also induced by myxothiazol. In response to the respiratory chain inhibitors we observed an induction of ATF4, the key transcription factor of the integrated stress response (ISR). We found that the induction of SESN2 transcripts could be prevented by the ISR inhibitory small molecule ISRIB. Also, by inhibiting or overexpressing ATF4 with specific shRNA or ATF4-expressing constructs, respectively, we have confirmed the role of ATF4 in the SESN2 gene upregulation induced by mitochondrial dysfunction. At a distance of 228 bp upstream from the SESN2 transcription start site we found a candidate sequence for the ATF4 binding site and confirmed its requirement for the induction of SESN2 in luciferase reporter experiments. We suggest that the upregulation of SESN2 by mitochondrial dysfunction provides a homeostatic feedback that attenuates biosynthetic processes during temporal losses of energy supply from mitochondria thereby assisting better adaptation and viability of cells in hostile environments.
Collapse
Affiliation(s)
- Alisa A Garaeva
- a Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , Russia.,b Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Irina E Kovaleva
- c Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russia
| | - Peter M Chumakov
- b Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Alexandra G Evstafieva
- a Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , Russia.,c Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
165
|
Freeman OJ, Mallucci GR. The UPR and synaptic dysfunction in neurodegeneration. Brain Res 2016; 1648:530-537. [PMID: 27021956 DOI: 10.1016/j.brainres.2016.03.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
|
166
|
Kashiwagi K, Ito T, Yokoyama S. Crystal structure of eIF2B and insights into eIF2-eIF2B interactions. FEBS J 2016; 284:868-874. [PMID: 27627185 DOI: 10.1111/febs.13896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
Abstract
Eukaryotic translation initiation factor 2B (eIF2B), a heterodecameric complex of two sets of the α, β, γ, δ, and ε subunits, is the guanine nucleotide exchange factor (GEF) specific for eIF2, a heterotrimeric G protein consisting of the α, β, and γ subunits. The eIF2 protein binds GTP on the γ subunits and delivers an initiator methionyl-tRNA (Met-tRNAiMet ) to the ribosome. The GEF activity of eIF2B is inhibited by stress-induced phosphorylation of Ser51 in the α subunit of eIF2, which leads to lower amounts of active eIF2 and a limited quantity of Met-tRNAiMet for the ribosome, resulting in global repression of translation. However, the structural mechanism of the GEF activity inhibition remained enigmatic, and therefore the three-dimensional structure of the entire eIF2B molecule had been awaited. Recently, we determined the crystal structure of Schizosaccharomyces pombe eIF2B. In this Structural Snapshot, we present the structural features of eIF2B and the mechanism underlying the GEF activity inhibition by the phosphorylation of eIF2α, elucidated from structure-based in vitro analyses.
Collapse
Affiliation(s)
- Kazuhiro Kashiwagi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama, Japan
| | - Takuhiro Ito
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama, Japan
| | | |
Collapse
|
167
|
Axten JM. Protein kinase R(PKR)–like endoplasmic reticulum kinase (PERK) inhibitors: a patent review (2010-2015). Expert Opin Ther Pat 2016; 27:37-48. [DOI: 10.1080/13543776.2017.1238072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
168
|
eIF2B: recent structural and functional insights into a key regulator of translation. Biochem Soc Trans 2016; 43:1234-40. [PMID: 26614666 DOI: 10.1042/bst20150164] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The eukaryotic translation initiation factor (eIF) eIF2B is a key regulator of mRNA translation, being the guanine nt exchange factor (GEF) responsible for the recycling of the heterotrimeric G-protein, eIF2, which is required to allow translation initiation to occur. Unusually for a GEF, eIF2B is a multi-subunit protein, comprising five different subunits termed α through ε in order of increasing size. eIF2B is subject to tight regulation in the cell and may also serve additional functions. Here we review recent insights into the subunit organization of the mammalian eIF2B complex, gained both from structural studies of the complex and from studies of mutations of eIF2B that result in the neurological disorder leukoencephalopathy with vanishing white matter (VWM). We will also discuss recent data from yeast demonstrating a novel function of the eIF2B complex key for translational regulation.
Collapse
|
169
|
Hosoi T, Kakimoto M, Tanaka K, Nomura J, Ozawa K. Unique pharmacological property of ISRIB in inhibition of Aβ-induced neuronal cell death. J Pharmacol Sci 2016; 131:292-5. [PMID: 27569458 DOI: 10.1016/j.jphs.2016.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022] Open
Abstract
A pharmacological approach to ameliorate Alzheimer's disease (AD) has not yet been established. In the present study, we investigated the pharmacological characteristics of the recently identified memory-enhancing compound, ISRIB for the amelioration of AD. ISRIB potently attenuated amyloid β-induced neuronal cell death at concentrations of 12.5-25 nM, but did not inhibit amyloid β production in the HEK293T cell line expressing the amyloid precursor protein (APP). These results suggest that ISRIB possesses the unique pharmacological property of attenuating amyloid β-induced neuronal cell death without affecting amyloid β production.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Mai Kakimoto
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Keigo Tanaka
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Jun Nomura
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| |
Collapse
|
170
|
Plate L, Paxman RJ, Wiseman RL, Kelly JW. Modulating protein quality control. eLife 2016; 5. [PMID: 27435959 PMCID: PMC4954752 DOI: 10.7554/elife.18431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 01/13/2023] Open
Abstract
Small molecules that modulate the unfolded protein response have the potential to treat a variety of human protein misfolding diseases.
Collapse
Affiliation(s)
- Lars Plate
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | - Ryan J Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
| | - R Luke Wiseman
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
171
|
PERK inhibits DNA replication during the Unfolded Protein Response via Claspin and Chk1. Oncogene 2016; 36:678-686. [DOI: 10.1038/onc.2016.239] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
|
172
|
Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science 2016; 353:aac4354. [DOI: 10.1126/science.aac4354] [Citation(s) in RCA: 832] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most proteins must fold into unique three-dimensional structures to perform their biological functions. In the crowded cellular environment, newly synthesized proteins are at risk of misfolding and forming toxic aggregate species. To ensure efficient folding, different classes of molecular chaperones receive the nascent protein chain emerging from the ribosome and guide it along a productive folding pathway. Because proteins are structurally dynamic, constant surveillance of the proteome by an integrated network of chaperones and protein degradation machineries is required to maintain protein homeostasis (proteostasis). The capacity of this proteostasis network declines during aging, facilitating neurodegeneration and other chronic diseases associated with protein aggregation. Understanding the proteostasis network holds the promise of identifying targets for pharmacological intervention in these pathologies.
Collapse
|
173
|
Guthrie LN, Abiraman K, Plyler ES, Sprenkle NT, Gibson SA, McFarland BC, Rajbhandari R, Rowse AL, Benveniste EN, Meares GP. Attenuation of PKR-like ER Kinase (PERK) Signaling Selectively Controls Endoplasmic Reticulum Stress-induced Inflammation Without Compromising Immunological Responses. J Biol Chem 2016; 291:15830-40. [PMID: 27226638 DOI: 10.1074/jbc.m116.738021] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 01/22/2023] Open
Abstract
Inflammation and endoplasmic reticulum (ER) stress are associated with many neurological diseases. ER stress is brought on by the accumulation of misfolded proteins in the ER, which leads to activation of the unfolded protein response (UPR), a conserved pathway that transmits signals to restore homeostasis or eliminate the irreparably damaged cell. We provide evidence that inhibition or genetic haploinsufficiency of protein kinase R-like endoplasmic reticulum kinase (PERK) can selectively control inflammation brought on by ER stress without impinging on UPR-dependent survival and adaptive responses or normal immune responses. Using astrocytes lacking one or both alleles of PERK or the PERK inhibitor GSK2606414, we demonstrate that PERK haploinsufficiency or partial inhibition led to reduced ER stress-induced inflammation (IL-6, CCL2, and CCL20 expression) without compromising prosurvival responses. In contrast, complete loss of PERK blocked canonical PERK-dependent UPR genes and promoted apoptosis. Reversal of eIF2α-mediated translational repression using ISRIB potently suppressed PERK-dependent inflammatory gene expression, indicating that the selective modulation of inflammatory gene expression by PERK inhibition may be linked to attenuation of eIF2α phosphorylation and reveals a previously unknown link between translational repression and transcription of inflammatory genes. Additionally, ER-stressed astrocytes can drive an inflammatory M1-like phenotype in microglia, and this can be attenuated with inhibition of PERK. Importantly, targeting PERK neither disrupted normal cytokine signaling in astrocytes or microglia nor impaired macrophage phagocytosis or T cell polarization. Collectively, this work suggests that targeting PERK may provide a means for selective immunoregulation in the context of ER stress without disrupting normal immune function.
Collapse
Affiliation(s)
- Lauren N Guthrie
- From the Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia 26505 and
| | - Kavitha Abiraman
- the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Emily S Plyler
- From the Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia 26505 and
| | - Neil T Sprenkle
- From the Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia 26505 and
| | - Sara A Gibson
- the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Braden C McFarland
- the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Rajani Rajbhandari
- the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Amber L Rowse
- the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Etty N Benveniste
- the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Gordon P Meares
- From the Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia 26505 and
| |
Collapse
|
174
|
Wang C, Han B, Zhou R, Zhuang X. Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells. Cell 2016; 165:990-1001. [PMID: 27153499 PMCID: PMC4905760 DOI: 10.1016/j.cell.2016.04.040] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
Translation is under tight spatial and temporal controls to ensure protein production in the right time and place in cells. Methods that allow real-time, high-resolution visualization of translation in live cells are essential for understanding the spatiotemporal dynamics of translation regulation. Based on multivalent fluorescence amplification of the nascent polypeptide signal, we develop a method to image translation on individual mRNA molecules in real time in live cells, allowing direct visualization of translation events at the translation sites. Using this approach, we monitor transient changes of translation dynamics in responses to environmental stresses, capture distinct mobilities of individual polysomes in different subcellular compartments, and detect 3' UTR-dependent local translation and active transport of polysomes in dendrites of primary neurons.
Collapse
Affiliation(s)
- Chong Wang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Boran Han
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Ruobo Zhou
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
175
|
Deans RM, Morgens DW, Ökesli A, Pillay S, Horlbeck MA, Kampmann M, Gilbert LA, Li A, Mateo R, Smith M, Glenn JS, Carette JE, Khosla C, Bassik MC. Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification. Nat Chem Biol 2016; 12:361-6. [PMID: 27018887 PMCID: PMC4836973 DOI: 10.1038/nchembio.2050] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/27/2016] [Indexed: 01/16/2023]
Abstract
Broad spectrum antiviral drugs targeting host processes could potentially treat a wide range of viruses while reducing the likelihood of emergent resistance. Despite great promise as therapeutics, such drugs remain largely elusive. Here we use parallel genome-wide high-coverage shRNA and CRISPR-Cas9 screens to identify the cellular target and mechanism of action of GSK983, a potent broad spectrum antiviral with unexplained cytotoxicity1–3. We show that GSK983 blocks cell proliferation and dengue virus replication by inhibiting the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH). Guided by mechanistic insights from both genomic screens, we found that exogenous deoxycytidine markedly reduces GSK983 cytotoxicity but not antiviral activity, providing an attractive novel approach to improve the therapeutic window of DHODH inhibitors against RNA viruses. Together, our results highlight the distinct advantages and limitations of each screening method for identifying drug targets and demonstrate the utility of parallel knockdown and knockout screens for comprehensively probing drug activity.
Collapse
Affiliation(s)
- Richard M Deans
- Department of Chemistry, Stanford University, Stanford, California, USA.,Department of Genetics, Stanford University, Stanford, California, USA
| | - David W Morgens
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Ayşe Ökesli
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Sirika Pillay
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, California, USA
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, California, USA
| | - Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, California, USA
| | - Amy Li
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Roberto Mateo
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Mark Smith
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA
| | - Jeffrey S Glenn
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA.,Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California, USA.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA.,Department of Chemical Engineering, Stanford University, Stanford, California, USA.,Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, California, USA.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA
| |
Collapse
|
176
|
Huang W, Placzek AN, Viana Di Prisco G, Khatiwada S, Sidrauski C, Krnjević K, Walter P, Dani JA, Costa-Mattioli M. Translational control by eIF2α phosphorylation regulates vulnerability to the synaptic and behavioral effects of cocaine. eLife 2016; 5. [PMID: 26928234 PMCID: PMC4786430 DOI: 10.7554/elife.12052] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/13/2016] [Indexed: 11/13/2022] Open
Abstract
Adolescents are especially prone to drug addiction, but the underlying biological basis of their increased vulnerability remains unknown. We reveal that translational control by phosphorylation of the translation initiation factor eIF2α (p-eIF2α) accounts for adolescent hypersensitivity to cocaine. In adolescent (but not adult) mice, a low dose of cocaine reduced p-eIF2α in the ventral tegmental area (VTA), potentiated synaptic inputs to VTA dopaminergic neurons, and induced drug-reinforced behavior. Like adolescents, adult mice with reduced p-eIF2α-mediated translational control were more susceptible to cocaine-induced synaptic potentiation and behavior. Conversely, like adults, adolescent mice with increased p-eIF2α became more resistant to cocaine's effects. Accordingly, metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD)—whose disruption is postulated to increase vulnerability to drug addiction—was impaired in both adolescent mice and adult mice with reduced p-eIF2α mediated translation. Thus, during addiction, cocaine hijacks translational control by p-eIF2α, initiating synaptic potentiation and addiction-related behaviors. These insights may hold promise for new treatments for addiction. DOI:http://dx.doi.org/10.7554/eLife.12052.001 Drug addiction a is major mental health problem that presents a huge financial, social and legal burden worldwide. Adolescents are notoriously prone to drug abuse and addicts typically begin using drugs at a young age. However, an explanation for why young people are particularly vulnerable to the effects of addictive substances remains elusive. Addictive drugs change how the brain works, in particular by strengthening the connections (synapses) between brain cells (neurons) and making it easier for neurons to communicate with each other. Such strengthening of synaptic connections, which can be observed when the activity of the neurons is recorded with microelectrodes, relies on new proteins being made in the brain. Since adolescents have a greater capacity than adults to make new proteins, Huang et al. hypothesized that changes in synaptic strength might occur more easily in the brain of adolescents, explaining why they are more likely to become addicted to drugs than adults. A protein called eIF2α plays a key role in regulating the production of new proteins. Huang et al. discovered that reduced eIF2α activity accounts for why adolescents are particularly vulnerable to the synaptic and behavioral effects of cocaine. Giving adolescent mice a low dose of cocaine reduced the activity of eIF2α, caused an increase in the strength of synaptic connections in a part of the brain that processes pleasurable feelings, and promoted drug-reinforced behavior. This did not occur in adult mice. Reducing the activity of eIF2α using either genetics or pharmacological methods caused adult mice to become as vulnerable as adolescents to cocaine-induced changes in synaptic strength and addiction-related behavior. Conversely, increasing the activity of eIF2α made adolescent mice more resistant to cocaine’s effects; in other words, adolescents responded to cocaine more like adults. Huang et al. also found that other drugs of abuse, including alcohol, methamphetamine and nicotine, all reduce eIF2α activity, suggesting that eIF2α is a common target of different drugs of abuse. In a related study, Placzek et al. investigated the role of eIF2α in nicotine addiction in mice and humans. These findings raise several intriguing questions. How do cocaine and other drugs of abuse reduce eIF2α activity? Could variations in the activity of eIF2α or other components of the eIF2α pathway in the brain explain why some people are more likely to abuse drugs? Finally, could compounds that regulate the activity of eIF2α be useful for treating addiction? DOI:http://dx.doi.org/10.7554/eLife.12052.002
Collapse
Affiliation(s)
- Wei Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Memory and Brain Research Center, Baylor College of Medicine, Houston, United States
| | - Andon N Placzek
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Memory and Brain Research Center, Baylor College of Medicine, Houston, United States
| | - Gonzalo Viana Di Prisco
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Memory and Brain Research Center, Baylor College of Medicine, Houston, United States
| | - Sanjeev Khatiwada
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Memory and Brain Research Center, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Carmela Sidrauski
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | | | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, United States
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Memory and Brain Research Center, Baylor College of Medicine, Houston, United States
| |
Collapse
|
177
|
Crystal structure of eukaryotic translation initiation factor 2B. Nature 2016; 531:122-5. [DOI: 10.1038/nature16991] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
|
178
|
Starck SR, Tsai JC, Chen K, Shodiya M, Wang L, Yahiro K, Martins-Green M, Shastri N, Walter P. Translation from the 5' untranslated region shapes the integrated stress response. Science 2016; 351:aad3867. [PMID: 26823435 DOI: 10.1126/science.aad3867] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translated regions distinct from annotated coding sequences have emerged as essential elements of the proteome. This includes upstream open reading frames (uORFs) present in mRNAs controlled by the integrated stress response (ISR) that show "privileged" translation despite inhibited eukaryotic initiation factor 2-guanosine triphosphate-initiator methionyl transfer RNA (eIF2·GTP·Met-tRNA(i )(Met)). We developed tracing translation by T cells to directly measure the translation products of uORFs during the ISR. We identified signature translation events from uORFs in the 5' untranslated region of binding immunoglobulin protein (BiP) mRNA (also called heat shock 70-kilodalton protein 5 mRNA) that were not initiated at the start codon AUG. BiP expression during the ISR required both the alternative initiation factor eIF2A and non-AUG-initiated uORFs. We propose that persistent uORF translation, for a variety of chaperones, shelters select mRNAs from the ISR, while simultaneously generating peptides that could serve as major histocompatibility complex class I ligands, marking cells for recognition by the adaptive immune system.
Collapse
Affiliation(s)
- Shelley R Starck
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA. Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Jordan C Tsai
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Keling Chen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Shodiya
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Lei Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Kinnosuke Yahiro
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Peter Walter
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
179
|
Wagner BK, Schreiber SL. The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods. Cell Chem Biol 2016; 23:3-9. [PMID: 26933731 PMCID: PMC4779180 DOI: 10.1016/j.chembiol.2015.11.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
Abstract
The enthusiasm for phenotypic screening as an approach for small-molecule discovery has increased dramatically over the last several years. The recent increase in phenotype-based discoveries is in part due to advancements in phenotypic readouts in improved disease models that recapitulate clinically relevant biology in cell culture. Of course, a major historical barrier to using phenotypic assays in chemical biology has been the challenge in determining the mechanism of action (MoA) for compounds of interest. With the combination of medically inspired phenotypic screening and the development of modern MoA methods, we can now start implementing this approach in chemical probe and drug discovery. In this Perspective, we highlight recent advances in phenotypic readouts and MoA determination by discussing several case studies in which both activities were required for understanding the chemical biology involved and, in some cases, advancing toward clinical development.
Collapse
Affiliation(s)
- Bridget K Wagner
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA.
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
180
|
Martinez Molina D, Nordlund P. The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies. Annu Rev Pharmacol Toxicol 2016; 56:141-61. [DOI: 10.1146/annurev-pharmtox-010715-103715] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Martinez Molina
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Pelago Bioscience AB, 171 65 Stockholm, Sweden
| | - Pär Nordlund
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden;
- School of Biological Sciences, Nanyang Technological University, Singapore 138673
- Institute of Cellular and Molecular Biology, Agency for Science, Technology and Research, Singapore 138673
| |
Collapse
|
181
|
Li J, Xu H, West GM, Jones LH. Label-free technologies for target identification and validation. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00045b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical probes have been instrumental in revealing new targets and confirming target engagement. However, substantial effort and resources are required to design and synthesize these probes. In contrast, label-free technologies have the advantage of bypassing the need for chemical probes. Here we highlight the recent developments in label-free methods and discuss the pros and cons of each approach.
Collapse
Affiliation(s)
- Jing Li
- Worldwide Medicinal Chemistry
- Pfizer
- Cambridge
- USA
| | - Hua Xu
- Worldwide Medicinal Chemistry
- Pfizer
- Cambridge
- USA
| | | | | |
Collapse
|
182
|
An inhibitor of HIV-1 protease modulates constitutive eIF2α dephosphorylation to trigger a specific integrated stress response. Proc Natl Acad Sci U S A 2015; 113:E117-26. [PMID: 26715744 DOI: 10.1073/pnas.1514076113] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inhibitors of the HIV aspartyl protease [HIV protease inhibitors (HIV-PIs)] are the cornerstone of treatment for HIV. Beyond their well-defined antiretroviral activity, these drugs have additional effects that modulate cell viability and homeostasis. However, little is known about the virus-independent pathways engaged by these molecules. Here we show that the HIV-PI Nelfinavir decreases translation rates and promotes a transcriptional program characteristic of the integrated stress response (ISR). Mice treated with Nelfinavir display hallmarks of this stress response in the liver, including α subunit of translation initiation factor 2 (eIF2α) phosphorylation, activating transcription factor-4 (ATF4) induction, and increased expression of known downstream targets. Mechanistically, Nelfinavir-mediated ISR bypassed direct activation of the eIF2α stress kinases and instead relied on the inhibition of the constitutive eIF2α dephosphorylation and down-regulation of the phophatase cofactor CReP (Constitutive Repressor of eIF2α Phosphorylation; also known as PPP1R15B). These findings demonstrate that the modulation of eIF2α-specific phosphatase cofactor activity can be a rheostat of cellular homeostasis that initiates a functional ISR and suggest that the HIV-PIs could be repositioned as therapeutics in human diseases to modulate translation rates and stress responses.
Collapse
|
183
|
Stoichiometry of the eIF2B complex is maintained by mutual stabilization of subunits. Biochem J 2015; 473:571-80. [PMID: 26614765 DOI: 10.1042/bj20150828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/26/2015] [Indexed: 12/30/2022]
Abstract
The eukaryotic translation initiation factor eIF2B is a multi-subunit complex with a crucial role in the regulation of global protein synthesis in the cell. The complex comprises five subunits, termed α through ε in order of increasing size, arranged as a heterodecamer with two copies of each subunit. Regulation of the co-stoichiometric expression of the eIF2B subunits is crucial for the proper function and regulation of the eIF2B complex in cells. We have investigated the control of stoichiometric eIF2B complexes through mutual stabilization of eIF2B subunits. Our data show that the stable expression of the catalytic eIF2Bε subunit in human cells requires co-expression of eIF2Bγ. Similarly, stable expression of eIF2Bδ requires both eIF2Bβ and eIF2Bγ+ε. The expression of these subunits decreases despite there being no change in either the levels or the translation of their mRNAs. Instead, these subunits are targeted for degradation by the ubiquitin-proteasome system. The data allow us to propose a model for the formation of stoichiometric eIF2B complexes which can ensure their stoichiometric incorporation into the holocomplex.
Collapse
|
184
|
Komar AA, Hatzoglou M. Exploring Internal Ribosome Entry Sites as Therapeutic Targets. Front Oncol 2015; 5:233. [PMID: 26539410 PMCID: PMC4611151 DOI: 10.3389/fonc.2015.00233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Initiation of eukaryotic mRNA translation may proceed via several different routes, each requiring a different subset of factors and relying on different and specific interactions between the mRNA and the ribosome. Two modes predominate: (i) so-called cap-dependent initiation, which requires all canonical initiation factors and is responsible for about 95–97% of all initiation events in eukaryotic cells; and (ii) cap-independent internal initiation, which requires a reduced subset of initiation factors and accounts for up to 5% of the remaining initiation events. Internal initiation relies on the presence of so-called internal ribosome entry site (IRES) elements in the 5′ UTRs of some viral and cellular mRNAs. These elements (often possessing complex secondary and tertiary structures) promote efficient interaction of the mRNA with the 40S ribosome and allow for internal ribosome entry. Internal initiation of translation of specific mRNAs may contribute to development of severe disease and pathological states, such as hepatitis C and cancer. Therefore, this cellular mechanism represents an attractive target for pharmacological modulation. The purpose of this review is to provide insight into current strategies used to target viral and cellular IRESs and discuss the physiological consequences (and potential therapeutic implications) of abrogation/modulation of IRES-mediated translation.
Collapse
Affiliation(s)
- Anton A Komar
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University , Cleveland, OH , USA
| | - Maria Hatzoglou
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| |
Collapse
|
185
|
McGurk L, Berson A, Bonini NM. Drosophila as an In Vivo Model for Human Neurodegenerative Disease. Genetics 2015; 201:377-402. [PMID: 26447127 PMCID: PMC4596656 DOI: 10.1534/genetics.115.179457] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022] Open
Abstract
With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
186
|
Next-generation libraries for robust RNA interference-based genome-wide screens. Proc Natl Acad Sci U S A 2015; 112:E3384-91. [PMID: 26080438 DOI: 10.1073/pnas.1508821112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic screening based on loss-of-function phenotypes is a powerful discovery tool in biology. Although the recent development of clustered regularly interspaced short palindromic repeats (CRISPR)-based screening approaches in mammalian cell culture has enormous potential, RNA interference (RNAi)-based screening remains the method of choice in several biological contexts. We previously demonstrated that ultracomplex pooled short-hairpin RNA (shRNA) libraries can largely overcome the problem of RNAi off-target effects in genome-wide screens. Here, we systematically optimize several aspects of our shRNA library, including the promoter and microRNA context for shRNA expression, selection of guide strands, and features relevant for postscreen sample preparation for deep sequencing. We present next-generation high-complexity libraries targeting human and mouse protein-coding genes, which we grouped into 12 sublibraries based on biological function. A pilot screen suggests that our next-generation RNAi library performs comparably to current CRISPR interference (CRISPRi)-based approaches and can yield complementary results with high sensitivity and high specificity.
Collapse
|
187
|
Abstract
A drug that affects memory targets a constituent of a cellular stress response mechanism
[Also see Report by
Sekine
et al.
]
Collapse
Affiliation(s)
- Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
188
|
Sekine Y, Zyryanova A, Crespillo-Casado A, Fischer PM, Harding HP, Ron D. Stress responses. Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science 2015; 348:1027-30. [PMID: 25858979 PMCID: PMC4538794 DOI: 10.1126/science.aaa6986] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/25/2015] [Indexed: 12/20/2022]
Abstract
The integrated stress response (ISR) modulates messenger RNA translation to regulate the mammalian unfolded protein response (UPR), immunity, and memory formation. A chemical ISR inhibitor, ISRIB, enhances cognitive function and modulates the UPR in vivo. To explore mechanisms involved in ISRIB action, we screened cultured mammalian cells for somatic mutations that reversed its effect on the ISR. Clustered missense mutations were found at the amino-terminal portion of the delta subunit of guanine nucleotide exchange factor (GEF) eIF2B. When reintroduced by CRISPR-Cas9 gene editing of wild-type cells, these mutations reversed both ISRIB-mediated inhibition of the ISR and its stimulatory effect on eIF2B GEF activity toward its substrate, the translation initiation factor eIF2, in vitro. Thus, ISRIB targets an interaction between eIF2 and eIF2B that lies at the core of the ISR.
Collapse
Affiliation(s)
- Yusuke Sekine
- University of Cambridge, Cambridge Institute for Medical Research (CIMR), the Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0XY, UK.
| | - Alisa Zyryanova
- University of Cambridge, Cambridge Institute for Medical Research (CIMR), the Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0XY, UK
| | - Ana Crespillo-Casado
- University of Cambridge, Cambridge Institute for Medical Research (CIMR), the Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0XY, UK
| | - Peter M Fischer
- Division of Medicinal Chemistry and Structural Biology, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Heather P Harding
- University of Cambridge, Cambridge Institute for Medical Research (CIMR), the Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0XY, UK
| | - David Ron
- University of Cambridge, Cambridge Institute for Medical Research (CIMR), the Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0XY, UK.
| |
Collapse
|