2101
|
Pandelova I, Betts MF, Manning VA, Wilhelm LJ, Mockler TC, Ciuffetti LM. Analysis of transcriptome changes induced by Ptr ToxA in wheat provides insights into the mechanisms of plant susceptibility. MOLECULAR PLANT 2009; 2:1067-83. [PMID: 19825681 DOI: 10.1093/mp/ssp045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To obtain greater insight into the molecular events underlying plant disease susceptibility, we studied transcriptome changes induced by a host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA (ToxA), on its host plant, wheat. Transcriptional profiling of ToxA-treated leaves of a ToxA-sensitive wheat cultivar was performed using the GeneChip Wheat Genome Array. An improved and up-to-date annotation of the wheat microarray was generated and a new tool for array data analysis (BRAT) was developed, and both are available for public use via a web-based interface. Our data indicate that massive transcriptional reprogramming occurs due to ToxA treatment, including cellular responses typically associated with defense. In addition, this study supports previous results indicating that ToxA-induced cell death is triggered by impairment of the photosynthetic machinery and accumulation of reactive oxygen species. Based on results of this study, we propose that ToxA acts as both an elicitor and a virulence factor.
Collapse
Affiliation(s)
- Iovanna Pandelova
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
2102
|
Hedenström M, Wiklund-Lindström S, Oman T, Lu F, Gerber L, Schatz P, Sundberg B, Ralph J. Identification of lignin and polysaccharide modifications in Populus wood by chemometric analysis of 2D NMR spectra from dissolved cell walls. MOLECULAR PLANT 2009; 2:933-42. [PMID: 19825670 DOI: 10.1093/mp/ssp047] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
2D 13C-(1)H HSQC NMR spectroscopy of acetylated cell walls in solution gives a detailed fingerprint that can be used to assess the chemical composition of the complete wall without extensive degradation. We demonstrate how multivariate analysis of such spectra can be used to visualize cell wall changes between sample types as high-resolution 2D NMR loading spectra. Changes in composition and structure for both lignin and polysaccharides can subsequently be interpreted on a molecular level. The multivariate approach alleviates problems associated with peak picking of overlapping peaks, and it allows the deduction of the relative importance of each peak for sample discrimination. As a first proof of concept, we compare Populus tension wood to normal wood. All well established differences in cellulose, hemicellulose, and lignin compositions between these wood types were readily detected, confirming the reliability of the multivariate approach. In a second example, wood from transgenic Populus modified in their degree of pectin methylesterification was compared to that of wild-type trees. We show that differences in both lignin and polysaccharide composition that are difficult to detect with traditional spectral analysis and that could not be a priori predicted were revealed by the multivariate approach. 2D NMR of dissolved cell wall samples combined with multivariate analysis constitutes a novel approach in cell wall analysis and provides a new tool that will benefit cell wall research.
Collapse
|
2103
|
Kinne M, Poraj-Kobielska M, Ralph SA, Ullrich R, Hofrichter M, Hammel KE. Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. J Biol Chem 2009; 284:29343-9. [PMID: 19713216 DOI: 10.1074/jbc.m109.040857] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many litter-decay fungi secrete heme-thiolate peroxygenases that oxidize various organic chemicals, but little is known about the role or mechanism of these enzymes. We found that the extracellular peroxygenase of Agrocybe aegerita catalyzed the H2O2-dependent cleavage of environmentally significant ethers, including methyl t-butyl ether, tetrahydrofuran, and 1,4-dioxane. Experiments with tetrahydrofuran showed the reaction was a two-electron oxidation that generated one aldehyde group and one alcohol group, yielding the ring-opened product 4-hydroxybutanal. Investigations with several model substrates provided information about the route for ether cleavage: (a) steady-state kinetics results with methyl 3,4-dimethoxybenzyl ether, which was oxidized to 3,4-dimethoxybenzaldehyde, gave parallel double reciprocal plots suggestive of a ping-pong mechanism (K(m)((peroxide)), 1.99 +/- 0.25 mM; K(m)((ether)), 1.43 +/- 0.23 mM; k(cat), 720 +/- 87 s(-1)), (b) the cleavage of methyl 4-nitrobenzyl ether in the presence of H2(18)O2 resulted in incorporation of 18O into the carbonyl group of the resulting 4-nitrobenzaldehyde, and (c) the demethylation of 1-methoxy-4-trideuteromethoxybenzene showed an observed intramolecular deuterium isotope effect [(k(H)/k(D))(obs)] of 11.9 +/- 0.4. These results suggest a hydrogen abstraction and oxygen rebound mechanism that oxidizes ethers to hemiacetals, which subsequently hydrolyze. The peroxygenase appeared to lack activity on macromolecular ethers, but otherwise exhibited a broad substrate range. It may accordingly have a role in the biodegradation of natural and anthropogenic low molecular weight ethers in soils and plant litter.
Collapse
Affiliation(s)
- Matthias Kinne
- From the Unit of Environmental Biotechnology, International Graduate School of Zittau, 02763 Zittau, Germany
| | | | | | | | | | | |
Collapse
|
2104
|
Assor C, Placet V, Chabbert B, Habrant A, Lapierre C, Pollet B, Perré P. Concomitant changes in viscoelastic properties and amorphous polymers during the hydrothermal treatment of hardwood and softwood. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6830-7. [PMID: 19618934 DOI: 10.1021/jf901373s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aim of this study was to understand how the molecular structures of amorphous polymers influence wood viscoelastic properties. Wood from oak and spruce was subjected to hydrothermal treatments at 110 or 135 degrees C. Wood rigidity, reflected by the wood storage modulus, showed different modification patterns according to the wood species or the temperature level. Because viscoelasticity is dependent on wood amorphous polymers, modifications of lignins and noncellulosic polysaccharides were examined. Hemicellulose degradation occurred only at 135 degrees C. In contrast, lignins displayed major structural alterations even at 110 degrees C. In oak lignins, the beta-O-4 bonds were extensively degraded and wood rigidity decreased dramatically during the first hours of treatment. Spruce lignins have a lower beta-O-4 content and, relative to oak, the wood rigidity decrease due to treatment was less pronounced. Wood rigidity was restored to its initial value by prolonged treatment, probably due to the formation of condensed bonds in cell wall polymers.
Collapse
Affiliation(s)
- Carole Assor
- INRA, UMR 1092 LERFOB, ENGREF, 14 rue Girardet, F-54042 Nancy cedex, France.
| | | | | | | | | | | | | |
Collapse
|
2105
|
Martínez C, Sedano M, Mendoza J, Herrera R, Rutiaga JG, Lopez P. Effect of aqueous environment in chemical reactivity of monolignols. A New Fukui Function Study. J Mol Graph Model 2009; 28:196-201. [PMID: 19647459 DOI: 10.1016/j.jmgm.2009.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/03/2009] [Accepted: 07/04/2009] [Indexed: 10/20/2022]
Abstract
The free radical reactivity of monolignols can be explained in terms of the Fukui function and the local hard and soft acids and bases (HSAB) principle to determine the potential linkages among them for reactions involving free radicals. Our results in gas-phase and aqueous environment elucidate the most probable free radical resonance structures in monolignols. Their reactivity toward nucleophilic or electrophilic species was described applying the Fukui function after a second analysis of the selected resonance structures. Methodology herein described could differentiate the inherent nature of one radical from another.
Collapse
Affiliation(s)
- Carmen Martínez
- Faculty of Wood Technology Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58000, Mexico
| | | | | | | | | | | |
Collapse
|
2106
|
Kim S, Silva C, Zille A, Lopez C, Evtuguin DV, Cavaco-Paulo A. Characterisation of enzymatically oxidised lignosulfonates and their application on lignocellulosic fabrics. POLYM INT 2009. [DOI: 10.1002/pi.2600] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2107
|
Kärkönen A, Warinowski T, Teeri TH, Simola LK, Fry SC. On the mechanism of apoplastic H2O2 production during lignin formation and elicitation in cultured spruce cells--peroxidases after elicitation. PLANTA 2009; 230:553-567. [PMID: 19544069 DOI: 10.1007/s00425-009-0968-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/04/2009] [Indexed: 05/27/2023]
Abstract
A cell culture of Picea abies (L.) Karst. was used for studies of H(2)O(2) generation during constitutive extracellular lignin formation and after elicitation by cell wall fragments of a pathogenic fungus, Heterobasidium parviporum. Stable, micromolar levels of H(2)O(2) were present in the culture medium during lignin formation. Elicitation induced a burst of H(2)O(2), peaking at ca. 90 min after elicitation. Of exogenous reducing substrates that may be responsible for the synthesis of H(2)O(2) from O(2), NADH stimulated H(2)O(2) production irrespective of elicitation. Cysteine (Cys) and glutathione (GSH) partially scavenged the constitutive H(2)O(2), but usually increased or prolonged elicitor-induced H(2)O(2) formation. Culture medium peroxidases were not able to generate H(2)O(2) in vitro with Cys or GSH as reductants. These thiols, however, generated H(2)O(2) non-enzymically at pH 4.5. [(35)S]Sulphate feeding to spruce cells showed that endogenous sulphur-containing compounds (including GSH, GSSG and cysteic acid) existed in the culture medium. The apoplastic levels of these were, however, undetectable by the monobromobimane method suggesting that their contribution to apoplastic H(2)O(2) formation is probably minor. Azide, an inhibitor of haem-containing enzymes, slightly inhibited constitutive H(2)O(2) generation but strongly delayed the elicitor-induced H(2)O(2) accumulation. Diphenylene iodonium, an inhibitor of flavin-containing enzymes, efficiently inhibited H(2)O(2) production irrespective of elicitation. Elicitation led to downregulation of the expression of several peroxidase genes, and peroxidase activity in the culture medium was slightly reduced. Expression of three other peroxidase genes and a respiratory burst oxidase homologue (rboh) gene were upregulated. These data suggest that both peroxidases and rboh may contribute to H(2)O(2) generation.
Collapse
Affiliation(s)
- Anna Kärkönen
- Department of Applied Biology, University of Helsinki, P.O. Box 27, Latokartanonkaari 7, 00014, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
2108
|
|
2109
|
Schmidt M, Schwartzberg AM, Perera PN, Weber-Bargioni A, Carroll A, Sarkar P, Bosneaga E, Urban JJ, Song J, Balakshin MY, Capanema EA, Auer M, Adams PD, Chiang VL, Schuck PJ. Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa. PLANTA 2009; 230:589-97. [PMID: 19526248 PMCID: PMC2715566 DOI: 10.1007/s00425-009-0963-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 05/25/2009] [Indexed: 05/19/2023]
Abstract
Chemical imaging by confocal Raman microscopy has been used for the visualization of the cellulose and lignin distribution in wood cell walls. Lignin reduction in wood can be achieved by, for example, transgenic suppression of a monolignol biosynthesis gene encoding 4-coumarate-CoA ligase (4CL). Here, we use confocal Raman microscopy to compare lignification in wild type and lignin-reduced 4CL transgenic Populus trichocarpa stem wood with spatial resolution that is sub-microm. Analyzing the lignin Raman bands in the spectral region between 1,600 and 1,700 cm(-1), differences in lignin signal intensity and localization are mapped in situ. Transgenic reduction of lignin is particularly pronounced in the S2 wall layer of fibers, suggesting that such transgenic approach may help overcome cell wall recalcitrance to wood saccharification. Spatial heterogeneity in the lignin composition, in particular with regard to ethylenic residues, is observed in both samples.
Collapse
Affiliation(s)
- M. Schmidt
- Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
| | - A. M. Schwartzberg
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - P. N. Perera
- Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
| | - A. Weber-Bargioni
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - A. Carroll
- Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
- Department of Biology, Stanford University, Stanford, CA 94305 USA
| | - P. Sarkar
- Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
| | - E. Bosneaga
- Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
| | - J. J. Urban
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - J. Song
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695 USA
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Xibeiwang, Haidian District, 100094 Beijing, People’s Republic of China
| | - M. Y. Balakshin
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695 USA
| | - E. A. Capanema
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695 USA
| | - M. Auer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - P. D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - V. L. Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695 USA
| | - P. James Schuck
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
2110
|
Lippmann R, Kaspar S, Rutten T, Melzer M, Kumlehn J, Matros A, Mock HP. Protein and metabolite analysis reveals permanent induction of stress defense and cell regeneration processes in a tobacco cell suspension culture. Int J Mol Sci 2009; 10:3012-3032. [PMID: 19742122 PMCID: PMC2738909 DOI: 10.3390/ijms10073012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 06/26/2009] [Accepted: 06/26/2009] [Indexed: 12/21/2022] Open
Abstract
The secretome of a tobacco cell suspension culture was investigated by a combined proteomic and metabolomic approach. Protein analysis from 2-DE gels led to identification of 32 out of 60 spots from culture medium. Identified proteins were mainly involved in stress defence and cell regeneration processes. Among them three putative new isoforms, e.g. for chitinase, peroxidase and beta-1,4-xylosidase were identified, not yet present in available protein databases for the genus Nicotiana. GC-MS analysis of time course experiments revealed significant changes for metabolites involved in energy transport, signalling and cell development. Among them, the most significant increase was found for putrescine in the medium of cultures entering the exponential phase. Results showed strong abundance of stress associated proteins and metabolites in the absence of elicitors or additional stress treatments.
Collapse
Affiliation(s)
- Rico Lippmann
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06 466, Gatersleben, Germany; E-Mails:
(R.L.);
(S.K.);
(T.R.);
(M.M.);
(J.K.);
(A.M.)
| | - Stephanie Kaspar
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06 466, Gatersleben, Germany; E-Mails:
(R.L.);
(S.K.);
(T.R.);
(M.M.);
(J.K.);
(A.M.)
| | - Twan Rutten
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06 466, Gatersleben, Germany; E-Mails:
(R.L.);
(S.K.);
(T.R.);
(M.M.);
(J.K.);
(A.M.)
| | - Michael Melzer
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06 466, Gatersleben, Germany; E-Mails:
(R.L.);
(S.K.);
(T.R.);
(M.M.);
(J.K.);
(A.M.)
| | - Jochen Kumlehn
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06 466, Gatersleben, Germany; E-Mails:
(R.L.);
(S.K.);
(T.R.);
(M.M.);
(J.K.);
(A.M.)
| | - Andrea Matros
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06 466, Gatersleben, Germany; E-Mails:
(R.L.);
(S.K.);
(T.R.);
(M.M.);
(J.K.);
(A.M.)
| | - Hans-Peter Mock
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06 466, Gatersleben, Germany; E-Mails:
(R.L.);
(S.K.);
(T.R.);
(M.M.);
(J.K.);
(A.M.)
| |
Collapse
|
2111
|
Ott T, Sullivan J, James EK, Flemetakis E, Günther C, Gibon Y, Ronson C, Udvardi M. Absence of symbiotic leghemoglobins alters bacteroid and plant cell differentiation during development of Lotus japonicus root nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:800-8. [PMID: 19522562 DOI: 10.1094/mpmi-22-7-0800] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During development of legume root nodules, rhizobia and their host plant cells undergo profound differentiation, which is underpinned by massive changes in gene expression in both symbiotic partners. Oxygen concentrations in infected and surrounding uninfected cells drop precipitously during nodule development. To assess what effects this has on plant and bacterial cell differentiation and gene expression, we used a leghemoglobin-RNA-interference (LbRNAi) line of Lotus japonicus, which is devoid of leghemoglobins and has elevated levels of free-oxygen in its nodules. Bacteroids in LbRNAi nodules showed altered ultrastructure indicating changes in bacterial differentiation. Transcript analysis of 189 plant and 192 bacterial genes uncovered many genes in both the plant and bacteria that were differentially regulated during nodulation of LbRNAi plants compared with the wild type (containing Lb and able to fix nitrogen). These included fix and nif genes of the bacteria, which are involved in microaerobic respiration and nitrogen fixation, respectively, and plant genes involved in primary and secondary metabolism. Metabolite analysis revealed decreased levels of many amino acids in nodules of LbRNAi plants, consistent with the defect in symbiotic nitrogen fixation of this line.
Collapse
Affiliation(s)
- Thomas Ott
- Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2112
|
Villarreal F, Martín V, Colaneri A, González-Schain N, Perales M, Martín M, Lombardo C, Braun HP, Bartoli C, Zabaleta E. Ectopic expression of mitochondrial gamma carbonic anhydrase 2 causes male sterility by anther indehiscence. PLANT MOLECULAR BIOLOGY 2009; 70:471-485. [PMID: 19326245 DOI: 10.1007/s11103-009-9484-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 03/15/2009] [Indexed: 05/27/2023]
Abstract
Plant mitochondria include gamma-type carbonic anhydrases (gammaCAs) of unknown function. In Arabidopsis, the gammaCAs form a gene family of five members which all are attached to the NADH dehydrogenase complex (complex I) of the respiratory chain. Here we report a functional analysis of gamma carbonic anhydrase 2 (CA2). The gene encoding CA2 is constitutively expressed in all plant organs investigated but it is ten fold induced in flowers, particularly in tapetal tissue. Ectopic expression of CA2 in Arabidopsis causes male sterility in transgenic plants. In normal anther development, secondary thickenings of the endothecial cell wall cause anthers to open upon dehydration. Histological analyses revealed that abnormal secondary thickening prevents anther opening in 35S::CA2 transgenic plants. CA2 abundance in transgenic plants is increased 2-3 fold compared to wild-type plants as revealed by Western blotting analyses. Moreover, abundance of other members of the CA family, termed CA3 and CAL2, is increased in transgenic plants. Oxygen uptake measurements revealed that respiration in transgenic plants is mainly based on NADH reduction by the alternative NADH dehydrogenases present in plant mitochondria. Furthermore, the formation of reactive oxygen species (ROS) is very low in transgenic plants. We propose that reduction in ROS inhibits H(2)O(2) dependent lignin polymerization in CA2 over-expressing plants, thereby causing male sterility.
Collapse
Affiliation(s)
- Fernando Villarreal
- Instituto de Investigaciones Biológicas, IIB, Facultad de Cs. Exactas y Naturales, UNMdP-CONICET, C.C. 1245, Mar del Plata, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2113
|
Fan L, Shi WJ, Hu WR, Hao XY, Wang DM, Yuan H, Yan HY. Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:626-37. [PMID: 19566641 DOI: 10.1111/j.1744-7909.2009.00840.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The mature cotton (Gossypium hirsutum L.) fiber is a single cell with a typically thickened secondary cell wall. The aim of this research was to use molecular, spectroscopic and chemical techniques to investigate the possible occurrence of previously overlooked accumulation of phenolics during secondary cell wall formation in cotton fibers. Relative quantitative reverse transcription-polymerase chain reaction analysis showed that GhCAD6 and GhCAD1 were predominantly expressed among seven gene homologs, only GhCAD6 was up-regulated during secondary wall formation in cotton fibers. Phylogenic analysis revealed that GhCAD6 belonged to Class I and was proposed to have a major role in monolignol biosynthesis, and GhCAD1 belonged to Class III and was proposed to have a compensatory mechanism for monolignol biosynthesis. Amino acid sequence comparison showed that the cofactor binding sites of GhCADs were highly conserved with high similarity and identity to bona fide cinnamyl alcohol dehydrogenases. The substrate binding site of GhCAD1 is different from GhCAD6. This difference was confirmed by the different catalytic activities observed with the enzymes. Cell wall auto-fluorescence, Fourier transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC) and chemical analyses confirmed that phenolic compounds were bound to the cell walls of mature cotton fibers. Our findings may suggest a potential for genetic manipulation of cotton fiber properties, which are of central importance to agricultural, cotton processing and textile industries.
Collapse
Affiliation(s)
- Ling Fan
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | | | | | | | | | | | | |
Collapse
|
2114
|
Henry BL, Connell J, Liang A, Krishnasamy C, Desai UR. Interaction of antithrombin with sulfated, low molecular weight lignins: opportunities for potent, selective modulation of antithrombin function. J Biol Chem 2009; 284:20897-908. [PMID: 19497853 DOI: 10.1074/jbc.m109.013359] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antithrombin, a major regulator of coagulation and angiogenesis, is known to interact with several natural sulfated polysaccharides. Previously, we prepared sulfated low molecular weight variants of natural lignins, called sulfated dehydrogenation polymers (DHPs) (Henry, B. L., Monien, B. H., Bock, P. E., and Desai, U. R. (2007) J. Biol. Chem. 282, 31891-31899), which have now been found to exhibit interesting antithrombin binding properties. Sulfated DHPs represent a library of diverse noncarbohydrate aromatic scaffolds that possess structures completely different from heparin and heparan sulfate. Fluorescence binding studies indicate that sulfated DHPs bind to antithrombin with micromolar affinity under physiological conditions. Salt dependence of binding affinity indicates that the antithrombin-sulfated DHP interaction involves a massive 80-87% non-ionic component to the free energy of binding. Competitive binding studies with heparin pentasaccharide, epicatechin sulfate, and full-length heparin indicate that sulfated DHPs bind to both the pentasaccharide-binding site and extended heparin-binding site of antithrombin. Affinity capillary electrophoresis resolves a limited number of peaks of antithrombin co-complexes suggesting preferential binding of selected DHP structures to the serpin. Computational genetic algorithm-based virtual screening study shows that only one sulfated DHP structure, out of the 11 present in a library of plausible sequences, bound in the heparin-binding site with a high calculated score supporting selectivity of recognition. Enzyme inhibition studies indicate that only one of the three sulfated DHPs studied is a potent inhibitor of free factor VIIa in the presence of antithrombin. Overall, the chemo-enzymatic origin and antithrombin binding properties of sulfated DHPs present novel opportunities for potent and selective modulation of the serpin function, especially for inhibiting the initiation phase of hemostasis.
Collapse
Affiliation(s)
- Brian L Henry
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
2115
|
Sonbol FM, Fornalé S, Capellades M, Encina A, Touriño S, Torres JL, Rovira P, Ruel K, Puigdomènech P, Rigau J, Caparrós-Ruiz D. The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2009; 70:283-96. [PMID: 19238561 DOI: 10.1007/s11103-009-9473-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/12/2009] [Indexed: 05/07/2023]
Abstract
The involvement of the maize ZmMYB42 R2R3-MYB factor in the phenylpropanoid pathway and cell wall structure and composition was investigated by overexpression in Arabidopsis thaliana. ZmMYB42 down-regulates several genes of the lignin pathway and this effect reduces the lignin content in all lignified tissues. In addition, ZmMYB42 plants generate a lignin polymer with a decreased S to G ratio through the enrichment in H and G subunits and depletion in S subunits. This transcription factor also regulates other genes involved in the synthesis of sinapate esters and flavonoids. Furthermore, ZmMYB42 affects the cell wall structure and degradability, and its polysaccharide composition. Together, these results suggest that ZmMYB42 may be part of the regulatory network controlling the phenylpropanoid biosynthetic pathway.
Collapse
Affiliation(s)
- Fathi-Mohamed Sonbol
- Consorci CSIC-IRTA-UAB, Centre de Recerca en AgriGenomica (CRAG), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2116
|
Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD. The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. PLANT PHYSIOLOGY 2009; 150:621-35. [PMID: 19386808 PMCID: PMC2689994 DOI: 10.1104/pp.109.137059] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/20/2009] [Indexed: 05/17/2023]
Abstract
Poplar (Populus tremula x alba) lignins with exceedingly high syringyl monomer levels are produced by overexpression of the ferulate 5-hydroxylase (F5H) gene driven by a cinnamate 4-hydroxylase (C4H) promoter. Compositional data derived from both standard degradative methods and NMR analyses of the entire lignin component (as well as isolated lignin fraction) indicated that the C4HF5H transgenic's lignin was comprised of as much as 97.5% syringyl units (derived from sinapyl alcohol), the remainder being guaiacyl units (derived from coniferyl alcohol); the syringyl level in the wild-type control was 68%. The resultant transgenic lignins are more linear and display a lower degree of polymerization. Although the crucial beta-ether content is similar, the distribution of other interunit linkages in the lignin polymer is markedly different, with higher resinol (beta-beta) and spirodienone (beta-1) contents, but with virtually no phenylcoumarans (beta-5, which can only be formed from guaiacyl units). p-Hydroxybenzoates, acylating the gamma-positions of lignin side chains, were reduced by >50%, suggesting consequent impacts on related pathways. A model depicting the putative structure of the transgenic lignin resulting from the overexpression of F5H is presented. The altered structural features in the transgenic lignin polymer, as revealed here, support the contention that there are significant opportunities to improve biomass utilization by exploiting the malleability of plant lignification processes.
Collapse
Affiliation(s)
- Jaclyn J Stewart
- Department of Wood Science, University of British Columbia, Vancouver, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
2117
|
Lee C, Teng Q, Huang W, Zhong R, Ye ZH. Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. PLANT & CELL PHYSIOLOGY 2009; 50:1075-89. [PMID: 19395414 DOI: 10.1093/pcp/pcp060] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xylan is the second most abundant polysaccharide in dicot wood. Unraveling the biosynthetic pathway of xylan is important not only for our understanding of the process of wood formation but also for our rational engineering of wood for biofuel production. Although several glycosyltransferases are implicated in glucuronoxylan (GX) biosynthesis in Arabidopsis, whether their close orthologs in woody tree species are essential for GX biosynthesis during wood formation has not been investigated. In fact, no studies have been reported to evaluate the effects of alterations in secondary wall-associated glycosyltransferases on wood formation in tree species. In this report, we demonstrate that PoGT47C, a poplar glycosyltransferase belonging to family GT47, is essential for the normal biosynthesis of GX and the normal secondary wall thickening in the wood of the hybrid poplar Populus alba x tremula. RNA interference (RNAi) inhibition of PoGT47C resulted in a drastic reduction in the thickness of secondary walls, a deformation of vessels and a decreased amount of GX in poplar wood. Structural analysis of GX using nuclear magnetic resonance (NMR) spectroscopy demonstrated that the reducing end of GX from poplar wood contains the tetrasaccharide sequence, beta-d-Xylp-(1-->3)-alpha-l-Rhap-(1-->2)-alpha-d-GalpA-(1-->4)-d-Xylp, and that its abundance was significantly decreased in the GX from the wood of the GT47C-RNAi lines. The transgenic wood was found to yield more glucose by cellulase digestion than the wild-type wood, indicating that the GX reduction in wood reduces the recalcitrance of wood to cellulase digestion. Together, these results provide direct evidence demonstrating that the PoGT47C glycosyltransferase is essential for normal GX biosynthesis in poplar wood and that GX modification could improve the digestibility of wood cellulose by cellulase.
Collapse
Affiliation(s)
- Chanhui Lee
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
2118
|
Tokunaga N, Kaneta T, Sato S, Sato Y. Analysis of expression profiles of three peroxidase genes associated with lignification in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2009; 136:237-49. [PMID: 19453502 DOI: 10.1111/j.1399-3054.2009.01233.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have investigated the mechanism of lignification during tracheary element (TE) differentiation using a Zinnia elegans xylogenic culture. In the process, we isolated ZPO-C, a peroxidase gene of Z. elegans that is expressed specifically in differentiating TEs. ZPO-C is suggested to be involved in lignification of Z. elegans TEs in vivo and in vitro. Furthermore, a peroxidase gene of Arabidopsis thaliana (AtPrx66), which is homologous to ZPO-C, was identified. The expression profile and functions of the gene in planta remain to be investigated. In this study, we performed promoter::beta-glucuronidase (GUS) assays to investigate the expression profiles and functions of the ZPO-C-like peroxidases in A. thaliana. We generated transgenic A. thaliana lines carrying AtPrx66, AtPrx47 or AtPrx64 (peroxidases showing high sequence similarity to AtPrx66) promoter::GUS reporter gene fusions. The GUS activities of AtPrx66, AtPrx47 and AtPrx64 promoter::GUS lines were arranged concentrically from the center to the periphery in the roots of seedlings. Furthermore, histochemical GUS assays using inflorescence stems showed that AtPrx66, AtPrx47 and AtPrx64 promoter-driven GUS were mainly expressed in the differentiating vessels, xylem parenchyma and sclerenchyma, respectively. These results suggest that the gene expressions of these three peroxidases, which showed high sequence similarity to one another, are differentially regulated in various tissues and organs. In addition, our results suggest that while AtPrx66 and AtPrx47 are associated with lignification of vessels, AtPrx64 is associated with lignification of sclerenchyma.
Collapse
Affiliation(s)
- Naohito Tokunaga
- Biology and Environmental Science, Graduate School of Science, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | |
Collapse
|
2119
|
Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF. A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the Sorghum brown midrib6 phenotype. PLANT PHYSIOLOGY 2009; 150:584-95. [PMID: 19363091 PMCID: PMC2689950 DOI: 10.1104/pp.109.136408] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 04/06/2009] [Indexed: 05/05/2023]
Abstract
Brown midrib6 (bmr6) affects phenylpropanoid metabolism, resulting in reduced lignin concentrations and altered lignin composition in sorghum (Sorghum bicolor). Recently, bmr6 plants were shown to have limited cinnamyl alcohol dehydrogenase activity (CAD; EC 1.1.1.195), the enzyme that catalyzes the conversion of hydroxycinnamoyl aldehydes (monolignals) to monolignols. A candidate gene approach was taken to identify Bmr6. Two CAD genes (Sb02g024190 and Sb04g005950) were identified in the sorghum genome based on similarity to known CAD genes and through DNA sequencing a nonsense mutation was discovered in Sb04g005950 that results in a truncated protein lacking the NADPH-binding and C-terminal catalytic domains. Immunoblotting confirmed that the Bmr6 protein was absent in protein extracts from bmr6 plants. Phylogenetic analysis indicated that Bmr6 is a member of an evolutionarily conserved group of CAD proteins, which function in lignin biosynthesis. In addition, Bmr6 is distinct from the other CAD-like proteins in sorghum, including SbCAD4 (Sb02g024190). Although both Bmr6 and SbCAD4 are expressed in sorghum internodes, an examination of enzymatic activity of recombinant Bmr6 and SbCAD4 showed that Bmr6 had 1 to 2 orders of magnitude greater activity for monolignol substrates. Modeling of Bmr6 and SbCAD4 protein structures showed differences in the amino acid composition of the active site that could explain the difference in enzyme activity. These differences include His-57, which is unique to Bmr6 and other grass CADs. In summary, Bmr6 encodes the major CAD protein involved in lignin synthesis in sorghum, and the bmr6 mutant is a null allele.
Collapse
Affiliation(s)
- Scott E Sattler
- Grain, Forage, and Bioenergy Research Unit, United States Department of Agriculture-Agricultural Research Service, Nebraska, USA.
| | | | | | | | | | | | | |
Collapse
|
2120
|
Fowler ZL, Koffas MAG. Biosynthesis and biotechnological production of flavanones: current state and perspectives. Appl Microbiol Biotechnol 2009; 83:799-808. [PMID: 19475406 DOI: 10.1007/s00253-009-2039-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 01/18/2023]
Abstract
Polyphenols produced in a wide variety of flowering and fruit-bearing plants have the potential to be valuable fine chemicals for the treatment of an assortment of human maladies. One of the major constituents within this chemical class are flavonoids, among which flavanones, as the precursor to all flavonoid structures, are the most prevalent. We review the current status of flavanone production technology using microorganisms, with focus on heterologous protein expression. Such processes appear as attractive production alternatives for commercial synthesis of these high-value chemicals as traditional chemical, and plant cell cultures have significant drawbacks. Other issues of importance, including fermentation configurations and economics, are also considered.
Collapse
Affiliation(s)
- Zachary L Fowler
- Department of Chemical and Biological Engineering, University at Buffalo, NY 14260, USA
| | | |
Collapse
|
2121
|
Mansfield SD. Solutions for dissolution--engineering cell walls for deconstruction. Curr Opin Biotechnol 2009; 20:286-94. [PMID: 19481436 DOI: 10.1016/j.copbio.2009.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 05/05/2009] [Indexed: 11/27/2022]
Abstract
Photosynthetic carbon capture by terrestrial plants represents a major sink for atmospheric CO(2), ultimately terminating in the synthesis of a secondary plant cell wall-a complex matrix of polysaccharides intricately linked to lignin. The production and co-ordinated deposition of this lignocellulosic composite confers both protective and structural properties to the plant cell. The inherent properties of this complex cell wall also represent a major obstacle for its effective industrial utilization, as operationally effective mechanisms for the removal of lignin and the consequential release of carbohydrate constituents remain elusive. Perturbing plants by mis-regulating key genes/enzymes integral to major cell wall pathways can provide both rich insights into cell wall development and architecture, and concurrently provide significant opportunities for improved lignocellulose utilization.
Collapse
Affiliation(s)
- Shawn D Mansfield
- 4030-2424 Main Mall, Department of Wood Science, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| |
Collapse
|
2122
|
Morvan D, Rauchfuss TB, Wilson SR. π-Complexes of Lignols with Manganese(I) and Ruthenium(II). Organometallics 2009. [DOI: 10.1021/om9001445] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Didier Morvan
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Scott R. Wilson
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| |
Collapse
|
2123
|
Millar DJ, Whitelegge JP, Bindschedler LV, Rayon C, Boudet AM, Rossignol M, Borderies G, Bolwell GP. The cell wall and secretory proteome of a tobacco cell line synthesising secondary wall. Proteomics 2009; 9:2355-72. [PMID: 19402043 DOI: 10.1002/pmic.200800721] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Indexed: 01/04/2023]
Abstract
The utility of plant secondary cell wall biomass for industrial and biofuel purposes depends upon improving cellulose amount, availability and extractability. The possibility of engineering such biomass requires much more knowledge of the genes and proteins involved in the synthesis, modification and assembly of cellulose, lignin and xylans. Proteomic data are essential to aid gene annotation and understanding of polymer biosynthesis. Comparative proteomes were determined for secondary walls of stem xylem and transgenic xylogenic cells of tobacco and detected peroxidase, cellulase, chitinase, pectinesterase and a number of defence/cell death related proteins, but not marker proteins of primary walls such as xyloglucan endotransglycosidase and expansins. Only the corresponding detergent soluble proteome of secretory microsomes from the xylogenic cultured cells, subjected to ion-exchange chromatography, could be determined accurately since, xylem-specific membrane yields were of poor quality from stem tissue. Among the 109 proteins analysed, many of the protein markers of the ER such as BiP, HSP70, calreticulin and calnexin were identified, together with some of the biosynthetic enzymes and associated polypeptides involved in polymer synthesis. However 53% of these endomembrane proteins failed identification despite the use of two different MS methods, leaving considerable possibilities for future identification of novel proteins involved in secondary wall polymer synthesis once full genomic data are available.
Collapse
Affiliation(s)
- David J Millar
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | | | | | | | | | | | | | | |
Collapse
|
2124
|
Bedon F, Levasseur C, Grima-Pettenati J, Séguin A, MacKay J. Sequence analysis and functional characterization of the promoter of the Picea glauca Cinnamyl Alcohol Dehydrogenase gene in transgenic white spruce plants. PLANT CELL REPORTS 2009; 28:787-800. [PMID: 19288108 DOI: 10.1007/s00299-009-0688-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 05/27/2023]
Abstract
The enzyme Cinnamyl Alcohol Dehydrogenase (CAD) catalyses the last step of lignin monomer synthesis, and is considered as a molecular marker of cell wall lignification in different plants species. Here, we report the isolation and analysis of 5' flanking genomic DNA regions upstream to the CAD gene, from two conifers, i.e. white spruce (Picea glauca (Moench) Voss) and loblolly pine (Pinus taeda L.). Sequence comparisons with available CAD gene promoters from angiosperms highlighted the conservation of cis-elements matching MYB, WRKY and bHLH binding sites. Functional characterization of the P. glauca CAD promoter used P. glauca seedlings stably transformed with a DNA fragment of 1,163 base pairs (PgCAD) fused to the beta-glucuronidase (GUS) gene. Histochemical observations of different vegetative organs of the transgenic trees showed that this sequence was sufficient to drive GUS expression in lignifying tissues, and more specifically in differentiating xylem cells. Quantitative RT-PCR experiments also indicated that the native CAD gene was preferentially expressed in differentiating xylem both in stems and roots. In addition, GUS expression driven by the PgCAD promoter was wound-inducible which was consistent with the accumulation of CAD mRNA in response to jasmonate application and mechanical wounding. The spruce CAD promoter represents a valuable tool for research and biotechnology applications related to xylem and wood.
Collapse
Affiliation(s)
- Frank Bedon
- Centre d'Etude de la Forêt, Université Laval, Quebec, QC, Canada.
| | | | | | | | | |
Collapse
|
2125
|
Zanardo DIL, Lima RB, Ferrarese MDLL, Bubna GA, Ferrarese-Filho O. Soybean root growth inhibition and lignification induced by p-coumaric acid. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2009; 66:25-30. [PMID: 0 DOI: 10.1016/j.envexpbot.2008.12.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
2126
|
Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C. FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. PLANT MOLECULAR BIOLOGY 2009; 69:685-97. [PMID: 19116760 DOI: 10.1007/s11103-008-9448-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 12/10/2008] [Indexed: 05/24/2023]
Abstract
Culm mechanical strength is an important agronomic trait in crop breeding. To understand the molecular mechanisms that control culm mechanical strength, we identified a flexible culm1 (fc1) mutant by screening a rice T-DNA insertion mutant library. This mutant exhibited an abnormal development phenotype, including late heading time, semi-dwarf habit, and flexible culm. In this study, we cloned the FLEXIBLE CULM1 (FC1) gene in rice using a T-DNA tagging approach. FC1 encodes a cinnamyl-alcohol dehydrogenase and is mainly expressed in the sclerenchyma cells of the secondary cell wall and vascular bundle region. In these types of cells, a deficiency of FC1 in the fc1 mutant caused a reduction in cell wall thickness, as well as a decrease in lignin. Extracts from the first internodes and panicles of the fc1 plants exhibited drastically reduced cinnamyl-alcohol dehydrogenase activity. Further histological and biochemical analyses revealed that the p-hydroxyphenyl and guaiacyl monomers in fc1 cell wall were reduced greatly. Our results indicated that FC1 plays an important role in the biosynthesis of lignin and the control of culm strength in rice.
Collapse
Affiliation(s)
- Xiangjun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
2127
|
Besse P, Da Silva D, Bory S, Noirot M, Grisoni M. Variation in intron length in caffeic acid O-methyltransferase (COMT) in Vanilla species (Orchidaceae). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2009; 176:452-460. [PMID: 26493134 DOI: 10.1016/j.plantsci.2008.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/16/2008] [Accepted: 12/19/2008] [Indexed: 06/05/2023]
Abstract
Variation in intron length in caffeic acid O-methyltransferase (COMT) in Vanilla was studied and demonstrated that COMT genes in Vanilla are organized with four exons and three introns. At least two to four different versions (either allelic or paralogous) of the COMT multigenic family in the genus Vanilla (in terms of intron sizes) were detected. The three introns were differentially variable, with intron-1 being the most length-polymorphic. Patterns of variations were in accordance with known phylogenetic relationships in the genus obtained with neutral markers. In particular, the genus displayed a strong Old World versus New World differentiation with American fragrant species being characterized by a specific 99bp intron-1 size-variant and a unique 226bp intron-3 variant. Conversely, leafless species of the genus displayed unexpected variations in intron lengths. Due to their role in primary (lignin) and secondary (phenolics, e.g., vanillin, alkaloids) metabolisms, COMT genes might not be neutral markers, and represent candidate functional markers for resistance, aromatic or medicinal properties of Vanilla species. Investigating the orthologous/paralogous status of the different genes revealed (in terms of intron size) will allow the evolution of the COMT genes to be studied.
Collapse
Affiliation(s)
- Pascale Besse
- Universite de la Reunion, UMR PVBMT "Peuplements végétaux et bioagresseurs en milieu tropical" Universite Reunion-Cirad, 15 avenue Rene Cassin, BP7151, 97715 Saint Denis messag cedex 9, La Reunion, France.
| | - Denis Da Silva
- Universite de la Reunion, UMR PVBMT "Peuplements végétaux et bioagresseurs en milieu tropical" Universite Reunion-Cirad, 15 avenue Rene Cassin, BP7151, 97715 Saint Denis messag cedex 9, La Reunion, France
| | - Séverine Bory
- Universite de la Reunion, UMR PVBMT "Peuplements végétaux et bioagresseurs en milieu tropical" Universite Reunion-Cirad, 15 avenue Rene Cassin, BP7151, 97715 Saint Denis messag cedex 9, La Reunion, France; CIRAD, UMR PVBMT "Peuplements végétaux et bioagresseurs en milieu tropical" Universite Reunion-Cirad, Pôle de Protection des Plantes, 7 chemin de l'IRAT, 97410 Saint Pierre, La Reunion, France
| | - Michel Noirot
- IRD, UMR PVBMT "Peuplements végétaux et bioagresseurs en milieu tropical" Universite Reunion-Cirad, Pôle de Protection des Plantes, 7 chemin de l'IRAT, 97410 Saint Pierre, La Reunion, France
| | - Michel Grisoni
- CIRAD, UMR PVBMT "Peuplements végétaux et bioagresseurs en milieu tropical" Universite Reunion-Cirad, Pôle de Protection des Plantes, 7 chemin de l'IRAT, 97410 Saint Pierre, La Reunion, France
| |
Collapse
|
2128
|
Rengel D, Clemente HS, Servant F, Ladouce N, Paux E, Wincker P, Couloux A, Sivadon P, Grima-Pettenati J. A new genomic resource dedicated to wood formation in Eucalyptus. BMC PLANT BIOLOGY 2009; 9:36. [PMID: 19327132 PMCID: PMC2670833 DOI: 10.1186/1471-2229-9-36] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 03/27/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND Renowned for their fast growth, valuable wood properties and wide adaptability, Eucalyptus species are amongst the most planted hardwoods in the world, yet they are still at the early stages of domestication because conventional breeding is slow and costly. Thus, there is huge potential for marker-assisted breeding programs to improve traits such as wood properties. To this end, the sequencing, analysis and annotation of a large collection of expressed sequences tags (ESTs) from genes involved in wood formation in Eucalyptus would provide a valuable resource. RESULTS We report here the normalization and sequencing of a cDNA library from developing Eucalyptus secondary xylem, as well as the construction and sequencing of two subtractive libraries (juvenile versus mature wood and vice versa). A total of 9,222 high quality sequences were collected from about 10,000 cDNA clones. The EST assembly generated a set of 3,857 wood-related unigenes including 2,461 contigs (Cg) and 1,396 singletons (Sg) that we named 'EUCAWOOD'. About 65% of the EUCAWOOD sequences produced matches with poplar, grapevine, Arabidopsis and rice protein sequence databases. BlastX searches of the Uniref100 protein database allowed us to allocate gene ontology (GO) and protein family terms to the EUCAWOOD unigenes. This annotation of the EUCAWOOD set revealed key functional categories involved in xylogenesis. For instance, 422 sequences matched various gene families involved in biosynthesis and assembly of primary and secondary cell walls. Interestingly, 141 sequences were annotated as transcription factors, some of them being orthologs of regulators known to be involved in xylogenesis. The EUCAWOOD dataset was also mined for genomic simple sequence repeat markers, yielding a total of 639 putative microsatellites. Finally, a publicly accessible database was created, supporting multiple queries on the EUCAWOOD dataset. CONCLUSION In this work, we have identified a large set of wood-related Eucalyptus unigenes called EUCAWOOD, thus creating a valuable resource for functional genomics studies of wood formation and molecular breeding in this economically important genus. This set of publicly available annotated sequences will be instrumental for candidate gene approaches, custom array development and marker-assisted selection programs aimed at improving and modulating wood properties.
Collapse
Affiliation(s)
- David Rengel
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
| | - Hélène San Clemente
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
| | - Florence Servant
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
- Current address : Syngenta Seeds SAS, BP27, 31790 Saint Sauveur, France
| | - Nathalie Ladouce
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
| | - Etienne Paux
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
- Current address : INRA-UBP, UMR 1095, INRA Site de Crouël, 234 avenue du Brézet, 63100 Clermont-Ferrand, France
| | - Patrick Wincker
- Génoscope, CNRS, UMR 8030 and Université d'Evry, 91057 Evry, France
| | - Arnaud Couloux
- Génoscope, CNRS, UMR 8030 and Université d'Evry, 91057 Evry, France
| | - Pierre Sivadon
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
- Current address : Université de Pau et des Pays de l'Adour, UMR CNRS 5254 IPREM, IBEAS – BP1155, 64013 Pau Cedex, France
| | - Jacqueline Grima-Pettenati
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
| |
Collapse
|
2129
|
Barakat A, Bagniewska-Zadworna A, Choi A, Plakkat U, DiLoreto DS, Yellanki P, Carlson JE. The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression. BMC PLANT BIOLOGY 2009; 9:26. [PMID: 19267902 PMCID: PMC2662859 DOI: 10.1186/1471-2229-9-26] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 03/06/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND Lignin is a phenolic heteropolymer in secondary cell walls that plays a major role in the development of plants and their defense against pathogens. The biosynthesis of monolignols, which represent the main component of lignin involves many enzymes. The cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis as it catalyzes the final step in the synthesis of monolignols. The CAD gene family has been studied in Arabidopsis thaliana, Oryza sativa and partially in Populus. This is the first comprehensive study on the CAD gene family in woody plants including genome organization, gene structure, phylogeny across land plant lineages, and expression profiling in Populus. RESULTS The phylogenetic analyses showed that CAD genes fall into three main classes (clades), one of which is represented by CAD sequences from gymnosperms and angiosperms. The other two clades are represented by sequences only from angiosperms. All Populus CAD genes, except PoptrCAD 4 are distributed in Class II and Class III. CAD genes associated with xylem development (PoptrCAD 4 and PoptrCAD 10) belong to Class I and Class II. Most of the CAD genes are physically distributed on duplicated blocks and are still in conserved locations on the homeologous duplicated blocks. Promoter analysis of CAD genes revealed several motifs involved in gene expression modulation under various biological and physiological processes. The CAD genes showed different expression patterns in poplar with only two genes preferentially expressed in xylem tissues during lignin biosynthesis. CONCLUSION The phylogeny of CAD genes suggests that the radiation of this gene family may have occurred in the early ancestry of angiosperms. Gene distribution on the chromosomes of Populus showed that both large scale and tandem duplications contributed significantly to the CAD gene family expansion. The duplication of several CAD genes seems to be associated with a genome duplication event that happened in the ancestor of Salicaceae. Phylogenetic analyses associated with expression profiling and results from previous studies suggest that CAD genes involved in wood development belong to Class I and Class II. The other CAD genes from Class II and Class III may function in plant tissues under biotic stresses. The conservation of most duplicated CAD genes, the differential distribution of motifs in their promoter regions, and the divergence of their expression profiles in various tissues of Populus plants indicate that genes in the CAD family have evolved tissue-specialized expression profiles and may have divergent functions.
Collapse
Affiliation(s)
- Abdelali Barakat
- The School of Forest Resources, The Huck Institutes of the Life Sciences, Pennsylvania State University, 324 Forest Resources Building, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
2130
|
McInnis S, Clemens S, Kermode AR. The ornamental variety, Japanese striped corn, contains high anthocyanin levels and PAL specific activity: establishing the potential for development of an oral therapeutic. PLANT CELL REPORTS 2009; 28:503-515. [PMID: 19082600 DOI: 10.1007/s00299-008-0650-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/27/2008] [Accepted: 11/16/2008] [Indexed: 05/27/2023]
Abstract
Phenylalanine ammonia-lyase [PAL, EC 4.3.1.24 (formerly EC 4.3.1.5)], functions in the plant phenylpropanoid biosynthetic pathway to deaminate the amino acid L-phenylalanine forming trans-cinnamic acid and ammonia. The human inherited metabolic disorder phenylketonuria (PKU) is characterized by an inability of individuals to metabolize phenylalanine. Toward the development of a plant-PAL based therapeutic for the treatment of this disorder, a comparative analysis of PAL activities within various members of the Poaceae was undertaken. This led to the identification of a Zea mays cultivar, Japanese Striped corn with very high levels of PAL specific activity in seedling tissues. The root tissues of this corn variety contain greater levels of PAL gene transcripts and PAL activities, compared to those of the shoot tissues, and are intensely colored due to the accumulation of anthocyanin pigments. PAL activities in the root tissues of young seedlings of another corn variety that lacked root anthocyanins (Indian Blue corn) were generally 30-50% lower than those of Japanese Striped corn seedlings at equivalent growth stages. In general, various stress or hormonal treatments led to minimal changes in PAL specific activity of maize tissues, as compared to controls. The PAL enzymes of Japanese Striped corn root tissues are robust; roots retained 90% of their PAL activity after freeze-drying and >50% activity after freeze-drying and a subsequent 15-week storage at 4 degrees C. This work serves as a prelude to the formulation of a dietary supplement for treatment of PKU based on preserved edible cereal root tissues with high levels of intrinsic PAL activity.
Collapse
Affiliation(s)
- Stephanie McInnis
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | |
Collapse
|
2131
|
Allison GG, Thain SC, Morris P, Morris C, Hawkins S, Hauck B, Barraclough T, Yates N, Shield I, Bridgwater AV, Donnison IS. Quantification of hydroxycinnamic acids and lignin in perennial forage and energy grasses by Fourier-transform infrared spectroscopy and partial least squares regression. BIORESOURCE TECHNOLOGY 2009; 100:1252-61. [PMID: 18796351 DOI: 10.1016/j.biortech.2008.07.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/23/2008] [Accepted: 07/24/2008] [Indexed: 05/23/2023]
Abstract
Levels of lignin and hydroxycinnamic acid wall components in three genera of forage grasses (Lolium,Festuca and Dactylis) have been accurately predicted by Fourier-transform infrared spectroscopy using partial least squares models correlated to analytical measurements. Different models were derived that predicted the concentrations of acid detergent lignin, total hydroxycinnamic acids, total ferulate monomers plus dimers, p-coumarate and ferulate dimers in independent spectral test data from methanol extracted samples of perennial forage grass with accuracies of 92.8%, 86.5%, 86.1%, 59.7% and 84.7% respectively, and analysis of model projection scores showed that the models relied generally on spectral features that are known absorptions of these compounds. Acid detergent lignin was predicted in samples of two species of energy grass, (Phalaris arundinacea and Pancium virgatum) with an accuracy of 84.5%.
Collapse
Affiliation(s)
- Gordon G Allison
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University Gogerddan, Aberystwyth, Ceredigion, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2132
|
Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM. Expansion and diversification of the Populus R2R3-MYB family of transcription factors. PLANT PHYSIOLOGY 2009; 149:981-93. [PMID: 19091872 PMCID: PMC2633813 DOI: 10.1104/pp.108.132795] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/12/2008] [Indexed: 05/17/2023]
Abstract
The R2R3-MYB proteins comprise one of the largest families of transcription factors in plants. R2R3-MYB family members regulate plant-specific processes, such as the elaboration of specialized cell types, including xylem, guard cells, trichomes, and root hairs, and the biosynthesis of specialized branches of metabolism, including phenylpropanoid biosynthesis. As such, R2R3-MYB family members are hypothesized to contribute to the emergence of evolutionary innovations that have arisen in specific plant lineages. As a first step in determining the role played by R2R3-MYB family members in the emergence of lineage-specific innovations in the genus Populus, the entire Populus trichocarpa R2R3-MYB family was characterized. The Populus R2R3-MYB complement is much larger than that found in other angiosperms with fully sequenced genomes. Phylogenetic analyses, together with chromosome placement, showed that the expansion of the Populus R2R3-MYB family was not only attributable to whole genome duplication but also involved selective expansion of specific R2R3-MYB clades. Expansion of the Populus R2R3-MYB family prominently involved members with expression patterns that suggested a role in specific components of Populus life history, including wood formation and reproductive development. An expandable compendium of microarray-based expression data (PopGenExpress) and associated Web-based tools were developed to better enable within- and between-species comparisons of Populus R2R3-MYB gene expression. This resource, which includes intuitive graphic visualization of gene expression data across multiple tissues, organs, and treatments, is freely available to, and expandable by, scientists wishing to better understand the genome biology of Populus, an ecologically dominant and economically important forest tree genus.
Collapse
Affiliation(s)
- Olivia Wilkins
- Department of Cell and Systems Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | | | | | | | | |
Collapse
|
2133
|
Bhuiyan NH, Selvaraj G, Wei Y, King J. Role of lignification in plant defense. PLANT SIGNALING & BEHAVIOR 2009; 4:158-9. [PMID: 19649200 PMCID: PMC2637510 DOI: 10.4161/psb.4.2.7688] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/23/2008] [Indexed: 05/18/2023]
Abstract
For a long time it has been believed that lignification has an important role in host defense against pathogen invasion. Recently, by using an RNAi gene-silencing assay we showed that monolignol biosynthesis plays a critical role in cell wall apposition (CWA)-mediated defense against powdery mildew fungus penetration into diploid wheat. Silencing monolignol genes led to super-susceptibility of wheat leaf tissues to an appropriate pathogen, Blumeria graminis f. sp. tritici (Bgt), and compromised penetration resistance to a non-appropriate pathogen, B. graminis f. sp. hordei. Autofluorescence of CWA regions was reduced significantly at the fungal penetration sites in silenced cells. Our work indicates an important role for monolignol biosynthetic genes in effective CWA formation against pathogen penetration. In this addendum, we show that silencing of monolignol genes also compromised penetration resistant to Bgt in a resistant wheat line. In addition, we discuss possible insights into how lignin biosynthesis contributes to host defense.
Collapse
Affiliation(s)
- Nazmul H Bhuiyan
- Department of Biology; University of Saskatchewan; Saskatoon, Saskatchewan, Canada
| | - Gopalan Selvaraj
- Plant Biotechnology Institute; National Research Council of Canada; Saskatoon, Saskatchewan, Canada
| | - Yangdou Wei
- Department of Biology; University of Saskatchewan; Saskatoon, Saskatchewan, Canada
| | - John King
- Department of Biology; University of Saskatchewan; Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2134
|
Uzal EN, Gómez Ros LV, Pomar F, Bernal MA, Paradela A, Albar JP, Ros Barceló A. The presence of sinapyl lignin in Ginkgo biloba cell cultures changes our views of the evolution of lignin biosynthesis. PHYSIOLOGIA PLANTARUM 2009; 135:196-213. [PMID: 19055540 DOI: 10.1111/j.1399-3054.2008.01185.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Suspension cell cultures (SCCs) from one of the oldest seed plants, Ginkgo biloba, show unpredictable alterations in the nature of the lignins, such as is the recruitment of sinapyl alcohol for lignin biosynthesis, compared with the woody tissues of the same species, which lack syringyl (S) lignins. These results show that, in this gymnosperm, the genes involved in sinapyl alcohol biosynthesis are latent and that their regulatory regions respond, by initiating gene expression, to the developmental signals and the environmental clues, which condition its in vitro culture. G. biloba SCCs not only synthesize S lignins but also their extracellular proteome contains both class III peroxidases capable of oxidizing sinapyl alcohol and enzymes involved in H2O2 production, observation which suggests that the peroxidase branch for the oxidative coupling of sinapyl alcohol units into lignins is operative. The incomplete knowledge of the G. biloba peroxidase-encoding genes led us to purify, characterize and partially sequence the peroxidase responsible for monolignol oxidation. When the major peroxidase from G. biloba SCCs (GbPrx) was purified to homogeneity, it showed absorption maxima in the visible region at 414 (Soret band), and at 543 and 570 nm, which calls to mind those shown by low-spin ferric peroxidases. However, the results also showed that the paraperoxidase-like character of GbPrx is not an obstacle for oxidizing the three monolignols compared with high-spin ferric peroxidases. Taken together, these results mean that the time at which the evolutionary gain of the segment of the route that leads to the biosynthesis of S lignins took place in seed plants needs to be revised.
Collapse
Affiliation(s)
- Esther Novo Uzal
- Department of Plant Biology, University of La Coruña, La Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
2135
|
Li X, Wu HX, Dillon SK, Southerton SG. Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don. BMC Genomics 2009; 10:41. [PMID: 19159482 PMCID: PMC2636829 DOI: 10.1186/1471-2164-10-41] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/21/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wood is a major renewable natural resource for the timber, fibre and bioenergy industry. Pinus radiata D. Don is the most important commercial plantation tree species in Australia and several other countries; however, genomic resources for this species are very limited in public databases. Our primary objective was to sequence a large number of expressed sequence tags (ESTs) from genes involved in wood formation in radiata pine. RESULTS Six developing xylem cDNA libraries were constructed from earlywood and latewood tissues sampled at juvenile (7 yrs), transition (11 yrs) and mature (30 yrs) ages, respectively. These xylem tissues represent six typical development stages in a rotation period of radiata pine. A total of 6,389 high quality ESTs were collected from 5,952 cDNA clones. Assembly of 5,952 ESTs from 5' end sequences generated 3,304 unigenes including 952 contigs and 2,352 singletons. About 97.0% of the 5,952 ESTs and 96.1% of the unigenes have matches in the UniProt and TIGR databases. Of the 3,174 unigenes with matches, 42.9% were not assigned GO (Gene Ontology) terms and their functions are unknown or unclassified. More than half (52.1%) of the 5,952 ESTs have matches in the Pfam database and represent 772 known protein families. About 18.0% of the 5,952 ESTs matched cell wall related genes in the MAIZEWALL database, representing all 18 categories, 91 of all 174 families and possibly 557 genes. Fifteen cell wall-related genes are ranked in the 30 most abundant genes, including CesA, tubulin, AGP, SAMS, actin, laccase, CCoAMT, MetE, phytocyanin, pectate lyase, cellulase, SuSy, expansin, chitinase and UDP-glucose dehydrogenase. Based on the PlantTFDB database 41 of the 64 transcription factor families in the poplar genome were identified as being involved in radiata pine wood formation. Comparative analysis of GO term abundance revealed a distinct transcriptome in juvenile earlywood formation compared to other stages of wood development. CONCLUSION The first large scale genomic resource in radiata pine was generated from six developing xylem cDNA libraries. Cell wall-related genes and transcription factors were identified. Juvenile earlywood has a distinct transcriptome, which is likely to contribute to the undesirable properties of juvenile wood in radiata pine. The publicly available resource of radiata pine will also be valuable for gene function studies and comparative genomics in forest trees.
Collapse
Affiliation(s)
- Xinguo Li
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Harry X Wu
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Shannon K Dillon
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | |
Collapse
|
2136
|
Minic Z, Jamet E, San-Clemente H, Pelletier S, Renou JP, Rihouey C, Okinyo DPO, Proux C, Lerouge P, Jouanin L. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes. BMC PLANT BIOLOGY 2009; 9:6. [PMID: 19149885 PMCID: PMC2649120 DOI: 10.1186/1471-2229-9-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 01/16/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. RESULTS Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. CONCLUSION Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins.
Collapse
Affiliation(s)
- Zoran Minic
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique (INRA), Route de St-Cyr, 78026 Versailles Cedex, France
| | - Elisabeth Jamet
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-UPS, Université de Toulouse, 24 Chemin de Borde Rouge, BP42617, 31326-Castanet-Tolosan, France
| | - Hélène San-Clemente
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-UPS, Université de Toulouse, 24 Chemin de Borde Rouge, BP42617, 31326-Castanet-Tolosan, France
| | - Sandra Pelletier
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Christophe Rihouey
- Faculté des Sciences, FRE CNRS 3090, IFRMP23, Université de Rouen, F-76821 Mont Saint Aignan Cedex, France
| | - Denis PO Okinyo
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Patrice Lerouge
- Faculté des Sciences, FRE CNRS 3090, IFRMP23, Université de Rouen, F-76821 Mont Saint Aignan Cedex, France
| | - Lise Jouanin
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique (INRA), Route de St-Cyr, 78026 Versailles Cedex, France
| |
Collapse
|
2137
|
Struijs K, Vincken JP, Doeswijk TG, Voragen AGJ, Gruppen H. The chain length of lignan macromolecule from flaxseed hulls is determined by the incorporation of coumaric acid glucosides and ferulic acid glucosides. PHYTOCHEMISTRY 2009; 70:262-9. [PMID: 19155025 DOI: 10.1016/j.phytochem.2008.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/06/2008] [Accepted: 12/08/2008] [Indexed: 05/13/2023]
Abstract
Lignan macromolecule from flaxseed hulls is composed of secoisolariciresinol diglucoside (SDG) and herbacetin diglucoside (HDG) moieties ester-linked by 3-hydroxy-3-methylglutaric acid (HMGA), and of p-coumaric acid glucoside (CouAG) and ferulic acid glucoside (FeAG) moieties ester-linked directly to SDG. The linker molecule HMGA was found to account for 11% (w/w) of the lignan macromolecule. Based on the extinction coefficients and RP-HPLC data, it was determined that SDG contributes for 62.0% (w/w) to the lignan macromolecule, while CouAG, FeAG, and HDG contribute for 12.2, 9.0, and 5.7% (w/w), respectively. Analysis of fractions of lignan macromolecule showed that the higher the molecular mass, the higher the proportion of SDG was. An inverse relation between the molecular mass and the proportion (%) CouAG+FeAG was found. Together with the structural information of oligomers of lignan macromolecule obtained after partial saponification, it is hypothesized that the amount of CouAG+FeAG present during biosynthesis determines the chain length of lignan macromolecule. Furthermore, the chain length was estimated from a model describing lignan macromolecule based on structural and compositional data. The average chain length of the lignan macromolceule was calculated to be three SDG moieties with CouAG or FeAG at each of the terminal positions, with a variation between one and seven SDG moieties.
Collapse
Affiliation(s)
- Karin Struijs
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
2138
|
Quentin M, Allasia V, Pegard A, Allais F, Ducrot PH, Favery B, Levis C, Martinet S, Masur C, Ponchet M, Roby D, Schlaich NL, Jouanin L, Keller H. Imbalanced lignin biosynthesis promotes the sexual reproduction of homothallic oomycete pathogens. PLoS Pathog 2009; 5:e1000264. [PMID: 19148278 PMCID: PMC2613516 DOI: 10.1371/journal.ppat.1000264] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/14/2008] [Indexed: 11/19/2022] Open
Abstract
Lignin is incorporated into plant cell walls to maintain plant architecture and to ensure long-distance water transport. Lignin composition affects the industrial value of plant material for forage, wood and paper production, and biofuel technologies. Industrial demands have resulted in an increase in the use of genetic engineering to modify lignified plant cell wall composition. However, the interaction of the resulting plants with the environment must be analyzed carefully to ensure that there are no undesirable side effects of lignin modification. We show here that Arabidopsis thaliana mutants with impaired 5-hydroxyguaiacyl O-methyltransferase (known as caffeate O-methyltransferase; COMT) function were more susceptible to various bacterial and fungal pathogens. Unexpectedly, asexual sporulation of the downy mildew pathogen, Hyaloperonospora arabidopsidis, was impaired on these mutants. Enhanced resistance to downy mildew was not correlated with increased plant defense responses in comt1 mutants but coincided with a higher frequency of oomycete sexual reproduction within mutant tissues. Comt1 mutants but not wild-type Arabidopsis accumulated soluble 2-O-5-hydroxyferuloyl-L-malate. The compound weakened mycelium vigor and promoted sexual oomycete reproduction when applied to a homothallic oomycete in vitro. These findings suggested that the accumulation of 2-O-5-hydroxyferuloyl-L-malate accounted for the observed comt1 mutant phenotypes during the interaction with H. arabidopsidis. Taken together, our study shows that an artificial downregulation of COMT can drastically alter the interaction of a plant with the biotic environment.
Collapse
Affiliation(s)
- Michaël Quentin
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Valérie Allasia
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Anthony Pegard
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | | | | | - Bruno Favery
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Caroline Levis
- Unité de Phytopathologie et Méthodologies de la Détection, INRA, Versailles, France
| | | | - Clarissa Masur
- Institut Bio III Pflanzenphysiologie, RWTH Aachen University, Aachen, Germany
| | - Michel Ponchet
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR INRA-CNRS, Castanet-Tolosan, France
| | | | - Lise Jouanin
- Laboratoire de Biologie Cellulaire, INRA, IJPB, Versailles, France
| | - Harald Keller
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| |
Collapse
|
2139
|
Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J. Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. PLANT PHYSIOLOGY 2009; 149:370-83. [PMID: 18971431 PMCID: PMC2613735 DOI: 10.1104/pp.108.125765] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 10/26/2008] [Indexed: 05/18/2023]
Abstract
Severe suppression of 4-coumarate-coenzyme A ligase (4CL) in the coniferous gymnosperm Pinus radiata substantially affected plant phenotype and resulted in dwarfed plants with a "bonsai tree-like" appearance. Microscopic analyses of stem sections from 2-year-old plants revealed substantial morphological changes in both wood and bark tissues. This included the formation of weakly lignified tracheids that displayed signs of collapse and the development of circumferential bands of axial parenchyma. Acetyl bromide-soluble lignin assays and proton nuclear magnetic resonance studies revealed lignin reductions of 36% to 50% in the most severely affected transgenic plants. Two-dimensional nuclear magnetic resonance and pyrolysis-gas chromatography-mass spectrometry studies indicated that lignin reductions were mainly due to depletion of guaiacyl but not p-hydroxyphenyl lignin. 4CL silencing also caused modifications in the lignin interunit linkage distribution, including elevated beta-aryl ether (beta-O-4 unit) and spirodienone (beta-1) levels, accompanied by lower phenylcoumaran (beta-5), resinol (beta-beta), and dibenzodioxocin (5-5/beta-O-4) levels. A sharp depletion in the level of saturated (dihydroconiferyl alcohol) end groups was also observed. Severe suppression of 4CL also affected carbohydrate metabolism. Most obvious was an up to approximately 2-fold increase in galactose content in wood from transgenic plants due to increased compression wood formation. The molecular, anatomical, and analytical data verified that the isolated 4CL clone is associated with lignin biosynthesis and illustrated that 4CL silencing leads to complex, often surprising, physiological and morphological changes in P. radiata.
Collapse
|
2140
|
Holmgren A, Norgren M, Zhang L, Henriksson G. On the role of the monolignol gamma-carbon functionality in lignin biopolymerization. PHYTOCHEMISTRY 2009; 70:147-155. [PMID: 19056096 DOI: 10.1016/j.phytochem.2008.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 10/06/2008] [Accepted: 10/10/2008] [Indexed: 05/27/2023]
Abstract
In order to investigate the importance of the monomeric gamma-carbon chemistry in lignin biopolymerization and structure, synthetic lignins (dehydrogenation polymers; DHP) were made from monomers with different degrees of oxidation at the gamma-carbon, i.e., carboxylic acid, aldehyde and alcohol. All monomers formed a polymeric material through enzymatic oxidation. The polymers displayed similar sizes by size exclusion chromatography analyses, but also exhibited some physical and chemical differences. The DHP made of coniferaldehyde had poorer solubility properties than the other DHPs, and through contact angle of water measurement on spin-coated surfaces of the polymeric materials, the DHPs made of coniferaldehyde and carboxylic ferulic acid exhibited higher hydrophobicity than the coniferyl alcohol DHP. A structural characterization with (13)C NMR revealed major differences between the coniferyl alcohol-based polymer and the coniferaldehyde/ferulic acid polymers, such as the predominance of aliphatic double bonds and the lack of certain benzylic structures in the latter cases. The biological role of the reduction at the gamma-carbon during monolignol biosynthesis with regard to lignin polymerization is discussed.
Collapse
Affiliation(s)
- Anders Holmgren
- Division of Wood Chemistry, Department of Fibre and Polymer Technology, Royal Institute of Technology, KTH, Teknikringen 56, Stockholm, Sweden
| | | | | | | |
Collapse
|
2141
|
Changes in the infrared attenuated total reflectance (ATR) spectra of lignins from alfalfa stem with growth and development. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2009. [DOI: 10.2298/jsc0909885m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lignin is a poorly characterized polymer and its exact properties vary depending on both the species of the plant and its location within the plant. Three classes of lignins taken from alfalfa stem were examined. The investigation was concentrated on the determination of chemical changes in the lignins during growth and development by the attenuated total reflectance (ATR) infrared (IR) spectrometric technique. The spectrum of permanganate lignin was comparable to that of acid detergent lignin. The main differences were in the different relative absorbance of the peaks. The predominant component of acid detergent lignin and permanganate lignin was guaiacyl-type lignin. The predominant component of Klason lignin was syringyl-type lignin. A comparison between the signals from lignin in different development stages revealed the appearance of new peaks, which are indications of new bonds and changes in the structure of the lignins.
Collapse
|
2142
|
Ma QH. The expression of caffeic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2763-71. [PMID: 19451187 PMCID: PMC2692018 DOI: 10.1093/jxb/erp132] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/09/2009] [Accepted: 04/04/2009] [Indexed: 05/17/2023]
Abstract
Stem lodging-resistance is an important phenotype in crop production. In the present study, the expression of the wheat COMT gene (TaCM) was determined in basal second internodes of lodging-resistant (H4564) and lodging-susceptible (C6001) cultivars at stem elongation, heading, and milky endosperm corresponding to Zadoks stages Z37, Z60, and Z75, respectively. The TaCM protein levels were analysed by protein gel blot and COMT enzyme activity was determined during the same stem developmental stages. TaCM mRNA levels were higher in H4546 from elongation to the milky stages and in C6001 the TaCM mRNA levels decreased markedly at the heading and milky stages. The TaCM protein levels and COMT activity were also higher in H4564 than that in C6001 at the heading and milky stages. These results corresponded to a higher lignin content measured by the Klason method and stem strength and a lower lodging index in H4564 than in C6001 at the heading and milky stages. Therefore, the TaCM mRNA levels, protein levels, and enzyme activity in developing wheat stems were associated with stem strength and lodging index in these two wheat cultivars. Southern analysis in a different population suggested that a TaCM locus was located in the distal region of chromosome 3BL, which has less investigated by QTL for lodging-resistant phenotype.
Collapse
Affiliation(s)
- Qing-Hu Ma
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxin Cun, Xiangshan, Beijing 100093, China.
| |
Collapse
|
2143
|
Bischoff V, Cookson SJ, Wu S, Scheible WR. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:955-65. [PMID: 19269997 PMCID: PMC2652064 DOI: 10.1093/jxb/ern344] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 05/18/2023]
Abstract
Thaxtomin A, a phytotoxin produced by Streptomyces eubacteria, is suspected to act as a natural cellulose synthesis inhibitor. This view is confirmed by the results obtained from new chemical, molecular, and microscopic analyses of Arabidopsis thaliana seedlings treated with thaxtomin A. Cell wall analysis shows that thaxtomin A reduces crystalline cellulose, and increases pectins and hemicellulose in the cell wall. Treatment with thaxtomin A also changes the expression of genes involved in primary and secondary cellulose synthesis as well as genes associated with pectin metabolism and cell wall remodelling, in a manner nearly identical to isoxaben. In addition, it induces the expression of several defence-related genes and leads to callose deposition. Defects in cellulose synthesis cause ectopic lignification phenotypes in A. thaliana, and it is shown that lignification is also triggered by thaxtomin A, although in a pattern different from isoxaben. Spinning disc confocal microscopy further reveals that thaxtomin A depletes cellulose synthase complexes from the plasma membrane and results in the accumulation of these particles in a small microtubule-associated compartment. The results provide new and clear evidence for thaxtomin A having a strong impact on cellulose synthesis, thus suggesting that this is its primary mode of action.
Collapse
Affiliation(s)
- Volker Bischoff
- Max-Planck Institute for Molecular Plant Physiology, Science Park Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sarah Jane Cookson
- Max-Planck Institute for Molecular Plant Physiology, Science Park Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Shuang Wu
- University of Massachusetts, Biology Department, 611 N. Pleasant Street, Amherst MA 01003, USA
| | - Wolf-Rüdiger Scheible
- Max-Planck Institute for Molecular Plant Physiology, Science Park Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
2144
|
Marjamaa K, Kukkola EM, Fagerstedt KV. The role of xylem class III peroxidases in lignification. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:367-76. [PMID: 19264758 DOI: 10.1093/jxb/ern278] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lignification is a cell wall fortifying process which occurs in xylem tissue in a scheduled manner during tissue differentiation. In this review, enzymes and the genes responsible for lignin biosynthesis have been studied with an emphasis on lignin polymerizing class III secretable plant peroxidases. Our aim is to understand the cell and molecular biology of the polymerization of lignin especially in tracheids and vessels of woody species but much of the experimental evidence comes from herbaceous plants. Class III peroxidases pose many problems for empirical work as their encoding genes are variable, their substrate specificities are wide and the half-life of many of the isozymes is very long. However, there is some evidence for the role of specific peroxidases in lignin polymerization through antisense mutants in tobacco and poplar and from tissue and cell culture lines of Picea abies and Zinnia elegans. Peroxidase enzyme action has been shown by substrate specificity studies and, for example, RT-PCR results have pointed out that many peroxidases have tissue-specific expression patterns. Tissue-level location of gene expression of some peroxidases has been studied by in situ hybridization and their cellular localization with antibodies and using EGFP-fusion genes. From these, it can be concluded that, although many of the xylem class III peroxidases have the potential for functioning in the synthesis of the lignin polymer, the combined information of catalytic properties, expression, and localization can reveal differences in the significance of different peroxidases in the lignification process.
Collapse
Affiliation(s)
- Kaisa Marjamaa
- Technical Research Center of Finland (VTT), PL 1000, 02044 VTT, Finland
| | | | | |
Collapse
|
2145
|
Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture. Curr Biol 2009; 19:169-75. [DOI: 10.1016/j.cub.2008.12.031] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 11/22/2022]
|
2146
|
Zhou J, Lee C, Zhong R, Ye ZH. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. THE PLANT CELL 2009; 21:248-66. [PMID: 19122102 PMCID: PMC2648072 DOI: 10.1105/tpc.108.063321] [Citation(s) in RCA: 545] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/02/2008] [Accepted: 12/09/2008] [Indexed: 05/17/2023]
Abstract
It has previously been shown that SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) is a key transcription factor regulating secondary cell wall formation, including the biosynthesis of cellulose, xylan, and lignin. In this study, we show that two closely related SND1-regulated MYB transcription factors, MYB58 and MYB63, are transcriptional regulators specifically activating lignin biosynthetic genes during secondary wall formation in Arabidopsis thaliana. MYB58 and MYB63 are phylogenetically distinct from previously characterized MYBs shown to be associated with secondary wall formation or phenylpropanoid metabolism. Expression studies showed that MYB58 and MYB63 are specifically expressed in fibers and vessels undergoing secondary wall thickening. Dominant repression of their functions led to a reduction in secondary wall thickening and lignin content. Overexpression of MYB58 and MYB63 resulted in specific activation of lignin biosynthetic genes and concomitant ectopic deposition of lignin in cells that are normally unlignified. MYB58 was able to activate directly the expression of lignin biosynthetic genes and a secondary wall-associated laccase (LAC4) gene. Furthermore, the expression of MYB58 and MYB63 was shown to be regulated by the SND1 close homologs NST1, NST2, VND6, and VND7 and their downstream target MYB46. Together, our results indicate that MYB58 and MYB63 are specific transcriptional activators of lignin biosynthesis in the SND1-mediated transcriptional network regulating secondary wall formation.
Collapse
Affiliation(s)
- Jianli Zhou
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
2147
|
Day A, Neutelings G, Nolin F, Grec S, Habrant A, Crônier D, Maher B, Rolando C, David H, Chabbert B, Hawkins S. Caffeoyl coenzyme A O-methyltransferase down-regulation is associated with modifications in lignin and cell-wall architecture in flax secondary xylem. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:9-19. [PMID: 19004632 DOI: 10.1016/j.plaphy.2008.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Indexed: 05/08/2023]
Abstract
Caffeoyl coenzyme A O-methyltransferase (CCoAOMT, EC 2.1.1.104) down-regulated-flax (Linum usitatissimum) plants were generated using an antisense strategy and functionally characterized. Chemical analyses (acetyl bromide and thioacidolysis) revealed that the lignin quantity was reduced and that the Syringyl/Guaïacyl (S/G) lignin monomer ratio was modified in the non-condensed lignin fraction of two independent down-regulated lines. These modifications were associated with altered xylem organization (both lines), reduced cell-wall thickness (one line) and the appearance of an irregular xylem (irx) phenotype (both lines). In addition UV microspectroscopy also indicated that CCoAOMT down-regulation induced changes in xylem cell-wall structure and the lignin fractions. Microscopic examination also suggested that CCoAOMT down-regulation could influence individual xylem cell size and identity. As a first step towards investigating the cellular mechanisms responsible for the unusual structure of flax lignin (G-rich, condensed), recombinant flax CCoAOMT protein was produced and its affinity for different potential substrates evaluated. Results indicated that the preferred substrate was caffeoyl coenzyme A, followed by 5-hydroxyconiferaldehyde suggesting that flax CCoAOMT possesses a small, but probably significant 5' methylating activity, in addition to a more usual 3' methylating activity.
Collapse
Affiliation(s)
- Arnaud Day
- Université Lille 1, F-59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2148
|
Naoumkina MA, He X, Dixon RA. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC PLANT BIOLOGY 2008; 8:132. [PMID: 19102779 PMCID: PMC2628384 DOI: 10.1186/1471-2229-8-132] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 12/22/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Exposure of Medicago truncatula cell suspension cultures to pathogen or wound signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules, orchestrated via a complex signalling network in which transcription factors (TFs) are essential components. RESULTS In this study, we analyzed TFs responding to yeast elicitor (YE) or methyl jasmonate (MJ). From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH) family members were more over-represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ) transcriptional regulators were highly induced by MJ treatment. To investigate potential involvement of WRKY TFs in signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco endo-1,3-beta-glucanase (NtPR2) and enhanced the systemic defense response to tobacco mosaic virus in transgenic tobacco plants. CONCLUSION These results confirm that Medicago WRKY TFs have broad roles in orchestrating metabolic responses to biotic stress, and that they also represent potentially valuable reagents for engineering metabolic changes that impact pathogen resistance.
Collapse
Affiliation(s)
- Marina A Naoumkina
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - XianZhi He
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Richard A Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| |
Collapse
|
2149
|
Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 2008; 101:913-25. [PMID: 18781690 DOI: 10.1002/bit.21959] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Plant cell walls are composed primarily of cellulose, hemicelluloses, lignins, and pectins. Of these components, lignins exhibit unique chemistry and physiological functions. Although lignins can be used as a product feedstock or as a fuel, lignins are also generally seen as a barrier to efficient enzymatic breakdown of biomass to sugars. Indeed, many pretreatment strategies focus on removing a significant fraction of lignin from biomass to better enable saccharification. In order to better understand the fate of biomass lignins that remain with the solids following dilute acid pretreatment, we undertook a structural investigation to track lignins on and in biomass cell walls. SEM and TEM imaging revealed a range of droplet morphologies that appear on and within cell walls of pretreated biomass; as well as the specific ultrastructural regions that accumulate the droplets. These droplets were shown to contain lignin by FTIR, NMR, antibody labeling, and cytochemical staining. We provide evidence supporting the idea that thermochemical pretreatments reaching temperatures above the range for lignin phase transition cause lignins to coalesce into larger molten bodies that migrate within and out of the cell wall, and can redeposit on the surface of plant cell walls. This decompartmentalization and relocalization of lignins is likely to be at least as important as lignin removal in the quest to improve the digestibility of biomass for sugars and fuels production.
Collapse
Affiliation(s)
- Bryon S Donohoe
- Chemical and Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401, USA.
| | | | | | | | | |
Collapse
|
2150
|
Palmer NA, Sattler SE, Saathoff AJ, Funnell D, Pedersen JF, Sarath G. Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. PLANTA 2008; 229:115-27. [PMID: 18795321 DOI: 10.1007/s00425-008-0814-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 08/30/2008] [Indexed: 05/02/2023]
Abstract
Sorghum (Sorghum bicolor (L.). Moench) BMR-6 and BMR-12 encode cinnamylalcohol dehydrogenase and caffeic acid-O-methyltransferase, respectively. We have evaluated the impact of two bmr alleles, bmr-6 and bmr-12, respectively, on soluble and wall-bound aromatics in near isogenic, wild-type (WT), bmr-6, bmr-12 and double-mutant (DM; bmr-6 and bmr-12) plants in two genetic backgrounds, RTx430 and Wheatland. Immunoblots confirmed that COMT protein was essentially absent in bmr-12 and DM plants, but was present in bmr-6 and WT plants. In contrast, although CAD activity was not detected in bmr-6 and DM plants, proteins crossreacting to anti-CAD sera were found in stem extracts from all genotypes. In both sorghum backgrounds, WT plants had lowest amounts of free aromatics, higher levels of cell wall-bound pCA and FA esters and guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) lignins. Soluble aromatics and cell wall phenolic ester content in Wheatland DM plants resembled that of Wheatland bmr-6 plants, whereas in the RTx430 background, levels of these components in the DM plants more closely resembled those observed in bmr-12 plants. In both backgrounds, bmr-6 plants exhibited reduced levels of G, S, and H lignins relative to WT, and increased incorporation of G-indene into lignin. In bmr-12 plants, there was greater incorporation of G- and 5-hydroxyguaiacyl (5-OHG) lignin into cell walls. Histochemical staining of internode sections from Wheatland plants indicated that apparent lignification of cortical sclerenchyma and vascular bundle fibers was greatest and most uniform in WT plants. Relative staining intensity of these tissues was decreased in bmr-6, followed by bmr-12 plants. DM plants exhibited poor staining of cortical sclerenchyma and vascular bundle fibers.
Collapse
Affiliation(s)
- Nathan A Palmer
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska-Lincoln, East Campus, 314 Biochemistry Hall, Lincoln, NE 68583-0737, USA
| | | | | | | | | | | |
Collapse
|