151
|
Large-scale chromatin organisation in interphase, mitosis and meiosis. Biochem J 2019; 476:2141-2156. [DOI: 10.1042/bcj20180512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/17/2023]
Abstract
AbstractThe spatial configuration of chromatin is fundamental to ensure any given cell can fulfil its functional duties, from gene expression to specialised cellular division. Significant technological innovations have facilitated further insights into the structure, function and regulation of three-dimensional chromatin organisation. To date, the vast majority of investigations into chromatin organisation have been conducted in interphase and mitotic cells leaving meiotic chromatin relatively unexplored. In combination, cytological and genome-wide contact frequency analyses in mammalian germ cells have recently demonstrated that large-scale chromatin structures in meiotic prophase I are reminiscent of the sequential loop arrays found in mitotic cells, although interphase-like segmentation of transcriptionally active and inactive regions are also evident along the length of chromosomes. Here, we discuss the similarities and differences of such large-scale chromatin architecture, between interphase, mitotic and meiotic cells, as well as their functional relevance and the proposed modulatory mechanisms which underlie them.
Collapse
|
152
|
Lawrimore J, Bloom K. The regulation of chromosome segregation via centromere loops. Crit Rev Biochem Mol Biol 2019; 54:352-370. [PMID: 31573359 PMCID: PMC6856439 DOI: 10.1080/10409238.2019.1670130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Biophysical studies of the yeast centromere have shown that the organization of the centromeric chromatin plays a crucial role in maintaining proper tension between sister kinetochores during mitosis. While centromeric chromatin has traditionally been considered a simple spring, recent work reveals the centromere as a multifaceted, tunable shock absorber. Centromeres can differ from other regions of the genome in their heterochromatin state, supercoiling state, and enrichment of structural maintenance of chromosomes (SMC) protein complexes. Each of these differences can be utilized to alter the effective stiffness of centromeric chromatin. In budding yeast, the SMC protein complexes condensin and cohesin stiffen chromatin by forming and cross-linking chromatin loops, respectively, into a fibrous structure resembling a bottlebrush. The high density of the loops compacts chromatin while spatially isolating the tension from spindle pulling forces to a subset of the chromatin. Paradoxically, the molecular crowding of chromatin via cohesin and condensin also causes an outward/poleward force. The structure allows the centromere to act as a shock absorber that buffers the variable forces generated by dynamic spindle microtubules. Based on the distribution of SMCs from bacteria to human and the conserved distance between sister kinetochores in a wide variety of organisms (0.4 to 1 micron), we propose that the bottlebrush mechanism is the foundational principle for centromere function in eukaryotes.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
153
|
Marko JF, De Los Rios P, Barducci A, Gruber S. DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes. Nucleic Acids Res 2019; 47:6956-6972. [PMID: 31175837 PMCID: PMC6649773 DOI: 10.1093/nar/gkz497] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023] Open
Abstract
Cells possess remarkable control of the folding and entanglement topology of long and flexible chromosomal DNA molecules. It is thought that structural maintenance of chromosome (SMC) protein complexes play a crucial role in this, by organizing long DNAs into series of loops. Experimental data suggest that SMC complexes are able to translocate on DNA, as well as pull out lengths of DNA via a 'loop extrusion' process. We describe a Brownian loop-capture-ratchet model for translocation and loop extrusion based on known structural, catalytic, and DNA-binding properties of the Bacillus subtilis SMC complex. Our model provides an example of a new class of molecular motor where large conformational fluctuations of the motor 'track'-in this case DNA-are involved in the basic translocation process. Quantitative analysis of our model leads to a series of predictions for the motor properties of SMC complexes, most strikingly a strong dependence of SMC translocation velocity and step size on tension in the DNA track that it is moving along, with 'stalling' occuring at subpiconewton tensions. We discuss how the same mechanism might be used by structurally related SMC complexes (Escherichia coli MukBEF and eukaryote condensin, cohesin and SMC5/6) to organize genomic DNA.
Collapse
Affiliation(s)
- John F Marko
- Department of Molecular Biosciences and Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Paolo De Los Rios
- Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Switzerland
| | - Alessandro Barducci
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Stephan Gruber
- Départment de Microbiologie Fondamentale, Université de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
154
|
Abstract
We review the current understanding of the mechanics of DNA and DNA-protein complexes, from scales of base pairs up to whole chromosomes. Mechanics of the double helix as revealed by single-molecule experiments will be described, with an emphasis on the role of polymer statistical mechanics. We will then discuss how topological constraints- entanglement and supercoiling-impact physical and mechanical responses. Models for protein-DNA interactions, including effects on polymer properties of DNA of DNA-bending proteins will be described, relevant to behavior of protein-DNA complexes in vivo. We also discuss control of DNA entanglement topology by DNA-lengthwise-compaction machinery acting in concert with topoisomerases. Finally, the chapter will conclude with a discussion of relevance of several aspects of physical properties of DNA and chromatin to oncology.
Collapse
|
155
|
Batty P, Gerlich DW. Mitotic Chromosome Mechanics: How Cells Segregate Their Genome. Trends Cell Biol 2019; 29:717-726. [PMID: 31230958 DOI: 10.1016/j.tcb.2019.05.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/09/2023]
Abstract
During mitosis, replicated chromosomes segregate such that each daughter cell receives one copy of the genome. Faithful mechanical transport during mitosis requires that chromosomes undergo extensive structural changes as the cell cycle progresses, resulting in the formation of compact, cylindrical bodies. Such structural changes encompass a range of different activities, including longitudinal condensation of the chromosome axis, global chromatin compaction, resolution of sister chromatids, and individualisation of chromosomes into separate bodies. After mitosis, chromosomes undergo further reorganisation to rebuild interphase cell nuclei. Here we review the requirements for mitotic chromosomes to successfully transmit genetic information to daughter cells and the biophysical principles that underpin such requirements.
Collapse
Affiliation(s)
- Paul Batty
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
156
|
Mirny LA, Imakaev M, Abdennur N. Two major mechanisms of chromosome organization. Curr Opin Cell Biol 2019; 58:142-152. [PMID: 31228682 DOI: 10.1016/j.ceb.2019.05.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/14/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
The spatial organization of chromosomes has long been connected to their polymeric nature and is believed to be important for their biological functions, including the control of interactions between genomic elements, the maintenance of genetic information, and the compaction and safe transfer of chromosomes to cellular progeny. chromosome conformation capture techniques, particularly Hi-C, have provided a comprehensive picture of spatial chromosome organization and revealed new features and elements of chromosome folding. Furthermore, recent advances in microscopy have made it possible to obtain distance maps for extensive regions of chromosomes (Bintu et al., 2018; Nir et al., 2018 [2••,3]), providing information complementary to, and in excellent agreement with, Hi-C maps. Not only has the resolution of both techniques advanced significantly, but new perturbation data generated in the last two years have led to the identification of molecular mechanisms behind large-scale genome organization. Two major mechanisms that have been proposed to govern chromosome organization are (i) the active (ATP-dependent) process of loop extrusion by Structural Maintenance of Chromosomes (SMC) complexes, and (ii) the spatial compartmentalization of the genome, which is likely mediated by affinity interactions between heterochromatic regions (Falk et al., 2019 [76••]) rather than by ATP-dependent processes. Here, we review existing evidence that these two processes operate together to fold chromosomes in interphase and that loop extrusion alone drives mitotic compaction. We discuss possible implications of these mechanisms for chromosome function.
Collapse
Affiliation(s)
- Leonid A Mirny
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| | - Maxim Imakaev
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Nezar Abdennur
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
157
|
van der Weide RH, de Wit E. Developing landscapes: genome architecture during early embryogenesis. Curr Opin Genet Dev 2019; 55:39-45. [PMID: 31112906 DOI: 10.1016/j.gde.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Early in development embryos undergo a transition, during which maternally deposited transcripts are replaced by zygotic transcripts. During this transition the zygotic genome is activated. Recently, the three-dimensional organization of the genome (3D genome) has been charted surrounding this transition phase in a number of species. A common feature of the 3D genome in all these species is that they go through a phase, during which architectural features of the 3D genome, such as TADs and compartments are lost and a uniform chromatin architecture is established. Here, we review the data regarding this enigmatic phase and discuss similarities and differences between species. We also consider mechanisms that may be responsible for the formation of the uniform chromatin architecture. The uniform organization of chromosomes during early development may serve as an important in vivo paradigm for the general study of the 3D genome.
Collapse
Affiliation(s)
- Robin H van der Weide
- Division of Gene Regulation, Oncode Institute and Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute and Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
158
|
Eykelenboom JK, Gierliński M, Yue Z, Hegarat N, Pollard H, Fukagawa T, Hochegger H, Tanaka TU. Live imaging of marked chromosome regions reveals their dynamic resolution and compaction in mitosis. J Cell Biol 2019; 218:1531-1552. [PMID: 30858191 PMCID: PMC6504890 DOI: 10.1083/jcb.201807125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/19/2018] [Accepted: 02/05/2019] [Indexed: 01/27/2023] Open
Abstract
When human cells enter mitosis, chromosomes undergo substantial changes in their organization to resolve sister chromatids and compact chromosomes. To comprehend the timing and coordination of these events, we need to evaluate the progression of both sister chromatid resolution and chromosome compaction in one assay. Here we achieved this by analyzing changes in configuration of marked chromosome regions over time, with high spatial and temporal resolution. This assay showed that sister chromatids cycle between nonresolved and partially resolved states with an interval of a few minutes during G2 phase before completing full resolution in prophase. Cohesins and WAPL antagonistically regulate sister chromatid resolution in late G2 and prophase while local enrichment of cohesin on chromosomes prevents precocious sister chromatid resolution. Moreover, our assay allowed quantitative evaluation of condensin II and I activities, which differentially promote sister chromatid resolution and chromosome compaction, respectively. Our assay reveals novel aspects of dynamics in mitotic chromosome resolution and compaction that were previously obscure in global chromosome assays.
Collapse
Affiliation(s)
- John K Eykelenboom
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Marek Gierliński
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
- Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nadia Hegarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Hilary Pollard
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
159
|
Lee SH, Kim Y, Lee S, Durang X, Stenberg P, Jeon JH, Lizana L. Mapping the spectrum of 3D communities in human chromosome conformation capture data. Sci Rep 2019; 9:6859. [PMID: 31048738 PMCID: PMC6497878 DOI: 10.1038/s41598-019-42212-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/22/2019] [Indexed: 11/09/2022] Open
Abstract
Several experiments show that the three dimensional (3D) organization of chromosomes affects genetic processes such as transcription and gene regulation. To better understand this connection, researchers developed the Hi-C method that is able to detect the pairwise physical contacts of all chromosomal loci. The Hi-C data show that chromosomes are composed of 3D compartments that range over a variety of scales. However, it is challenging to systematically detect these cross-scale structures. Most studies have therefore designed methods for specific scales to study foremost topologically associated domains (TADs) and A/B compartments. To go beyond this limitation, we tailor a network community detection method that finds communities in compact fractal globule polymer systems. Our method allows us to continuously scan through all scales with a single resolution parameter. We found: (i) polymer segments belonging to the same 3D community do not have to be in consecutive order along the polymer chain. In other words, several TADs may belong to the same 3D community. (ii) CTCF proteins-a loop-stabilizing protein that is ascribed a big role in TAD formation-are well correlated with community borders only at one level of organization. (iii) TADs and A/B compartments are traditionally treated as two weakly related 3D structures and detected with different algorithms. With our method, we detect both by simply adjusting the resolution parameter. We therefore argue that they represent two specific levels of a continuous spectrum 3D communities, rather than seeing them as different structural entities.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Liberal Arts, Gyeongnam National University of Science and Technology, Jinju, 52725, Korea.
| | - Yeonghoon Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Sungmin Lee
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Xavier Durang
- Department of Physics, University of Seoul, Seoul, 02504, Korea
| | - Per Stenberg
- Department of Ecology and Environmental Science (EMG), Umeå University, Umeå, 90187, Sweden
| | - Jae-Hyung Jeon
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea.
| | - Ludvig Lizana
- Integrated Science Lab, Department of Physics, Umeå University, Umeå, 90187, Sweden.
| |
Collapse
|
160
|
Orlandini E, Marenduzzo D, Michieletto D. Synergy of topoisomerase and structural-maintenance-of-chromosomes proteins creates a universal pathway to simplify genome topology. Proc Natl Acad Sci U S A 2019; 116:8149-8154. [PMID: 30962387 PMCID: PMC6486742 DOI: 10.1073/pnas.1815394116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topological entanglements severely interfere with important biological processes. For this reason, genomes must be kept unknotted and unlinked during most of a cell cycle. Type II topoisomerase (TopoII) enzymes play an important role in this process but the precise mechanisms yielding systematic disentanglement of DNA in vivo are not clear. Here we report computational evidence that structural-maintenance-of-chromosomes (SMC) proteins-such as cohesins and condensins-can cooperate with TopoII to establish a synergistic mechanism to resolve topological entanglements. SMC-driven loop extrusion (or diffusion) induces the spatial localization of essential crossings, in turn catalyzing the simplification of knots and links by TopoII enzymes even in crowded and confined conditions. The mechanism we uncover is universal in that it does not qualitatively depend on the specific substrate, whether DNA or chromatin, or on SMC processivity; we thus argue that this synergy may be at work across organisms and throughout the cell cycle.
Collapse
Affiliation(s)
- Enzo Orlandini
- Dipartimento di Fisica e Astronomia "Galileo Galilei," Sezione Istituto Nazionale di Fisica Nucleare, Università degli Studi di Padova, I-35131 Padova, Italy
| | - Davide Marenduzzo
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
161
|
Takahashi M, Hirota T. Folding the genome into mitotic chromosomes. Curr Opin Cell Biol 2019; 60:19-26. [PMID: 30999230 DOI: 10.1016/j.ceb.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
How linear DNA molecules are packaged into compact cylindrical chromosomes in preparation for cell division has remained one of the central outstanding questions in cell biology. Condensin is a highly conserved protein complex that universally determines large-scale DNA geometry during mitotic chromosome assembly. A wide range of recently developed approaches, including super resolution microscopy, single molecule imaging, Hi-C analyses and computational modeling, have profoundly changed how we view mitotic chromosomes. This review highlights recent discoveries on chromosome architecture and condensin function.
Collapse
Affiliation(s)
- Motoko Takahashi
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.
| |
Collapse
|
162
|
Centromere mechanical maturation during mammalian cell mitosis. Nat Commun 2019; 10:1761. [PMID: 30988289 PMCID: PMC6465287 DOI: 10.1038/s41467-019-09578-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
During mitosis, tension develops across the centromere as a result of spindle-based forces. Metaphase tension may be critical in preventing mitotic chromosome segregation errors, however, the nature of force transmission at the centromere and the role of centromere mechanics in controlling metaphase tension remains unknown. We combined quantitative, biophysical microscopy with computational analysis to elucidate the mechanics of the centromere in unperturbed, mitotic human cells. We discovered that the mechanical stiffness of the human centromere matures during mitotic progression, which leads to amplified centromere tension specifically at metaphase. Centromere mechanical maturation is disrupted across multiple aneuploid cell lines, leading to a weak metaphase tension signal. Further, increasing deficiencies in centromere mechanical maturation are correlated with rising frequencies of lagging, merotelic chromosomes in anaphase, leading to segregation defects at telophase. Thus, we reveal a centromere maturation process that may be critical to the fidelity of chromosome segregation during mitosis. During mitosis, tension at the centromere occurs from the spindle but the role of centromere mechanics in controlling metaphase tension is poorly understood. Here, the authors report that mechanical stiffnness of the centromere matures during mitotic progression and is amplified specifically at metaphase.
Collapse
|
163
|
Oomen ME, Hansen AS, Liu Y, Darzacq X, Dekker J. CTCF sites display cell cycle-dependent dynamics in factor binding and nucleosome positioning. Genome Res 2019; 29:236-249. [PMID: 30655336 PMCID: PMC6360813 DOI: 10.1101/gr.241547.118] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022]
Abstract
CCCTC-binding factor (CTCF) plays a key role in the formation of topologically associating domains (TADs) and loops in interphase. During mitosis TADs are absent, but how TAD formation is dynamically controlled during the cell cycle is not known. Several contradicting observations have been made regarding CTCF binding to mitotic chromatin using both genomics- and microscopy-based techniques. Here, we have used four different assays to address this debate. First, using 5C, we confirmed that TADs and CTCF loops are readily detected in interphase, but absent during prometaphase. Second, ATAC-seq analysis showed that CTCF sites display greatly reduced accessibility and lose the CTCF footprint in prometaphase, suggesting loss of CTCF binding and rearrangement of the nucleosomal array around the binding motif. In contrast, transcription start sites remain accessible in prometaphase, although adjacent nucleosomes can also become repositioned and occupy at least a subset of start sites during mitosis. Third, loss of site-specific CTCF binding was directly demonstrated using CUT&RUN. Histone modifications and histone variants are maintained in mitosis, suggesting a role in bookmarking of active CTCF sites. Finally, live-cell imaging, fluorescence recovery after photobleaching, and single molecule tracking showed that almost all CTCF chromatin binding is lost in prometaphase. Combined, our results demonstrate loss of CTCF binding to CTCF sites during prometaphase and rearrangement of the chromatin landscape around CTCF motifs. This, combined with loss of cohesin, would contribute to the observed loss of TADs and CTCF loops during mitosis and reveals that CTCF sites, key architectural cis-elements, display cell cycle stage–dependent dynamics in factor binding and nucleosome positioning.
Collapse
Affiliation(s)
- Marlies E Oomen
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Anders S Hansen
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, California 94720, USA
| | - Yu Liu
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, California 94720, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
164
|
Biggs R, Liu PZ, Stephens AD, Marko JF. Effects of altering histone posttranslational modifications on mitotic chromosome structure and mechanics. Mol Biol Cell 2019; 30:820-827. [PMID: 30625026 PMCID: PMC6589789 DOI: 10.1091/mbc.e18-09-0592] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During cell division, chromatin is compacted into mitotic chromosomes to aid faithful segregation of the genome between two daughter cells. Posttranslational modifications (PTMs) of histones alter compaction of interphase chromatin, but it remains poorly understood how these modifications affect mitotic chromosome stiffness and structure. Using micropipette-based force measurements and epigenetic drugs, we probed the influence of canonical histone PTMs that dictate interphase euchromatin (acetylation) and heterochromatin (methylation) on mitotic chromosome stiffness. By measuring chromosome doubling force (the force required to double chromosome length), we find that histone methylation, but not acetylation, contributes to mitotic structure and stiffness. We discuss our findings in the context of chromatin gel modeling of the large-scale organization of mitotic chromosomes.
Collapse
Affiliation(s)
- Ronald Biggs
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Patrick Z Liu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
165
|
Maass PG, Barutcu AR, Rinn JL. Interchromosomal interactions: A genomic love story of kissing chromosomes. J Cell Biol 2019; 218:27-38. [PMID: 30181316 PMCID: PMC6314556 DOI: 10.1083/jcb.201806052] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 01/26/2023] Open
Abstract
Nuclei require a precise three- and four-dimensional organization of DNA to establish cell-specific gene-expression programs. Underscoring the importance of DNA topology, alterations to the nuclear architecture can perturb gene expression and result in disease states. More recently, it has become clear that not only intrachromosomal interactions, but also interchromosomal interactions, a less studied feature of chromosomes, are required for proper physiological gene-expression programs. Here, we review recent studies with emerging insights into where and why cross-chromosomal communication is relevant. Specifically, we discuss how long noncoding RNAs (lncRNAs) and three-dimensional gene positioning are involved in genome organization and how low-throughput (live-cell imaging) and high-throughput (Hi-C and SPRITE) techniques contribute to understand the fundamental properties of interchromosomal interactions.
Collapse
Affiliation(s)
- Philipp G Maass
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - A Rasim Barutcu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
- University of Colorado, BioFrontiers, Department of Biochemistry, Boulder, CO
| |
Collapse
|
166
|
Lin D, Bonora G, Yardımcı GG, Noble WS. Computational methods for analyzing and modeling genome structure and organization. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1435. [PMID: 30022617 PMCID: PMC6294685 DOI: 10.1002/wsbm.1435] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/07/2018] [Accepted: 06/16/2018] [Indexed: 12/31/2022]
Abstract
Recent advances in chromosome conformation capture technologies have led to the discovery of previously unappreciated structural features of chromatin. Computational analysis has been critical in detecting these features and thereby helping to uncover the building blocks of genome architecture. Algorithms are being developed to integrate these architectural features to construct better three-dimensional (3D) models of the genome. These computational methods have revealed the importance of 3D genome organization to essential biological processes. In this article, we review the state of the art in analytic and modeling techniques with a focus on their application to answering various biological questions related to chromatin structure. We summarize the limitations of these computational techniques and suggest future directions, including the importance of incorporating multiple sources of experimental data in building a more comprehensive model of the genome. This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Dejun Lin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
167
|
Champion L, Pawar S, Luithle N, Ungricht R, Kutay U. Dissociation of membrane-chromatin contacts is required for proper chromosome segregation in mitosis. Mol Biol Cell 2018; 30:427-440. [PMID: 30586323 PMCID: PMC6594442 DOI: 10.1091/mbc.e18-10-0609] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The nuclear envelope (NE) aids in organizing the interphase genome by tethering chromatin to the nuclear periphery. During mitotic entry, NE–chromatin contacts are broken. Here, we report on the consequences of impaired NE removal from chromatin for cell division of human cells. Using a membrane–chromatin tether that cannot be dissociated when cells enter mitosis, we show that a failure in breaking membrane–chromatin interactions impairs mitotic chromatin organization, chromosome segregation and cytokinesis, and induces an aberrant NE morphology in postmitotic cells. In contrast, chromosome segregation and cell division proceed successfully when membrane attachment to chromatin is induced during metaphase, after chromosomes have been singularized and aligned at the metaphase plate. These results indicate that the separation of membranes and chromatin is critical during prometaphase to allow for proper chromosome compaction and segregation. We propose that one cause of these defects is the multivalency of membrane–chromatin interactions.
Collapse
Affiliation(s)
- Lysie Champion
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Sumit Pawar
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Naemi Luithle
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Rosemarie Ungricht
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
168
|
Palecek JJ. SMC5/6: Multifunctional Player in Replication. Genes (Basel) 2018; 10:genes10010007. [PMID: 30583551 PMCID: PMC6356406 DOI: 10.3390/genes10010007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
The genome replication process is challenged at many levels. Replication must proceed through different problematic sites and obstacles, some of which can pause or even reverse the replication fork (RF). In addition, replication of DNA within chromosomes must deal with their topological constraints and spatial organization. One of the most important factors organizing DNA into higher-order structures are Structural Maintenance of Chromosome (SMC) complexes. In prokaryotes, SMC complexes ensure proper chromosomal partitioning during replication. In eukaryotes, cohesin and SMC5/6 complexes assist in replication. Interestingly, the SMC5/6 complexes seem to be involved in replication in many ways. They stabilize stalled RFs, restrain RF regression, participate in the restart of collapsed RFs, and buffer topological constraints during RF progression. In this (mini) review, I present an overview of these replication-related functions of SMC5/6.
Collapse
Affiliation(s)
- Jan J Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
169
|
Baxter J, Oliver AW, Schalbetter SA. Are SMC Complexes Loop Extruding Factors? Linking Theory With Fact. Bioessays 2018; 41:e1800182. [PMID: 30506702 DOI: 10.1002/bies.201800182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/05/2018] [Indexed: 01/24/2023]
Abstract
The extreme length of chromosomal DNA requires organizing mechanisms to both promote functional genetic interactions and ensure faithful chromosome segregation when cells divide. Microscopy and genome-wide contact frequency analyses indicate that intra-chromosomal looping of DNA is a primary pathway of chromosomal organization during all stages of the cell cycle. DNA loop extrusion has emerged as a unifying model for how chromosome loops are formed in cis in different genomic contexts and cell cycle stages. The highly conserved family of SMC complexes have been found to be required for DNA cis-looping and have been suggested to be the enzymatic core of loop extruding machines. Here, the current body of evidence available for the in vivo and in vitro action of SMC complexes is discussed and compared to the predictions made by the loop extrusion model. How SMC complexes may differentially act on chromatin to generate DNA loops and how they could work to generate the dynamic and functionally appropriate organization of DNA in cells is explored.
Collapse
Affiliation(s)
- Jonathan Baxter
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| | - Antony W Oliver
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| | - Stephanie A Schalbetter
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| |
Collapse
|
170
|
Abstract
Predicting how epigenetic marks control the 3D organization of the genome is key to understanding how these marks regulate gene expression. We show that a physical model of a chromosome with experimentally measured local interactions segregates into euchromatin- and heterochromatin-like phases. The model reproduces many of the features of the large-scale organization of the chromosome as measured by Hi-C. Our work provides an estimate of the amount of epigenetic marking needed to segregate a gene into heterochromatin. We use a chromosome-scale simulation to show that the preferential binding of heterochromatin protein 1 (HP1) to regions high in histone methylation (specifically H3K9me3) results in phase segregation and reproduces features of the observed Hi-C contact map. Specifically, we perform Monte Carlo simulations with one computational bead per nucleosome and an H3K9me3 pattern based on published ChIP-seq signals. We implement a binding model in which HP1 preferentially binds to trimethylated histone tails and then oligomerizes to bridge together nucleosomes. We observe a phase reminiscent of heterochromatin—dense and high in H3K9me3—and another reminiscent of euchromatin—less dense and lacking H3K9me3. This segregation results in a plaid contact probability map that matches the general shape and position of published Hi-C data. Analysis suggests that a roughly 20-kb segment of H3K9me3 enrichment is required to drive segregation into the heterochromatic phase.
Collapse
|
171
|
Lawrimore J, Doshi A, Friedman B, Yeh E, Bloom K. Geometric partitioning of cohesin and condensin is a consequence of chromatin loops. Mol Biol Cell 2018; 29:2737-2750. [PMID: 30207827 PMCID: PMC6249845 DOI: 10.1091/mbc.e18-02-0131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022] Open
Abstract
SMC (structural maintenance of chromosomes) complexes condensin and cohesin are crucial for proper chromosome organization. Condensin has been reported to be a mechanochemical motor capable of forming chromatin loops, while cohesin passively diffuses along chromatin to tether sister chromatids. In budding yeast, the pericentric region is enriched in both condensin and cohesin. As in higher-eukaryotic chromosomes, condensin is localized to the axial chromatin of the pericentric region, while cohesin is enriched in the radial chromatin. Thus, the pericentric region serves as an ideal model for deducing the role of SMC complexes in chromosome organization. We find condensin-mediated chromatin loops establish a robust chromatin organization, while cohesin limits the area that chromatin loops can explore. Upon biorientation, extensional force from the mitotic spindle aggregates condensin-bound chromatin from its equilibrium position to the axial core of pericentric chromatin, resulting in amplified axial tension. The axial localization of condensin depends on condensin's ability to bind to chromatin to form loops, while the radial localization of cohesin depends on cohesin's ability to diffuse along chromatin. The different chromatin-tethering modalities of condensin and cohesin result in their geometric partitioning in the presence of an extensional force on chromatin.
Collapse
Affiliation(s)
- Josh Lawrimore
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ayush Doshi
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brandon Friedman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Elaine Yeh
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
172
|
Ma H, Tu LC, Naseri A, Chung YC, Grunwald D, Zhang S, Pederson T. CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat Methods 2018; 15:928-931. [PMID: 30377374 PMCID: PMC6252086 DOI: 10.1038/s41592-018-0174-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/09/2018] [Indexed: 11/09/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) guide RNA scaffolds have been adapted to carry multiple binding sites for fluorescent proteins to enhance brightness for live cell imaging of genomic loci. However, many of these modifications result in guide RNA instability and thus produce lower genome-labeling efficiency than anticipated. Here we introduce CRISPR-Sirius, based on octet arrays of aptamers conferring both enhanced guide RNA stability and brightness, and provide initial biological applications of this platform.
Collapse
Affiliation(s)
- Hanhui Ma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Li-Chun Tu
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ardalan Naseri
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Yu-Chieh Chung
- Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Japan
| | - David Grunwald
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
173
|
Condensin action and compaction. Curr Genet 2018; 65:407-415. [PMID: 30361853 DOI: 10.1007/s00294-018-0899-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/20/2022]
Abstract
Condensin is a multi-subunit protein complex that belongs to the family of structural maintenance of chromosomes (SMC) complexes. Condensins regulate chromosome structure in a wide range of processes including chromosome segregation, gene regulation, DNA repair and recombination. Recent research defined the structural features and molecular activities of condensins, but it is unclear how these activities are connected to the multitude of phenotypes and functions attributed to condensins. In this review, we briefly discuss the different molecular mechanisms by which condensins may regulate global chromosome compaction, organization of topologically associated domains, clustering of specific loci such as tRNA genes, rDNA segregation, and gene regulation.
Collapse
|
174
|
Racko D, Benedetti F, Goundaroulis D, Stasiak A. Chromatin Loop Extrusion and Chromatin Unknotting. Polymers (Basel) 2018; 10:E1126. [PMID: 30961051 PMCID: PMC6403842 DOI: 10.3390/polym10101126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022] Open
Abstract
It has been a puzzle how decondensed interphase chromosomes remain essentially unknotted. The natural expectation is that in the presence of type II DNA topoisomerases that permit passages of double-stranded DNA regions through each other, all chromosomes should reach the state of topological equilibrium. The topological equilibrium in highly crowded interphase chromosomes forming chromosome territories would result in formation of highly knotted chromatin fibres. However, Chromosome Conformation Capture (3C) methods revealed that the decay of contact probabilities with the genomic distance in interphase chromosomes is practically the same as in the crumpled globule state that is formed when long polymers condense without formation of any knots. To remove knots from highly crowded chromatin, one would need an active process that should not only provide the energy to move the system from the state of topological equilibrium but also guide topoisomerase-mediated passages in such a way that knots would be efficiently unknotted instead of making the knots even more complex. We perform coarse-grained molecular dynamics simulations of the process of chromatin loop extrusion involving knotted and catenated chromatin fibres to check whether chromatin loop extrusion may be involved in active unknotting of chromatin fibres. Our simulations show that the process of chromatin loop extrusion is ideally suited to actively unknot, decatenate and demix chromatin fibres in interphase chromosomes.
Collapse
Affiliation(s)
- Dusan Racko
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
- Polymer Institute of the Slovak Academy of Sciences, 842 36 Bratislava, Slovakia.
| | - Fabrizio Benedetti
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Dimos Goundaroulis
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| |
Collapse
|
175
|
Wang X, Hughes AC, Brandão HB, Walker B, Lierz C, Cochran JC, Oakley MG, Kruse AC, Rudner DZ. In Vivo Evidence for ATPase-Dependent DNA Translocation by the Bacillus subtilis SMC Condensin Complex. Mol Cell 2018; 71:841-847.e5. [PMID: 30100265 PMCID: PMC6591583 DOI: 10.1016/j.molcel.2018.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 11/16/2022]
Abstract
Structural maintenance of chromosomes (SMC) complexes shape the genomes of virtually all organisms, but how they function remains incompletely understood. Recent studies in bacteria and eukaryotes have led to a unifying model in which these ring-shaped ATPases act along contiguous DNA segments, processively enlarging DNA loops. In support of this model, single-molecule imaging experiments indicate that Saccharomyces cerevisiae condensin complexes can extrude DNA loops in an ATP-hydrolysis-dependent manner in vitro. Here, using time-resolved high-throughput chromosome conformation capture (Hi-C), we investigate the interplay between ATPase activity of the Bacillus subtilis SMC complex and loop formation in vivo. We show that point mutants in the SMC nucleotide-binding domain that impair but do not eliminate ATPase activity not only exhibit delays in de novo loop formation but also have reduced rates of processive loop enlargement. These data provide in vivo evidence that SMC complexes function as loop extruders.
Collapse
Affiliation(s)
- Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Anna C Hughes
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Hugo B Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Benjamin Walker
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Carrie Lierz
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jared C Cochran
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Martha G Oakley
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
176
|
Paul MR, Markowitz TE, Hochwagen A, Ercan S. Condensin Depletion Causes Genome Decompaction Without Altering the Level of Global Gene Expression in Saccharomyces cerevisiae. Genetics 2018; 210:331-344. [PMID: 29970489 PMCID: PMC6116964 DOI: 10.1534/genetics.118.301217] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Condensins are broadly conserved chromosome organizers that function in chromatin compaction and transcriptional regulation, but to what extent these two functions are linked has remained unclear. Here, we analyzed the effect of condensin inactivation on genome compaction and global gene expression in the yeast Saccharomyces cerevisiae by performing spike-in-controlled genome-wide chromosome conformation capture (3C-seq) and mRNA-sequencing analysis. 3C-seq analysis shows that acute condensin inactivation leads to a global decrease in close-range intrachromosomal interactions as well as more specific losses of interchromosomal tRNA gene clustering. In addition, a condensin-rich interaction domain between the ribosomal DNA and the centromere on chromosome XII is lost upon condensin inactivation. Unexpectedly, these large-scale changes in chromosome architecture are not associated with global changes in mRNA levels. Our data suggest that the global transcriptional program of proliferating S. cerevisiae is resistant to condensin inactivation and the associated profound changes in genome organization.
Collapse
Affiliation(s)
- Matthew Robert Paul
- Department of Biology, New York University, New York 10003
- Center for Genomics and Systems Biology, New York University, New York 10003
| | | | | | - Sevinç Ercan
- Department of Biology, New York University, New York 10003
- Center for Genomics and Systems Biology, New York University, New York 10003
| |
Collapse
|
177
|
Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold. Chromosome Res 2018; 26:277-295. [PMID: 30143891 DOI: 10.1007/s10577-018-9584-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023]
Abstract
During cell division, chromosomes must be folded into their compact mitotic form to ensure their segregation. This process is thought to be largely controlled by the action of condensin SMC protein complexes on chromatin fibers. However, how condensins organize metaphase chromosomes is not understood. We have combined micromanipulation of single human mitotic chromosomes, sub-nanonewton force measurement, siRNA interference of condensin subunit expression, and fluorescence microscopy, to analyze the role of condensin in large-scale chromosome organization. Condensin depletion leads to a dramatic (~ 10-fold) reduction in chromosome elastic stiffness relative to the native, non-depleted case. We also find that prolonged metaphase stalling of cells leads to overloading of chromosomes with condensin, with abnormally high chromosome stiffness. These results demonstrate that condensin is a main element controlling the stiffness of mitotic chromosomes. Isolated, slightly stretched chromosomes display a discontinuous condensing staining pattern, suggesting that condensins organize mitotic chromosomes by forming isolated compaction centers that do not form a continuous scaffold.
Collapse
|
178
|
Muller H, Scolari VF, Agier N, Piazza A, Thierry A, Mercy G, Descorps-Declere S, Lazar-Stefanita L, Espeli O, Llorente B, Fischer G, Mozziconacci J, Koszul R. Characterizing meiotic chromosomes' structure and pairing using a designer sequence optimized for Hi-C. Mol Syst Biol 2018; 14:e8293. [PMID: 30012718 PMCID: PMC6047084 DOI: 10.15252/msb.20188293] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022] Open
Abstract
In chromosome conformation capture experiments (Hi-C), the accuracy with which contacts are detected varies due to the uneven distribution of restriction sites along genomes. In addition, repeated sequences or homologous regions remain indistinguishable because of the ambiguities they introduce during the alignment of the sequencing reads. We addressed both limitations by designing and engineering 144 kb of a yeast chromosome with regularly spaced restriction sites (Syn-HiC design). In the Syn-HiC region, Hi-C signal-to-noise ratio is enhanced and can be used to measure the shape of an unbiased distribution of contact frequencies, allowing to propose a robust definition of a Hi-C experiment resolution. The redesigned region is also distinguishable from its native homologous counterpart in an otherwise isogenic diploid strain. As a proof of principle, we tracked homologous chromosomes during meiotic prophase in synchronized and pachytene-arrested cells and captured important features of their spatial reorganization, such as chromatin restructuration into arrays of Rec8-delimited loops, centromere declustering, individualization, and pairing. Overall, we illustrate the promises held by redesigning genomic regions to explore complex biological questions.
Collapse
Affiliation(s)
- Héloïse Muller
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Vittore F Scolari
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Nicolas Agier
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Aurèle Piazza
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Agnès Thierry
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Guillaume Mercy
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Stéphane Descorps-Declere
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Luciana Lazar-Stefanita
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| | - Olivier Espeli
- Centre Interdisciplinaire de Recherche en Biologie, Collège de France, UMR-CNRS 7241, INSERM U1050, Paris, France
| | - Bertrand Llorente
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Gilles Fischer
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Julien Mozziconacci
- Theoretical Physics for Condensed Matter Lab, CNRS UMR 7600, Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Romain Koszul
- Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, Paris, France
| |
Collapse
|
179
|
Walther N, Hossain MJ, Politi AZ, Koch B, Kueblbeck M, Ødegård-Fougner Ø, Lampe M, Ellenberg J. A quantitative map of human Condensins provides new insights into mitotic chromosome architecture. J Cell Biol 2018; 217:2309-2328. [PMID: 29632028 PMCID: PMC6028534 DOI: 10.1083/jcb.201801048] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/29/2022] Open
Abstract
The two Condensin complexes in human cells are essential for mitotic chromosome structure. We used homozygous genome editing to fluorescently tag Condensin I and II subunits and mapped their absolute abundance, spacing, and dynamic localization during mitosis by fluorescence correlation spectroscopy (FSC)-calibrated live-cell imaging and superresolution microscopy. Although ∼35,000 Condensin II complexes are stably bound to chromosomes throughout mitosis, ∼195,000 Condensin I complexes dynamically bind in two steps: prometaphase and early anaphase. The two Condensins rarely colocalize at the chromatid axis, where Condensin II is centrally confined, but Condensin I reaches ∼50% of the chromatid diameter from its center. Based on our comprehensive quantitative data, we propose a three-step hierarchical loop model of mitotic chromosome compaction: Condensin II initially fixes loops of a maximum size of ∼450 kb at the chromatid axis, whose size is then reduced by Condensin I binding to ∼90 kb in prometaphase and ∼70 kb in anaphase, achieving maximum chromosome compaction upon sister chromatid segregation.
Collapse
Affiliation(s)
- Nike Walther
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - M Julius Hossain
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio Z Politi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Birgit Koch
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Moritz Kueblbeck
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Øyvind Ødegård-Fougner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
180
|
Rosin LF, Nguyen SC, Joyce EF. Condensin II drives large-scale folding and spatial partitioning of interphase chromosomes in Drosophila nuclei. PLoS Genet 2018; 14:e1007393. [PMID: 30001329 PMCID: PMC6042687 DOI: 10.1371/journal.pgen.1007393] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 12/26/2022] Open
Abstract
Metazoan chromosomes are folded into discrete sub-nuclear domains, referred to as chromosome territories (CTs). The molecular mechanisms that underlie the formation and maintenance of CTs during the cell cycle remain largely unknown. Here, we have developed high-resolution chromosome paints to investigate CT organization in Drosophila cycling cells. We show that large-scale chromosome folding patterns and levels of chromosome intermixing are remarkably stable across various cell types. Our data also suggest that the nucleus scales to accommodate fluctuations in chromosome size throughout the cell cycle, which limits the degree of intermixing between neighboring CTs. Finally, we show that the cohesin and condensin complexes are required for different scales of chromosome folding, with condensin II being especially important for the size, shape, and level of intermixing between CTs in interphase. These findings suggest that large-scale chromosome folding driven by condensin II influences the extent to which chromosomes interact, which may have direct consequences for cell-type specific genome stability.
Collapse
Affiliation(s)
- Leah F. Rosin
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Son C. Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric F. Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
181
|
Sakai Y, Mochizuki A, Kinoshita K, Hirano T, Tachikawa M. Modeling the functions of condensin in chromosome shaping and segregation. PLoS Comput Biol 2018; 14:e1006152. [PMID: 29912867 PMCID: PMC6005465 DOI: 10.1371/journal.pcbi.1006152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/24/2018] [Indexed: 11/18/2022] Open
Abstract
The mechanistic details underlying the assembly of rod-shaped chromosomes during mitosis and how they segregate from each other to act as individually mobile units remain largely unknown. Here, we construct a coarse-grained physical model of chromosomal DNA and condensins, a class of large protein complexes that plays key roles in these processes. We assume that condensins have two molecular activities: consecutive loop formation in DNA and inter-condensin attractions. Our simulation demonstrates that both of these activities and their balancing acts are essential for the efficient shaping and segregation of mitotic chromosomes. Our results also demonstrate that the shaping and segregation processes are strongly correlated, implying their mechanistic coupling during mitotic chromosome assembly. Our results highlight the functional importance of inter-condensin attractions in chromosome shaping and segregation. Immediately before a cell divides, chromosomal DNA in a eukaryotic cell is packaged into a discrete set of rod-shaped chromosomes. This process, known as mitotic chromosome assembly or condensation, secures the faithful segregation of genetic information into daughter cells. Central to this mechanistically complex process is a class of protein complexes known as condensins. However, how condensins support the assembly and segregation of mitotic chromosomes at a mechanistic level remains elusive. Here we construct a coarse-grained physical model of chromosomal DNA fibers and condensin molecules, and study how condensins work in the mitotic chromosome assembly using computer simulations. Our results show that two activities of condensins, formation of consecutive loops in chromosomal DNA fibers and inter-condensin attractions, are necessary for both the shaping and segregation of mitotic chromosomes, and balancing acts of these activities help to coordinate the efficient progress of the processes. Importantly, chromosome shaping and segregation in our results are strongly correlated, implying that they are controlled by the same underlying mechanism mediated by condensins.
Collapse
Affiliation(s)
- Yuji Sakai
- iTHES Research Group, RIKEN, Wako, Japan.,Theoretical Biology Laboratory, RIKEN, Wako, Japan.,Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Mochizuki
- iTHES Research Group, RIKEN, Wako, Japan.,Theoretical Biology Laboratory, RIKEN, Wako, Japan.,iTHEMS Program, RIKEN, Wako, Japan.,CREST, JST 4-1-8 Honcho, Kawaguchi, Japan
| | | | | | - Masashi Tachikawa
- iTHES Research Group, RIKEN, Wako, Japan.,Theoretical Biology Laboratory, RIKEN, Wako, Japan.,iTHEMS Program, RIKEN, Wako, Japan
| |
Collapse
|
182
|
Fudenberg G, Abdennur N, Imakaev M, Goloborodko A, Mirny LA. Emerging Evidence of Chromosome Folding by Loop Extrusion. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:45-55. [PMID: 29728444 PMCID: PMC6512960 DOI: 10.1101/sqb.2017.82.034710] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromosome organization poses a remarkable physical problem with many biological consequences: How can molecular interactions between proteins at the nanometer scale organize micron-long chromatinized DNA molecules, insulating or facilitating interactions between specific genomic elements? The mechanism of active loop extrusion holds great promise for explaining interphase and mitotic chromosome folding, yet remains difficult to assay directly. We discuss predictions from our polymer models of loop extrusion with barrier elements and review recent experimental studies that provide strong support for loop extrusion, focusing on perturbations to CTCF and cohesin assayed via Hi-C in interphase. Finally, we discuss a likely molecular mechanism of loop extrusion by structural maintenance of chromosomes complexes.
Collapse
Affiliation(s)
- Geoffrey Fudenberg
- Gladstone Institute of Data Science and Technology, University of California, San Francisco, California 94158
| | - Nezar Abdennur
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Maxim Imakaev
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Anton Goloborodko
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Leonid A Mirny
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
183
|
Ghosh SK, Jost D. How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes. PLoS Comput Biol 2018; 14:e1006159. [PMID: 29813054 PMCID: PMC6003694 DOI: 10.1371/journal.pcbi.1006159] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 06/15/2018] [Accepted: 04/28/2018] [Indexed: 11/19/2022] Open
Abstract
The 3D organization of chromosomes is crucial for regulating gene expression and cell function. Many experimental and polymer modeling efforts are dedicated to deciphering the mechanistic principles behind chromosome folding. Chromosomes are long and densely packed-topologically constrained-polymers. The main challenges are therefore to develop adequate models and simulation methods to investigate properly the multi spatio-temporal scales of such macromolecules. Here, we proposed a generic strategy to develop efficient coarse-grained models for self-avoiding polymers on a lattice. Accounting accurately for the polymer entanglement length and the volumic density, we show that our simulation scheme not only captures the steady-state structural and dynamical properties of the system but also tracks the same dynamics at different coarse-graining. This strategy allows a strong power-law gain in numerical efficiency and offers a systematic way to define reliable coarse-grained null models for chromosomes and to go beyond the current limitations by studying long chromosomes during an extended time period with good statistics. We use our formalism to investigate in details the time evolution of the 3D organization of chromosome 3R (20 Mbp) in drosophila during one cell cycle (20 hours). We show that a combination of our coarse-graining strategy with a one-parameter block copolymer model integrating epigenomic-driven interactions quantitatively reproduce experimental data at the chromosome-scale and predict that chromatin motion is very dynamic during the cell cycle.
Collapse
Affiliation(s)
- Surya K. Ghosh
- Univ Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| | - Daniel Jost
- Univ Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| |
Collapse
|
184
|
Barutcu AR, Maass PG, Lewandowski JP, Weiner CL, Rinn JL. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus. Nat Commun 2018; 9:1444. [PMID: 29654311 PMCID: PMC5899154 DOI: 10.1038/s41467-018-03614-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/27/2018] [Indexed: 12/22/2022] Open
Abstract
The binding of the transcriptional regulator CTCF to the genome has been implicated in the formation of topologically associated domains (TADs). However, the general mechanisms of folding the genome into TADs are not fully understood. Here we test the effects of deleting a CTCF-rich locus on TAD boundary formation. Using genome-wide chromosome conformation capture (Hi-C), we focus on one TAD boundary on chromosome X harboring ~ 15 CTCF binding sites and located at the long non-coding RNA (lncRNA) locus Firre. Specifically, this TAD boundary is invariant across evolution, tissues, and temporal dynamics of X-chromosome inactivation. We demonstrate that neither the deletion of this locus nor the ectopic insertion of Firre cDNA or its ectopic expression are sufficient to alter TADs in a sex-specific or allele-specific manner. In contrast, Firre's deletion disrupts the chromatin super-loop formation of the inactive X-chromosome. Collectively, our findings suggest that apart from CTCF binding, additional mechanisms may play roles in establishing TAD boundary formation.
Collapse
Affiliation(s)
- A Rasim Barutcu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Philipp G Maass
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jordan P Lewandowski
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Catherine L Weiner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Biochemistry, University of Colorado, BioFrontiers Institute, Boulder, CO, 80301, USA.
| |
Collapse
|
185
|
Qiu X, Kumari G, Gerasimova T, Du H, Labaran L, Singh A, De S, Wood WH, Becker KG, Zhou W, Ji H, Sen R. Sequential Enhancer Sequestration Dysregulates Recombination Center Formation at the IgH Locus. Mol Cell 2018; 70:21-33.e6. [PMID: 29576529 DOI: 10.1016/j.molcel.2018.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 12/22/2022]
Abstract
Immunoglobulin heavy-chain (IgH) genes are assembled by DNA rearrangements that juxtapose a variable (VH), a diversity (DH), and a joining (JH) gene segment. Here, we report that in the absence of intergenic control region 1 (IGCR1), the intronic enhancer (Eμ) associates with the next available CTCF binding site located close to VH81X via putative heterotypic interactions involving YY1 and CTCF. The alternate Eμ/VH81X loop leads to formation of a distorted recombination center and altered DH rearrangements and disrupts chromosome conformation that favors distal VH recombination. Cumulatively, these features drive highly skewed, Eμ-dependent recombination of VH81X. Sequential deletion of CTCF binding regions on IGCR1-deleted alleles suggests that they influence recombination of single proximal VH gene segments. Our observations demonstrate that Eμ interacts differently with IGCR1- or VH-associated CTCF binding sites and thereby identify distinct roles for insulator-like elements in directing enhancer activity.
Collapse
Affiliation(s)
- Xiang Qiu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Gita Kumari
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Tatiana Gerasimova
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Hansen Du
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Lawal Labaran
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Amit Singh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD 21224, USA
| | - William H Wood
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA.
| |
Collapse
|
186
|
Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, Dekker C. Real-time imaging of DNA loop extrusion by condensin. Science 2018; 360:102-105. [PMID: 29472443 DOI: 10.1126/science.aar7831] [Citation(s) in RCA: 511] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
It has been hypothesized that SMC protein complexes such as condensin and cohesin spatially organize chromosomes by extruding DNA into large loops. We directly visualized the formation and processive extension of DNA loops by yeast condensin in real time. Our findings constitute unambiguous evidence for loop extrusion. We observed that a single condensin complex is able to extrude tens of kilobase pairs of DNA at a force-dependent speed of up to 1500 base pairs per second, using the energy of adenosine triphosphate hydrolysis. Condensin-induced loop extrusion was strictly asymmetric, which demonstrates that condensin anchors onto DNA and reels it in from only one side. Active DNA loop extrusion by SMC complexes may provide the universal unifying principle for genome organization.
Collapse
Affiliation(s)
- Mahipal Ganji
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Indra A Shaltiel
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shveta Bisht
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Eugene Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Ana Kalichava
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Christian H Haering
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| |
Collapse
|
187
|
Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, Kanemaki MT, Xie L, Paulson JR, Earnshaw WC, Mirny LA, Dekker J. A pathway for mitotic chromosome formation. Science 2018; 359:eaao6135. [PMID: 29348367 PMCID: PMC5924687 DOI: 10.1126/science.aao6135] [Citation(s) in RCA: 483] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/09/2018] [Indexed: 12/23/2022]
Abstract
Mitotic chromosomes fold as compact arrays of chromatin loops. To identify the pathway of mitotic chromosome formation, we combined imaging and Hi-C analysis of synchronous DT40 cell cultures with polymer simulations. Here we show that in prophase, the interphase organization is rapidly lost in a condensin-dependent manner, and arrays of consecutive 60-kilobase (kb) loops are formed. During prometaphase, ~80-kb inner loops are nested within ~400-kb outer loops. The loop array acquires a helical arrangement with consecutive loops emanating from a central "spiral staircase" condensin scaffold. The size of helical turns progressively increases to ~12 megabases during prometaphase. Acute depletion of condensin I or II shows that nested loops form by differential action of the two condensins, whereas condensin II is required for helical winding.
Collapse
Affiliation(s)
- Johan H Gibcus
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Anton Goloborodko
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Itaru Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Natalia Naumova
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Johannes Nuebler
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Masato T Kanemaki
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems, and Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA
| | - James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
- Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
188
|
Sazer S, Schiessel H. The biology and polymer physics underlying large-scale chromosome organization. Traffic 2018; 19:87-104. [PMID: 29105235 PMCID: PMC5846894 DOI: 10.1111/tra.12539] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Chromosome large-scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high-resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome.
Collapse
Affiliation(s)
- Shelley Sazer
- Verna and Marrs McLean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTexas
| | - Helmut Schiessel
- Institute Lorentz for Theoretical PhysicsLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
189
|
Murayama Y. DNA entry, exit and second DNA capture by cohesin: insights from biochemical experiments. Nucleus 2018; 9:492-502. [PMID: 30205748 PMCID: PMC6244732 DOI: 10.1080/19491034.2018.1516486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/28/2018] [Accepted: 08/16/2018] [Indexed: 12/23/2022] Open
Abstract
Cohesin is a ring-shaped, multi-subunit ATPase assembly that is fundamental to the spatiotemporal organization of chromosomes. The ring establishes a variety of chromosomal structures including sister chromatid cohesion and chromatin loops. At the core of the ring is a pair of highly conserved SMC (Structural Maintenance of Chromosomes) proteins, which are closed by the flexible kleisin subunit. In common with other essential SMC complexes including condensin and the SMC5-6 complex, cohesin encircles DNA inside its cavity, with the aid of HEAT (Huntingtin, elongation factor 3, protein phosphatase 2A and TOR) repeat auxiliary proteins. Through this topological embrace, cohesin is thought to establish a series of intra- and interchromosomal interactions by tethering more than one DNA molecule. Recent progress in biochemical reconstitution of cohesin provides molecular insights into how this ring complex topologically binds and mediates DNA-DNA interactions. Here, I review these studies and discuss how cohesin mediates such chromosome interactions.
Collapse
Affiliation(s)
- Yasuto Murayama
- Chromosome Biochemistry Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| |
Collapse
|
190
|
Piskadlo E, Oliveira RA. A Topology-Centric View on Mitotic Chromosome Architecture. Int J Mol Sci 2017; 18:E2751. [PMID: 29258269 PMCID: PMC5751350 DOI: 10.3390/ijms18122751] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/04/2023] Open
Abstract
Mitotic chromosomes are long-known structures, but their internal organization and the exact process by which they are assembled are still a great mystery in biology. Topoisomerase II is crucial for various aspects of mitotic chromosome organization. The unique ability of this enzyme to untangle topologically intertwined DNA molecules (catenations) is of utmost importance for the resolution of sister chromatid intertwines. Although still controversial, topoisomerase II has also been proposed to directly contribute to chromosome compaction, possibly by promoting chromosome self-entanglements. These two functions raise a strong directionality issue towards topoisomerase II reactions that are able to disentangle sister DNA molecules (in trans) while compacting the same DNA molecule (in cis). Here, we review the current knowledge on topoisomerase II role specifically during mitosis, and the mechanisms that directly or indirectly regulate its activity to ensure faithful chromosome segregation. In particular, we discuss how the activity or directionality of this enzyme could be regulated by the SMC (structural maintenance of chromosomes) complexes, predominantly cohesin and condensin, throughout mitosis.
Collapse
Affiliation(s)
- Ewa Piskadlo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Raquel A Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
191
|
Howard-Till R, Loidl J. Condensins promote chromosome individualization and segregation during mitosis, meiosis, and amitosis in Tetrahymena thermophila. Mol Biol Cell 2017; 29:466-478. [PMID: 29237819 PMCID: PMC6014175 DOI: 10.1091/mbc.e17-07-0451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 11/11/2022] Open
Abstract
Condensin is a protein complex with diverse functions in chromatin packaging and chromosome condensation and segregation. We studied condensin in the evolutionarily distant protist model Tetrahymena, which features noncanonical nuclear organization and divisions. In Tetrahymena, the germline and soma are partitioned into two different nuclei within a single cell. Consistent with their functional specializations in sexual reproduction and gene expression, condensins of the germline nucleus and the polyploid somatic nucleus are composed of different subunits. Mitosis and meiosis of the germline nucleus and amitotic division of the somatic nucleus are all dependent on condensins. In condensin-depleted cells, a chromosome condensation defect was most striking at meiotic metaphase, when Tetrahymena chromosomes are normally most densely packaged. Live imaging of meiotic divisions in condensin-depleted cells showed repeated nuclear stretching and contraction as the chromosomes failed to separate. Condensin depletion also fundamentally altered chromosome arrangement in the polyploid somatic nucleus: multiple copies of homologous chromosomes tended to cluster, consistent with a previous model of condensin suppressing default somatic pairing. We propose that failure to form discrete chromosome territories is the common cause of the defects observed in the absence of condensins.
Collapse
Affiliation(s)
- Rachel Howard-Till
- Department of Chromosome Biology, University of Vienna, 1190 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, 1190 Vienna, Austria
| |
Collapse
|
192
|
Eeftens JM, Bisht S, Kerssemakers J, Kschonsak M, Haering CH, Dekker C. Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism. EMBO J 2017; 36:3448-3457. [PMID: 29118001 PMCID: PMC5709735 DOI: 10.15252/embj.201797596] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/09/2022] Open
Abstract
Condensin, a conserved member of the SMC protein family of ring-shaped multi-subunit protein complexes, is essential for structuring and compacting chromosomes. Despite its key role, its molecular mechanism has remained largely unknown. Here, we employ single-molecule magnetic tweezers to measure, in real time, the compaction of individual DNA molecules by the budding yeast condensin complex. We show that compaction can proceed in large steps, driving DNA molecules into a fully condensed state against forces of up to 2 pN. Compaction can be reversed by applying high forces or adding buffer of high ionic strength. While condensin can stably bind DNA in the absence of ATP, ATP hydrolysis by the SMC subunits is required for rendering the association salt insensitive and for the subsequent compaction process. Our results indicate that the condensin reaction cycle involves two distinct steps, where condensin first binds DNA through electrostatic interactions before using ATP hydrolysis to encircle the DNA topologically within its ring structure, which initiates DNA compaction. The finding that both binding modes are essential for its DNA compaction activity has important implications for understanding the mechanism of chromosome compaction.
Collapse
Affiliation(s)
- Jorine M Eeftens
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Shveta Bisht
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Marc Kschonsak
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Christian H Haering
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
193
|
Eeftens J, Dekker C. Catching DNA with hoops—biophysical approaches to clarify the mechanism of SMC proteins. Nat Struct Mol Biol 2017; 24:1012-1020. [DOI: 10.1038/nsmb.3507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022]
|
194
|
Grosberg AY. Extruding Loops to Make Loopy Globules? Biophys J 2017; 110:2133-5. [PMID: 27224477 DOI: 10.1016/j.bpj.2016.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alexander Y Grosberg
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York.
| |
Collapse
|
195
|
Shintomi K, Hirano T. Mitotic Chromosome Assembly In Vitro: Functional Cross Talk between Nucleosomes and Condensins. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:157-164. [PMID: 29118204 DOI: 10.1101/sqb.2017.82.033639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mitotic chromosome is a macromolecular assembly that ensures error-free transmission of the genome during cell division. It has long been a big mystery how long stretches of DNA might be folded into rod-shaped chromosomes or how such an elaborate process might be accomplished at a mechanistic level. Cell-free extracts made from frog eggs offer a unique opportunity to address these questions by enabling mitotic chromosomes to be assembled in a test tube. Moreover, the core part of the chromosome assembly reaction can now be reconstituted with a limited number of purified factors. A combination of these in vitro assays makes it possible not only to prepare a complete list of proteins required for chromosome assembly but also to dissect functions of individual proteins and their cooperation with unparalleled clarity. Emerging lines of evidence underscore the paramount importance of condensins in building mitotic chromosomes and shed new light on the functional cross talk between nucleosomes and condensins in this process.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
196
|
Affiliation(s)
- Kim Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
197
|
Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W, Haering CH, Mirny L, Spitz F. Two independent modes of chromatin organization revealed by cohesin removal. Nature 2017; 551:51-56. [PMID: 29094699 PMCID: PMC5687303 DOI: 10.1038/nature24281] [Citation(s) in RCA: 797] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
Abstract
Imaging and chromosome conformation capture studies have revealed several layers of chromosome organization, including segregation into megabase-sized active and inactive compartments, and partitioning into sub-megabase domains (TADs). It remains unclear, however, how these layers of organization form, interact with one another and influence genome function. Here we show that deletion of the cohesin-loading factor Nipbl in mouse liver leads to a marked reorganization of chromosomal folding. TADs and associated Hi-C peaks vanish globally, even in the absence of transcriptional changes. By contrast, compartmental segregation is preserved and even reinforced. Strikingly, the disappearance of TADs unmasks a finer compartment structure that accurately reflects the underlying epigenetic landscape. These observations demonstrate that the three-dimensional organization of the genome results from the interplay of two independent mechanisms: cohesin-independent segregation of the genome into fine-scale compartments, defined by chromatin state; and cohesin-dependent formation of TADs, possibly by loop extrusion, which helps to guide distant enhancers to their target genes.
Collapse
Affiliation(s)
- Wibke Schwarzer
- Developmental Biology Unit. European Molecular Biology Laboratory. 69117 Heidelberg, Germany
| | - Nezar Abdennur
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts USA
| | - Anton Goloborodko
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts USA
| | - Aleksandra Pekowska
- Genome Biology Unit. European Molecular Biology Laboratory. 69117 Heidelberg, Germany
| | - Geoffrey Fudenberg
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts USA
| | - Yann Loe-Mie
- Institut Pasteur, (Epi)genomics of Animal Development Unit, Developmental and Stem Cell Biology Department. Institut Pasteur. 75015 Paris, France
- CNRS, UMR3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Nuno A Fonseca
- European Bioinformatics Institute. European Molecular Biology Laboratory. Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Wolfgang Huber
- Genome Biology Unit. European Molecular Biology Laboratory. 69117 Heidelberg, Germany
| | - Christian H Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Leonid Mirny
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts USA
| | - Francois Spitz
- Developmental Biology Unit. European Molecular Biology Laboratory. 69117 Heidelberg, Germany
- Genome Biology Unit. European Molecular Biology Laboratory. 69117 Heidelberg, Germany
- Institut Pasteur, (Epi)genomics of Animal Development Unit, Developmental and Stem Cell Biology Department. Institut Pasteur. 75015 Paris, France
- CNRS, UMR3738, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
198
|
Oligomerization and ATP stimulate condensin-mediated DNA compaction. Sci Rep 2017; 7:14279. [PMID: 29079757 PMCID: PMC5660149 DOI: 10.1038/s41598-017-14701-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/16/2017] [Indexed: 11/09/2022] Open
Abstract
Large-scale chromatin remodeling during mitosis is catalyzed by a heteropentameric enzyme known as condensin. The DNA-organizing mechanism of condensin depends on the energy of ATP hydrolysis but how this activity specifically promotes proper compaction and segregation of chromosomes during mitosis remains poorly understood. Purification of budding yeast condensin reveals that it occurs not only in the classical heteropentameric "monomer" form, but that it also adopts much larger configurations consistent with oligomerization. We use a single-DNA magnetic tweezers assay to study compaction of DNA by yeast condensin, with the result that only the multimer shows ATP-enhanced DNA-compaction. The compaction reaction involves step-like events of 200 nm (600 bp) size and is strongly suppressed by forces above 1 pN, consistent with a loop-capture mechanism for initial binding and compaction. The compaction reactions are largely insensitive to DNA torsional stress. Our results suggest a physiological role for oligomerized condensin in driving gradual chromatin compaction by step-like and slow "creeping" dynamics consistent with a loop-extrusion mechanism.
Collapse
|
199
|
Benedetti F, Racko D, Dorier J, Burnier Y, Stasiak A. Transcription-induced supercoiling explains formation of self-interacting chromatin domains in S. pombe. Nucleic Acids Res 2017; 45:9850-9859. [PMID: 28973473 PMCID: PMC5622301 DOI: 10.1093/nar/gkx716] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022] Open
Abstract
The question of how self-interacting chromatin domains in interphase chromosomes are structured and generated dominates current discussions on eukaryotic chromosomes. Numerical simulations using standard polymer models have been helpful in testing the validity of various models of chromosome organization. Experimental contact maps can be compared with simulated contact maps and thus verify how good is the model. With increasing resolution of experimental contact maps, it became apparent though that active processes need to be introduced into models to recapitulate the experimental data. Since transcribing RNA polymerases are very strong molecular motors that induce axial rotation of transcribed DNA, we present here models that include such rotational motors. We also include into our models swivels and sites for intersegmental passages that account for action of DNA topoisomerases releasing torsional stress. Using these elements in our models, we show that transcription-induced supercoiling generated in the regions with divergent-transcription and supercoiling relaxation occurring between these regions are sufficient to explain formation of self-interacting chromatin domains in chromosomes of fission yeast (S. pombe).
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,Vital-IT, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Dusan Racko
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Polymer Institute of the Slovak Academy of Sciences, 842 36 Bratislava, Slovakia
| | - Julien Dorier
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,Vital-IT, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Yannis Burnier
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,Institute of Theoretical Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
200
|
Albritton SE, Ercan S. Caenorhabditis elegans Dosage Compensation: Insights into Condensin-Mediated Gene Regulation. Trends Genet 2017; 34:41-53. [PMID: 29037439 DOI: 10.1016/j.tig.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 01/05/2023]
Abstract
Recent work demonstrating the role of chromosome organization in transcriptional regulation has sparked substantial interest in the molecular mechanisms that control chromosome structure. Condensin, an evolutionarily conserved multisubunit protein complex, is essential for chromosome condensation during cell division and functions in regulating gene expression during interphase. In Caenorhabditis elegans, a specialized condensin forms the core of the dosage compensation complex (DCC), which specifically binds to and represses transcription from the hermaphrodite X chromosomes. DCC serves as a clear paradigm for addressing how condensins target large chromosomal domains and how they function to regulate chromosome structure and transcription. Here, we discuss recent research on C. elegans DCC in the context of canonical condensin mechanisms as have been studied in various organisms.
Collapse
Affiliation(s)
- Sarah Elizabeth Albritton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|