2051
|
Abstract
There is a growing awareness that natural vitamins (with the only exception of pantothenic acid) positively or negatively modulate the synthesis of some cytokines and growth factors in the CNS, and various mammalian cells and organs. As natural vitamins are micronutrients in the human diet, studying their effects can be considered a part of nutritional genomics or nutrigenomics. A given vitamin selectively modifies the synthesis of only a few cytokines and/or growth factors, although the same cytokine and/or growth factor may be regulated by more than one vitamin. These effects seem to be independent of the effects of vitamins as coenzymes and/or reducing agents, and seem to occur mainly at genomic and/or epigenetic level, and/or by modulating NF-kappaB activity. Although most of the studies reviewed here have been based on cultured cell lines, but their findings have been confirmed by some key in vivo studies. The CNS seems to be particularly involved and is severely affected by most avitaminoses, especially in the case of vitamin B(12). However, the vitamin-induced changes in cytokine and growth factor synthesis may initiate a cascade of events that can affect the function, differentiation, and morphology of the cells and/or structures not only in the CNS, but also elsewhere because most natural vitamins, cytokines, and growth factors cross the blood-brain barrier. As cytokines are essential to CNS-immune and CNS-hormone system communications, natural vitamins also interact with these circuits. Further studies of such vitamin-mediated effects could lead to vitamins being used for the treatment of diseases which, although not true avitaminoses, involve an imbalance in cytokine and/or growth factor synthesis.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Laboratory of Neuropathology, 'Città Studi' Department, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.
| |
Collapse
|
2052
|
Guibert S, Forné T, Weber M. Dynamic regulation of DNA methylation during mammalian development. Epigenomics 2009; 1:81-98. [DOI: 10.2217/epi.09.5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
DNA methylation occurs on cytosines, is catalyzed by DNA methyltransferases (DNMTs), and is present at high levels in all vertebrates. DNA methylation plays essential roles in maintaining genome integrity, but its implication in orchestrating gene-expression patterns remained a matter of debate for a long time. Recent efforts to map DNA methylation at the genome level helped to get a better picture of the distribution of this mark and revealed that DNA methylation is more dynamic between cell types than previously anticipated. In particular, these datasets showed that DNA methylation is targeted to important developmental genes and might act as a barrier to prevent accidental cellular reprogramming. In this review, we will discuss the distribution and function of DNA methylation in mammalian genomes, with particular emphasis on the waves of global DNA methylation reprogramming occurring in early embryos and primordial germ cells.
Collapse
Affiliation(s)
- Sylvain Guibert
- Institute of Molecular Genetics, CNRS UMR 5535, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Thierry Forné
- Institute of Molecular Genetics, CNRS UMR 5535, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Michael Weber
- Institute of Molecular Genetics, CNRS UMR 5535, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
2053
|
Krauss V, Eisenhardt C, Unger T. The genome of the stick insect Medauroidea extradentata is strongly methylated within genes and repetitive DNA. PLoS One 2009; 4:e7223. [PMID: 19787064 PMCID: PMC2747282 DOI: 10.1371/journal.pone.0007223] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 09/05/2009] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cytosine DNA methylation has been detected in many eukaryotic organisms and has been shown to play an important role in development and disease of vertebrates including humans. Molecularly, DNA methylation appears to be involved in the suppression of initiation or of elongation of transcription. Resulting organismal functions are suggested to be the regulation of gene silencing, the suppression of transposon activity and the suppression of initiation of transcription within genes. However, some data concerning the distribution of methylcytosine in insect species appear to contradict such roles. PRINCIPAL FINDINGS By comparison of MspI and HpaII restriction patterns in genomic DNA of several insects we show that stick insects (Phasmatodea) have highly methylated genomes. We isolated methylated DNA fragments from the Vietnamese Walking Stick Medauroidea extradentata (formerly known as Baculum extradentatum) and demonstrated that most of the corresponding sequences are repetitive. Bisulfite sequencing of one of these fragments and of parts of conserved protein-coding genes revealed a methylcytosine content of 12.6%, mostly found at CpG, but also at CpT and CpA dinucleotides. Corresponding depletions of CpG and enrichments of TpG and CpA dinucleotides in some highly conserved protein-coding genes of Medauroidea reach a similar degree as in vertebrates and show that CpG methylation has occurred in the germline of these insects. CONCLUSIONS Using four different methods, we demonstrate that the genome of Medauroidea extradentata is strongly methylated. Both repetitive DNA and coding genes appear to contain high levels of methylcytosines. These results argue for similar functions of DNA methylation in stick insects as those already known for vertebrates.
Collapse
Affiliation(s)
- Veiko Krauss
- Department of Genetics, Institute of Biology II, University of Leipzig, Leipzig, Germany.
| | | | | |
Collapse
|
2054
|
Interindividual variation in epigenomic phenomena in humans. Mamm Genome 2009; 20:604-11. [PMID: 19763687 DOI: 10.1007/s00335-009-9219-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 08/18/2009] [Indexed: 12/20/2022]
Abstract
Our knowledge of regulatory mechanisms of gene expression and other chromosomal processes related to DNA methylation and chromatin state is continuing to grow at a rapid pace. Understanding how these epigenomic phenomena vary between individuals will have an impact on understanding their broader role in determining variation in gene expression and biochemical, physiological, and behavioural phenotypes. In this review we survey recent progress in this area, focusing on data available from humans. We highlight the role of obligatory (sequence-dependent) epigenomic variation as an important mechanism for generating interindividual variation that could impact our understanding of the mechanistic basis of complex trait architecture.
Collapse
|
2055
|
Yamashita S, Hosoya K, Gyobu K, Takeshima H, Ushijima T. Development of a novel output value for quantitative assessment in methylated DNA immunoprecipitation-CpG island microarray analysis. DNA Res 2009; 16:275-86. [PMID: 19767598 PMCID: PMC2762412 DOI: 10.1093/dnares/dsp017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In DNA methylation microarray analysis, quantitative assessment of intermediate methylation levels in samples with various global methylation levels is still difficult. Here, specifically for methylated DNA immunoprecipitation-CpG island (CGI) microarray analysis, we developed a new output value. The signal log ratio reflected the global methylation levels, but had only moderate linear correlation (r = 0.72) with the fraction of DNA molecules immunoprecipitated. By multiplying the signal log ratio using a coefficient obtained from the probability value that took account of signals in neighbouring probes, its linearity was markedly improved (r = 0.94). The new output value, Me value, reflected the global methylation level, had a strong correlation also with the fraction of methylated CpG sites obtained by bisulphite sequencing (r = 0.88), and had an accuracy of 71.8 and 83.8% in detecting completely methylated and unmethylated CGIs. Analysis of gastric cancer cell lines using the Me value showed that methylation of CGIs in promoters and gene bodies was associated with low and high, respectively, gene expression. The degree of demethylation of promoter CGIs after 5-aza-2'-deoxycytidine treatment had no association with that of induction of gene expression. The Me value was considered to be useful for analysis of intermediate methylation levels of CGIs.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Carcinogenesis Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
2056
|
Abstract
Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Global changes in the epigenetic landscape are a hallmark of cancer. The initiation and progression of cancer, traditionally seen as a genetic disease, is now realized to involve epigenetic abnormalities along with genetic alterations. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer including DNA methylation, histone modifications, nucleosome positioning and non-coding RNAs, specifically microRNA expression. The reversible nature of epigenetic aberrations has led to the emergence of the promising field of epigenetic therapy, which is already making progress with the recent FDA approval of three epigenetic drugs for cancer treatment. In this review, we discuss the current understanding of alterations in the epigenetic landscape that occur in cancer compared with normal cells, the roles of these changes in cancer initiation and progression, including the cancer stem cell model, and the potential use of this knowledge in designing more effective treatment strategies.
Collapse
Affiliation(s)
- Shikhar Sharma
- Department of Urology, Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9181, USA
| | | | | |
Collapse
|
2057
|
Chordate roots of the vertebrate nervous system: expanding the molecular toolkit. Nat Rev Neurosci 2009; 10:736-46. [PMID: 19738625 DOI: 10.1038/nrn2703] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vertebrate brain is highly complex with millions to billions of neurons. During development, the neural plate border region gives rise to the neural crest, cranial placodes and, in anamniotes, to Rohon-Beard sensory neurons, whereas the boundary region of the midbrain and hindbrain develops organizer properties. Comparisons of developmental gene expression and neuroanatomy between vertebrates and the basal chordate amphioxus, which has only thousands of neurons and lacks a neural crest, most placodes and a midbrain-hindbrain organizer, indicate that these vertebrate features were built on a foundation already present in the ancestral chordate. Recent advances in genomics have provided insights into the elaboration of the molecular toolkit at the invertebrate-vertebrate transition that may have facilitated the evolution of these vertebrate characteristics.
Collapse
|
2058
|
Akbarian S. The molecular pathology of schizophrenia--focus on histone and DNA modifications. Brain Res Bull 2009; 83:103-7. [PMID: 19729053 DOI: 10.1016/j.brainresbull.2009.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/15/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
Dysfunction of cerebral cortex and other brain regions in schizophrenia is often accompanied by dysregulated expression of numerous genes. However, the underlying genetic risk architecture remains unclear for a large majority of cases. Therefore, the study of epigenetic regulators of gene expression, including covalent modifications of DNA and nucleosome core histones, offers an attractive alternative to further explore the molecular pathology of schizophrenia beyond the level of RNA quantification. Several studies reported alterations in DNA cytosine methylation and histone methylation at specific genes and promoters in postmortem brain of subjects with schizophrenia, often in conjunction with changes in levels of the corresponding RNAs. While evidence for such "epigenetic dysregulation" is increasing, many of the reported alterations await independent replication. Interestingly, studies across the lifespan indicate that DNA and histone methylation markings are developmentally regulated in human cerebral cortex, suggesting that at least some of the epigenetic changes in the brain of adult subjects with schizophrenia reflect disordered neurodevelopment.
Collapse
Affiliation(s)
- Schahram Akbarian
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmonst Street, Worcester, MA 01604, United States.
| |
Collapse
|
2059
|
Wang ZG, Wu JX. [DNA methyltransferases: classification, functions and research progress]. YI CHUAN = HEREDITAS 2009; 31:903-12. [PMID: 19819843 DOI: 10.3724/sp.j.1005.2009.00903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DNA methylation is a postreplicative modification occurred in most prokaryotic and eukaryotic genomes, which has a variety of important biological functions including regulation of gene expression, gene imprinting, preservation of chromosomal integrity, and X-chromosome inactivation. According to their structure and functions, DNA methyltransferases (Dnmts) are divided into two major families in mammalian cells: maintenance methyltransferase (Dnmt1) and de novo methyltransferases (Dnmt3a, Dnmt3b, and Dnmt3L). In addition, Dnmt2 also displays weak DNA methyltransferase catalytic activity, but newly founded function is to methylate cytosine 38 in the anti-codon loop of tRNAAsp. These Dnmts are crucial for mammalian growth and development. Dnmts deficiency will lead to embryonic development defects, cancer, and other diseases. Therefore, Dnmts could be important therapeutical targets. This article summarizes the classification, function, and recent research progress in DNA methyltransferases.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- Department of Biochemistry, Capital Institute of Pediatrics, Beijing, China.
| | | |
Collapse
|
2060
|
Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLoS One 2009; 4:e6617. [PMID: 19672297 PMCID: PMC2719870 DOI: 10.1371/journal.pone.0006617] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 07/06/2009] [Indexed: 11/19/2022] Open
Abstract
DNA methylation [1], [2] is capable of modulating coordinate expression of large numbers of genes across many different pathways, and may therefore warrant investigation for their potential role between genes and disease phenotype. In a rare set of monozygotic twins discordant for Alzheimer's disease (AD), significantly reduced levels of DNA methylation were observed in temporal neocortex neuronal nuclei of the AD twin. These findings are consistent with the hypothesis that epigenetic mechanisms may mediate at the molecular level the effects of life events on AD risk, and provide, for the first time, a potential explanation for AD discordance despite genetic similarities.
Collapse
|
2061
|
Audit B, Zaghloul L, Vaillant C, Chevereau G, d'Aubenton-Carafa Y, Thermes C, Arneodo A. Open chromatin encoded in DNA sequence is the signature of 'master' replication origins in human cells. Nucleic Acids Res 2009; 37:6064-75. [PMID: 19671527 PMCID: PMC2764438 DOI: 10.1093/nar/gkp631] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions approximately 300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as 'master' replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these 'master' origins are likely to play a key role in genome dynamics during evolution and in pathological situations.
Collapse
|
2062
|
Zhang DX, Stromberg AJ, Spiering MJ, Schardl CL. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures. Fungal Genet Biol 2009; 46:517-30. [DOI: 10.1016/j.fgb.2009.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 03/08/2009] [Accepted: 03/30/2009] [Indexed: 11/30/2022]
|
2063
|
Abstract
Eukaryotic cells use elaborate molecular mechanisms to rapidly activate signal-dependent gene expression. New work provides fresh insights into these mechanisms by demonstrating that CpG islands in promoters are nucleosome-destabilizing elements and can facilitate the establishment of an unusual poised transcriptional state (Ramirez-Carrozzi et al., 2009; Hargreaves et al., 2009).
Collapse
|
2064
|
Ramirez-Carrozzi VR, Braas D, Bhatt DM, Cheng CS, Hong C, Doty KR, Black JC, Hoffmann A, Carey M, Smale ST. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 2009; 138:114-28. [PMID: 19596239 DOI: 10.1016/j.cell.2009.04.020] [Citation(s) in RCA: 451] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/06/2009] [Accepted: 04/08/2009] [Indexed: 11/30/2022]
Abstract
We describe a broad mechanistic framework for the transcriptional induction of mammalian primary response genes by Toll-like receptors and other stimuli. One major class of primary response genes is characterized by CpG-island promoters, which facilitate promiscuous induction from constitutively active chromatin without a requirement for SWI/SNF nucleosome remodeling complexes. The low nucleosome occupancy at promoters in this class can be attributed to the assembly of CpG islands into unstable nucleosomes, which may lead to SWI/SNF independence. Another major class consists of non-CpG-island promoters that assemble into stable nucleosomes, resulting in SWI/SNF dependence and a requirement for transcription factors that promote selective nucleosome remodeling. Some stimuli, including serum and tumor necrosis factor-alpha, exhibit a strong bias toward activation of SWI/SNF-independent CpG-island genes. In contrast, interferon-beta is strongly biased toward SWI/SNF-dependent non-CpG-island genes. By activating a diverse set of transcription factors, Toll-like receptors induce both classes and others for an optimal response to microbial pathogens.
Collapse
Affiliation(s)
- Vladimir R Ramirez-Carrozzi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2065
|
Lemaitre C, Zaghloul L, Sagot MF, Gautier C, Arneodo A, Tannier E, Audit B. Analysis of fine-scale mammalian evolutionary breakpoints provides new insight into their relation to genome organisation. BMC Genomics 2009; 10:335. [PMID: 19630943 PMCID: PMC2722678 DOI: 10.1186/1471-2164-10-335] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 07/24/2009] [Indexed: 11/21/2022] Open
Abstract
Background The Intergenic Breakage Model, which is the current model of structural genome evolution, considers that evolutionary rearrangement breakages happen with a uniform propensity along the genome but are selected against in genes, their regulatory regions and in-between. However, a growing body of evidence shows that there exists regions along mammalian genomes that present a high susceptibility to breakage. We reconsidered this question taking advantage of a recently published methodology for the precise detection of rearrangement breakpoints based on pairwise genome comparisons. Results We applied this methodology between the genome of human and those of five sequenced eutherian mammals which allowed us to delineate evolutionary breakpoint regions along the human genome with a finer resolution (median size 26.6 kb) than obtained before. We investigated the distribution of these breakpoints with respect to genome organisation into domains of different activity. In agreement with the Intergenic Breakage Model, we observed that breakpoints are under-represented in genes. Surprisingly however, the density of breakpoints in small intergenes (1 per Mb) appears significantly higher than in gene deserts (0.1 per Mb). More generally, we found a heterogeneous distribution of breakpoints that follows the organisation of the genome into isochores (breakpoints are more frequent in GC-rich regions). We then discuss the hypothesis that regions with an enhanced susceptibility to breakage correspond to regions of high transcriptional activity and replication initiation. Conclusion We propose a model to describe the heterogeneous distribution of evolutionary breakpoints along human chromosomes that combines natural selection and a mutational bias linked to local open chromatin state.
Collapse
Affiliation(s)
- Claire Lemaitre
- Université de Bordeaux, Centre de Bioinformatique - Génomique Fonctionnelle Bordeaux, F-33000 Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
2066
|
Cannistraro VJ, Taylor JS. Acceleration of 5-methylcytosine deamination in cyclobutane dimers by G and its implications for UV-induced C-to-T mutation hotspots. J Mol Biol 2009; 392:1145-57. [PMID: 19631218 DOI: 10.1016/j.jmb.2009.07.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
Sunlight-induced C-->T mutation hotspots occur most frequently at methylated CpG sites in tumor suppressor genes and are thought to arise from translesion synthesis past deaminated cyclobutane pyrimidine dimers (CPDs). While it is known that methylation enhances CPD formation in sunlight, little is known about the effect of methylation and sequence context on the deamination of 5-methylcytosine ((m)C) and its contribution to mutagenesis at these hotspots. Using an enzymatic method, we have determined the yields and deamination rates of C and (m)C in CPDs and find that the frequency of UVB-induced CPDs correlates with the oxidation potential of the flanking bases. We also found that the deamination of T(m)C and (m)CT CPDs is about 25-fold faster when flanked by G's than by A's, C's or T's in duplex DNA and appears to involve catalysis by the O6 group of guanine. In contrast, the first deamination of either C or (m)C in AC(m)CG with a flanking G was much slower (t(1/2) >250 h) and rate limiting, while the second deamination was much faster. The observation that C(m)CG dimers deaminate very slowly but at the same time correlate with C-->T mutation hotspots suggests that their repair must be slow enough to allow sufficient time for deamination. There are, however, a greater number of single C-->T mutations than CC-->TT mutations at C(m)CG sites even though the second deamination is very fast, which could reflect faster repair of doubly deaminated dimers.
Collapse
|
2067
|
Cotton AM, Avila L, Penaherrera MS, Affleck JG, Robinson WP, Brown CJ. Inactive X chromosome-specific reduction in placental DNA methylation. Hum Mol Genet 2009; 18:3544-52. [PMID: 19586922 PMCID: PMC2742397 DOI: 10.1093/hmg/ddp299] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome-wide levels of DNA methylation vary between tissues, and compared with other tissues, the placenta has been reported to demonstrate a global decrease in methylation as well as decreased methylation of X-linked promoters. Methylation is one of many features that differentiate the active and inactive X, and it is well established that CpG island promoters on the inactive X are hypermethylated. We now report a detailed analysis of methylation at different regions across the X in male and female placenta and blood. A significant (P < 0.001) placental hypomethylation of LINE1 elements was observed in both males and females. Relative to blood placental promoter hypomethylation was only observed for X-linked, not autosomal promoters, and was significant for females (P < 0.0001) not males (P = 0.9266). In blood, X-linked CpG island promoters were shown to have moderate female methylation (66% across 70 assays) and low (23%) methylation in males. A similar methylation pattern in blood was observed for approximately 20% of non-island promoters as well as 50% of the intergenic or intragenic CpG islands, the latter is likely due to the presence of unannotated promoters. Both intragenic and intergenic regions showed similarly high methylation levels in male and female blood (68 and 66%) while placental methylation of these regions was lower, particularly in females. Thus placental hypomethylation relative to blood is observed globally at repetitive elements as well as across the X. The decrease in X-linked placental methylation is consistently greater in females than males and implicates an inactive X specific loss of methylation in the placenta.
Collapse
Affiliation(s)
- Allison M Cotton
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
2068
|
Elango N, Hunt BG, Goodisman MAD, Yi SV. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc Natl Acad Sci U S A 2009; 106:11206-11. [PMID: 19556545 PMCID: PMC2708677 DOI: 10.1073/pnas.0900301106] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Indexed: 11/18/2022] Open
Abstract
The recent, unexpected discovery of a functional DNA methylation system in the genome of the social bee Apis mellifera underscores the potential importance of DNA methylation in invertebrates. The extent of genomic DNA methylation and its role in A. mellifera remain unknown, however. Here we show that genes in A. mellifera can be divided into 2 distinct classes, one with low-CpG dinucleotide content and the other with high-CpG dinucleotide content. This dichotomy is explained by the gradual depletion of CpG dinucleotides, a well-known consequence of DNA methylation. The loss of CpG dinucleotides associated with DNA methylation also may explain the unusual mutational patterns seen in A. mellifera that lead to AT-rich regions of the genome. A detailed investigation of this dichotomy implicates DNA methylation in A. mellifera development. High-CpG genes, which are predicted to be hypomethylated in germlines, are enriched with functions associated with developmental processes, whereas low-CpG genes, predicted to be hypermethylated in germlines, are enriched with functions associated with basic biological processes. Furthermore, genes more highly expressed in one caste than another are overrepresented among high-CpG genes. Our results highlight the potential significance of epigenetic modifications, such as DNA methylation, in developmental processes in social insects. In particular, the pervasiveness of DNA methylation in the genome of A. mellifera provides fertile ground for future studies of phenotypic plasticity and genomic imprinting.
Collapse
Affiliation(s)
- Navin Elango
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332
| | - Brendan G. Hunt
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332
| | | | - Soojin V. Yi
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
2069
|
High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res 2009; 19:1593-605. [PMID: 19581485 DOI: 10.1101/gr.095190.109] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA methylation stabilizes developmentally programmed gene expression states. Aberrant methylation is associated with disease progression and is a common feature of cancer genomes. Presently, few methods enable quantitative, large-scale, single-base resolution mapping of DNA methylation states in desired regions of a complex mammalian genome. Here, we present an approach that combines array-based hybrid selection and massively parallel bisulfite sequencing to profile DNA methylation in genomic regions spanning hundreds of thousands of bases. This single molecule strategy enables methylation variable positions to be quantitatively examined with high sampling precision. Using bisulfite capture, we assessed methylation patterns across 324 randomly selected CpG islands (CGI) representing more than 25,000 CpG sites. A single lane of Illumina sequencing permitted methylation states to be definitively called for >90% of target sties. The accuracy of the hybrid-selection approach was verified using conventional bisulfite capillary sequencing of cloned PCR products amplified from a subset of the selected regions. This confirmed that even partially methylated states could be successfully called. A comparison of human primary and cancer cells revealed multiple differentially methylated regions. More than 25% of islands showed complex methylation patterns either with partial methylation states defining the entire CGI or with contrasting methylation states appearing in specific regional blocks within the island. We observed that transitions in methylation state often correlate with genomic landmarks, including transcriptional start sites and intron-exon junctions. Methylation, along with specific histone marks, was enriched in exonic regions, suggesting that chromatin states can foreshadow the content of mature mRNAs.
Collapse
|
2070
|
Pogribny IP, Beland FA. DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci 2009; 66:2249-61. [PMID: 19326048 PMCID: PMC11115809 DOI: 10.1007/s00018-009-0015-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/25/2009] [Accepted: 03/06/2009] [Indexed: 12/15/2022]
Abstract
The pathogenesis of any given human disease is a complex multifactorial process characterized by many biologically significant and interdependent alterations. One of these changes, specific to a wide range of human pathologies, is DNA hypomethylation. DNA hypomethylation signifies one of the major DNA methylation states that refers to a relative decrease from the "normal" methylation level. It is clear that disease by itself can induce hypomethylation of DNA; however, a decrease in DNA methylation can also have an impact on the predisposition to pathological states and disease development. This review presents evidence suggesting the involvement of DNA hypomethylation in the pathogenesis of several major human pathologies, including cancer, atherosclerosis, Alzheimer's disease, and psychiatric disorders.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | |
Collapse
|
2071
|
Stam M. Paramutation: a heritable change in gene expression by allelic interactions in trans. MOLECULAR PLANT 2009; 2:578-588. [PMID: 19825640 DOI: 10.1093/mp/ssp020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Epigenetic gene regulation involves the stable propagation of gene activity states through mitotic, and sometimes even meiotic, cell divisions without changes in DNA sequence. Paramutation is an epigenetic phenomenon involving changes in gene expression that are stably transmitted through mitosis as well as meiosis. These heritable changes are mediated by in trans interactions between homologous DNA sequences on different chromosomes. During these in trans interactions, epigenetic information is transferred from one allele of a gene to another allele of the same gene, resulting in a change in gene expression. Although paramutation was initially discovered in plants, it has recently been observed in mammals as well, suggesting that the mechanisms underlying paramutation might be evolutionarily conserved. Recent findings point to a crucial role for small RNAs in the paramutation process. In mice, small RNAs appear sufficient to induce paramutation, whereas in maize, it seems not to be the only player in the process. In this review, potential mechanisms are discussed in relation to the various paramutation phenomena.
Collapse
Affiliation(s)
- Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
2072
|
Iyer LM, Tahiliani M, Rao A, Aravind L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 2009; 8:1698-710. [PMID: 19411852 DOI: 10.4161/cc.8.11.8580] [Citation(s) in RCA: 307] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Modified bases in nucleic acids present a layer of information that directs biological function over and beyond the coding capacity of the conventional bases. While a large number of modified bases have been identified, many of the enzymes generating them still remain to be discovered. Recently, members of the 2-oxoglutarate- and iron(II)-dependent dioxygenase super-family, which modify diverse substrates from small molecules to biopolymers, were predicted and subsequently confirmed to catalyze oxidative modification of bases in nucleic acids. Of these, two distinct families, namely the AlkB and the kinetoplastid base J binding proteins (JBP) catalyze in situ hydroxylation of bases in nucleic acids. Using sensitive computational analysis of sequences, structures and contextual information from genomic structure and protein domain architectures, we report five distinct families of 2-oxoglutarate- and iron(II)-dependent dioxygenase that we predict to be involved in nucleic acid modifications. Among the DNA-modifying families, we show that the dioxygenase domains of the kinetoplastid base J-binding proteins belong to a larger family that includes the Tet proteins, prototyped by the human oncogene Tet1, and proteins from basidiomycete fungi, chlorophyte algae, heterolobosean amoeboflagellates and bacteriophages. We present evidence that some of these proteins are likely to be involved in oxidative modification of the 5-methyl group of cytosine leading to the formation of 5-hydroxymethylcytosine. The Tet/JBP homologs from basidiomycete fungi such as Laccaria and Coprinopsis show large lineage-specific expansions and a tight linkage with genes encoding a novel and distinct family of predicted transposases, and a member of the Maelstrom-like HMG family. We propose that these fungal members are part of a mobile transposon. To the best of our knowledge, this is the first report of a eukaryotic transposable element that encodes its own DNA-modification enzyme with a potential regulatory role. Through a wider analysis of other poorly characterized DNA-modifying enzymes we also show that the phage Mu Mom-like proteins, which catalyze the N6-carbamoylmethylation of adenines, are also linked to diverse families of bacterial transposases, suggesting that DNA modification by transposable elements might have a more general presence than previously appreciated. Among the other families of 2-oxoglutarate- and iron(II)-dependent dioxygenases identified in this study, one which is found in algae, is predicted to mainly comprise of RNA-modifying enzymes and shows a striking diversity in protein domain architectures suggesting the presence of RNA modifications with possibly unique adaptive roles. The results presented here are likely to provide the means for future investigation of unexpected epigenetic modifications, such as hydroxymethyl cytosine, that could profoundly impact our understanding of gene regulation and processes such as DNA demethylation.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
2073
|
Paschos K, Smith P, Anderton E, Middeldorp JM, White RE, Allday MJ. Epstein-barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim. PLoS Pathog 2009; 5:e1000492. [PMID: 19557159 PMCID: PMC2695769 DOI: 10.1371/journal.ppat.1000492] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 05/28/2009] [Indexed: 12/31/2022] Open
Abstract
In human B cells infected with Epstein-Barr virus (EBV), latency-associated virus gene products inhibit expression of the pro-apoptotic Bcl-2-family member Bim and enhance cell survival. This involves the activities of the EBV nuclear proteins EBNA3A and EBNA3C and appears to be predominantly directed at regulating Bim mRNA synthesis, although post-transcriptional regulation of Bim has been reported. Here we show that protein and RNA stability make little or no contribution to the EBV-associated repression of Bim in latently infected B cells. However, treatment of cells with inhibitors of histone deacetylase (HDAC) and DNA methyltransferase (DNMT) enzymes indicated that epigenetic mechanisms are involved in the down-regulation of Bim. This was initially confirmed by chromatin immunoprecipitation analysis of histone acetylation levels on the Bim promoter. Consistent with this, methylation-specific PCR (MSP) and bisulphite sequencing of regions within the large CpG island located at the 5′ end of Bim revealed significant methylation of CpG dinucleotides in all EBV-positive, but not EBV-negative B cells examined. Genomic DNA samples exhibiting methylation of the Bim promoter included extracts from a series of explanted EBV-positive Burkitt's lymphoma (BL) biopsies. Subsequent analyses of the histone modification H3K27-Me3 (trimethylation of histone H3 lysine 27) and CpG methylation at loci throughout the Bim promoter suggest that in EBV-positive B cells repression of Bim is initially associated with this repressive epigenetic histone mark gradually followed by DNA methylation at CpG dinucleotides. We conclude that latent EBV initiates a chain of events that leads to epigenetic repression of the tumour suppressor gene Bim in infected B cells and their progeny. This reprogramming of B cells could have important implications for our understanding of EBV persistence and the pathogenesis of EBV-associated disease, in particular BL. Bim is a cellular inducer of programmed cell death (pcd), so the level of Bim is a critical regulator of lymphocyte survival and reduced expression enhances lymphomagenesis in mice and humans. Regulation of Bim is uniquely important in the pathogenesis of Burkitt's lymphoma (BL), since in this human childhood cancer the Myc gene is deregulated by chromosomal translocation and Myc can induce pcd via Bim. Latent EBV represses Bim expression, and here we have discovered that this involves mechanisms that reprogramme B cells and their progeny. EBV does not significantly alter Bim protein or RNA stability, but relief of EBV-mediated repression by specific inhibitors suggested it involves modifications to chromatin. Consistent with this, reduced histone acetylation and increased levels of DNA methylation on the Bim promoter were found after latent EBV infection. Further analysis suggested that the DNA methylation is preceded by repression mediated via a polycomb protein repressive complex targeting the Bim gene. By initiating the heritable suppression of Bim, EBV increases the likelihood of B lymphomagenesis in general and BL in particular. This reprogramming of B cells by EBV may also play a role in the development of other chronic disorders such as autoimmune disease and suggests a general mechanism that could contribute to the pathogenesis associated with other microorganisms.
Collapse
Affiliation(s)
- Kostas Paschos
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paul Smith
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Emma Anderton
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jaap M. Middeldorp
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Robert E. White
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Martin J. Allday
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
2074
|
Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10:295-304. [PMID: 19308066 DOI: 10.1038/nrg2540] [Citation(s) in RCA: 1628] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both DNA methylation and histone modification are involved in establishing patterns of gene repression during development. Certain forms of histone methylation cause local formation of heterochromatin, which is readily reversible, whereas DNA methylation leads to stable long-term repression. It has recently become apparent that DNA methylation and histone modification pathways can be dependent on one another, and that this crosstalk can be mediated by biochemical interactions between SET domain histone methyltransferases and DNA methyltransferases. Relationships between DNA methylation and histone modification have implications for understanding normal development as well as somatic cell reprogramming and tumorigenesis.
Collapse
Affiliation(s)
- Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Ein Kerem, Jerusalem 91120, Israel.
| | | |
Collapse
|
2075
|
Radpour R, Kohler C, Haghighi MM, Fan AXC, Holzgreve W, Zhong XY. Methylation profiles of 22 candidate genes in breast cancer using high-throughput MALDI-TOF mass array. Oncogene 2009; 28:2969-78. [PMID: 19503099 DOI: 10.1038/onc.2009.149] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alterations of DNA methylation patterns have been suggested as biomarkers for diagnostics and therapy of cancers. Every novel discovery in the epigenetic landscape and every development of an improved approach for accurate analysis of the events may offer new opportunity for the management of patients. Using a novel high-throughput mass spectrometry on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) silico-chips, we determined semiquantitative methylation changes of 22 candidate genes in breast cancer tissues. For the first time we analysed the methylation status of a total of 42 528 CpG dinucleotides on 22 genes in 96 different paraffin-embedded tissues (48 breast cancerous tissues and 48 paired normal tissues). A two-way hierarchical cluster analysis was used to classify methylation profiles. In this study, 10 hypermethylated genes (APC, BIN1, BMP6, BRCA1, CST6, ESRb, GSTP1, P16, P21 and TIMP3) were identified to distinguish between cancerous and normal tissues according to the extent of methylation. Individual assessment of the methylation status for each CpG dinucleotide indicated that cytosine hypermethylation in the cancerous tissue samples was mostly located near the consensus sequences of the transcription factor binding sites. These hypermethylated genes may serve as biomarkers for clinical molecular diagnosis and targeted treatments of patients with breast cancer.
Collapse
Affiliation(s)
- R Radpour
- Laboratory for Prenatal Medicine and Gynecologic Oncology, Women's Hospital/Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
2076
|
Koga Y, Pelizzola M, Cheng E, Krauthammer M, Sznol M, Ariyan S, Narayan D, Molinaro AM, Halaban R, Weissman SM. Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Res 2009; 19:1462-70. [PMID: 19491193 DOI: 10.1101/gr.091447.109] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA methylation is an important component of epigenetic modifications, which influences the transcriptional machinery aberrant in many human diseases. In this study we present the first genome-wide integrative analysis of promoter methylation and gene expression for the identification of methylation markers in melanoma. Genome-wide promoter methylation and gene expression of eight early-passage human melanoma cell strains were compared with newborn and adult melanocytes. We used linear mixed effect models (LME) in combination with a series of filters based on the localization of promoter methylation relative to the transcription start site, overall promoter CpG content, and differential gene expression to discover DNA methylation markers. This approach identified 76 markers, of which 68 were hyper- and eight hypomethylated (LME, P < 0.05). Promoter methylation and differential gene expression of five markers (COL1A2, NPM2, HSPB6, DDIT4L, MT1G) were validated by sequencing of bisulfite-modified DNA and real-time reverse transcriptase PCR, respectively. Importantly, the incidence of promoter methylation of the validated markers increased moderately in early and significantly in advanced-stage melanomas, using early-passage cell strains and snap-frozen tissues (n = 18 and n = 24, respectively) compared with normal melanocytes and nevi (n = 11 and n = 9, respectively). Our approach allows robust identification of methylation markers that can be applied to other studies involving genome-wide promoter methylation. In conclusion, this study represents the first unbiased systematic effort to determine methylation markers in melanoma and revealed several novel genes regulated by promoter methylation that were not described in cancer cells before.
Collapse
Affiliation(s)
- Yasuo Koga
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8059, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2077
|
Abstract
The large-scale structural biology projects that target human proteins focus predominantly on the catalytic domains of potential therapeutic targets and the domains of human proteins that mediate protein-protein and protein-small-molecule interactions. Their main scientific objective is to elucidate the molecular basis for specificity and selectivity of function within large protein families of therapeutic interest, such as kinases, phosphatases, and proteins involved in epigenetic regulation. Half of the unique human protein structures determined in the past three years derive from these initiatives.
Collapse
Affiliation(s)
- Aled Edwards
- Banting and Best Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| |
Collapse
|
2078
|
Cazzonelli CI, Millar T, Finnegan EJ, Pogson BJ. Promoting gene expression in plants by permissive histone lysine methylation. PLANT SIGNALING & BEHAVIOR 2009; 4:484-8. [PMID: 19816124 PMCID: PMC2688292 DOI: 10.4161/psb.4.6.8316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 03/02/2009] [Indexed: 05/23/2023]
Abstract
Plants utilize sophisticated epigenetic regulatory mechanisms to coordinate changes in gene expression during development and in response to environmental stimuli. Epigenetics refers to the modification of DNA and chromatin associated proteins, which affect gene expression and cell function, without changing the DNA sequence. Such modifications are inherited through mitosis, and in rare instances through meiosis, although it can be reversible and thus regulatory. Epigenetic modifications are controlled by groups of proteins, such as the family of histone lysine methytransferases (HKMTs). The catalytic core known as the SET domain encodes HKMT activity and either promotes or represses gene expression. A large family of SET domain proteins is present in Arabidopsis where there is growing evidence that two classes of these genes are involved in promoting gene expression in a diverse range of developmental processes. This review will focus on the function of these two classes and the processes that they control, highlighting the huge potential this regulatory mechanism has in plants.
Collapse
Affiliation(s)
- Christopher I Cazzonelli
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Biochemistry and Molecular Biology, The Australian National University, Canberra, Australia.
| | | | | | | |
Collapse
|
2079
|
Waterland RA, Kellermayer R, Rached MT, Tatevian N, Gomes MV, Zhang J, Zhang L, Chakravarty A, Zhu W, Laritsky E, Zhang W, Wang X, Shen L. Epigenomic profiling indicates a role for DNA methylation in early postnatal liver development. Hum Mol Genet 2009; 18:3026-38. [PMID: 19457928 DOI: 10.1093/hmg/ddp241] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The question of whether DNA methylation contributes to the stabilization of gene expression patterns in differentiated mammalian tissues remains controversial. Using genome-wide methylation profiling, we screened 3757 gene promoters for changes in methylation during postnatal liver development to test the hypothesis that developmental changes in methylation and expression are temporally correlated. We identified 31 genes that gained methylation and 111 that lost methylation from embryonic day 17.5 to postnatal day 21. Promoters undergoing methylation changes in postnatal liver tended not to be associated with CpG islands. At most genes studied, developmental changes in promoter methylation were associated with expression changes, suggesting both that transcriptional inactivity attracts de novo methylation, and that transcriptional activity can override DNA methylation and successively induce developmental hypomethylation. These in vivo data clearly indicate a role for DNA methylation in mammalian differentiation, and provide the novel insight that critical windows in mammalian developmental epigenetics extend well beyond early embryonic development.
Collapse
Affiliation(s)
- Robert A Waterland
- Department of Pediatrics, Baylor College of Medicine, USDA Children's Nutrition Research Center, 1100 Bates St., Ste. 5080, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2080
|
Datta J, Ghoshal K, Denny WA, Gamage SA, Brooke DG, Phiasivongsa P, Redkar S, Jacob ST. A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 2009; 69:4277-85. [PMID: 19417133 PMCID: PMC2882697 DOI: 10.1158/0008-5472.can-08-3669] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reactivation of silenced tumor suppressor genes by 5-azacytidine (Vidaza) and its congener 5-aza-2'-deoxycytidine (decitabine) has provided an alternate approach to cancer therapy. We have shown previously that these drugs selectively and rapidly induce degradation of the maintenance DNA methyltransferase (DNMT) 1 by a proteasomal pathway. Because the toxicity of these compounds is largely due to their incorporation into DNA, it is critical to explore novel, nonnucleoside compounds that can effectively reactivate the silenced genes. Here, we report that a quinoline-based compound, designated SGI-1027, inhibits the activity of DNMT1, DNMT3A, and DNMT3B as well M. SssI with comparable IC(50) (6-13 micromol/L) by competing with S-adenosylmethionine in the methylation reaction. Treatment of different cancer cell lines with SGI-1027 resulted in selective degradation of DNMT1 with minimal or no effects on DNMT3A and DNMT3B. At a concentration of 2.5 to 5 micromol/L (similar to that of decitabine), complete degradation of DNMT1 protein was achieved within 24 h without significantly affecting its mRNA level. MG132 blocked SGI-1027-induced depletion of DNMT1, indicating the involvement of proteasomal pathway. Prolonged treatment of RKO cells with SGI-1027 led to demethylation and reexpression of the silenced tumor suppressor genes P16, MLH1, and TIMP3. Further, this compound did not exhibit significant toxicity in a rat hepatoma (H4IIE) cell line. This study provides a novel class of DNA hypomethylating agents that have the potential for use in epigenetic cancer therapy.
Collapse
Affiliation(s)
- Jharna Datta
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kalpana Ghoshal
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Swarna A. Gamage
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Darby G. Brooke
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | - Samson T. Jacob
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
2081
|
Ponferrada-Marín MI, Roldán-Arjona T, Ariza RR. ROS1 5-methylcytosine DNA glycosylase is a slow-turnover catalyst that initiates DNA demethylation in a distributive fashion. Nucleic Acids Res 2009; 37:4264-74. [PMID: 19443451 PMCID: PMC2715244 DOI: 10.1093/nar/gkp390] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Arabidopsis ROS1 belongs to a family of plant 5-methycytosine DNA glycosylases that initiate DNA demethylation through base excision. ROS1 displays the remarkable capacity to excise 5-meC, and to a lesser extent T, while retaining the ability to discriminate effectively against C and U. We found that replacement of the C5-methyl group by halogen substituents greatly decreased excision of the target base. Furthermore, 5-meC was excised more efficiently from mismatches, whereas excision of T only occurred when mispaired with G. These results suggest that ROS1 specificity arises by a combination of selective recognition at the active site and thermodynamic stability of the target base. We also found that ROS1 is a low-turnover catalyst because it binds tightly to the abasic site left after 5-meC removal. This binding leads to a highly distributive behaviour of the enzyme on DNA substrates containing multiple 5-meC residues, and may help to avoid generation of double-strand breaks during processing of bimethylated CG dinucleotides. We conclude that the biochemical properties of ROS1 are consistent with its proposed role in protecting the plant genome from excess methylation.
Collapse
|
2082
|
Latos PA, Stricker SH, Steenpass L, Pauler FM, Huang R, Senergin BH, Regha K, Koerner MV, Warczok KE, Unger C, Barlow DP. An in vitro ES cell imprinting model shows that imprinted expression of the Igf2r gene arises from an allele-specific expression bias. Development 2009; 136:437-48. [PMID: 19141673 DOI: 10.1242/dev.032060] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genomic imprinting is an epigenetic process that results in parental-specific gene expression. Advances in understanding the mechanism that regulates imprinted gene expression in mammals have largely depended on generating targeted manipulations in embryonic stem (ES) cells that are analysed in vivo in mice. However, genomic imprinting consists of distinct developmental steps, some of which occur in post-implantation embryos, indicating that they could be studied in vitro in ES cells. The mouse Igf2r gene shows imprinted expression only in post-implantation stages, when repression of the paternal allele has been shown to require cis-expression of the Airn non-coding (nc) RNA and to correlate with gain of DNA methylation and repressive histone modifications. Here we follow the gain of imprinted expression of Igf2r during in vitro ES cell differentiation and show that it coincides with the onset of paternal-specific expression of the Airn ncRNA. Notably, although Airn ncRNA expression leads, as predicted, to gain of repressive epigenetic marks on the paternal Igf2r promoter, we unexpectedly find that the paternal Igf2r promoter is expressed at similar low levels throughout ES cell differentiation. Our results further show that the maternal and paternal Igf2r promoters are expressed equally in undifferentiated ES cells, but during differentiation expression of the maternal Igf2r promoter increases up to 10-fold, while expression from the paternal Igf2r promoter remains constant. This indicates, contrary to expectation, that the Airn ncRNA induces imprinted Igf2r expression not by silencing the paternal Igf2r promoter, but by generating an expression bias between the two parental alleles.
Collapse
Affiliation(s)
- Paulina A Latos
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Dr Bohr-Gasse 9/4, Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2083
|
Hutnick LK, Golshani P, Namihira M, Xue Z, Matynia A, Yang XW, Silva AJ, Schweizer FE, Fan G. DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Hum Mol Genet 2009; 18:2875-88. [PMID: 19433415 DOI: 10.1093/hmg/ddp222] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
DNA methylation is a major epigenetic factor regulating genome reprogramming, cell differentiation and developmental gene expression. To understand the role of DNA methylation in central nervous system (CNS) neurons, we generated conditional Dnmt1 mutant mice that possess approximately 90% hypomethylated cortical and hippocampal cells in the dorsal forebrain from E13.5 on. The mutant mice were viable with a normal lifespan, but displayed severe neuronal cell death between E14.5 and three weeks postnatally. Accompanied with the striking cortical and hippocampal degeneration, adult mutant mice exhibited neurobehavioral defects in learning and memory in adulthood. Unexpectedly, a fraction of Dnmt1(-/-) cortical neurons survived throughout postnatal development, so that the residual cortex in mutant mice contained 20-30% of hypomethylated neurons across the lifespan. Hypomethylated excitatory neurons exhibited multiple defects in postnatal maturation including abnormal dendritic arborization and impaired neuronal excitability. The mutant phenotypes are coupled with deregulation of those genes involved in neuronal layer-specification, cell death and the function of ion channels. Our results suggest that DNA methylation, through its role in modulating neuronal gene expression, plays multiple roles in regulating cell survival and neuronal maturation in the CNS.
Collapse
Affiliation(s)
- Leah K Hutnick
- Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, 695 Charles Young Drive South, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2084
|
Muir WJ, McKechanie AG. Can epigenetics help in the discovery of therapeutics for psychiatric disorders, especially schizophrenia? Expert Opin Drug Discov 2009; 4:621-7. [PMID: 23489155 DOI: 10.1517/17460440902895446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Psychiatric disorders have a heterogeneous biological basis, where environmental factors interplay with non-mendelian genetics to produce complex cognitive/behavioural syndromes such as schizophrenia. Recent findings indicate a proportion of schizophrenia is associated with genomic copy number variation, suggesting that alteration of gene expression levels rather than direct mutation may play a role. Epigenetic mechanisms could be the crucial link between external stimuli and gene expression, influencing schizophrenia risk. These are dynamic reversible systems that offer much promise as targets for future therapies.
Collapse
Affiliation(s)
- Walter J Muir
- Reader in Psychiatry University of Edinburgh, Royal Edinburgh Hospital, School of Molecular and Clinical Medicine, Division of Psychiatry, EH10 5HF, Edinburgh, UK
| | | |
Collapse
|
2085
|
Teixeira FK, Colot V. Gene body DNA methylation in plants: a means to an end or an end to a means? EMBO J 2009; 28:997-8. [PMID: 19384348 PMCID: PMC2683714 DOI: 10.1038/emboj.2009.87] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
2086
|
Abstract
Epigenetic marking on genes can determine whether or not genes are expressed. Epigenetic regulation is mediated by the addition of methyl groups to DNA cytosine bases, of methyl and acetyl groups to proteins (histones) around which DNA is wrapped, and by small interfering RNA molecules. Some components of epigenetic regulation have evolved to permit control of whether maternal or paternal genes are expressed. The epigenetic imprinting of IGF2 expression is an example of maternal and paternal epigenetic marking that modulates fetal growth and fetal size. However, epigenetic regulation also permits the fetus and the infant to adapt gene expression to the environment in which it is growing; sometimes when this adjustment goes awry, the risk of chronic disease is increased. Recent progress in the understanding of nutritional influences on epigenetics suggests that nutrients that are part of methyl-group metabolism can significantly influence epigenetics. During critical periods in development, dietary methyl-group intake (choline, methionine, and folate) can alter DNA and histone methylation, which results in lifelong changes in gene expression. In rodent models, pregnant dams that were fed diets high in methionine, folic acid, and choline produced offspring with different coat colors or with kinked tails. A number of syndromes in humans can be caused by defective epigenetic regulation, including Rett syndrome. There are interesting examples of the effects of nutrition in early life that result in altered health in adults, and some of these could be the result of altered epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Steven H Zeisel
- Nutrition Research Institute, the University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
2087
|
Roth TL, Lubin FD, Funk AJ, Sweatt JD. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 2009; 65:760-9. [PMID: 19150054 PMCID: PMC3056389 DOI: 10.1016/j.biopsych.2008.11.028] [Citation(s) in RCA: 857] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 12/31/2022]
Abstract
BACKGROUND Childhood maltreatment and early trauma leave lasting imprints on neural mechanisms of cognition and emotion. With a rat model of infant maltreatment by a caregiver, we investigated whether early-life adversity leaves lasting epigenetic marks at the brain-derived neurotrophic factor (BDNF) gene in the central nervous system. METHODS During the first postnatal week, we exposed infant rats to stressed caretakers that predominately displayed abusive behaviors. We then assessed DNA methylation patterns and gene expression throughout the life span as well as DNA methylation patterns in the next generation of infants. RESULTS Early maltreatment produced persisting changes in methylation of BDNF DNA that caused altered BDNF gene expression in the adult prefrontal cortex. Furthermore, we observed altered BDNF DNA methylation in offspring of females that had previously experienced the maltreatment regimen. CONCLUSIONS These results highlight an epigenetic molecular mechanism potentially underlying lifelong and transgenerational perpetuation of changes in gene expression and behavior incited by early abuse and neglect.
Collapse
Affiliation(s)
- Tania L. Roth
- Department of Neurobiology and the Evelyn F. McKnight Brain Institute, University of Alabama - Birmingham, Birmingham, AL 35294 USA
| | - Farah D. Lubin
- Department of Neurobiology and the Evelyn F. McKnight Brain Institute, University of Alabama - Birmingham, Birmingham, AL 35294 USA
| | - Adam J. Funk
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama - Birmingham, Birmingham, AL 35294 USA
| | - J. David Sweatt
- Department of Neurobiology and the Evelyn F. McKnight Brain Institute, University of Alabama - Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
2088
|
Oda M, Glass JL, Thompson RF, Mo Y, Olivier EN, Figueroa ME, Selzer RR, Richmond TA, Zhang X, Dannenberg L, Green RD, Melnick A, Hatchwell E, Bouhassira EE, Verma A, Suzuki M, Greally JM. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 2009; 37:3829-39. [PMID: 19386619 PMCID: PMC2709560 DOI: 10.1093/nar/gkp260] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many genome-wide assays involve the generation of a subset (or representation) of the genome following restriction enzyme digestion. The use of enzymes sensitive to cytosine methylation allows high-throughput analysis of this epigenetic regulatory process. We show that the use of a dual-adapter approach allows us to generate genomic representations that includes fragments of <200 bp in size, previously not possible when using the standard approach of using a single adapter. By expanding the representation to smaller fragments using HpaII or MspI, we increase the representation by these isoschizomers to more than 1.32 million loci in the human genome, representing 98.5% of CpG islands and 91.1% of refSeq promoters. This advance allows the development of a new, high-resolution version of our HpaII-tiny fragment Enrichment by Ligation-mediated PCR (HELP) assay to study cytosine methylation. We also show that the MspI representation generates information about copy-number variation, that the assay can be used on as little as 10 ng of DNA and that massively parallel sequencing can be used as an alternative to microarrays to read the output of the assay, making this a powerful discovery platform for studies of genomic and epigenomic abnormalities.
Collapse
Affiliation(s)
- Mayumi Oda
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2089
|
Ranade SS, Chung CB, Zon G, Boyd VL. Preparation of genome-wide DNA fragment libraries using bisulfite in polyacrylamide gel electrophoresis slices with formamide denaturation and quality control for massively parallel sequencing by oligonucleotide ligation and detection. Anal Biochem 2009; 390:126-35. [PMID: 19379703 DOI: 10.1016/j.ab.2009.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/10/2009] [Accepted: 04/13/2009] [Indexed: 01/25/2023]
Abstract
Bisulfite sequencing is widely used for analysis of DNA methylation status (i.e., 5-methylcytosine [5mC] vs. cytosine [C]) in CpG-rich or other loci in genomic DNA (gDNA). Such methods typically involve reaction of gDNA with bisulfite followed by polymerase chain reaction (PCR) amplification of specific regions of interest that, overall, converts C-->T (thymine) and 5mC-->C and then capillary sequencing to measure C versus T composition at CpG sites. Massively parallel sequencing by oligonucleotide ligation and detection (SOLiD) has recently enabled relatively low-cost whole genome sequencing, and it would be highly desirable to apply such massively parallel sequencing to bisulfite-converted whole genomes to determine DNA methylation status of an entire genome, which has heretofore not been reported. As an initial step toward achieving this goal, we have extended our ongoing interest in improving bisulfite conversion sample preparation to include a human genome-wide fragment library for SOliD. The current article features novel use of formamide denaturant during bisulfite conversion of a suitably constructed library directly in a band slice from polyacryamide gel electrophoresis (PAGE). To validate this new protocol for 5mC-protected fragment library conversion, which we refer to as Bis-PAGE, capillary-based size analysis and Sanger sequencing were carried out for individual amplicons derived from single-molecule PCR (smPCR) of randomly selected library fragments. smPCR/Capillary Sanger sequencing of approximately 200 amplicons unambiguously demonstrated greater than 99% C-->T conversion. All of these approximately 200 Sanger sequences were analyzed with a previously published web-accessible bioinformatics tool (methBLAST) for mapping to human chromosomes, the results of which indicated random distribution of analyzed fragments across all chromosomes. Although these particular Bis-PAGE conversion and quality control methods were exemplified in the context of a fragment library for SOLiD, the concepts can be generalized to include other genome-wide library constructions intended for DNA methylation analysis by alternative high-throughput or massively parallelized methods that are currently available.
Collapse
|
2090
|
Ball MP, Li JB, Gao Y, Lee JH, LeProust E, Park IH, Xie B, Daley GQ, Church GM. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 2009; 27:361-8. [PMID: 19329998 PMCID: PMC3566772 DOI: 10.1038/nbt.1533] [Citation(s) in RCA: 831] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 03/06/2009] [Indexed: 12/15/2022]
Abstract
Studies of epigenetic modifications would benefit from improved methods for high-throughput methylation profiling. We introduce two complementary approaches that use next-generation sequencing technology to detect cytosine methylation. In the first method, we designed approximately 10,000 bisulfite padlock probes to profile approximately 7,000 CpG locations distributed over the ENCODE pilot project regions and applied them to human B-lymphocytes, fibroblasts and induced pluripotent stem cells. This unbiased choice of targets takes advantage of existing expression and chromatin immunoprecipitation data and enabled us to observe a pattern of low promoter methylation and high gene-body methylation in highly expressed genes. The second method, methyl-sensitive cut counting, generated nontargeted genome-scale data for approximately 1.4 million HpaII sites in the DNA of B-lymphocytes and confirmed that gene-body methylation in highly expressed genes is a consistent phenomenon throughout the human genome. Our observations highlight the usefulness of techniques that are not inherently or intentionally biased towards particular subsets like CpG islands or promoter regions.
Collapse
Affiliation(s)
- Madeleine Price Ball
- Department of Genetics, Harvard Medical School
- Broad Institute of MIT and Harvard, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Jin Billy Li
- Department of Genetics, Harvard Medical School
- Broad Institute of MIT and Harvard, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Yuan Gao
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 1000 W. Cary St. Richmond, Virginia 23284, USA
| | - Je-Hyuk Lee
- Department of Genetics, Harvard Medical School
- Broad Institute of MIT and Harvard, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Emily LeProust
- Genomics Solution Unit, Agilent Technologies Inc., 5301 Stevens Creek Blvd., Santa Clara, California 95051, USA
| | - In-Hyun Park
- Department of Medicine, Division of Pediatric Hematology Oncology, Children's Hospital Boston, and Dana-Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Karp Family Research Building 7214, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Bin Xie
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 1000 W. Cary St. Richmond, Virginia 23284, USA
| | - George Q. Daley
- Department of Medicine, Division of Pediatric Hematology Oncology, Children's Hospital Boston, and Dana-Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Karp Family Research Building 7214, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School
- Broad Institute of MIT and Harvard, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| |
Collapse
|
2091
|
Bina M, Wyss P, Lazarus SA, Shah SR, Ren W, Szpankowski W, Crawford GE, Park SP, Song XC. Discovering sequences with potential regulatory characteristics. Genomics 2009; 93:314-22. [DOI: 10.1016/j.ygeno.2008.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 05/28/2008] [Accepted: 11/17/2008] [Indexed: 11/25/2022]
|
2092
|
Wilkerson DC, Sarge KD. RNA polymerase II interacts with the Hspa1b promoter in mouse epididymal spermatozoa. Reproduction 2009; 137:923-9. [PMID: 19336471 DOI: 10.1530/rep-09-0015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Hspa1b (Hsp70.1) gene is one of the first genes expressed after fertilization, with expression occurring during the minor zygotic genome activation (ZGA) in the absence of stress. This expression can take place in the male pronucleus as early as the one-cell stage of embryogenesis. The importance of HSPA1B for embryonic viability during times of stress is supported by studies showing that depletion of this protein results in a significant reduction in embryos developing to the blastocyte stage. Recently, we have begun addressing the mechanism responsible for allowing expression of Hspa1b during the minor ZGA and found that heat shock transcription factor (HSF) 1 and 2 bind the Hspa1b promoter during late spermatogenesis. In this report, we have extended those studies using western blots and chromatin immunoprecipitation assays and found that RNA polymerase II (Pol II) is present in epididymal spermatozoa and bound to the Hspa1b promoter. These present results, in addition to our previous results, support a model in which the binding of HSF1, HSF2, SP1, and Pol II to the promoter of Hspa1b would allow the rapid formation of a transcription-competent state during the minor ZGA, thereby allowing Hspa1b expression.
Collapse
Affiliation(s)
- Donald C Wilkerson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
2093
|
Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 2009; 27:353-60. [PMID: 19330000 DOI: 10.1038/nbt.1530] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/26/2009] [Indexed: 11/08/2022]
Abstract
Current DNA methylation assays are limited in the flexibility and efficiency of characterizing a large number of genomic targets. We report a method to specifically capture an arbitrary subset of genomic targets for single-molecule bisulfite sequencing for digital quantification of DNA methylation at single-nucleotide resolution. A set of ~30,000 padlock probes was designed to assess methylation of ~66,000 CpG sites within 2,020 CpG islands on human chromosome 12, chromosome 20, and 34 selected regions. To investigate epigenetic differences associated with dedifferentiation, we compared methylation in three human fibroblast lines and eight human pluripotent stem cell lines. Chromosome-wide methylation patterns were similar among all lines studied, but cytosine methylation was slightly more prevalent in the pluripotent cells than in the fibroblasts. Induced pluripotent stem (iPS) cells appeared to display more methylation than embryonic stem cells. We found 288 regions methylated differently in fibroblasts and pluripotent cells. This targeted approach should be particularly useful for analyzing DNA methylation in large genomes.
Collapse
|
2094
|
Zhang Y, Rohde C, Tierling S, Jurkowski TP, Bock C, Santacruz D, Ragozin S, Reinhardt R, Groth M, Walter J, Jeltsch A. DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution. PLoS Genet 2009; 5:e1000438. [PMID: 19325872 PMCID: PMC2653639 DOI: 10.1371/journal.pgen.1000438] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/25/2009] [Indexed: 11/19/2022] Open
Abstract
Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read) Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicon's DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i) amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii) methylation levels of individual cells in one tissue are very similar, and iii) methylation patterns follow a relaxed site-specific distribution. Furthermore, iv) we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene regulation. Further, we illustrate genotype–epigenotype interactions by showing novel examples of allele-specific methylation. Epigenetics is defined as the inheritance of changes in gene function without changing the DNA sequence. Epigenetic signals comprise methylation of cytosine bases of the DNA and chemical modifications of the histone proteins. DNA methylation plays important roles in development and disease processes. To investigate the biological role of DNA methylation, we analyzed DNA methylation patterns of 190 gene promoter regions on chromosome 21 in five human cell types. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, indicating that DNA methylation acts in a switch-like manner. Consistent with the well-established role of DNA methylation in gene silencing, we found DNA methylation in promoter regions strongly correlated with absence of gene expression and low levels of additional activating epigenetic marks. Although methylation levels of individual cells in one tissue are very similar, we observed differences in DNA methylation when comparing different cell types in 43% of all regions analyzed. This finding is in agreement with a role of DNA methylation in cellular development. We identified three cases of genes that are differentially methylated in both alleles that illustrate the tight interplay of genetic and epigenetic processes.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Christian Rohde
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Sascha Tierling
- Institut für Genetik, FB Biowissenschaften, Universität des Saarlandes, Saarbrücken, Germany
| | - Tomasz P. Jurkowski
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Christoph Bock
- Max-Planck-Institut für Informatik, Saarbrücken, Germany
| | - Diana Santacruz
- Institut für Genetik, FB Biowissenschaften, Universität des Saarlandes, Saarbrücken, Germany
| | - Sergey Ragozin
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | | | - Marco Groth
- Leibniz-Institute for Age Research—Fritz-Lipmann-Institute, Jena, Germany
| | - Jörn Walter
- Institut für Genetik, FB Biowissenschaften, Universität des Saarlandes, Saarbrücken, Germany
- * E-mail: (JW); (AJ)
| | - Albert Jeltsch
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail: (JW); (AJ)
| |
Collapse
|
2095
|
Abstract
Recent years have seen great advances in the understanding of epigenetic gene regulation. Many of the molecular players involved have recently been identified and are rapidly being characterized in detail. Genome scale studies, using chromatin immunoprecipitation followed by expression arrays ('ChIP-Chip') or next generation sequencing ('ChIP-Seq'), have been applied to the study of transcription factor binding, DNA methylation, alternative histone use, and covalent histone modifications such as acetylation, ubiquitination and methylation. Initial studies focused on yeast, and embryonic stem cells. Genome-wide studies are now also being employed to characterize cancer and specifically leukemia genomes, with the prospect of improved diagnostic accuracy and discovery of novel therapeutic strategies. Here, we review some of the epigenetic modifications and their relevance for leukemia.
Collapse
|
2096
|
Wu H, Sun YE. Reversing DNA Methylation: New Insights from Neuronal Activity-Induced Gadd45b in Adult Neurogenesis. Sci Signal 2009; 2:pe17. [DOI: 10.1126/scisignal.264pe17] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2097
|
CpG islands: algorithms and applications in methylation studies. Biochem Biophys Res Commun 2009; 382:643-5. [PMID: 19302978 DOI: 10.1016/j.bbrc.2009.03.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 03/12/2009] [Indexed: 02/04/2023]
Abstract
Methylation occurs frequently at 5'-cytosine of the CpG dinucleotides in vertebrate genomes; however, this epigenetic feature is rarely observed in CpG islands (CGIs) or CpG clusters in the promoter regions of genes. Aberrant methylation of the promoter-associated CGIs might influence gene expression and cause carcinogenesis. Because of the functional importance, multiple algorithms have been available for identifying CGIs in a genome or a sequence. They can be categorized into the traditional algorithms (e.g., Gardiner-Garden and Frommer (1987), Takai and Jones (2002), and CpGPRoD (2002)) or statistical property based algorithms (CpGcluster (2006) and CG cluster (2007)). We reviewed the features of these algorithms and evaluated their performance on identifying functional CGIs using genome-wide methylation data. Moreover, identification of CGIs is an initial step in many recent studies for predicting methylation status as well as in the design of methylation detection platforms. We reviewed the benchmarks and features used in these studies.
Collapse
|
2098
|
Abstract
Epigenetics refers to mitotically and/or meiotically heritable variations in gene expression that are not caused by changes in DNA sequence. Epigenetic mechanisms regulate all biological processes from conception to death, including genome reprogramming during early embryogenesis and gametogenesis, cell differentiation and maintenance of a committed lineage. Key epigenetic players are DNA methylation and histone post-translational modifications, which interplay with each other, with regulatory proteins and with non-coding RNAs, to remodel chromatin into domains such as euchromatin, constitutive or facultative heterochromatin and to achieve nuclear compartmentalization. Besides epigenetic mechanisms such as imprinting, chromosome X inactivation or mitotic bookmarking which establish heritable states, other rapid and transient mechanisms, such as histone H3 phosphorylation, allow cells to respond and adapt to environmental stimuli. However, these epigenetic marks can also have long-term effects, for example in learning and memory formation or in cancer. Erroneous epigenetic marks are responsible for a whole gamut of diseases including diseases evident at birth or infancy or diseases becoming symptomatic later in life. Moreover, although epigenetic marks are deposited early in development, adaptations occurring through life can lead to diseases and cancer. With epigenetic marks being reversible, research has started to focus on epigenetic therapy which has had encouraging success. As we witness an explosion of knowledge in the field of epigenetics, we are forced to revisit our dogma. For example, recent studies challenge the idea that DNA methylation is irreversible. Further, research on Rett syndrome has revealed an unforeseen role for methyl-CpG-binding protein 2 (MeCP2) in neurons.
Collapse
Affiliation(s)
- Geneviève P Delcuve
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
2099
|
Discovery of novel hypermethylated genes in prostate cancer using genomic CpG island microarrays. PLoS One 2009; 4:e4830. [PMID: 19283074 PMCID: PMC2653233 DOI: 10.1371/journal.pone.0004830] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/17/2009] [Indexed: 12/31/2022] Open
Abstract
Background Promoter and 5′ end methylation regulation of tumour suppressor genes is a common feature of many cancers. Such occurrences often lead to the silencing of these key genes and thus they may contribute to the development of cancer, including prostate cancer. Methodology/Principal Findings In order to identify methylation changes in prostate cancer, we performed a genome-wide analysis of DNA methylation using Agilent human CpG island arrays. Using computational and gene-specific validation approaches we have identified a large number of potential epigenetic biomarkers of prostate cancer. Further validation of candidate genes on a separate cohort of low and high grade prostate cancers by quantitative MethyLight analysis has allowed us to confirm DNA hypermethylation of HOXD3 and BMP7, two genes that may play a role in the development of high grade tumours. We also show that promoter hypermethylation is responsible for downregulated expression of these genes in the DU-145 PCa cell line. Conclusions/Significance This study identifies novel epigenetic biomarkers of prostate cancer and prostate cancer progression, and provides a global assessment of DNA methylation in prostate cancer.
Collapse
|
2100
|
Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, Anton E, Medina C, Nguyen L, Chiao E, Oyolu CB, Schroth GP, Absher DM, Baker JC, Myers RM. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 2009; 19:1044-56. [PMID: 19273619 DOI: 10.1101/gr.088773.108] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To investigate the role of DNA methylation during human development, we developed Methyl-seq, a method that assays DNA methylation at more than 90,000 regions throughout the genome. Performing Methyl-seq on human embryonic stem cells (hESCs), their derivatives, and human tissues allowed us to identify several trends during hESC and in vivo liver differentiation. First, differentiation results in DNA methylation changes at a minimal number of assayed regions, both in vitro and in vivo (2%-11%). Second, in vitro hESC differentiation is characterized by both de novo methylation and demethylation, whereas in vivo fetal liver development is characterized predominantly by demethylation. Third, hESC differentiation is uniquely characterized by methylation changes specifically at H3K27me3-occupied regions, bivalent domains, and low density CpG promoters (LCPs), suggesting that these regions are more likely to be involved in transcriptional regulation during hESC differentiation. Although both H3K27me3-occupied domains and LCPs are also regions of high variability in DNA methylation state during human liver development, these regions become highly unmethylated, which is a distinct trend from that observed in hESCs. Taken together, our results indicate that hESC differentiation has a unique DNA methylation signature that may not be indicative of in vivo differentiation.
Collapse
Affiliation(s)
- Alayne L Brunner
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|