2201
|
Koppula P, Olszewski K, Zhang Y, Kondiparthi L, Liu X, Lei G, Das M, Fang B, Poyurovsky MV, Gan B. KEAP1 deficiency drives glucose dependency and sensitizes lung cancer cells and tumors to GLUT inhibition. iScience 2021; 24:102649. [PMID: 34151236 PMCID: PMC8193145 DOI: 10.1016/j.isci.2021.102649] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming in cancer cells can create metabolic liabilities. KEAP1-mutant lung cancer is refractory to most current therapies. Here we show that KEAP1 deficiency promotes glucose dependency in lung cancer cells, and KEAP1-mutant/deficient lung cancer cells are more vulnerable to glucose deprivation than their WT counterparts. Mechanistically, KEAP1 inactivation in lung cancer cells induces constitutive activation of NRF2 transcription factor and aberrant expression of NRF2 target cystine transporter SLC7A11; under glucose limitation, high cystine uptake in KEAP1-inactivated lung cancer cells stimulates toxic intracellular disulfide buildup, NADPH depletion, and cell death, which can be rescued by genetic ablation of NRF2-SLC7A11 axis or treatments inhibiting disulfide accumulation. Finally, we show that KEAP1-inactivated lung cancer cells or xenograft tumors are sensitive to glucose transporter inhibitor. Together, our results reveal that KEAP1 deficiency induces glucose dependency in lung cancer cells and uncover a therapeutically relevant metabolic liability.
Collapse
Affiliation(s)
- Pranavi Koppula
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | | | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Molina Das
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
2202
|
Wang X, Qian T, Bao S, Zhao H, Chen H, Xing Z, Li Y, Zhang M, Meng X, Wang C, Wang J, Gao H, Liu J, Zhou M, Wang X. Circulating exosomal miR-363-5p inhibits lymph node metastasis by downregulating PDGFB and serves as a potential noninvasive biomarker for breast cancer. Mol Oncol 2021; 15:2466-2479. [PMID: 34058065 PMCID: PMC8410538 DOI: 10.1002/1878-0261.13029] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/14/2021] [Accepted: 05/28/2021] [Indexed: 01/27/2023] Open
Abstract
Sentinel lymph node (LN) biopsy is currently the standard procedure for clinical LN-negative breast cancer (BC) patients but it is prone to false-negative results and complications. Thus, an accurate noninvasive approach for LN staging is urgently needed in clinical practice. Here, circulating exosomal microRNA (miRNA) expression profiles in peripheral blood from BC patients and age-matched healthy women were obtained and analyzed. We identified an exosomal miRNA, miR-363-5p, that was significantly downregulated in exosomes from plasma of BC patients with LN metastasis which exhibited a consistent decreasing trend in tissue samples from multiple independent datasets. Plasma exosomal miR-363-5p achieved high diagnostic performance in distinguishing LN-positive patients from LN-negative patients. The high miR-363-5p expression level was significantly correlated with improved overall survival. Functional assays demonstrated that exosomal miR-363-5p modulates platelet-derived growth factor (PDGF) signaling activity by targeting PDGFB to inhibit cell proliferation and migration. Our study revealed, for the first time, plasma exosomal miR-363-5p plays a tumor suppressor role in BC and has the potential for noninvasive LN staging and prognosis prediction of BC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyi Qian
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Siqi Bao
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeyu Xing
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yalun Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, China
| | - Menglu Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangzhi Meng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changchang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, China
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2203
|
Saito RF, Rangel MC, Halman JR, Chandler M, de Sousa Andrade LN, Odete-Bustos S, Furuya TK, Carrasco AGM, Chaves-Filho AB, Yoshinaga MY, Miyamoto S, Afonin KA, Chammas R. Simultaneous silencing of lysophosphatidylcholine acyltransferases 1-4 by nucleic acid nanoparticles (NANPs) improves radiation response of melanoma cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102418. [PMID: 34171470 DOI: 10.1016/j.nano.2021.102418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Radiation induces the generation of platelet-activating factor receptor (PAF-R) ligands, including PAF and oxidized phospholipids. Alternatively, PAF is also synthesized by the biosynthetic enzymes lysophosphatidylcholine acyltransferases (LPCATs) which are expressed by tumor cells including melanoma. The activation of PAF-R by PAF and oxidized lipids triggers a survival response protecting tumor cells from radiation-induced cell death, suggesting the involvement of the PAF/PAF-R axis in radioresistance. Here, we investigated the role of LPCATs in the melanoma cell radiotherapy response. LPCAT is a family of four enzymes, LPCAT1-4, and modular nucleic acid nanoparticles (NANPs) allowed for the simultaneous silencing of all four LPCATs. We found that the in vitro simultaneous silencing of all four LPCAT transcripts by NANPs enhanced the therapeutic effects of radiation in melanoma cells by increasing cell death, reducing long-term cell survival, and activating apoptosis. Thus, we propose that NANPs are an effective strategy for improving radiotherapy efficacy in melanomas.
Collapse
Affiliation(s)
- Renata F Saito
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Maria Cristina Rangel
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Justin R Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Luciana Nogueira de Sousa Andrade
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Silvina Odete-Bustos
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Tatiane Katsue Furuya
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Alexis Germán Murillo Carrasco
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Adriano B Chaves-Filho
- Laboratório de Lipídeos Modificados, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil.
| | - Marcos Y Yoshinaga
- Laboratório de Lipídeos Modificados, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil.
| | - Sayuri Miyamoto
- Laboratório de Lipídeos Modificados, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil; Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
2204
|
Lv L, Yi Q, Yan Y, Chao F, Li M. SPNS2 Downregulation Induces EMT and Promotes Colorectal Cancer Metastasis via Activating AKT Signaling Pathway. Front Oncol 2021; 11:682773. [PMID: 34249729 PMCID: PMC8264774 DOI: 10.3389/fonc.2021.682773] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Spinster homologue 2 (SPNS2), a transporter of S1P (sphingosine-1-phosphate), has been reported to mediate immune response, vascular development, and pathologic processes of diseases such as cancer via S1P signaling pathways. However, its biological functions and expression profile in colorectal cancer (CRC) is elusive. In this study, we disclosed that SPNS2 expression, which was regulated by copy number variation and DNA methylation of its promoter, was dramatically upregulated in colon adenoma and CRC compared to normal tissues. However, its expression was lower in CRC than in colon adenoma, and low expression of SPN2 correlated with advanced T/M/N stage and poor prognosis in CRC. Ectopic expression of SPNS2 inhibited cell proliferation, migration, epithelial–mesenchymal transition (EMT), invasion, and metastasis in CRC cell lines, while silencing SPNS2 had the opposite effects. Meanwhile, measuring the intracellular and extracellular level of S1P after overexpression of SPNS2 pinpointed a S1P-independent model of SPNS2. Mechanically, SPNS2 led to PTEN upregulation and inactivation of Akt. Moreover, AKT inhibitor (MK2206) abrogated SPNS2 knockdown-induced promoting effects on the migration and invasion, while AKT activator (SC79) reversed the repression of migration and invasion by SPNS2 overexpression in CRC cells, confirming the pivotal role of AKT for SPNS2’s function. Collectively, our study demonstrated the suppressor role of SPNS2 during CRC metastasis, providing new insights into the pathology and molecular mechanisms of CRC progression.
Collapse
Affiliation(s)
- Lei Lv
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ying Yan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2205
|
Ye ZH, Jiang XM, Huang MY, Xu YL, Chen YC, Yuan LW, Huang CY, Yu WB, Chen X, Lu JJ. Regulation of CD47 expression by interferon-gamma in cancer cells. Transl Oncol 2021; 14:101162. [PMID: 34171557 PMCID: PMC8243019 DOI: 10.1016/j.tranon.2021.101162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 02/03/2023] Open
Abstract
IFN-γ up-regulated CD47 expression from transcriptional level. IFN-γ induced CD47 expression via JAK-STAT1-IRF1 pathway. The up-regulation of CD47 expression induced by IFN-γ was widespread among cancer.
The anti-phagocytosis signal, CD47, prevents phagocytosis when it interacts with signal-regulatory protein alpha (SIRPα) on macrophages. Given the vital role of CD47 in immune response, further investigation on the regulation of CD47 in tumor microenvironment is needed. Herein, we identified that interferon-gamma (IFN-γ), one of the most important cytokines in the immune and inflammatory response, up-regulated CD47 expression in cancer cells and this effect could be inhibited by the JAK1/2 inhibitor ruxolitinib, as well as siRNA-mediated silencing of JAK1, STAT1, and IRF1. The IFN-γ-induced surface expression of CD47 contributed to a stronger binding affinity to SIRPα and a decrease in phagocytosis of cancer cells by macrophages. Knockdown of JAK1, STAT1, or IRF1 by siRNA reversed the decreased phagocytosis caused by IFN-γ. Besides, analysis from TCGA revealed that IFNG had a positive correlation with CD47 in various types of cancer, which was supported by the increased surface CD47 expression after IFN-γ treatment in different types of cancer cells. The discovery of IFN-γ-induced up-regulation of CD47 in cancer cells unveils another feedback inhibitory mechanism of IFN-γ, thus providing insights into cancer immunotherapy targeting CD47.
Collapse
Affiliation(s)
- Zi-Han Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Ming Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu-Lian Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu-Chi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Luo-Wei Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Can-Yu Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei-Bang Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China.
| |
Collapse
|
2206
|
Kumari S, Arora M, Singh J, Kadian LK, Yadav R, Chauhan SS, Chopra A. Molecular Associations and Clinical Significance of RAPs in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:677979. [PMID: 34235179 PMCID: PMC8255377 DOI: 10.3389/fmolb.2021.677979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive gastrointestinal malignancy with a high rate of mortality. Multiple studies have individually recognized members of RAP gene family as critical regulators of tumor progression in several cancers, including hepatocellular carcinoma. These studies suffer numerous limitations including a small sample size and lack of analysis of various clinicopathological and molecular features. In the current study, we utilized authoritative multi-omics databases to determine the association of RAP gene family expression and detailed molecular and clinicopathological features in hepatocellular carcinoma (HCC). All five RAP genes were observed to harbor dysregulated expression in HCC compared to normal liver tissues. RAP2A exhibited strongest ability to differentiate tumors from the normal tissues. RAP2A expression was associated with progressive tumor grade, TP53 and CTNNB1 mutation status. Additionally, RAP2A expression was associated with the alteration of its copy numbers and DNA methylation. RAP2A also emerged as an independent marker for patient prognosis. Further, pathway analysis revealed that RAP2A expression is correlated with tumor-infiltrating immune cell composition and oncogenic molecular pathways, such as cell cycle and cellular metabolism.
Collapse
Affiliation(s)
- Sarita Kumari
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Lokesh K Kadian
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2207
|
The Silence of PSMC6 Inhibits Cell Growth and Metastasis in Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9922185. [PMID: 34239933 PMCID: PMC8235974 DOI: 10.1155/2021/9922185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/24/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The proteasome has been validated as an anticancer drug target, while the role of a subunit of proteasome, PSMC6, in lung adenocarcinoma (LUAD) has not been fully unveiled. In this study, we observed that both the RNA and protein of PSMC6 were highly upregulated in LUAD compared with the adjacent normal tissues. Moreover, a high PSMC6 expression was associated with poor prognosis. In accordance with this finding, PSMC6 was associated with poor tumor differentiation. Furthermore, the silence of PSMC6 by small interference RNAs (siRNAs) could significantly inhibit cell growth, migration, and invasion in lung cancer cell lines, suggesting that PSMC6 might serve as a promising therapeutic target in LUAD. To further explore the molecular mechanism of PSMC6 in LUAD, we observed that the proteasome subunits, such as PSMD10, PSMD6, PSMD9, PSMD13, PSMB3, PSMB1, PSMA4, PSMC1, PSMC2, PSMD7, and PSMD14, were highly correlated with PSMC6 expression. Based on the gene set enrichment analysis, we observed that these proteasome subunits were involved in the degradation of AXIN protein. The correlation analysis revealed that the positively correlated genes with PSMC6 were highly enriched in WNT signaling-related pathways, demonstrating that the PSMC6 overexpression may activate WNT signaling via degrading the AXIN protein, thereby promoting tumor progression. In summary, we systematically evaluated the differential expression levels and prognostic values of PSMC6 and predicted its biological function in LUAD, which suggested that PSMC6 might act as a promising therapeutic target in LUAD.
Collapse
|
2208
|
Wang J, Hao JP, Uddin MN, Wu Y, Chen R, Li DF, Xiong DQ, Ding N, Yang JH, Ding XS. Identification and validation of inferior prognostic genes associated with immune signatures and chemotherapy outcome in acute myeloid leukemia. Aging (Albany NY) 2021; 13:16445-16470. [PMID: 34148032 PMCID: PMC8266366 DOI: 10.18632/aging.203166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) is a group of heterogeneous hematological malignancies. We identified key genes as ITGAM and lncRNA ITGB2-AS1 through different bioinformatics tools. Furthermore, qPCR was performed to verify the expression level of essential genes in clinical samples. Retrospective research on 179 AML cases was used to investigate the relationship between the expression of ITGAM and the characteristics of AML. The critical gene relationship with immune infiltration in AML was estimated. The clinical validation and prognostic investigation showed that ITGAM, PPBP, and ITGB2-AS1 are highly expressed in AML (P < 0.001) and significantly associated with the overall survival in AML. Moreover, the retrospective research on 179 clinical cases showed that positive expression of ITGAM is substantially related to AML classification (P < 0.001), higher count of white blood cells (P < 0.01), and poor chemotherapy outcome (P < 0.05). Furthermore, based on grouping ITGAM as the high and low expression in TCGA-LAML profile, we found that genes in the highly expressed ITGAM group are mainly involved in immune infiltration and inflammation-related signaling pathways. Finally, we discovered that the expression level of ITGAM and lncRNA ITGB2-AS1 are not just closely related to the immune score and stromal score (P < 0.001) but also significantly positively correlated with various Immune signatures in AML (P < 0.001), indicating the association of these genes with immunosuppression in AML. The prediction of candidate drugs indicated that certain immunosuppressive drugs have potential therapeutic effects for AML. The critical genes could be used as potential biomarkers to evaluate the survival and prognosis of AML.
Collapse
Affiliation(s)
- Jie Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Rong Chen
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Dong-Feng Li
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Dai-Qin Xiong
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Nan Ding
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jian-Hua Yang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2209
|
Zhou C, Lin A, Cao M, Ding W, Mou W, Guo N, Chen Z, Zhang J, Luo P. Activation of the DDR Pathway Leads to the Down-Regulation of the TGFβ Pathway and a Better Response to ICIs in Patients With Metastatic Urothelial Carcinoma. Front Immunol 2021; 12:634741. [PMID: 34220801 PMCID: PMC8253049 DOI: 10.3389/fimmu.2021.634741] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the treatment paradigm of metastatic urothelial carcinoma (mUC), a dominant type of bladder cancer (BC). Previous studies have shown an association between gene mutations in the DNA damage response (DDR) pathway and the immunotherapy response in mUC but have neglected the effect of the activation level of the DDR pathway on the ICI response in mUC. A published immunotherapy cohort with genome, transcriptome and survival data for 348 mUC patients was used. An external cohort (The Cancer Genome Atlas Bladder Cancer) and the GSE78220 cohort were used for validation. The activation level of the DDR pathway was quantified using single-sample gene set enrichment analysis (ssGSEA). Further analysis on the genome, immunogenicity, and the immune microenvironment was conducted using the DDR ssGSEA enrichment score-high (DSSH) group and the DDR ssGSEA enrichment score-low (DSSL) group. In the mUC cohorts, the DSSH group was associated with longer overall survival times (P=0.026; Hazard ratio=0.67; 95%CI: 0.46−0.95). The DSSH group was also associated with higher tumor mutation burden, neoantigen load, immune-activated cell patterns, and immune-related gene expression levels. The GSEA results indicated an immune activation state in DSSH group, which correlated with a down-regulation in the transforming growth factor β receptor signaling pathway. Our study suggests that the activation level of the DDR pathway may be a novel predictive marker for immunotherapy efficacy in patients with mUC.
Collapse
Affiliation(s)
- Chaozheng Zhou
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Manming Cao
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weimin Ding
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiming Mou
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Ningyi Guo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenyu Chen
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2210
|
Cai C, Long J, Huang Q, Han Y, Peng Y, Guo C, Liu S, Chen Y, Shen E, Long K, Wang X, Yu J, Shen H, Zeng S. M6A "Writer" Gene METTL14: A Favorable Prognostic Biomarker and Correlated With Immune Infiltrates in Rectal Cancer. Front Oncol 2021; 11:615296. [PMID: 34221955 PMCID: PMC8247640 DOI: 10.3389/fonc.2021.615296] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/25/2021] [Indexed: 01/13/2023] Open
Abstract
Rectal cancer (RC) is the leading cause of tumor-related death among both men and women. The efficacy of immunotherapy for rectal cancer is closely related to the immune infiltration level. The N6-methyladenosine (m6A) modification may play a pivotal role in tumor-immune interactions. However, the roles of m6A-related genes in tumor-immune interactions of rectal cancer remain largely unknown. After an evaluation on the expression levels of m6A-related genes and their correlations with the prognosis of rectal cancer patients, we found that METTL14 was the only gene to be significantly correlated with prognosis in rectal cancer patients. Therefore, we further observed the impact of METTL14 expression and m6A modification on the immune infiltration in rectal cancer. Our study indicates that low expression of the m6A “writer” gene METTL14 in rectal cancer may lead to the downregulation of m6A RNA modification, thus reducing the level of immune cell infiltration and resulting in poor prognosis. METTL14 expression level is an independent prognostic factor in rectal cancer and is positively correlated with the immune infiltration level. Our study identified METTL14 as a potential target for enhancing immunotherapy efficacy in rectal cancer.
Collapse
Affiliation(s)
- Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Long
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Qiaoqiao Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Edward Shen
- Department of Life Science, McMaster University, Hamilton, ON, Canada
| | - Kexin Long
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinwen Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2211
|
Zhang Z, Yan C, Li K, Bao S, Li L, Chen L, Zhao J, Sun J, Zhou M. Pan-cancer characterization of lncRNA modifiers of immune microenvironment reveals clinically distinct de novo tumor subtypes. NPJ Genom Med 2021; 6:52. [PMID: 34140519 PMCID: PMC8211863 DOI: 10.1038/s41525-021-00215-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 01/20/2023] Open
Abstract
The emerging field of long noncoding RNA (lncRNA)-immunity has provided a new perspective on cancer immunity and immunotherapies. The lncRNA modifiers of infiltrating immune cells in the tumor immune microenvironment (TIME) and their impact on tumor behavior and disease prognosis remain largely uncharacterized. In the present study, a systems immunology framework integrating the noncoding transcriptome and immunogenomics profiles of 9549 tumor samples across 30 solid cancer types was used, and 36 lncRNAs were identified as modifier candidates underlying immune cell infiltration in the TIME at the pan-cancer level. These TIME lncRNA modifiers (TIL-lncRNAs) were able to subclassify various tumors into three de novo pan-cancer subtypes characterized by distinct immunological features, biological behaviors, and disease prognoses. Finally, a TIL-lncRNA-derived immune state index (TISI) that was reflective of immunological and oncogenic states but also predictive of patients' prognosis was proposed. Furthermore, the TISI provided additional prognostic value for existing tumor immunological and molecular subtypes. By applying the TISI to tumors from different clinical immunotherapy cohorts, the TISI was found to be significantly negatively correlated with immune-checkpoint genes and to have the ability to predict the effectiveness of immunotherapy. In conclusion, the present study provided comprehensive resources and insights for future functional and mechanistic studies on lncRNA-mediated cancer immunity and highlighted the potential of the clinical application of lncRNA-based immunotherapeutic strategies in precision immunotherapy.
Collapse
Affiliation(s)
- Zicheng Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Congcong Yan
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ke Li
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siqi Bao
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Lu Chen
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingting Zhao
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jie Sun
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2212
|
Li J, Tian S, Guo Y, Dong W. Oncological Effects and Prognostic Value of AMAP1 in Gastric Cancer. Front Genet 2021; 12:675100. [PMID: 34220948 PMCID: PMC8247770 DOI: 10.3389/fgene.2021.675100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE We examined the diagnostic significance, prognostic value, and potential function of AMAP1 in gastric cancer (GC). METHODS Comprehensive bioinformatic analysis was conducted to investigate differential expression of AMAP1 mRNA and protein in GC. Meta-analyses were utilized to determine the overall prognostic correlation of AMAP1 mRNA in patients with GC. A panel of vitro assays was applied to assess target microRNA and AMAP1 protein in GC cell lines and tissues, respectively. RESULTS AMAP1 mRNA and protein levels were upregulated in GC specimens, compared to matched normal tissues. AMAP1 mRNA exhibited promising results regarding differential diagnosis of GC and normal tissue. Meta-analysis based on the TCGA and GEO databases revealed that high AMAP1 mRNA abundance was associated with poor overall survival (HR = 1.42; 95% CI: 1.06-1.89) and was correlated with reduced progression-free survival (HR = 1.89; 95% CI: 1.51-2.36) in GC patients. Moreover, AMAP1 was negatively correlated with miR-192-3p (r = -0.3843; P < 0.0001). A dual-luciferase assay revealed that miR-192-3p targeted AMAP1. Levels of miR-192-3p were significantly higher in GC tissues and GC cells than in normal tissues and cells. Moreover, AMAP1 silencing resulted in reduced GC proliferation, migration, and invasion. CONCLUSION AMAP1 is a novel oncogene in GC and is negatively correlated with by miR-192-3p. AMAP1 may act as a diagnostic and prognostic marker of GC.
Collapse
Affiliation(s)
- Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Central Laboratory of Renmin Hospital, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Shan Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Central Laboratory of Renmin Hospital, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Yingyun Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Central Laboratory of Renmin Hospital, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Central Laboratory of Renmin Hospital, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| |
Collapse
|
2213
|
Aubert N, Brunel S, Olive D, Marodon G. Blockade of HVEM for Prostate Cancer Immunotherapy in Humanized Mice. Cancers (Basel) 2021; 13:cancers13123009. [PMID: 34208480 PMCID: PMC8235544 DOI: 10.3390/cancers13123009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Current immune checkpoint inhibitors have shown limitations for immunotherapy of prostate cancer. Thus, it is crucial to investigate other immune checkpoints to prevent disease progression in patients with prostate cancer. Here, we first show that the HVEM/BTLA immune checkpoint is associated with disease progression in patients. We then show that immunotherapy aimed at targeting HVEM reduced tumor growth twofold in vivo in a humanized mouse model of the pathology. The mode of action of the therapy was dependent on CD8+ T cells and is associated with improved T cell activation and reduced exhaustion. Finally, we demonstrated that HVEM expressed by the tumor negatively regulated the anti-tumor immune response. Our results indicate that targeting HVEM might be an attractive option for patients with prostate cancer. Abstract The herpes virus entry mediator (HVEM) delivers a negative signal to T cells mainly through the B and T lymphocyte attenuator (BTLA) molecule. Thus, HVEM/BTLA may represent a novel immune checkpoint during an anti-tumor immune response. However, a formal demonstration that HVEM can represent a target for cancer immunotherapy is still lacking. Here, we first showed that HVEM and BTLA mRNA expression levels were associated with a worse progression-free interval in patients with prostate adenocarcinomas, indicating a detrimental role for the HVEM/BTLA immune checkpoint during prostate cancer progression. We then showed that administration of a monoclonal antibody to human HVEM resulted in a twofold reduction in the growth of a prostate cancer cell line in NOD.SCID.gc-null mice reconstituted with human T cells. Using CRISPR/Cas9, we showed that the therapeutic effect of the mAb depended on HVEM expression by the tumor, with no effect on graft vs. host disease or activation of human T cells in the spleen. In contrast, the proliferation and number of tumor-infiltrating leukocytes increased following treatment, and depletion of CD8+ T cells partly alleviated treatment’s efficacy. The expression of genes belonging to various T cell activation pathways was enriched in tumor-infiltrating leukocytes, whereas genes associated with immuno-suppressive pathways were decreased, possibly resulting in modifications of leukocyte adhesion and motility. Finally, we developed a simple in vivo assay in humanized mice to directly demonstrate that HVEM expressed by the tumor is an immune checkpoint for T cell-mediated tumor control. Our results show that targeting HVEM is a promising strategy for prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Nicolas Aubert
- Centre d’Immunologie et Maladies Infectieuses-Paris, CIMI-PARIS, Sorbonne Université, INSERM, CNRS, 75013 Paris, France; (N.A.); (S.B.)
| | - Simon Brunel
- Centre d’Immunologie et Maladies Infectieuses-Paris, CIMI-PARIS, Sorbonne Université, INSERM, CNRS, 75013 Paris, France; (N.A.); (S.B.)
| | - Daniel Olive
- Institut Paoli-Calmettes, Aix-Marseille Université, INSERM, CNRS, CRCM, Tumor Immunity Team, IBISA Immunomonitoring Platform, 13009 Marseille, France;
| | - Gilles Marodon
- Centre d’Immunologie et Maladies Infectieuses-Paris, CIMI-PARIS, Sorbonne Université, INSERM, CNRS, 75013 Paris, France; (N.A.); (S.B.)
- Correspondence:
| |
Collapse
|
2214
|
Cascardo F, Anselmino N, Páez A, Labanca E, Sanchis P, Antico-Arciuch V, Navone N, Gueron G, Vázquez E, Cotignola J. HO-1 Modulates Aerobic Glycolysis through LDH in Prostate Cancer Cells. Antioxidants (Basel) 2021; 10:966. [PMID: 34208670 PMCID: PMC8235201 DOI: 10.3390/antiox10060966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer (PCa) is the second most diagnosed malignancy and the fifth leading cause of cancer associated death in men worldwide. Dysregulation of cellular energetics has become a hallmark of cancer, evidenced by numerous connections between signaling pathways that include oncoproteins and key metabolic enzymes. We previously showed that heme oxygenase 1 (HO-1), a cellular homeostatic regulator counteracting oxidative and inflammatory damage, exhibits anti-tumoral activity in PCa cells, inhibiting cell proliferation, migration, tumor growth and angiogenesis. The aim of this study was to assess the role of HO-1 on the metabolic signature of PCa. After HO-1 pharmacological induction with hemin, PC3 and C4-2B cells exhibited a significantly impaired cellular metabolic rate, reflected by glucose uptake, ATP production, lactate dehydrogenase (LDH) activity and extracellular lactate levels. Further, we undertook a bioinformatics approach to assess the clinical significance of LDHA, LDHB and HMOX1 in PCa, identifying that high LDHA or low LDHB expression was associated with reduced relapse free survival (RFS). Interestingly, the shortest RFS was observed for PCa patients with low HMOX1 and high LDHA, while an improved prognosis was observed for those with high HMOX1 and LDHB. Thus, HO-1 induction causes a shift in the cellular metabolic profile of PCa, leading to a less aggressive phenotype of the disease.
Collapse
Affiliation(s)
- Florencia Cascardo
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Nicolás Anselmino
- Department of Genitourinary Medical Oncology, The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Alejandra Páez
- Unidad de Transferencia Genética, Instituto de Oncología “Dr. Angel H. Roffo”, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1417DTB, Argentina;
| | - Estefanía Labanca
- Department of Genitourinary Medical Oncology, The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Pablo Sanchis
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Valeria Antico-Arciuch
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Nora Navone
- Department of Genitourinary Medical Oncology, The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Elba Vázquez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Javier Cotignola
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| |
Collapse
|
2215
|
Duca RB, Massillo C, Dalton GN, Farré PL, Graña KD, Gardner K, De Siervi A. MiR-19b-3p and miR-101-3p as potential biomarkers for prostate cancer diagnosis and prognosis. Am J Cancer Res 2021; 11:2802-2820. [PMID: 34249429 PMCID: PMC8263646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed male malignancy worldwide. Early diagnosis and metastases detection are crucial features to diminish patient mortality. High fat diet (HFD) and metabolic syndrome increase PCa risk and aggressiveness. Our goal was to identify miRNAs-based biomarkers for PCa diagnosis and prognosis associated with HFD. Mice chronically fed with a HFD or control diet (CD) were subcutaneously inoculated with androgen insensitive PC3 cells. Xenografts from HFD-fed mice showed increased expression of 7 miRNAs that we named "candidates" compared to CD-fed mice. These miRNAs modulate specific metabolic and cancer related pathways. Using bioinformatic tools and human datasets we found that hsa-miR-19b-3p and miR-101-3p showed more than 1,100 validated targets involved in proteoglycans in cancer and fatty acid biosynthesis. These miRNAs were significantly increased in the bloodstream of PCa patients compared to non-PCa volunteers, and in prostate tumors compared to normal adjacent tissues (NAT). Interestingly, both miRNAs were also increased in tumors of metastatic patients compared to tumors of non-metastatic patients. Further receiver-operating characteristic (ROC) analysis determined that hsa-miR-19b-3p and hsa-miR-101-3p in serum showed poor predictive power to discriminate PCa from non-PCa patients. Hsa-miR-19b-3p showed the best score to discriminate between tumor and NAT, while hsa-miR-101-3p was useful to differentiate between metastatic and non-metastatic PCa patients. Hsa-miR-101-3p was increased in exosomes isolated from blood of PCa patients. Although more detailed functional exploration and validation of the molecular mechanisms are required, we identified hsa-miR-19b-3p and hsa-miR-101-3p with high potential for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Rocío B Duca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICETBuenos Aires, Argentina
| | - Cintia Massillo
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICETBuenos Aires, Argentina
| | - Guillermo N Dalton
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICETBuenos Aires, Argentina
| | - Paula L Farré
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICETBuenos Aires, Argentina
| | - Karen D Graña
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICETBuenos Aires, Argentina
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center630 W. 168th Street, New York, NY, 10032, USA
| | - Adriana De Siervi
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICETBuenos Aires, Argentina
| |
Collapse
|
2216
|
Gao H, Liang J, Duan J, Chen L, Li H, Zhen T, Zhang F, Dong Y, Shi H, Han A. A Prognosis Marker SLC2A3 Correlates With EMT and Immune Signature in Colorectal Cancer. Front Oncol 2021; 11:638099. [PMID: 34211835 PMCID: PMC8240412 DOI: 10.3389/fonc.2021.638099] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
SLC2A3 is a membrane transporter that belongs to the solute carrier family, whose function includes transmembrane transport and glucose transmembrane transport activity. To clarify the expression and role of SLC2A3 in colorectal cancer (CRC), we analyzed the TCGA and GEO databases and found that SLC2A3 mRNA levels were significantly higher in CRC tissues than that in adjacent non-tumor tissues. Furthermore, high expression of SLC2A3 predicted poor overall survival and disease free survival for CRC patients. For validation, we collected 174 CRC samples and found that SLC2A3 expression was higher in CRC tissues than that in adjacent non-tumor colorectal mucosa tissues by immunohistochemistry staining. Further study showed that high expression of SLC2A3 was enriched in epithelial–mesenchymal transition (EMT) classical pathway, interferon-γ pathway by GSEA analysis enrichment, indicating that SLC2A3 may play a key role in the progression of CRC through EMT and immune response, which also has been validated by the global gene expression profiling of human CRC cell lines. The expression of SLC2A3 was positively correlated with CD4 and CD8+T cells by using TIMER and EPIC algorithm, respectively. SLC2A3 knockdown suppressed migration and inhibited the expression of Vimentin and MMP9 in CRC cell line SW480 and RKO. Meanwhile, PD-L1 expression was also significantly attenuated in SW480 and RKO cells transfected with SLC2A3 siRNA. The result suggests that SLC2A3 may be involved in the immune response of CRC by regulating PD-L1 immune checkpoint. In our series, SLC2A3 and PD-L1 positive expression was 74% (128/174) and 22% (39/174) of CRC, respectively. SLC2A3 expression was significantly associated with perineural invasion in CRC patients. In conclusion, SLC2A3 may play an important role in progression of CRC by regulating EMT and PD-L1 mediated immune responses.
Collapse
Affiliation(s)
- Huabin Gao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiangtao Liang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Duan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lin Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tiantian Zhen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fenfen Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Dong
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2217
|
Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, Osokin N, Kozlov I, Frenkel F, Gancharova O, Almog N, Tsiper M, Ataullakhanov R, Fowler N. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 2021; 39:845-865.e7. [PMID: 34019806 DOI: 10.1016/j.ccell.2021.04.014] [Citation(s) in RCA: 656] [Impact Index Per Article: 164.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/14/2020] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
The clinical use of molecular targeted therapy is rapidly evolving but has primarily focused on genomic alterations. Transcriptomic analysis offers an opportunity to dissect the complexity of tumors, including the tumor microenvironment (TME), a crucial mediator of cancer progression and therapeutic outcome. TME classification by transcriptomic analysis of >10,000 cancer patients identifies four distinct TME subtypes conserved across 20 different cancers. The TME subtypes correlate with patient response to immunotherapy in multiple cancers, with patients possessing immune-favorable TME subtypes benefiting the most from immunotherapy. Thus, the TME subtypes act as a generalized immunotherapy biomarker across many cancer types due to the inclusion of malignant and microenvironment components. A visual tool integrating transcriptomic and genomic data provides a global tumor portrait, describing the tumor framework, mutational load, immune composition, anti-tumor immunity, and immunosuppressive escape mechanisms. Integrative analyses plus visualization may aid in biomarker discovery and the personalization of therapeutic regimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Nathan Fowler
- BostonGene, Waltham, MA 02453, USA; Department of Lymphoma and Myeloma, Unit 0429, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
2218
|
Liu Q, Bao Q, Xu Y, Fu Y, Jin Z, Wang J, Zhang W, Shen Y. MCM4 Is a Novel Biomarker Associated With Genomic Instability, BRCAness Phenotype, and Therapeutic Potentials in Soft-Tissue Sarcoma. Front Cell Dev Biol 2021; 9:666376. [PMID: 34178990 PMCID: PMC8222794 DOI: 10.3389/fcell.2021.666376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/11/2021] [Indexed: 02/02/2023] Open
Abstract
Soft-tissue sarcoma (STS) is represented by a heterogeneous group of rare malignancies with various molecular oncogenesis. Therapies targeting DNA repair pathways in STS have achieved minimal progress, potentially due to the lack of molecular biomarker(s) beyond the histology subtype. In this report, we comprehensively analyzed the expression profiles of 100 liposarcomas (LPSs), the most common STS subtype, in comparison with 21 adipose tissues from multiple GEO datasets to identify the potential prognostic and therapeutic biomarker for LPS. Furthermore, we investigated TCGA database, our archived tumor samples, and patient-derived tumor cell cultures (PTCCs) as a validation. We identified a total of 69 common differentially expressed genes (DEGs) among public datasets, with mini-chromosome maintenance protein 4 (MCM4) identified as a novel biomarker correlated with patients’ clinical staging and survival outcome. MCM4-high expression LPS was characterized by MCM4 copy number increase, genomic instability, and BRCAness phenotype compared with the MCM4-low expression counterpart. In contrast, the mutational and the immune landscape were minimally different between the two groups. Interestingly, the association of MCM4-high expression with genomic instability and BRCAness were not only validated in LPS samples from our institution (n = 66) but also could be expanded to the pan-sarcoma cohort from TCGA database (n = 263). Surprisingly, based on four sarcoma cell lines and eight PTCCs (three LPS and five other sarcoma), we demonstrated that MCM4 overexpression tumors were therapeutically sensitive to PARP inhibitor (PARPi) and platinum chemotherapy, independent of the histology subtypes. Our study, for the first time, suggested that MCM4 might be a novel prognostic biomarker, associated with dysregulated DNA repair pathways and potential therapeutic vulnerability in STS.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiyuan Bao
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqi Xu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucheng Fu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijian Jin
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wang
- Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weibin Zhang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhui Shen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2219
|
Artibani M, Masuda K, Hu Z, Rauher PC, Mallett G, Wietek N, Morotti M, Chong K, KaramiNejadRanjbar M, Zois CE, Dhar S, El-Sahhar S, Campo L, Blagden SP, Damato S, Pathiraja PN, Nicum S, Gleeson F, Laios A, Alsaadi A, Santana Gonzalez L, Motohara T, Albukhari A, Lu Z, Bast RC, Harris AL, Ejsing CS, Klemm RW, Yau C, Sauka-Spengler T, Ahmed AA. Adipocyte-like signature in ovarian cancer minimal residual disease identifies metabolic vulnerabilities of tumor-initiating cells. JCI Insight 2021; 6:147929. [PMID: 33945502 PMCID: PMC8262282 DOI: 10.1172/jci.insight.147929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Similar to tumor-initiating cells (TICs), minimal residual disease (MRD) is capable of reinitiating tumors and causing recurrence. However, the molecular characteristics of solid tumor MRD cells and drivers of their survival have remained elusive. Here we performed dense multiregion transcriptomics analysis of paired biopsies from 17 ovarian cancer patients before and after chemotherapy. We reveal that while MRD cells share important molecular signatures with TICs, they are also characterized by an adipocyte-like gene expression signature and a portion of them had undergone epithelial-mesenchymal transition (EMT). In a cell culture MRD model, MRD-mimic cells showed the same phenotype and were dependent on fatty acid oxidation (FAO) for survival and resistance to cytotoxic agents. These findings identify EMT and FAO as attractive targets to eradicate MRD in ovarian cancer and make a compelling case for the further testing of FAO inhibitors in treating MRD.
Collapse
Affiliation(s)
- Mara Artibani
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
- Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Kenta Masuda
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Pascal C. Rauher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Garry Mallett
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
- Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Matteo Morotti
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Kay Chong
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Mohammad KaramiNejadRanjbar
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Christos E. Zois
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Sunanda Dhar
- Department of Histopathology, Oxford University Hospitals, Oxford, United Kingdom
| | - Salma El-Sahhar
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Leticia Campo
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Sarah P. Blagden
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Stephen Damato
- Department of Histopathology, Oxford University Hospitals, Oxford, United Kingdom
| | - Pubudu N. Pathiraja
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Shibani Nicum
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Fergus Gleeson
- Department of Radiology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Alexandros Laios
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Laura Santana Gonzalez
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Takeshi Motohara
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Ashwag Albukhari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zhen Lu
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert C. Bast
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Adrian L. Harris
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robin W. Klemm
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Christopher Yau
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology Medicine and Health, the University of Manchester, Manchester, United Kingdom
| | - Tatjana Sauka-Spengler
- Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
- Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
2220
|
Deng T, Gong Y, Liao X, Wang X, Zhou X, Zhu G, Mo L. Integrative Analysis of a Novel Eleven-Small Nucleolar RNA Prognostic Signature in Patients With Lower Grade Glioma. Front Oncol 2021; 11:650828. [PMID: 34164339 PMCID: PMC8215672 DOI: 10.3389/fonc.2021.650828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Objective The present study used the RNA sequencing (RNA-seq) dataset to identify prognostic snoRNAs and construct a prognostic signature of The Cancer Genome Atla (TCGA) lower grade glioma (LGG) cohort, and comprehensive analysis of this signature. Methods RNA-seq dataset of 488 patients from TCGA LGG cohort were included in this study. Comprehensive analysis including function enrichment, gene set enrichment analysis (GSEA), immune infiltration, cancer immune microenvironment, and connectivity map (CMap) were used to evaluate the snoRNAs prognostic signature. Results We identified 21 LGG prognostic snoRNAs and constructed a novel eleven-snoRNA prognostic signature for LGG patients. Survival analysis suggests that this signature is an independent prognostic risk factor for LGG, and the prognosis of LGG patients with a high-risk phenotype is poor (adjusted P = 0.003, adjusted hazard ratio = 2.076, 95% confidence interval = 1.290–3.340). GSEA and functional enrichment analysis suggest that this signature may be involved in the following biological processes and signaling pathways: such as cell cycle, Wnt, mitogen-activated protein kinase, janus kinase/signal transducer and activator of tran-ions, T cell receptor, nuclear factor-kappa B signaling pathway. CMap analysis screened out ten targeted therapy drugs for this signature: 15-delta prostaglandin J2, MG-262, vorinostat, 5155877, puromycin, anisomycin, withaferin A, ciclopirox, chloropyrazine and megestrol. We also found that high- and low-risk score phenotypes of LGG patients have significant differences in immune infiltration and cancer immune microenvironment. Conclusions The present study identified a novel eleven-snoRNA prognostic signature of LGG and performed a integrative analysis of its molecular mechanisms and relationship with tumor immunity.
Collapse
Affiliation(s)
- Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yizhen Gong
- Evidence-based Medicine Teaching and Research Section, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
2221
|
Gong K, Song K, Zhu Z, Xiang Q, Wang K, Shi J. SWIM domain protein ZSWIM4 is required for JAK2 inhibition resistance in breast cancer. Life Sci 2021; 279:119696. [PMID: 34102191 DOI: 10.1016/j.lfs.2021.119696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
AIMS Janus kinase 2 (JAK2)/signal transducer and activator of transcription (STAT) signaling plays a critical role in the progression of breast cancer. However, a small part of tumor cells survived from the killing effect of JAK2 inhibitor. We aimed to find out the mechanism of drug resistance in breast cancer cells and develop new therapeutic strategies. MATERIALS AND METHODS The anti-tumor effect of TG101209 in breast cancer cells was confirmed by cell counting kit 8 and flow cytometry. Western blotting was used to determine the up-regulation of zinc finger SWIM-type containing 4 (ZSWIM4) induced by TG101209. In vitro and in vivo experiments were performed to evaluate the role of ZSWIM4 in the resistance of breast cancer cells to TG101209. Through the determination and analysis of 50% inhibiting concentration (IC50) curves, the effect of combination therapy was confirmed. KEY FINDINGS Our data indicate that the elevated expression of ZSWIM4 contributes to JAK2 inhibition resistance, as knockdown of ZSWIM4 significantly enhances the sensitivity of breast cancer cells to TG101209 and over-expression of this gene mitigates the killing effect. Furthermore, the expression of vitamin D receptor (VDR) and utilization of 1α,25-(OH)2VD3 is decreased in ZSWIM4-knockdown breast cancer cells. VDR-silencing or GW0742-mediated blockade of VDR activity can partially reverse the JAK2 inhibition resistance. SIGNIFICANCE Our data implicated that ZSWIM4 might be an inducible resistance gene of JAK2 inhibition in breast cancer cells. The combination of JAK2 inhibitor and VDR inhibitor may achieve better coordinated therapeutic effect in breast cancer.
Collapse
Affiliation(s)
- Kunxiang Gong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kai Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhenyun Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qin Xiang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Jian Shi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, Guangdong, China.
| |
Collapse
|
2222
|
Diehl V, Wegner M, Grumati P, Husnjak K, Schaubeck S, Gubas A, Shah V, Polat I, Langschied F, Prieto-Garcia C, Müller K, Kalousi A, Ebersberger I, Brandts C, Dikic I, Kaulich M. Minimized combinatorial CRISPR screens identify genetic interactions in autophagy. Nucleic Acids Res 2021; 49:5684-5704. [PMID: 33956155 PMCID: PMC8191801 DOI: 10.1093/nar/gkab309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Combinatorial CRISPR-Cas screens have advanced the mapping of genetic interactions, but their experimental scale limits the number of targetable gene combinations. Here, we describe 3Cs multiplexing, a rapid and scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries. We demonstrate that the library distribution skew is the critical determinant of its required screening coverage. By circumventing iterative cloning of PCR-amplified oligonucleotides, 3Cs multiplexing facilitates the generation of combinatorial CRISPR libraries with low distribution skews. We show that combinatorial 3Cs libraries can be screened with minimal coverages, reducing associated efforts and costs at least 10-fold. We apply a 3Cs multiplexing library targeting 12,736 autophagy gene combinations with 247,032 paired gRNAs in viability and reporter-based enrichment screens. In the viability screen, we identify, among others, the synthetic lethal WDR45B-PIK3R4 and the proliferation-enhancing ATG7-KEAP1 genetic interactions. In the reporter-based screen, we identify over 1,570 essential genetic interactions for autophagy flux, including interactions among paralogous genes, namely ATG2A-ATG2B, GABARAP-MAP1LC3B and GABARAP-GABARAPL2. However, we only observe few genetic interactions within paralogous gene families of more than two members, indicating functional compensation between them. This work establishes 3Cs multiplexing as a platform for genetic interaction screens at scale.
Collapse
Affiliation(s)
- Valentina Diehl
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Martin Wegner
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Paolo Grumati
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Simone Schaubeck
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andrea Gubas
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Varun Jayeshkumar Shah
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ibrahim H Polat
- Department of Medicine, Hematology/Oncology, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
| | - Felix Langschied
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Cristian Prieto-Garcia
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Konstantin Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alkmini Kalousi
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Christian H Brandts
- Department of Medicine, Hematology/Oncology, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| |
Collapse
|
2223
|
Waddell A, Mahmud I, Ding H, Huo Z, Liao D. Pharmacological Inhibition of CBP/p300 Blocks Estrogen Receptor Alpha (ERα) Function through Suppressing Enhancer H3K27 Acetylation in Luminal Breast Cancer. Cancers (Basel) 2021; 13:2799. [PMID: 34199844 PMCID: PMC8200112 DOI: 10.3390/cancers13112799] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 01/10/2023] Open
Abstract
Estrogen receptor alpha (ER) is the oncogenic driver for ER+ breast cancer (BC). ER antagonists are the standard-of-care treatment for ER+ BC; however, primary and acquired resistance to these agents is common. CBP and p300 are critical ER co-activators and their acetyltransferase (KAT) domain and acetyl-lysine binding bromodomain (BD) represent tractable drug targets, but whether CBP/p300 inhibitors can effectively suppress ER signaling remains unclear. We report that the CBP/p300 KAT inhibitor A-485 and the BD inhibitor GNE-049 downregulate ER, attenuate estrogen-induced c-Myc and Cyclin D1 expression, and inhibit growth of ER+ BC cells through inducing senescence. Microarray and RNA-seq analysis demonstrates that A-485 or EP300 (encoding p300) knockdown globally inhibits expression of estrogen-regulated genes, confirming that ER inhibition is an on-target effect of A-485. Using ChIP-seq, we report that A-485 suppresses H3K27 acetylation in the enhancers of ER target genes (including MYC and CCND1) and this correlates with their decreased expression, providing a mechanism underlying how CBP/p300 inhibition downregulates ER gene network. Together, our results provide a preclinical proof-of-concept that CBP/p300 represent promising therapeutic targets in ER+ BC for inhibiting ER signaling.
Collapse
Affiliation(s)
- Aaron Waddell
- Department of Anatomy and Cell Biology, University Florida College of Medicine, UF Health Cancer Center, 2033 Mowry Road, Gainesville, FL 32610, USA; (A.W.); (I.M.)
| | - Iqbal Mahmud
- Department of Anatomy and Cell Biology, University Florida College of Medicine, UF Health Cancer Center, 2033 Mowry Road, Gainesville, FL 32610, USA; (A.W.); (I.M.)
| | - Haocheng Ding
- Departments of Biostatistics, University Florida College of Medicine, 2004 Mowry Road, Gainesville, FL 32610, USA; (H.D.); (Z.H.)
| | - Zhiguang Huo
- Departments of Biostatistics, University Florida College of Medicine, 2004 Mowry Road, Gainesville, FL 32610, USA; (H.D.); (Z.H.)
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, University Florida College of Medicine, UF Health Cancer Center, 2033 Mowry Road, Gainesville, FL 32610, USA; (A.W.); (I.M.)
| |
Collapse
|
2224
|
Li P, Sun J, Ruan Y, Song L. High PHD Finger Protein 19 (PHF19) expression predicts poor prognosis in colorectal cancer: a retrospective study. PeerJ 2021; 9:e11551. [PMID: 34141488 PMCID: PMC8176917 DOI: 10.7717/peerj.11551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/11/2021] [Indexed: 01/04/2023] Open
Abstract
Background Colorectal cancer (CRC) is the third most common cancer all around the world, and it seriously threats human health. PHF19 has been proved to be closely related to the prognosis of patients in a variety of malignant tumors, but the effect of PHF19 on the prognosis evaluation of CRC patients has not been confirmed. Methods In our study, we used GEO, TCGA database and IHC to verify the PHF19 expression in CRC samples. Survival analysis of PHF19 based on TCGA, GEO series, and our own CRC sample were performed. Cox regression was performed to reveal the relationship between PHF19 and prognosis. Co-expression was performed to find genes related to PHF19 expression. GO/KEGG enrichment analysis and GSEA analysis were used to confirm the most relevant signal pathway to PHF19. Next, cell experiments were performed to verify the effect of PHF19 on the proliferation, invasion and metastasis of CRC. Then, Western blot was used to verify the protein expression of the above two phenotypes. Finally, tumor formation experiments in nude mice were used to verify the role of PHF19 of tumor proliferation in vivo. Results We found that PHF19 was significantly over-expressed in tumors compared with normal tissues. Kaplan–Meier (K–M) analysis indicated that high PHF19 in CRC associated with poor overall survival (OS) in CRC patients. Clinical correlation analysis showed that high expression of PHF19 was closely related to t umor progression in CRC patients, especially infiltration and metastasis. Bioinformatics revealed that PHF19 might affect tumor malignant phenotype by regulating the cell cycle in CRC. CCK-8 and clonal formation experiment showed that the proliferative ability of tumor cells was promoted. Flow cytometry showed that the cell cycle accelerated the transition from G1 to S phase. Western blot found that Cyclin D1, CDK4, and CDK6 expression were up-regulated. Transwell and wound-healing experiment found that invasive and migratory abilities was promoted after the over-expression of PHF19. Western blot showed that the expression of key proteins of Epithelial-Mesenchymal Transition (EMT) changed. Tumor formation experiments in nude mice showed that overexpression of PHF19 could promote tumor proliferation in vivo. Conclusion Our research proved that PHF19 could be an independent prognostic factor for CRC, PHF19 promoted the proliferative ability and the invasion and metastasis of CRC by up-regulating the expression of key molecules related to cell cycle and EMT pathway in vitro, promoting tumor proliferation in vivo.
Collapse
Affiliation(s)
- Pengfei Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lujun Song
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2225
|
Shi Y, Xiang Z, Yang H, Khan S, Li R, Zhou S, Ullah S, Zhang J, Liu B. Pharmacological targeting of TNS3 with histone deacetylase inhibitor as a therapeutic strategy in esophageal squamous cell carcinoma. Aging (Albany NY) 2021; 13:15336-15352. [PMID: 34047714 PMCID: PMC8221360 DOI: 10.18632/aging.203091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/06/2021] [Indexed: 01/19/2023]
Abstract
Histone acetylation which regulates about 2-10% of genes has been demonstrated to be involved in tumorigenesis of esophageal squamous cell carcinoma (ESCC). In this study, we investigated the treatment response of ESCC to selective histone deacetylase inhibitor (HDACi) LMK-235 and potential biomarker predicting the treatment sensitivity. We identified tensin-3 (TNS3) which was highly over-expressed in ESCC as one of the down-regulated genes in response to LMK-235 treatment. TNS3 was found positively correlated with the tumor malignancy and poor prognosis in the patients. Silencing TNS3 significantly inhibited ESCC cell proliferation both in vitro and in vivo, sensitizing the treatment response to LMK-235. Our findings provide an insight into understanding the oncogenic role of TNS3 in ESCC and its clinical application for HDAC targeted therapy of ESCC.
Collapse
Affiliation(s)
- Yang Shi
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Xiang
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Huiyu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruizhe Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Siran Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Saif Ullah
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Jiyu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Bingrong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
2226
|
Budithi A, Su S, Kirshtein A, Shahriyari L. Data Driven Mathematical Model of FOLFIRI Treatment for Colon Cancer. Cancers (Basel) 2021; 13:2632. [PMID: 34071939 PMCID: PMC8198096 DOI: 10.3390/cancers13112632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Many colon cancer patients show resistance to their treatments. Therefore, it is important to consider unique characteristic of each tumor to find the best treatment options for each patient. In this study, we develop a data driven mathematical model for interaction between the tumor microenvironment and FOLFIRI drug agents in colon cancer. Patients are divided into five distinct clusters based on their estimated immune cell fractions obtained from their primary tumors' gene expression data. We then analyze the effects of drugs on cancer cells and immune cells in each group, and we observe different responses to the FOLFIRI drugs between patients in different immune groups. For instance, patients in cluster 3 with the highest T-reg/T-helper ratio respond better to the FOLFIRI treatment, while patients in cluster 2 with the lowest T-reg/T-helper ratio resist the treatment. Moreover, we use ROC curve to validate the model using the tumor status of the patients at their follow up, and the model predicts well for the earlier follow up days.
Collapse
Affiliation(s)
- Aparajita Budithi
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (A.B.); (S.S.)
| | - Sumeyye Su
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (A.B.); (S.S.)
| | - Arkadz Kirshtein
- Department of Mathematics, Tufts University, Medford, MA 02155, USA;
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (A.B.); (S.S.)
| |
Collapse
|
2227
|
Cui X, Wang H, Wu X, Huo K, Jing X. Increased expression of KPNA2 predicts unfavorable prognosis in ovarian cancer patients, possibly by targeting KIF4A signaling. J Ovarian Res 2021; 14:71. [PMID: 34034774 PMCID: PMC8152344 DOI: 10.1186/s13048-021-00818-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
Background Karyopherin α-2 (KPNA2) is a member of karyopherin family, which is proved to be responsible for the import or export of cargo proteins. Studies have determined that KPNA2 is associated with the development and prognosis of various cancers, yet the role of KPNA2 in ovarian carcinoma and its potential molecular mechanisms remains unclear. Materials and methods The expression and prognosis of KPNA2 in ovarian cancer was investigated using GEPIA and Oncomine analyses. Mutations of KPNA2 in ovarian cancer were analyzed by cBioPortal database. The prognostic value of KPNA2 expression was evaluated by our own ovarian carcinoma samples using RT-qPCR. Subsequently, the cell growth, migration and invasion of ovarian cancer cells were investigated by CCK-8 and transwell assay, respectively. The protein levels of KPNA2 and KIF4A were determined by western blot. Results We obtained the following important results. (1) KPNA2 and KIF4A wereoverexpressed in ovairan cancer tissues and cells. (2) Among patients with ovarian cancer, overexpressed KPNA2 was associated with lower survival rate. (3) Mutations (R197* and S140F) in KPNA2 will have some influences on protein structure, and then may cause protein function abnormal. (4) KPNA2 konckdown inhibited proliferation, migration, invasion, as well as the expression of KIF4A. Conclusion KPNA2, as a tumorigenic gene in ovarian cancer, accelerated tumor progression by up-regulating KIF4A, suggesting that KPNA2 might be a hopeful indicator of treatment and poor prognosis.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, 030001, China
| | - Honghong Wang
- Gynaecology and Obstetrics Department, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, 030001, China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, 030001, China
| | - Kai Huo
- Breast Surgery Department, Tumor Hospital of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, 030000, China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Prov. People's Hospital, Affiliated of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2228
|
Patkar S, Heselmeyer-Haddad K, Auslander N, Hirsch D, Camps J, Bronder D, Brown M, Chen WD, Lokanga R, Wangsa D, Wangsa D, Hu Y, Lischka A, Braun R, Emons G, Ghadimi BM, Gaedcke J, Grade M, Montagna C, Lazebnik Y, Difilippantonio MJ, Habermann JK, Auer G, Ruppin E, Ried T. Hard wiring of normal tissue-specific chromosome-wide gene expression levels is an additional factor driving cancer type-specific aneuploidies. Genome Med 2021; 13:93. [PMID: 34034815 PMCID: PMC8147418 DOI: 10.1186/s13073-021-00905-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Many carcinomas have recurrent chromosomal aneuploidies specific to the tissue of tumor origin. The reason for this specificity is not completely understood. Methods In this study, we looked at the frequency of chromosomal arm gains and losses in different cancer types from the The Cancer Genome Atlas (TCGA) and compared them to the mean gene expression of each chromosome arm in corresponding normal tissues of origin from the Genotype-Tissue Expression (GTEx) database, in addition to the distribution of tissue-specific oncogenes and tumor suppressors on different chromosome arms. Results This analysis revealed a complex picture of factors driving tumor karyotype evolution in which some recurrent chromosomal copy number reflect the chromosome arm-wide gene expression levels of the their normal tissue of tumor origin. Conclusions We conclude that the cancer type-specific distribution of chromosomal arm gains and losses is potentially “hardwiring” gene expression levels characteristic of the normal tissue of tumor origin, in addition to broadly modulating the expression of tissue-specific tumor driver genes. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00905-y.
Collapse
Affiliation(s)
- Sushant Patkar
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.,Department of Computer Science, University of Maryland, College Park, USA
| | - Kerstin Heselmeyer-Haddad
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Noam Auslander
- Department of Computer Science, University of Maryland, College Park, USA.,National Center for Biotechnology Information, NIH, Bethesda, MD, 20892, USA
| | - Daniela Hirsch
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer, (IDIBAPS), Hospital Clínic of Barcelona, CIBEREHD, 08036, Barcelona, Spain
| | - Daniel Bronder
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Markus Brown
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Wei-Dong Chen
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Rachel Lokanga
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Darawalee Wangsa
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Danny Wangsa
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yue Hu
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Annette Lischka
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.,Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University Medical Center Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Rüdiger Braun
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.,Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University Medical Center Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Georg Emons
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.,Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, Germany
| | - B Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, Germany
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, Germany
| | - Cristina Montagna
- Department of Genetics and Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Michael J Difilippantonio
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University Medical Center Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Gert Auer
- Department of Oncology and Pathology, CancerCenter Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Thomas Ried
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
2229
|
Hu T, Chen Y, Liu Y, Zhang D, Pan J, Long M. Classification of PR-positive and PR-negative subtypes in ER-positive and HER2-negative breast cancers based on pathway scores. BMC Med Res Methodol 2021; 21:108. [PMID: 34022815 PMCID: PMC8141178 DOI: 10.1186/s12874-021-01297-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE PR loss in ER+/HER2- breast cancer indicates worse prognosis and insensitivity to anti-estrogen therapy, while the mechanisms of PR loss in ER+/HER2- breast cancer remain unrevealed. METHODS In this study, ER+/PR+/HER2- and ER+/PR-/HER2- breast cancer cases from TCGA were used. 1387 pathways were analyzed and used as variables for classifying the two groups with LASSO regression. RESULTS ER+/PR+/HER2- and ER+/PR-/HER2- breast cancer groups can be classified by a combination of 13 pathways using their activity score. Among the 13 pathways, those involving growth factors and ion-channel transporters were most significant in the distinction, followed by pathways involving immune modulation and cell metabolism. Two growth factor pathways, EGF and IGF-1, were deferentially regulated in ER+/PR+/HER2- and ER+/PR-/HER2- groups. CONCLUSIONS In conclusion, this study indicated in ER+/HER2- breast cancers the various status of PR expression can be an indication of molecular variation, particularly for the growth factor pathway activation.
Collapse
Affiliation(s)
- Taobo Hu
- Department of Breast Disease, Peking University People's Hospital, Beijing, China
| | - Yan Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiqiang Liu
- Department of Pathology, Peking University Cancer Hospital, Beijing, China
| | - Danhua Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiankang Pan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Mengping Long
- Department of Pathology, Peking University Cancer Hospital, Beijing, China.
| |
Collapse
|
2230
|
Ligon JA, Choi W, Cojocaru G, Fu W, Hsiue EHC, Oke TF, Siegel N, Fong MH, Ladle B, Pratilas CA, Morris CD, Levin A, Rhee DS, Meyer CF, Tam AJ, Blosser R, Thompson ED, Suru A, McConkey D, Housseau F, Anders R, Pardoll DM, Llosa N. Pathways of immune exclusion in metastatic osteosarcoma are associated with inferior patient outcomes. J Immunother Cancer 2021; 9:jitc-2020-001772. [PMID: 34021032 PMCID: PMC8144029 DOI: 10.1136/jitc-2020-001772] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 12/02/2022] Open
Abstract
Background Current therapy for osteosarcoma pulmonary metastases (PMs) is ineffective. The mechanisms that prevent successful immunotherapy in osteosarcoma are incompletely understood. We investigated the tumor microenvironment of metastatic osteosarcoma with the goal of harnessing the immune system as a therapeutic strategy. Methods 66 osteosarcoma tissue specimens were analyzed by immunohistochemistry (IHC) and immune markers were digitally quantified. Tumor-infiltrating lymphocytes (TILs) from 25 specimens were profiled by functional cytometry. Comparative transcriptomic studies of distinct tumor-normal lung ‘PM interface’ and ‘PM interior’ regions from 16 PMs were performed. Clinical follow-up (median 24 months) was available from resection. Results IHC revealed a statistically significantly higher concentration of TILs expressing immune checkpoint and immunoregulatory molecules in PMs compared with primary bone tumors (including programmed cell death 1 (PD-1), programmed death ligand 1 (PD-L1), lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and indoleamine 2,3-dioxygenase (IDO1). Remarkably, these lymphocytes are excluded at the PM interface compared with PM interior. TILs from PMs exhibited significantly higher amounts of PD-1 and LAG-3 and functional cytokines including interferon-γ (IFNγ) by flow cytometry. Gene expression profiling further confirmed the presence of CD8 and CD4 lymphocytes concentrated at the PM interface, along with upregulation of immunoregulatory molecules and IFNγ-driven genes in the same region. We further discovered a strong alternatively activated macrophage signature throughout the entire PMs along with a polymorphonuclear myeloid-derived suppressor cell signature focused at the PM interface. Expression of PD-L1, LAG-3, and colony-stimulating factor 1 receptor (CSF1R) at the PM interface was associated with significantly worse progression-free survival (PFS), while gene sets indicative of productive T cell immune responses (CD8 T cells, T cell survival, and major histocompatibility complex class 1 expression) were associated with significantly improved PFS. Conclusions Osteosarcoma PMs exhibit immune exclusion characterized by the accumulation of TILs at the PM interface. These TILs produce effector cytokines, suggesting their capability of activation and recognition of tumor antigens. Our findings suggest cooperative immunosuppressive mechanisms in osteosarcoma PMs including immune checkpoint molecule expression and the presence of immunosuppressive myeloid cells. We identify cellular and molecular signatures that are associated with patient outcomes, which could be exploited for successful immunotherapy.
Collapse
Affiliation(s)
- John A Ligon
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Woonyoung Choi
- Greenberg Bladder Cancer Institute and Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gady Cojocaru
- Greenberg Bladder Cancer Institute and Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wei Fu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Han-Chung Hsiue
- Cellular and Molecular Medicine Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Teniola F Oke
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Siegel
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Megan H Fong
- Greenberg Bladder Cancer Institute and Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brian Ladle
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine A Pratilas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carol D Morris
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam Levin
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel S Rhee
- Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christian F Meyer
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ada J Tam
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard Blosser
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Aditya Suru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David McConkey
- Greenberg Bladder Cancer Institute and Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Franck Housseau
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Anders
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Drew M Pardoll
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicolas Llosa
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2231
|
Sun X, Wang R, Tan M, Tian X, Meng J. LncRNA LINC00680 promotes lung adenocarcinoma growth via binding to GATA6 and canceling GATA6-mediated suppression of SOX12 expression. Exp Cell Res 2021; 405:112653. [PMID: 34029572 DOI: 10.1016/j.yexcr.2021.112653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022]
Abstract
Lung adenocarcinoma (LUAD) is a major subtype of non-small-cell lung cancers (NSCLC). LINC00680 has been characterized as a novel oncogenic lncRNA in LUAD, but its regulatory mechanisms remain largely unclear. This study aimed to explore the subcellular localization of LINC00680 in LUAD and its regulation on the transcriptional process. LUAD cell lines (A549, H1650, and H1299) were used for in vitro and in vivo studies. Results showed LINC00680 depletion resulted in G0/G1 phase arrest of LUAD cells and reduced CDK4 and cyclin D1 expression in H1650 and H1299 cells. LINC00680 overexpression promoted A549 cell proliferation and increased CDK4 and cyclin D1 expression. RNA-fluorescence in situ hybridization (FISH) assay showed that LINC00680 has both cytoplasmic and nuclear distribution in LUAD cells. RNA pulldown and western blotting assays confirmed a physical interaction between LINC00680 and GATA6. In LUAD cells, GATA6 overexpression only slightly suppressed SOX12 transcription. ChIP-qPCR and dual-luciferase assay showed that GATA6 only weakly bound to the SOX12 promoter and decreased its activity. However, when LINC00680 was depleted, these transcriptional suppressive effects were significantly enhanced. These findings suggested that LINC00680 forms a complex with GATA6 and weakens its transcriptional suppressive effect on SOX12 expression. In the nude mice model, LINC00680 overexpression partly abrogated the growth-suppressive effects of GATA6 on A549 derived tumors. In summary, this study revealed a novel LINC00680-GATA6-SOX12 axis in promoting LUAD cell cycle progression and proliferation. Future studies should be conducted for a better understanding of the complex networking of LINC00680 in LUAD.
Collapse
Affiliation(s)
- Xiaojuan Sun
- Occupational Medicine, Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Ruihao Wang
- Internal Medicine, Weifang People's Hospital Brain Hospital, Weifang, Shandong, 261000, China
| | - Mingzhu Tan
- Internal Medicine, Weifang People's Hospital Brain Hospital, Weifang, Shandong, 261000, China
| | - Xiaowei Tian
- Occupational Medicine, Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Jun Meng
- Occupational Medicine, Weifang People's Hospital, Weifang, Shandong, 261000, China.
| |
Collapse
|
2232
|
Susmi TF, Rahman A, Khan MMR, Yasmin F, Islam MS, Nasif O, Alharbi SA, Batiha GES, Hossain MU. Prognostic and clinicopathological insights of phosphodiesterase 9A gene as novel biomarker in human colorectal cancer. BMC Cancer 2021; 21:577. [PMID: 34016083 PMCID: PMC8136133 DOI: 10.1186/s12885-021-08332-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND PDE9A (Phosphodiesterase 9A) plays an important role in proliferation of cells, their differentiation and apoptosis via intracellular cGMP (cyclic guanosine monophosphate) signaling. The expression pattern of PDE9A is associated with diverse tumors and carcinomas. Therefore, PDE9A could be a prospective candidate as a therapeutic target in different types of carcinoma. The study presented here was designed to carry out the prognostic value as a biomarker of PDE9A in Colorectal cancer (CRC). The present study integrated several cancer databases with in-silico techniques to evaluate the cancer prognosis of CRC. RESULTS The analyses suggested that the expression of PDE9A was significantly down-regulated in CRC tissues than in normal tissues. Moreover, methylation in the DNA promoter region might also manipulate PDE9A gene expression. The Kaplan-Meier curves indicated that high level of expression of PDE9A gene was associated to higher survival in OS, RFS, and DSS in CRC patients. PDE9A demonstrated the highest positive correlation for rectal cancer recurrence with a marker gene CEACAM7. Furtheremore, PDE9A shared consolidated pathways with MAPK14 to induce survival autophagy in CRC cells and showed interaction with GUCY1A2 to drive CRPC. CONCLUSIONS Overall, the prognostic value of PDE9A gene could be used as a potential tumor biomarker for CRC.
Collapse
Affiliation(s)
- Tasmina Ferdous Susmi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Atikur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Fermentation Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Md. Moshiur Rahman Khan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Farzana Yasmin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Shariful Islam
- Department of Reproductive and Developmental Biology, Graduate School of Life Science, Hokkaido University, Sapporo, 5 Chome Kita 8 Jonishi, Kita Ward, Sapporo, Hokkaido 060-0808 Japan
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506-022 USA
| | - Omaima Nasif
- Department of Physiology, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, PO Box 2925, Riyadh, 11461 Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh, 11451 Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511 Egypt
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349 Bangladesh
| |
Collapse
|
2233
|
Basu-Shrivastava M, Kozoriz A, Desagher S, Lassot I. To Ubiquitinate or Not to Ubiquitinate: TRIM17 in Cell Life and Death. Cells 2021; 10:1235. [PMID: 34069831 PMCID: PMC8157266 DOI: 10.3390/cells10051235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
TRIM17 is a member of the TRIM family, a large class of RING-containing E3 ubiquitin-ligases. It is expressed at low levels in adult tissues, except in testis and in some brain regions. However, it can be highly induced in stress conditions which makes it a putative stress sensor required for the triggering of key cellular responses. As most TRIM members, TRIM17 can act as an E3 ubiquitin-ligase and promote the degradation by the proteasome of substrates such as the antiapoptotic protein MCL1. Intriguingly, TRIM17 can also prevent the ubiquitination of other proteins and stabilize them, by binding to other TRIM proteins and inhibiting their E3 ubiquitin-ligase activity. This duality of action confers several pivotal roles to TRIM17 in crucial cellular processes such as apoptosis, autophagy or cell division, but also in pathological conditions as diverse as Parkinson's disease or cancer. Here, in addition to recent data that endorse this duality, we review what is currently known from public databases and the literature about TRIM17 gene regulation and expression, TRIM17 protein structure and interactions, as well as its involvement in cell physiology and human disorders.
Collapse
Affiliation(s)
| | - Alina Kozoriz
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| |
Collapse
|
2234
|
Jiang D, He Y, Mo Q, Liu E, Li X, Huang L, Zhang Q, Chen F, Li Y, Shao H. PRICKLE1, a Wnt/PCP signaling component, is overexpressed and associated with inferior prognosis in acute myeloid leukemia. J Transl Med 2021; 19:211. [PMID: 34001134 PMCID: PMC8130533 DOI: 10.1186/s12967-021-02873-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Prickle planar cell polarity protein 1 (PRICKLE1), a core component of the non-canonical Wnt/planar cell polarity (PCP) pathway, was recently reported to be upregulated and correlated with poor prognosis in solid cancers. However, the effect of PRICKLE1 on acute myeloid leukemia (AML) remains unknown. This study aims to characterize the prognostic significance of PRICKLE1 expression in patients with AML. METHODS RNA-seq was performed to compare mRNA expression profiles of AML patients and healthy controls. qRT-PCR and western blotting were used to analyze the expression of PRICKLE1 in AML patients and cell lines, and two independent datasets (TCGA-LAML and TARGET-AML) online were used to validate the expression results. The correlations between the expression of PRICKLE1 and clinical features were further analyzed. RESULTS Our data showed that PRICKLE1 expression levels were markedly high in AML patients at the time of diagnosis, decreased after complete remission and increased again at relapse. Of note, PRICKLE1 was highly expressed in drug resistant AML cells and monocytic-AML patients. High PRICKLE1 expression was found in FLT3/DNMT3A/IDH1/IDH2-mutant AML and associated with poor prognosis. Furthermore, high expression of PRICKLE1 may be correlated with migration and invasion components upregulation in AML patients. CONCLUSIONS These results indicated that high PRICKLE1 expression may be a poor prognostic biomarker and therapeutic target of AML.
Collapse
Affiliation(s)
- Duanfeng Jiang
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyu Mo
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Enyi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Li
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Huang
- Center for Medical Experiments, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Zhang
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangping Chen
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Haigang Shao
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2235
|
Benítez S, Cordero A, Santamaría PG, Redondo-Pedraza J, Rocha AS, Collado-Solé A, Jimenez M, Sanz-Moreno A, Yoldi G, Santos JC, De Benedictis I, Gómez-Aleza C, Da Silva-Álvarez S, Troulé K, Gómez-López G, Alcazar N, Palmero I, Collado M, Serrano M, Gonzalez-Suarez E. RANK links senescence to stemness in the mammary epithelia, delaying tumor onset but increasing tumor aggressiveness. Dev Cell 2021; 56:1727-1741.e7. [PMID: 34004159 PMCID: PMC8221814 DOI: 10.1016/j.devcel.2021.04.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Rank signaling enhances stemness in mouse and human mammary epithelial cells (MECs) and mediates mammary tumor initiation. Mammary tumors initiated by oncogenes or carcinogen exposure display high levels of Rank and Rank pathway inhibitors have emerged as a new strategy for breast cancer prevention and treatment. Here, we show that ectopic Rank expression in the mammary epithelia unexpectedly delays tumor onset and reduces tumor incidence in the oncogene-driven Neu and PyMT models. Mechanistically, we have found that ectopic expression of Rank or exposure to Rankl induces senescence, even in the absence of other oncogenic mutations. Rank leads to DNA damage and senescence through p16/p19. Moreover, RANK-induced senescence is essential for Rank-driven stemness, and although initially translates into delayed tumor growth, eventually promotes tumor progression and metastasis. We uncover a dual role for Rank in the mammary epithelia: Rank induces senescence and stemness, delaying tumor initiation but increasing tumor aggressiveness.
Collapse
Affiliation(s)
- Sandra Benítez
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain
| | - Alex Cordero
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain; Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Patricia G Santamaría
- Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | | | - Ana S Rocha
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain
| | - Alejandro Collado-Solé
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain; Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Maria Jimenez
- Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Adrian Sanz-Moreno
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain; German Mouse Clinic, Institute of Experimental Genetics, HMGU, Neuherberg, 85764, Germany
| | - Guillermo Yoldi
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain
| | - Juliana C Santos
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain
| | - Ilaria De Benedictis
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain
| | - Clara Gómez-Aleza
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain
| | - Sabela Da Silva-Álvarez
- Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), E15706 Santiago de Compostela, Spain
| | - Kevin Troulé
- Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | | | - Noelia Alcazar
- Institute for Research in Biomedicine (IRB), 08028 Barcelona, Spain
| | - Ignacio Palmero
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, 28029 Madrid, Spain
| | - Manuel Collado
- Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), E15706 Santiago de Compostela, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Eva Gonzalez-Suarez
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain; Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| |
Collapse
|
2236
|
Zhang X, Su L, Sun K. Expression status and prognostic value of the perilipin family of genes in breast cancer. Am J Transl Res 2021; 13:4450-4463. [PMID: 34150026 PMCID: PMC8205812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The Perilipin (PLIN) family of genes were previously shown to be involved in the formation and degradation of Lipid Droplets (LDs). In addition, they may play important roles in the development and progression of breast cancer. However, the prognostic value of PLIN family members in breast cancer patients remains unclear. METHODS Mutations and copy number alterations of PLIN family genes in breast cancer were examined using the cBioportal for Cancer Genomics. In addition, the expression patterns of PLIN family genes were explored using the UCSC Xena online tool. Finally, the Kaplan-Meier Plotter was used to investigate the prognostic value of PLIN family genes in breast cancer. RESULTS The findings revealed a low frequency of genetic alterations and amplification was the most frequent change in the PLIN family genes. Additionally, there was an increase in the expression of Perilipin 3 (PLIN3) in breast cancer tissues compared to normal breast tissues. However, expression of the other genes in the PLIN family was significantly lower in breast cancer tissues compared to normal breast tissues. Moreover, there was an increase in the expression levels of Perilipin 1 (PLIN1), PLIN3, Perilipin 4 (PLIN4) and Perilipin 5 (PLIN5) in the luminal A and luminal B subgroups. On the other hand, the expression of Perilipin 2 (PLIN2) was elevated in the human epidermal growth factor receptor 2 (HER2) positive and basal-like subgroups. Furthermore, Kaplan-Meier Plotter analysis demonstrated that high expression of PLIN1 might predict a longer Overall Survival (OS) in patients with breast cancer while overexpression of PLIN2 indicated poor OS of breast cancer patients. CONCLUSION The findings from this study indicated that genes in the PLIN family were aberrantly expressed in breast cancer and may serve as novel therapeutic targets as well as prognostic biomarkers for the disease.
Collapse
Affiliation(s)
- Xuede Zhang
- Department of Hematology and Oncology, Beilun District People’s HospitalNingbo, Zhejiang, China
| | - Lei Su
- Department of Oncology, Zhangqiu District People’s HospitalJinan, Shandong, China
| | - Kai Sun
- Department of Oncology, Liuzhou People’s HospitalLiuzhou 545001, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2237
|
Yang X, Miao Y, Wang J, Mi D. A pan-cancer analysis of the HER family gene and their association with prognosis, tumor microenvironment, and therapeutic targets. Life Sci 2021; 273:119307. [PMID: 33691171 DOI: 10.1016/j.lfs.2021.119307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
AIMS The human epidermal growth factor receptor (HER) family gene is involved in a wide range of biological functions in human cancers. Nevertheless, there is little research that comprehensively analysis the correlation between HER family members and prognosis, tumor microenvironment (TME) in different cancers. MATERIALS AND METHODS Based on updated public databases and integrated several bioinformatics analysis methods, we evaluated expression level, prognostic values of HER family gene and explore the association between expression of HER family gene and TME, Stemness score, immune subtype, drug sensitivity in pan-cancer. KEY FINDINGS EGFR, ERBB2, ERBB3, and ERBB4 were higher expressed in four cancers, five cancers, ten cancers, and two cancers, respectively. HER family gene expression is related to the prognosis in several cancers from TCGA and has a significant correlation with stromal and immune scores in pan-cancer also has a significant correlation with RNA stemness score and DNA stemness score in pan-cancer. Expression level of HER family gene is associated with immune subtype in head and neck squamous cell carcinoma and kidney renal clear cell carcinoma. EGFR expression was negatively associated with drug sensitivity of Pipamperone, Tamoxifen, Bafetinib and positively related to drug sensitivity of Dasatinib and Staurosporine. ERBB2 expression was negatively related to drug sensitivity of Ifosfamide, Imexon, and Oxaliplatin. ERBB4 expression was positively related to drug sensitivity of E-7820. SIGNIFICANCE These findings may elucidate the roles played by HER family gene in cancer progression and providing insights for further investigation of the HER family gene as potential targets in pan-cancer.
Collapse
Affiliation(s)
- Xiaolong Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou City, Gansu Province, PR China
| | - Yandong Miao
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, PR China.
| | - Jiangtao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, PR China
| | - Denghai Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, PR China; Gansu Academy of Traditional Chinese Medicine, Lanzhou City, Gansu Province, PR China.
| |
Collapse
|
2238
|
Stielow B, Simon C, Liefke R. Making fundamental scientific discoveries by combining information from literature, databases, and computational tools - An example. Comput Struct Biotechnol J 2021; 19:3027-3033. [PMID: 34136100 PMCID: PMC8175269 DOI: 10.1016/j.csbj.2021.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
In recent years, the amount of available literature, data and computational tools has increased exponentially, providing opportunities and challenges to make use of this vast amount of material. Here, we describe how we utilized publicly available information to identify the previously hardly characterized protein SAMD1 (SAM domain-containing protein 1) as a novel unmethylated CpG island-binding protein. This discovery is an example, how the richness of material and tools on the internet can be used to make scientific breakthroughs, but also the hurdles that may occur. Specifically, we discuss how the misrepresentation of SAMD1 in literature and databases may have prevented an earlier characterization of this protein and we address what can be learned from this example.
Collapse
Affiliation(s)
- Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, 35043 Marburg, Germany
- Corresponding author at: Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany.
| |
Collapse
|
2239
|
Le T, Su S, Kirshtein A, Shahriyari L. Data-Driven Mathematical Model of Osteosarcoma. Cancers (Basel) 2021; 13:cancers13102367. [PMID: 34068946 PMCID: PMC8156666 DOI: 10.3390/cancers13102367] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
As the immune system has a significant role in tumor progression, in this paper, we develop a data-driven mathematical model to study the interactions between immune cells and the osteosarcoma microenvironment. Osteosarcoma tumors are divided into three clusters based on their relative abundance of immune cells as estimated from their gene expression profiles. We then analyze the tumor progression and effects of the immune system on cancer growth in each cluster. Cluster 3, which had approximately the same number of naive and M2 macrophages, had the slowest tumor growth, and cluster 2, with the highest population of naive macrophages, had the highest cancer population at the steady states. We also found that the fastest growth of cancer occurred when the anti-tumor immune cells and cytokines, including dendritic cells, helper T cells, cytotoxic cells, and IFN-γ, switched from increasing to decreasing, while the dynamics of regulatory T cells switched from decreasing to increasing. Importantly, the most impactful immune parameters on the number of cancer and total cells were the activation and decay rates of the macrophages and regulatory T cells for all clusters. This work presents the first osteosarcoma progression model, which can be later extended to investigate the effectiveness of various osteosarcoma treatments.
Collapse
Affiliation(s)
- Trang Le
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (T.L.); (S.S.)
| | - Sumeyye Su
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (T.L.); (S.S.)
| | - Arkadz Kirshtein
- Department of Mathematics, Tufts University, Medford, MA 02155, USA;
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (T.L.); (S.S.)
- Correspondence:
| |
Collapse
|
2240
|
Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nat Commun 2021; 12:2788. [PMID: 33986289 PMCID: PMC8119676 DOI: 10.1038/s41467-021-23075-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Human ribonuclease 1 (hRNase 1) is critical to extracellular RNA clearance and innate immunity to achieve homeostasis and host defense; however, whether it plays a role in cancer remains elusive. Here, we demonstrate that hRNase 1, independently of its ribonucleolytic activity, enriches the stem-like cell population and enhances the tumor-initiating ability of breast cancer cells. Specifically, secretory hRNase 1 binds to and activates the tyrosine kinase receptor ephrin A4 (EphA4) signaling to promote breast tumor initiation in an autocrine/paracrine manner, which is distinct from the classical EphA4-ephrin juxtacrine signaling through contact-dependent cell-cell communication. In addition, analysis of human breast tumor tissue microarrays reveals a positive correlation between hRNase 1, EphA4 activation, and stem cell marker CD133. Notably, high hRNase 1 level in plasma samples is positively associated with EphA4 activation in tumor tissues from breast cancer patients, highlighting the pathological relevance of the hRNase 1-EphA4 axis in breast cancer. The discovery of hRNase 1 as a secretory ligand of EphA4 that enhances breast cancer stemness suggests a potential treatment strategy by inactivating the hRNase 1-EphA4 axis.
Collapse
|
2241
|
Zhan J, Sun S, Chen Y, Xu C, Chen Q, Li M, Pei Y, Li Q. MiR-3130-5p is an intermediate modulator of 2q33 and influences the invasiveness of lung adenocarcinoma by targeting NDUFS1. Cancer Med 2021; 10:3700-3714. [PMID: 33978320 PMCID: PMC8178510 DOI: 10.1002/cam4.3885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022] Open
Abstract
Genome‐wide association studies (GWAS) have reported a handful of loci associated with lung cancer risk, of which the pathogenic pathways are largely unknown. We performed cis‐expression quantitative trait loci (eQTL) mapping for 376 lung cancer related GWAS loci in 227 TCGA lung adenocarcinoma (LUAD) and reported two risk loci as eQTL of miRNA. Among the miRNAs in association with lung cancer risk, we further predicted and validated miR‐3130‐5p as an intermediate modulator of risk loci 2q33 and the tumor suppressor NDUFS1. We assessed the phenotypic impacts of the interaction between miR‐3130‐5p and NDUFS1 in both lung cancer cell lines and mice xenograft models. As a result, miR‐3130‐5p directly regulates the expression of NDUFS1 and the corresponding tumor invasiveness, migration and epithelial‐mesenchymal transition (EMT). Our findings provide important clues for the pathogenic mechanism of 2q33 in lung carcinogenesis which informs clinical diagnosis and prognosis of LUAD. We performed a cis‐eQTL analysis for 376 lung cancer risk loci based on the expression profiles of 251 miRNAs in a cohort of 227 TCGA lung adenocarcinoma. We report a novel pathogenic pathway of 2q33 via miR‐3130‐5p and NDUFS1.
Collapse
Affiliation(s)
- Juan Zhan
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Shenghua Sun
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yixing Chen
- Laboratory, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chaoqun Xu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Qinwei Chen
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Minjie Li
- Department of Thoracic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yihua Pei
- Central Laboratory, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
2242
|
Li Q, Jiang S, Feng T, Zhu T, Qian B. Identification of the EMT-Related Genes Signature for Predicting Occurrence and Progression in Thyroid Cancer. Onco Targets Ther 2021; 14:3119-3131. [PMID: 34012269 PMCID: PMC8127002 DOI: 10.2147/ott.s301127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The detection rate of thyroid cancer (TC) has been continuously improved due to the development of detection technology. Epithelial-mesenchymal transition (EMT) is thought to be closely related to the malignant progression of tumors. However, the relationship between EMT-related genes (ERGs) characteristics and the diagnosis and prognosis of TC patients has not been studied. METHODS Four datasets from Gene Expression Omnibus (GEO) were used to perform transcriptomic profile analysis. The overlapping differentially expressed ERGs (DEERGs) were analyzed using the R package "limma". Then, the hub genes, which had a higher degree, were identified by the protein-protein interaction (PPI) network. Gene expression analysis between the TC and normal data, the disease-free survival (DFS) analysis of TC patients from The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA) cohort, function analysis, and immunohistochemistry (IHC) were performed to verify the importance of the hub genes. Finally, a prognostic risk scoring was constructed to predict DFS in patients with the selected genes. RESULTS A total of 43 DEERGs were identified and 10 DEERGs were considered hub ERGs, which had a high degree of connectivity in the PPI network. Then, the differential expressions of FN1, ITGA2, and KIT between TC and normal tissues were verified in the TCGA-THCA cohort and their protein expressions were also verified by IHC. DFS analysis indicated upregulations of FN1 expression (P<0.01) and ITGA2 expression (P<0.01) and downregulation of KIT expression (P=0.01) increased risks of decreased DFS for TCGA-THCA patients. Besides, by building a prognostic risk scoring model, we found that the DFS of TCGA-THCA patients was significantly worse in high-risk groups. CONCLUSION In summary, these hub ERGs were potential biomarkers for diagnosis and prognosis of TC, which can provide a basis for further exploring the efficacy of EMT in patients with TC.
Collapse
Affiliation(s)
- Qiang Li
- Public Health College, Shanghai Jiao Tong University of Medicine, Shanghai, 200025, People’s Republic of China
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Sheng Jiang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, People’s Republic of China
| | - Tienan Feng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Tengteng Zhu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Biyun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| |
Collapse
|
2243
|
Yin X, Kong L, Liu P. Identification of prognosis-related molecular subgroups based on DNA methylation in pancreatic cancer. Clin Epigenetics 2021; 13:109. [PMID: 33980289 PMCID: PMC8117591 DOI: 10.1186/s13148-021-01090-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background Pancreatic cancer (PC) is one of the most lethal and aggressive cancer malignancies. The lethality of PC is associated with delayed diagnosis, presence of distant metastasis, and its easy relapse. It is known that clinical treatment decisions are still mainly based on the clinical stage and pathological grade, which are insufficient to determine an appropriate treatment. Considering the significant heterogeneity of PC biological characteristics, the current clinical classificatory pattern relying solely on classical clinicopathological features identification needs to be urgently improved. In this study, we conducted in-depth analyses to establish prognosis-related molecular subgroups based on DNA methylation signature. Results DNA methylation, RNA sequencing, somatic mutation, copy number variation, and clinicopathological data of PC patients were obtained from The Cancer Genome Atlas (TCGA) dataset. A total of 178 PC samples were used to develop distinct molecular subgroups based on the 4227 prognosis-related CpG sites. By using consensus clustering analysis, four prognosis-related molecular subgroups were identified based on DNA methylation. The molecular characteristics and clinical features analyses based on the subgroups offered novel insights into the development of PC. Furthermore, we built a risk score model based on the expression data of five CpG sites to predict the prognosis of PC patients by using Lasso regression. Finally, the risk score model and other independent prognostic clinicopathological information were integrative utilised to construct a nomogram model. Conclusion Novel prognosis-related molecular subgroups based on the DNA methylation signature were established. The specific five CpG sites model for PC prognostic prediction and the derived nomogram model are effective and intuitive tools. Moreover, the construction of molecular subgroups based on the DNA methylation data is an innovative complement to the traditional classification of PC and may contribute to precision medicine development, therapeutic efficacy prediction, and clinical decision guidance. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01090-w.
Collapse
Affiliation(s)
- Xiaoli Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Lingming Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Peng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
2244
|
Cross-tissue organization of the fibroblast lineage. Nature 2021; 593:575-579. [PMID: 33981032 DOI: 10.1038/s41586-021-03549-5] [Citation(s) in RCA: 569] [Impact Index Per Article: 142.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts are non-haematopoietic structural cells that define the architecture of organs, support the homeostasis of tissue-resident cells and have key roles in fibrosis, cancer, autoimmunity and wound healing1. Recent studies have described fibroblast heterogeneity within individual tissues1. However, the field lacks a characterization of fibroblasts at single-cell resolution across tissues in healthy and diseased organs. Here we constructed fibroblast atlases by integrating single-cell transcriptomic data from about 230,000 fibroblasts across 17 tissues, 50 datasets, 11 disease states and 2 species. Mouse fibroblast atlases and a DptIRESCreERT2 knock-in mouse identified two universal fibroblast transcriptional subtypes across tissues. Our analysis suggests that these cells can serve as a reservoir that can yield specialized fibroblasts across a broad range of steady-state tissues and activated fibroblasts in disease. Comparison to an atlas of human fibroblasts from perturbed states showed that fibroblast transcriptional states are conserved between mice and humans, including universal fibroblasts and activated phenotypes associated with pathogenicity in human cancer, fibrosis, arthritis and inflammation. In summary, a cross-species and pan-tissue approach to transcriptomics at single-cell resolution has identified key organizing principles of the fibroblast lineage in health and disease.
Collapse
|
2245
|
Castellano F, Prevost-Blondel A, Cohen JL, Molinier-Frenkel V. What role for AHR activation in IL4I1-mediated immunosuppression ? Oncoimmunology 2021; 10:1924500. [PMID: 34026337 PMCID: PMC8118450 DOI: 10.1080/2162402x.2021.1924500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The amino-acid catabolizing enzyme Interleukin-4 induced gene 1 (IL4I1) remains poorly characterized despite it is emerging as a pertinent therapeutic target for cancer. IL4I1 is secreted in the synaptic cleft by antigen-presenting cells. It inhibits TCR signaling, modulates naïve T cell differentiation and limits effector T cell proliferation. IL4I1 expression in tumors shapes the tumor microenvironment and impairs the antitumor cytotoxic T cell response, thereby facilitating cancer immune escape. Several mechanisms participate in these effects. Recent data suggest a role of new IL4I1 metabolites in activation of the aryl-hydrocarbon receptor (AHR). Here, we observe that expression of IL4I1 is poorly correlated with that of validated targets of AHR in human cancers. Moreover, dendritic cells do not upregulate AHR target genes in relation with IL4I1 expression in vivo. Finally, IL4I1 activity toward tryptophan leading to production of AHR-activating products is very low, and should be negligible when tryptophan-degrading enzymes of higher affinity compete for the substrate. We recently showed that IL4I1 expression by dendritic cells directly regulates immune synapse formation and modulates the repertoire and memory differentiation of responding CD8 T cells after viral infection. Thus, IL4I1 may restrain tumor control through regulating the priming of tumor-specific CD8 T cells, independently of AHR activation.
Collapse
Affiliation(s)
- Flavia Castellano
- INSERM, IMRB, Univ Paris Est Creteil, Creteil, France.,Departement d'Hematologie-Immunologie, AP-HP, Hopital Henri Mondor, Créteil, France
| | | | - José L Cohen
- INSERM, IMRB, Univ Paris Est Creteil, Creteil, France.,Centre d'investigation Clinique en Biothérapie, AP-HP, Hopital Henri Mondor, Créteil, France
| | - Valérie Molinier-Frenkel
- INSERM, IMRB, Univ Paris Est Creteil, Creteil, France.,Departement d'Hematologie-Immunologie, AP-HP, Hopital Henri Mondor, Créteil, France
| |
Collapse
|
2246
|
Forni MF, Domínguez-Amorocho OA, de Assis LVM, Kinker GS, Moraes MN, Castrucci AMDL, Câmara NOS. An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice. Front Oncol 2021; 11:667715. [PMID: 34041030 PMCID: PMC8141816 DOI: 10.3389/fonc.2021.667715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023] Open
Abstract
Melanoma skin cancer is extremely aggressive with increasing incidence and mortality. Among the emerging therapeutic targets in the treatment of cancer, the family of transient receptor potential channels (TRPs) has been reported as a possible pharmacological target. Specifically, the ankyrin subfamily, representing TRPA1 channels, can act as a pro-inflammatory hub. These channels have already been implicated in the control of intracellular metabolism in several cell models, but little is known about their role in immune cells, and how it could affect tumor progression in a process known as immune surveillance. Here, we investigated the participation of the TRPA1 channel in the immune response against melanoma tumor progression in a mouse model. Using Trpa1 +/+ and Trpa1 -/- animals, we evaluated tumor progression using murine B16-F10 cells and assessed isolated CD8+ T cells for respiratory and cytotoxic functions. Tumor growth was significantly reduced in Trpa1 -/- animals. We observed an increase in the frequency of circulating lymphocytes. Using a dataset of CD8+ T cells isolated from metastatic melanoma patients, we found that TRPA1 reduction correlates with several immunological pathways. Naïve CD8+ T cells from Trpa1 +/+ and Trpa1 -/- animals showed different mitochondrial respiration and glycolysis profiles. However, under CD3/CD28 costimulatory conditions, the absence of TRPA1 led to an even more extensive metabolic shift, probably linked to a greater in vitro killling ability of Trpa1 -/- CD8+ T cells. Therefore, these data demonstrate an unprecedented role of TRPA1 channel in the metabolism control of the immune system cells during carcinogenesis.
Collapse
Affiliation(s)
- Maria Fernanda Forni
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Sarti Kinker
- Laboratory of Translational Immuno-Oncology A. C. Camargo Cancer Center - International Research Center, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2247
|
Ahmad IM, Dafferner AJ, O’Connell KA, Mehla K, Britigan BE, Hollingsworth MA, Abdalla MY. Heme Oxygenase-1 Inhibition Potentiates the Effects of Nab-Paclitaxel-Gemcitabine and Modulates the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:2264. [PMID: 34066839 PMCID: PMC8125955 DOI: 10.3390/cancers13092264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis. Tumor hypoxia plays an active role in promoting tumor progression, malignancy, and resistance to therapy in PDAC. We present evidence that nab-paclitaxel-gemcitabine (NPG) and/or a hypoxic tumor microenvironment (TME) up-regulate heme oxygenase-1 (HO-1), providing a survival advantage for tumors. Using PDAC cells in vitro and a PDAC mouse model, we found that NPG chemotherapy up-regulated expression of HO-1 in PDAC cells and increased its nuclear translocation. Inhibition of HO-1 with ZnPP and SnPP sensitized PDAC cells to NPG-induced cytotoxicity (p < 0.05) and increased apoptosis (p < 0.05). Additionally, HO-1 expression was increased in gemcitabine-resistant PDAC cells (p < 0.05), and HO-1 inhibition increased GEM-resistant PDAC sensitivity to NPG (p < 0.05). NPG combined with HO-1 inhibitor inhibited tumor size in an orthotopic model. In parallel, HO-1 inhibition abrogated the influx of macrophages and FoxP3+ cells, while increasing the proportion of CD8+ infiltration in the pancreatic tumors. These effects were mediated primarily by reducing expression of the immunosuppressive cytokine IL-10.
Collapse
Affiliation(s)
- Iman M. Ahmad
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Alicia J. Dafferner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Kelly A. O’Connell
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Kamiya Mehla
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Bradley E. Britigan
- Veterans Affairs Medical Center-Nebraska Western Iowa, Department of Internal Medicine and Research Service, Omaha, NE 68105, USA;
| | - Michael A. Hollingsworth
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Maher Y. Abdalla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
2248
|
CXCR4 intracellular protein promotes drug resistance and tumorigenic potential by inversely regulating the expression of Death Receptor 5. Cell Death Dis 2021; 12:464. [PMID: 33966046 PMCID: PMC8106681 DOI: 10.1038/s41419-021-03730-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022]
Abstract
Chemokine receptor CXCR4 overexpression in solid tumors has been strongly associated with poor prognosis and adverse clinical outcome. However, blockade of CXCL12-CXCR4 signaling axis by inhibitors like Nox-A12, FDA approved CXCR4 inhibitor drug AMD3100 have shown limited clinical success in cancer treatment. Therefore, exclusive contribution of CXCR4-CXCL12 signaling in pro-tumorigenic function is questionable. In our pursuit to understand the impact of chemokine signaling in carcinogenesis, we reveal that instead of CXCR4-CXCL12 signaling, presence of CXCR4 intracellular protein augments paclitaxel resistance and pro-tumorigenic functions. In search of pro-apoptotic mechanisms for CXCR4 mediated drug resistance; we discover that DR5 is a new selective target of CXCR4 in breast and colon cancer. Further, we detect that CXCR4 directs the differential recruitment of transcription factors p53 and YY1 to the promoter of DR5 in course of its transcriptional repression. Remarkably, inhibiting CXCR4-ligand-mediated signals completely fails to block the above phenotype. Overexpression of different mutant versions of CXCR4 lacking signal transduction capabilities also result in marked downregulation of DR5 expression in colon cancer indeed confirms the reverse relationship between DR5 and intracellular CXCR4 protein expression. Irrespective of CXCR4 surface expression, by utilizing stable gain and loss of function approaches, we observe that intracellular CXCR4 protein selectively resists and sensitizes colon cancer cells against paclitaxel therapy in vitro and in vivo. Finally, performing TCGA data mining and using human breast cancer patient samples, we demonstrate that expression of CXCR4 and DR5 are inversely regulated. Together, our data suggest that targeting CXCR4 intracellular protein may be critical to dampen the pro-tumorigenic functions of CXCR4.
Collapse
|
2249
|
Mesenchymal and Proneural Subtypes of Glioblastoma Disclose Branching Based on GSC Associated Signature. Int J Mol Sci 2021; 22:ijms22094964. [PMID: 34066996 PMCID: PMC8124327 DOI: 10.3390/ijms22094964] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastomas (GBM)—the most common, therapy-resistant, and lethal tumors driven by populations of glioma stem cells (GSCs) are still on the list of the most complicated pathologies. Thus, deeper understanding and characterization of GSCs is indispensable to find suitable targets and develop more effective therapies. In the present study, we applied native glioblastoma cells and GSCs sequencing, screened for GSC-specific targets and checked if the signature is related to GBM patient pathological, clinical data as well as molecular subtypes applying TCGA cohort. Data analysis revealed that tumors of proneural and mesenchymal subtypes are branching in separate clusters based on screened gene expression. Samples of the same subtype revealed significantly different patient survival prognosis as well as recurrence chance between the clusters. Recently, different subpopulations of mesenchymal GSC demonstrating different properties were shown, which indicates possible internal heterogeneity of GBM subtypes as well. Current findings also revealed branching of molecular GBM subtypes that were significantly linked to patient outcome and that might be decided by distinct GSC subpopulations.
Collapse
|
2250
|
Koo B, Rhee JK. Prediction of tumor purity from gene expression data using machine learning. Brief Bioinform 2021; 22:6265216. [PMID: 33954576 DOI: 10.1093/bib/bbab163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/11/2023] Open
Abstract
MOTIVATION Bulk tumor samples used for high-throughput molecular profiling are often an admixture of cancer cells and non-cancerous cells, which include immune and stromal cells. The mixed composition can confound the analysis and affect the biological interpretation of the results, and thus, accurate prediction of tumor purity is critical. Although several methods have been proposed to predict tumor purity using high-throughput molecular data, there has been no comprehensive study on machine learning-based methods for the estimation of tumor purity. RESULTS We applied various machine learning models to estimate tumor purity. Overall, the models predicted the tumor purity accurately and showed a high correlation with well-established gold standard methods. In addition, we identified a small group of genes and demonstrated that they could predict tumor purity well. Finally, we confirmed that these genes were mainly involved in the immune system. AVAILABILITY The machine learning models constructed for this study are available at https://github.com/BonilKoo/ML_purity.
Collapse
Affiliation(s)
- Bonil Koo
- School of Systems Biomedical Science, Soongsil University, Seoul, Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Je-Keun Rhee
- School of Systems Biomedical Science, Soongsil University, Seoul, Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| |
Collapse
|