2351
|
Allen CE, Li L, Peters TL, Leung HCE, Yu A, Man TK, Gurusiddappa S, Phillips MT, Hicks MJ, Gaikwad A, Merad M, McClain KL. Cell-specific gene expression in Langerhans cell histiocytosis lesions reveals a distinct profile compared with epidermal Langerhans cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:4557-67. [PMID: 20220088 DOI: 10.4049/jimmunol.0902336] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a rare disease characterized by heterogeneous lesions containing CD207(+) Langerhans cells (LCs) and lymphocytes that can arise in almost any tissue and cause significant morbidity and mortality. After decades of research, the cause of LCH remains speculative. A prevailing model suggests that LCH arises from malignant transformation and metastasis of epidermal LCs. In this study, CD207(+) cells and CD3(+) T cells were isolated from LCH lesions to determine cell-specific gene expression. Compared with control epidermal CD207(+) cells, the LCH CD207(+) cells yielded 2113 differentially expressed genes (false discovery rate < 0.01). Surprisingly, the expression of many genes previously associated with LCH, including cell-cycle regulators, proinflammatory cytokines, and chemokines, were not significantly different from control LCs in our study. However, several novel genes whose products activate and recruit T cells to sites of inflammation, including SPP1 (osteopontin), were highly overexpressed in LCH CD207(+) cells. Furthermore, several genes associated with immature myeloid dendritic cells were overexpressed in LCH CD207(+) cells. Compared with the peripheral CD3(+) cells from LCH patients, the LCH lesion CD3(+) cells yielded only 162 differentially regulated genes (false discovery rate < 0.01), and the expression profile of the LCH lesion CD3(+) cells was consistent with an activated regulatory T cell phenotype with increased expression of FOXP3, CTLA4, and SPP1. Results from this study support a model of LCH pathogenesis in which lesions do not arise from epidermal LCs but from accumulation of bone marrow-derived immature myeloid dendritic cells that recruit activated lymphocytes.
Collapse
Affiliation(s)
- Carl E Allen
- Department of Pediatrics, Texas Children's Cancer Center and Hematology Service, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2352
|
Deng YY, Lu J, Ling EA, Kaur C. Microglia-derived macrophage colony stimulating factor promotes generation of proinflammatory cytokines by astrocytes in the periventricular white matter in the hypoxic neonatal brain. Brain Pathol 2010; 20:909-25. [PMID: 20406232 DOI: 10.1111/j.1750-3639.2010.00387.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inflammation in the periventricular white matter (PWM) of hypoxic neonatal brain causes myelination disturbances. In this connection, macrophage colony-stimulating factor (M-CSF) has been reported to regulate release of proinflammatory cytokines that may be linked to PWM damage. We sought to determine if M-CSF derived from amoeboid microglial cells (AMC) would promote proinflammatory cytokine production by astrocytes in the PWM following hypoxic exposure, and, if so, whether it is associated with axon degeneration and myelination disturbances. In 1-day hypoxic rats, expression of M-CSF was upregulated in AMC. This was coupled with increased expression of CSF-1 receptor, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) in astrocytes, and TNF-receptor 1 and IL-receptor 1 on the axons. Neurofilament-200 immunopositive axons and myelin basic protein immunopositive processes appeared to undergo disruption in 14-days hypoxic rats. By electron microscopy, some axons showed degenerative changes affecting the microtubules and myelin sheath. Primary cultured microglial cells subjected to hypoxia showed enhanced release of M-CSF. Remarkably, primary cultured astrocytes treated with conditioned-medium derived from hypoxic microglia or M-CSF exhibited increased production of TNF-alpha and IL-1beta. Our results suggest that AMC-derived M-CSF promotes astrocytes to generate proinflammatory cytokines, which may be involved in axonal damage following a hypoxic insult.
Collapse
Affiliation(s)
- Yi Yu Deng
- Department of Anatomy, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
2353
|
Abstract
PURPOSE OF REVIEW The term mono-cyte suggests this population of cells consists of a single homogenous fraction. However, evidence from a number of laboratories indicates that monocytes are composed of several subsets, which differ in phenotype, size, nuclear morphology, granularity and gene profiles. Most importantly, recent data suggest that monocyte subsets are also functionally distinct. Here we summarize the recent advances in our understanding of monocyte subsets and their origins, fates and functions. RECENT FINDINGS The recent past has seen major progress in our understanding of myeloid differentiation. Specifically, the published literature now suggests a dichotomy that starts at the stage of a novel clonotypic bone marrow resident precursor, the macrophage dendritic cell progenitor (MDP). Insights into differential origins of macrophages and dendritic cells, linked with functional specifications, are likely to significantly change our current view of the mononuclear phagocyte system. SUMMARY Contemporary studies have demonstrated that two subsets of monocytes reside in the peripheral circulation. These subsets are surprisingly distinct; with regard to their functions and fates, for example, one subset might be dedicated to generate macrophages upon extravasation from the peripheral circulation, whereas, the other subset under inflammatory conditions may differentiate into inflammatory dendritic cells. The tissue response during pathogenesis seems to differentially mobilize these cells, thereby manipulating the local mononuclear phagocyte composition according to acute needs.
Collapse
|
2354
|
Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 2010; 6:48-58. [PMID: 20074534 DOI: 10.1016/j.stem.2009.11.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 10/06/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
Sustained blood cell production depends on divisions by hematopoietic stem cells (HSCs) that yield both differentiating progeny as well as new HSCs via self-renewal. Differentiating progeny remain capable of self-renewal, but only HSCs sustain self-renewal through successive divisions securely enough to maintain clones that persist life-long. Until recently, the first identified next stage consisted of "short-term" reconstituting cells able to sustain clones of differentiating cells for only 4-6 weeks. Here we expand evidence for a numerically dominant "intermediate-term" multipotent HSC stage in mice whose clones persist for 6-8 months before becoming extinct and that are separable from both short-term as well as permanently reconstituting "long-term" HSCs. The findings suggest that the first step in stem cell differentiation consists not in loss of initial capacity for serial self-renewal divisions, but rather in loss of mechanisms that stabilize self-renewing behavior throughout successive future stem cell divisions.
Collapse
|
2355
|
Genome-wide expression analyses establish dendritic cells as a new osteoclast precursor able to generate bone-resorbing cells more efficiently than monocytes. J Bone Miner Res 2010; 25:661-72. [PMID: 19775202 DOI: 10.1359/jbmr.090829] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DCs), mononuclear cells that initiate immune responses, and osteoclasts (OCs), multinucleated bone-resorbing cells, are hematopoietic cells derived from monocytic precursor cells. Using in vitro generated dendritic cells, we previously showed that human and murine DCs could transdifferentiate into resorbing osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL). In this study we globally compared by transcriptomic profiling this new osteoclast differentiation pathway from DCs with the canonical differentiation pathway from monocytes. DNA chip data revealed that starting from two very distinct cell types, treatment with M-CSF and RANKL generated two highly similar types of osteoclast. In particular, DC-derived osteoclasts expressed all the characteristic marker genes of monocyte-derived osteoclasts. Two major molecular events could be observed during osteoclastogenesis: downregulation of a large set of monocyte or DC specific markers, together with upregulation of characteristic osteoclast marker genes. Most interestingly, our transcriptomic data showed a closer molecular profile between DCs and OCs than between monocytes and OCs. Our data establish DCs as a new osteoclast precursor able to generate OCs more efficiently than monocytes.
Collapse
|
2356
|
Crozat K, Guiton R, Guilliams M, Henri S, Baranek T, Schwartz-Cornil I, Malissen B, Dalod M. Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol Rev 2010; 234:177-98. [DOI: 10.1111/j.0105-2896.2009.00868.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
2357
|
|
2358
|
Shaposhnik Z, Wang X, Lusis AJ. Arterial colony stimulating factor-1 influences atherosclerotic lesions by regulating monocyte migration and apoptosis. J Lipid Res 2010; 51:1962-70. [PMID: 20194110 DOI: 10.1194/jlr.m005215] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that colony stimulating factor-1 (CSF-1) deficiency dramatically reduced atherogenesis in mice. In this report we investigate this mechanism and explore a therapeutic avenue based on inhibition of CSF-1 signaling. Lesions from macrophage colony stimulating factor-1 (Csf1)+/- mice showed increased numbers of apoptotic macrophages, decreased overall macrophage content, and inflammation. In vitro studies indicated that CSF-1 is chemotactic for monocytes. Bone marrow transplantation studies suggested that vascular cell-derived, rather than macrophage-derived, CSF-1 is responsible for the effect on atherosclerosis. Consistent with previous studies, CSF-1 affected lesion development in a dose-dependent manner, suggesting that pharmacological inhibition of CSF-1 might achieve similar results. Indeed, we observed that treatment of hyperlipidemic mice with a CSF-1 receptor kinase inhibitor inhibited plaque progression. This observation was accompanied by a reduction in the expression of adhesion factors (ICAM-1), macrophage markers (F4/80), inflammatory cytokines (Il-6, Il-1beta), and macrophage matrix degradation enzymes (MMP-9). We conclude that the M-CSF pathway contributes to monocyte recruitment and macrophage survival and that this pathway is a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Zory Shaposhnik
- Department of Medicine, School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1679, USA
| | | | | |
Collapse
|
2359
|
Abstract
Langerhans cell histiocytosis (LCH) is a rare proliferative disorder of cells with the phenotype of activated Langerhans cells. The diagnosis of LCH is often delayed or missed. Many questions about LCH remain to be answered, including whether it is caused by a malignancy or by immune dysregulation. Data from the early 1990s showed that LCH consisted of an accumulation of monoclonal LCH cells, suggesting a neoplastic disorder. However, further investigations with current sophisticated techniques have not shown consistent genomic aberrations. Recent data which suggests a role for an IL-17A dependant pathway of dendritic cell fusion in LCH remains to be proven. The most recent data taken together swing the pendulum towards an immunologic aberration. The clinical course of LCH is highly variable, ranging from a self-healing solitary bone lesion to widely disseminated life-threatening disease. Patients with multisystem (MS) disease with organ dysfunction, particularly those refractory to front line therapy, and those with multiple reactivations of disease associated with significant permanent sequelae represent the greatest challenge. Early switch of refractory patients to salvage therapies has contributed to the improvement in survival of MS-LCH patients. Due to the rarity of LCH in children and adults, patients must be enrolled on multi-national clinical trials, whenever possible, to advance our knowledge of the optimal therapeutic strategies and long-term outcomes.
Collapse
|
2360
|
Abstract
BACKGROUND Spleen as a lymphoid tissue is specialized for monitoring blood and mounting immunity against blood-borne antigens. Antigen-presenting cells present in spleen commonly develop from bone marrow-derived precursors that enter blood circulation. However, a distinct splenic myeloid antigen-presenting cell subset described in this laboratory, namely "dendritic-like cells" (L-DC), has been hypothesized not to share a bone marrow origin. METHODS In this study, the presence of endogenous hematopoietic progenitors in spleen was investigated by transplanting intact spleen into allotype-distinct recipients and monitoring development of progeny cells in grafted tissues. RESULTS Successful engraftment of donor spleens was achieved for up to 4 weeks. After 2 weeks, donor-type myeloid cells, dendritic cells (DC) and few B cells were observed in spleen grafts indicative of spleen-endogenous hematopoiesis. An influx of host-type hematopoietic stem cell, as well as host-type lymphoid and myeloid cells, was also observed. CONCLUSION Evidence for the maintenance of donor-type myeloid cells after 2 to 4 weeks reflected development from hematopoietic progenitors endogenous to spleen. L-DC were also detected in spleen grafts; however, within the graft microenvironment they were one of the several DC and myeloid subsets, including activated DC, resembling L-DC. Overall, this study adds further evidence that spleen can support endogenous myelopoiesis.
Collapse
|
2361
|
Fajas L, Blanchet E, Annicotte JS. CDK4, pRB and E2F1: connected to insulin. Cell Div 2010; 5:6. [PMID: 20181095 PMCID: PMC2829545 DOI: 10.1186/1747-1028-5-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/05/2010] [Indexed: 01/09/2023] Open
Abstract
Pancreatic beta-cells are metabolic sensors involved in the control of glucose homeostasis. This particular cell type controls insulin secretion through a fine-tuned process, which dregulation have important pathological consequences, such as observed during type 2 diabetes. We recently implicated E2F1 in the control of glucose homeostasis. First we showed that E2f1-/- mice have decreased pancreatic size, as the result of impaired postnatal pancreatic growth. We observed in this study that E2F1 was highly expressed in non-proliferating pancreatic beta-cells, suggesting that E2F1, besides the control of beta-cell number could have a role in pancreatic beta-cell function. We demonstrate in our recent study, both in vitro and in vivo that E2F1 directly regulates the expression of Kir6.2, a key component of the KATP channel involved in the regulation of glucose-induced insulin secretion in pancreatic beta-cells. Expression of Kir6.2 is lost in pancreas of E2f1-/- mice, resulting in insulin secretion defects in these mice. Furthermore, we demonstrated by in tissue chromatin immunoprecipitation analysis that regulation of Kir6.2 expression by E2F1 follows the same regulatory pathway that the classical E2F1 target genes, implicating the participation of CDK4 and retinoblastoma protein. Moreover, in this context, E2F1 transcriptional activity is regulated by glucose and insulin through the CDK4-dependent inactivation of the pRB protein. In summary we provide evidence that the CDK4-pRB-E2F1 regulatory pathway is involved in glucose homeostasis. In our recent study we decipher a new function for these factors in the control of insulin secretion and open up new avenues for the treatment of metabolic diseases, in particular type 2 diabetes.
Collapse
Affiliation(s)
- Lluis Fajas
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.
| | | | | |
Collapse
|
2362
|
Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science 2010; 327:656-61. [PMID: 20133564 PMCID: PMC2887389 DOI: 10.1126/science.1178331] [Citation(s) in RCA: 2230] [Impact Index Per Article: 148.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Monocytes and macrophages are critical effectors and regulators of inflammation and the innate immune response, the immediate arm of the immune system. Dendritic cells initiate and regulate the highly pathogen-specific adaptive immune responses and are central to the development of immunologic memory and tolerance. Recent in vivo experimental approaches in the mouse have unveiled new aspects of the developmental and lineage relationships among these cell populations. Despite this, the origin and differentiation cues for many tissue macrophages, monocytes, and dendritic cell subsets in mice, and the corresponding cell populations in humans, remain to be elucidated.
Collapse
Affiliation(s)
- Frederic Geissmann
- Centre for Molecular and Cellular Biology of Inflammation, Division of Immunology, Infection, and Inflammatory Diseases, King's College London, Great Maze Pond, London SE1 1UL, UK.
| | | | | | | | | | | |
Collapse
|
2363
|
Zhang J, Lee EY, Liu Y, Berman SD, Lodish HF, Lees JA. pRB and E2F4 play distinct cell-intrinsic roles in fetal erythropoiesis. Cell Cycle 2010; 9:371-6. [PMID: 20023434 DOI: 10.4161/cc.9.2.10467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The retinoblastoma tumor suppressor protein pRB functions, at least in part, by directly binding to and modulating the activity of the E2F transcription factors. Previous studies have shown that both E2F4 and pRB play important roles in fetal erythropoiesis. Given that these two proteins interact directly we investigated the overlap of E2F4 and pRB function in this process by analyzing E2f4(-/-), conditional Rb knockout (Rb(1lox/1lox)), and compound E2f4(-/-);Rb(1lox/1lox) embryos. At E15.5 E2f4(-/-) and Rb(1lox/1lox) fetal erythroid cells display distinct abnormalities in their differentiation profiles. When cultured in vitro, both E2f4(-/-) and Rb(1lox/1lox) erythroid cells show defects in cell cycle progression. Surprisingly, analysis of cell cycle profiling suggests that E2F4 and pRB control cell cycle exit through different mechanisms. Moreover, only pRB, but not E2F4, promotes cell survival in erythroid cells. We observed an additive rather than a synergistic impact upon the erythroid defects in the compound E2f4(-/-);Rb(1lox/1lox) embryos. We further found that fetal liver macrophage development is largely normal regardless of genotype. Taken together, our results show that E2F4 and pRB play independent cell-intrinsic roles in fetal erythropoiesis.
Collapse
Affiliation(s)
- Jing Zhang
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
2364
|
Abstract
Despite the dismal outcome seen in the majority of epithelial ovarian cancer patients, there is ongoing progress in understanding the disease at a molecular level. Elucidation of pathways underlying disease progression and metastasis of ovarian cancer is key to development of targeted therapeutics. It is only in this way that therapeutic potential can be translated to reality. Here, we describe the evidence to date for the role of CSF-1/c-fms signaling in ovarian cancer invasiveness and metastasis, including the recent understanding of how CSF-1/c-fms expression is regulated with identification of significant post-transcriptional regulators.
Collapse
Affiliation(s)
- Setsuko K Chambers
- Women's Cancers, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
2365
|
Baud'Huin M, Renault R, Charrier C, Riet A, Moreau A, Brion R, Gouin F, Duplomb L, Heymann D. Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis. J Pathol 2010; 221:77-86. [DOI: 10.1002/path.2684] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2366
|
Garceau V, Smith J, Paton IR, Davey M, Fares MA, Sester DP, Burt DW, Hume DA. Pivotal Advance: Avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J Leukoc Biol 2010; 87:753-64. [PMID: 20051473 DOI: 10.1189/jlb.0909624] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macrophages are involved in many aspects of development, host defense, pathology, and homeostasis. Their normal differentiation, proliferation, and survival are controlled by CSF-1 via the activation of the CSF1R. A recently discovered cytokine, IL-34, was shown to bind the same receptor in humans. Chicken is a widely used model organism in developmental biology, but the factors that control avian myelopoiesis have not been identified previously. The CSF-1, IL-34, and CSF1R genes in chicken and zebra finch were identified from respective genomic/cDNA sequence resources. Comparative analysis of the avian CSF1R loci revealed likely orthologs of mammalian macrophage-specific promoters and enhancers, and the CSF1R gene is expressed in the developing chick embryo in a pattern consistent with macrophage-specific expression. Chicken CSF-1 and IL-34 were expressed in HEK293 cells and shown to elicit macrophage growth from chicken BM cells in culture. Comparative sequence and co-evolution analysis across all vertebrates suggests that the two ligands interact with distinct regions of the CSF1R. These studies demonstrate that there are two separate ligands for a functional CSF1R across all vertebrates.
Collapse
Affiliation(s)
- Valerie Garceau
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
2367
|
Miloud T, Hämmerling GJ, Garbi N. Review of murine dendritic cells: types, location, and development. Methods Mol Biol 2010; 595:21-42. [PMID: 19941103 DOI: 10.1007/978-1-60761-421-0_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dendritic cells (DCs) are key coordinators of the immune response, governing the choice between tolerance and immunity. DCs are professional antigen-presenting cells capable of presenting antigen on MHC molecules and priming CD4 and CD8 T-cell responses. They form a heterogeneous group of cells based on phenotype, location, and function. In this review, murine DCs will be discussed regarding their function with special emphasis on their tissue distribution. Recent findings on DC homeostasis during cancer progression will be presented. Finally, the developmental pathways leading to DC differentiation from their precursors will be summarized.
Collapse
Affiliation(s)
- Tewfik Miloud
- Division of Molecular Immunology, German Cancer Research Center DKFZ, Heidelberg, Germany
| | | | | |
Collapse
|
2368
|
Fraser ST, Isern J, Baron MH. Use of transgenic fluorescent reporter mouse lines to monitor hematopoietic and erythroid development during embryogenesis. Methods Enzymol 2010; 476:403-27. [PMID: 20691878 DOI: 10.1016/s0076-6879(10)76022-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of fluorescent reporter proteins such as GFP, RFP, and their variants to tag and track cells within the embryo has revolutionized developmental biology. Expression of these proteins within restricted populations has been achieved through the use of lineage-specific regulatory elements. This approach has proven especially powerful in the hematopoietic system, where it has been possible to monitor the generation, expansion, maturation, and migration of primitive erythroid cells, macrophages, and megakaryocytes during embryogenesis at unprecedented resolution. Such analyses have provided novel insights into the development of these lineages. In this chapter, we discuss the design considerations and methodologies involved in the production and analysis of transgenic mouse lines in which fluorescent reporters are expressed in the hematopoietic system of the mouse embryo.
Collapse
Affiliation(s)
- Stuart T Fraser
- Division of Hematology and Medical Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, USA
| | | | | |
Collapse
|
2369
|
Mortellaro A, Wong SC, Fric J, Ricciardi-Castagnoli P. The need to identify myeloid dendritic cell progenitors in human blood. Trends Immunol 2010; 31:18-23. [DOI: 10.1016/j.it.2009.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/01/2009] [Accepted: 09/28/2009] [Indexed: 12/20/2022]
|
2370
|
Ginhoux F, Ng LG, Merad M. Understanding the murine cutaneous dendritic cell network to improve intradermal vaccination strategies. Curr Top Microbiol Immunol 2010; 351:1-24. [PMID: 21058006 DOI: 10.1007/82_2010_115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Dendritic cells (DCs) form a heterogeneous group of antigen presenting cells that play different roles in tissue immunity. Recent studies have revealed the presence of distinct DC populations in murine skin, highlighting the complexity of the cutaneous DC network. In this review, we will define the major DC subsets that populate the different layers of the skin, focusing on their origin and the mechanisms controlling their homeostasis. We will also review recent evidence underlining the functional specialization of dermal DC subsets and its relevance in the design of novel vaccine approaches.
Collapse
Affiliation(s)
- F Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A STAR), 8A Biomedical Grove, Immunos, Biopolis, Singapore 138648, Singapore.
| | | | | |
Collapse
|
2371
|
Abstract
The CD8(+), CD8(-), and plasmacytoid dendritic cell (DC) subtypes develop from progenitors that express surface fms-like tyrosine kinase 3 (Flt3). Recently, two developmentally sequential progenitors have been identified that give rise to these subtypes. This includes a transition from an earlier CD11c(-)MHC-II(-) "pro-DC," which divides and differentiates to give rise to CD11c(+)MHC-II(-) "pre-DC," en route to generating the three CD11c(+)MHC-II(+) DC subtypes - plasmacytoid DCs, CD8(+) DCs, and CD8(-) DCs. In this chapter, we describe the very simple method of generating large numbers of in vitro-derived pro-DCs and pre-DCs. As these precursors are largely DC-restricted, they can be used to either reconstitute a mouse with DCs of desired background, to study the developmental steps in vitro or in vivo, among other purposes.
Collapse
|
2372
|
Pirraco RP, Marques AP, Reis RL. Cell interactions in bone tissue engineering. J Cell Mol Med 2010; 14:93-102. [PMID: 20050963 PMCID: PMC3837601 DOI: 10.1111/j.1582-4934.2009.01005.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 12/14/2009] [Indexed: 12/19/2022] Open
Abstract
Bone fractures, where the innate regenerative bone response is compromised, represent between 4 and 8 hundred thousands of the total fracture cases, just in the United States. Bone tissue engineering (TE) brought the notion that, in cases such as those, it was preferable to boost the healing process of bone tissue instead of just adding artificial parts that could never properly replace the native tissue. However, despite the hype, bone TE so far could not live up to its promises and new bottom-up approaches are needed. The study of the cellular interactions between the cells relevant for bone biology can be of essential importance to that. In living bone, cells are in a context where communication with adjacent cells is almost permanent. Many fundamental works have been addressing these communications nonetheless, in a bone TE approach, the 3D perspective, being part of the microenvironment of a bone cell, is as crucial. Works combining the study of cell-to-cell interactions in a 3D environment are not as many as expected. Therefore, the bone TE field should not only gain knowledge from the field of fundamental Biology but also contribute for further understanding the biology of bone. In this review, a summary of the main works in the field of bone TE, aiming at studying cellular interactions in a 3D environment, and how they contributed towards the development of a functional engineered bone tissue, is presented.
Collapse
Affiliation(s)
- R P Pirraco
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, Deptartment of Polymer Engineering, University of MinhoGuimarães, Portugal
- IBB – Institute for Biotechnology and Bioengineering, PT Government Associated LaboratoryBraga, Portugal
| | - A P Marques
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, Deptartment of Polymer Engineering, University of MinhoGuimarães, Portugal
- IBB – Institute for Biotechnology and Bioengineering, PT Government Associated LaboratoryBraga, Portugal
| | - R L Reis
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, Deptartment of Polymer Engineering, University of MinhoGuimarães, Portugal
- IBB – Institute for Biotechnology and Bioengineering, PT Government Associated LaboratoryBraga, Portugal
| |
Collapse
|
2373
|
Mertz KD, Junt T, Schmid M, Pfaltz M, Kempf W. Inflammatory monocytes are a reservoir for Merkel cell polyomavirus. J Invest Dermatol 2009; 130:1146-51. [PMID: 20016500 DOI: 10.1038/jid.2009.392] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Merkel cell polyomavirus (MCPyV) is a recently discovered virus that is implicated in the oncogenesis of Merkel cell carcinoma (MCC). The route of dissemination and the reservoir(s) of MCPyV within the human body have not yet been identified. In this study we describe two patients with multiple MCPyV-positive inflammatory and neoplastic skin lesions at different anatomic sites. Patient 1 was suffering from psoriasis for many years and was diagnosed with MCC 7 years before this study. Patient 2 had developed numerous non-melanoma skin cancer lesions under post-transplant immunosuppression. In both patients, MCPyV DNA was detected in whole blood and in urine using PCR and direct sequencing of PCR products. When we analyzed different blood compartments, we found MCPyV exclusively in cell-free serum and in blood monocytes, but not in lymphocytes or granulocytes. Upon separate analysis of resident (CD14(lo)CD16(+)) and inflammatory (CD14(+)CD16(-)) monocytes, we detected MCPyV exclusively in inflammatory, but not in resident monocytes. Our findings raise the possibility that MCPyV persists in inflammatory monocytes and spreads along the migration routes of inflammatory monocytes. This points to intervention strategies to contain MCPyV. Moreover, blood or urine tests may serve as ancillary tests to confirm MCPyV infection in a clinical setting.
Collapse
Affiliation(s)
- Kirsten D Mertz
- Kempf and Pfaltz Histological Diagnostics, Research Unit, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
2374
|
Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, Hashimoto D, Price J, Yin N, Bromberg J, Lira SA, Stanley ER, Nussenzweig M, Merad M. The origin and development of nonlymphoid tissue CD103+ DCs. ACTA ACUST UNITED AC 2009; 206:3115-30. [PMID: 20008528 PMCID: PMC2806447 DOI: 10.1084/jem.20091756] [Citation(s) in RCA: 597] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CD103+ dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c+MHCII+ cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103+ DCs are related to lymphoid organ CD8+ DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103+ DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c+MHCII+ cells in tissues, which is CD103−CD11b+, is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103+ DCs and lymphoid organ CD8+ DCs derive from the same precursor and follow a related differentiation program.
Collapse
Affiliation(s)
- Florent Ginhoux
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2375
|
Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 2009; 115:1461-71. [PMID: 20008303 DOI: 10.1182/blood-2009-08-237412] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor-infiltrating myeloid cells (TIMs) support tumor growth by promoting angiogenesis and suppressing antitumor immune responses. CSF-1 receptor (CSF1R) signaling is important for the recruitment of CD11b(+)F4/80(+) tumor-associated macrophages (TAMs) and contributes to myeloid cell-mediated angiogenesis. However, the impact of the CSF1R signaling pathway on other TIM subsets, including CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs), is unknown. Tumor-infiltrating MDSCs have also been shown to contribute to tumor angiogenesis and have recently been implicated in tumor resistance to antiangiogenic therapy, yet their precise involvement in these processes is not well understood. Here, we use the selective pharmacologic inhibitor of CSF1R signaling, GW2580, to demonstrate that CSF-1 regulates the tumor recruitment of CD11b(+)Gr-1(lo)Ly6C(hi) mononuclear MDSCs. Targeting these TIM subsets inhibits tumor angiogenesis associated with reduced expression of proangiogenic and immunosuppressive genes. Combination therapy using GW2580 with an anti-VEGFR-2 antibody synergistically suppresses tumor growth and severely impairs tumor angiogenesis along with reverting at least one TIM-mediated antiangiogenic compensatory mechanism involving MMP-9. These data highlight the importance of CSF1R signaling in the recruitment and function of distinct TIM subsets, including MDSCs, and validate the benefits of targeting CSF1R signaling in combination with antiangiogenic drugs for the treatment of solid cancers.
Collapse
|
2376
|
Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B, Kissenpfennig A, Barbaroux JB, Groves R, Geissmann F. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. ACTA ACUST UNITED AC 2009; 206:3089-100. [PMID: 19995948 PMCID: PMC2806478 DOI: 10.1084/jem.20091586] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Most tissues develop from stem cells and precursors that undergo differentiation as their proliferative potential decreases. Mature differentiated cells rarely proliferate and are replaced at the end of their life by new cells derived from precursors. Langerhans cells (LCs) of the epidermis, although of myeloid origin, were shown to renew in tissues independently from the bone marrow, suggesting the existence of a dermal or epidermal progenitor. We investigated the mechanisms involved in LC development and homeostasis. We observed that a single wave of LC precursors was recruited in the epidermis of mice around embryonic day 18 and acquired a dendritic morphology, major histocompatibility complex II, CD11c, and langerin expression immediately after birth. Langerin+ cells then undergo a massive burst of proliferation between postnatal day 2 (P2) and P7, expanding their numbers by 10–20-fold. After the first week of life, we observed low-level proliferation of langerin+ cells within the epidermis. However, in a mouse model of atopic dermatitis (AD), a keratinocyte signal triggered increased epidermal LC proliferation. Similar findings were observed in epidermis from human patients with AD. Therefore, proliferation of differentiated resident cells represents an alternative pathway for development in the newborn, homeostasis, and expansion in adults of selected myeloid cell populations such as LCs. This mechanism may be relevant in locations where leukocyte trafficking is limited.
Collapse
Affiliation(s)
- Laurent Chorro
- Centre for Molecular and Cellular Biology of Inflammation, Division of Immunobiology, Infection, and Inflammatory Diseases, King's College London, London SE1 1UL, England, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2377
|
Liu YCG, Teng YTA. Dendritic Cell-Associated Osteoclastogenesis and Bone Loss. Clin Rev Bone Miner Metab 2009. [DOI: 10.1007/s12018-009-9059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2378
|
Menke J, Rabacal WA, Byrne KT, Iwata Y, Schwartz MM, Stanley ER, Schwarting A, Kelley VR. Circulating CSF-1 promotes monocyte and macrophage phenotypes that enhance lupus nephritis. J Am Soc Nephrol 2009; 20:2581-92. [PMID: 19926892 DOI: 10.1681/asn.2009050499] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Macrophages mediate kidney disease and are prominent in a mouse model (MRL-Fas(lpr)) of lupus nephritis. Colony stimulating factor-1 (CSF-1) is the primary growth factor for macrophages, and CSF-1 deficiency protects MRL-Fas(lpr) mice from kidney disease and systemic illness. Whether this renoprotection derives from a reduction of macrophages and whether systemic CSF-1, as opposed to intrarenal CSF-1, promotes macrophage-dependent lupus nephritis remain unclear. Here, we found that increasing systemic CSF-1 hastened the onset of lupus nephritis in MRL-Fas(lpr) mice. Using mutant MRL-Fas(lpr) strains that express high, moderate, or no systemic CSF-1, we detected a much higher tempo of kidney disease in mice with the highest level of CSF-1. Furthermore, we uncovered a multistep CSF-1-dependent systemic mechanism central to lupus nephritis. CSF-1 heightened monocyte proliferation in the bone marrow (SSC(low)CD11b(+)), and these monocytes subsequently seeded the circulation. Systemic CSF-1 skewed the frequency of monocytes toward "inflammatory" (SSC(low)CD11b(+)Ly6C(high)) and activated populations that homed to sites of inflammation, resulting in a more rapid accumulation of intrarenal macrophages (CD11b(+)CSF-1R(+) or CD68(+)) that induced apoptosis of tubular epithelial cells, damaging the kidney. In humans, we found increased levels of CSF-1 in the serum, urine, and kidneys of patients with lupus compared with healthy controls. Furthermore, serum and urine CSF-1 levels correlated with lupus activity, and intrarenal CSF-1 expression correlated with the histopathology activity index of lupus nephritis. Taken together, circulating CSF-1 is a potential therapeutic target for lupus nephritis.
Collapse
Affiliation(s)
- Julia Menke
- Laboratory of Molecular Autoimmune Disease, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
2379
|
Heath WR, Carbone FR. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol 2009; 10:1237-44. [DOI: 10.1038/ni.1822] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2380
|
Marumo T, Hishikawa K, Yoshikawa M, Hirahashi J, Kawachi S, Fujita T. Histone deacetylase modulates the proinflammatory and -fibrotic changes in tubulointerstitial injury. Am J Physiol Renal Physiol 2009; 298:F133-41. [PMID: 19906951 DOI: 10.1152/ajprenal.00400.2009] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histone deacetylase (HDAC) regulates gene expression by modifying chromatin structure. Although changes in the expression and activities of HDAC may affect the course of kidney disease, the role of HDAC in tubulointerstitial injury has not been explored. We therefore investigated the alterations in HDAC expression and determined the effects of HDAC inhibition on the tubulointerstitial injury induced by unilateral ureteral obstruction. The induction of HDAC1 and HDAC2, accompanied by a decrease in histone acetylation was observed in kidneys injured by ureteral obstruction. Immunohistochemical analysis revealed that HDAC1 and HDAC2 were induced in renal tubular cells. Treatment with an HDAC inhibitor, trichostatin A (TSA), attenuated macrophage infiltration and fibrotic changes in tubulointerstitial injury induced by ureteral obstruction. The induction of colony-stimulating factor-1 (CSF-1), a chemokine known to be involved in macrophage infiltration in tubulointerstitial injury, was reduced in injured kidneys from mice treated with TSA. TSA, valproate, and the knockdown of HDAC1 or HDAC2 significantly reduced CSF-1 induced by TNF-alpha in renal tubular cells. These results suggest that tubular HDAC1 and HDAC2, induced in response to injury, may contribute to the induction of CSF-1 and the initiation of macrophage infiltration and profibrotic responses. These findings suggest a potential of HDAC inhibition therapy aimed at reducing inflammation and fibrosis in tubulointerstitial injury.
Collapse
Affiliation(s)
- Takeshi Marumo
- Dept. of Clinical Renal Regeneration, and Div. of Nephrology and Endocrinology, Dept. of Internal Medicine, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
2381
|
Abstract
Spermatogonial stem cells (SSCs; A(s) spermatogonia) and their direct descendants (A(pr) and A(al) spermatogonia) are preferentially located in those areas of the seminiferous tubules that border on the interstitial tissue. Fewer of these cells are present in tubule areas directly bordering on another tubule. Therefore, the SSC niche is related to the presence of interstitial tissue. The somatic cells within the seminiferous tubules, the Sertoli cells, are able to produce growth factors that stimulate self-renewal (GDNF, FGF2) and differentiation (activin A, BMP4, and SCF) of the SSCs. As Sertoli cells are everywhere on the basal membrane of the tubules, other factors coming from outside the tubules must determine, either directly or indirectly via Sertoli cells, whether in a particular area self-renewal of SSCs will be preferred or differentiation in the form of A(pr) formation. Self-renewal will be preferred in the stem cell niche and differentiation outside of the niche. Factors that could link the niche to the interstitial tissue are CSF1, produced by Leydig cells that stimulate stem cell proliferation and FSH, the concentration of which will be highest near blood vessels and that stimulates GDNF production by Sertoli cells.
Collapse
Affiliation(s)
- Dirk G de Rooij
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
2382
|
Negishi-Koga T, Takayanagi H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 2009; 231:241-56. [PMID: 19754901 DOI: 10.1111/j.1600-065x.2009.00821.x] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Osteoclasts are unique, multinucleated giant cells that decalcify and degrade the bone matrix. They originate from hematopoietic cells and their differentiation is dependent on a tumor necrosis factor (TNF) family cytokine, receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL), as well as macrophage-colony stimulating factor (M-CSF). Recent studies have unveiled the precise molecular mechanism underlying osteoclastogenesis. In particular, the discovery of nuclear factor of activated T cells c1 (NFATc1), the master regulator of osteoclastogenesis, has proven to be a breakthrough in this field. NFATc1 is activated by Ca2+ signaling induced by the activation of the immunoglobulin-like receptor signaling associated with immunoreceptor tyrosine-based activation motif (ITAM)-harboring adapters. The long-lasting Ca2+ oscillation, which is evident during osteoclastogenesis, may ensure the robust induction of NFATc1 through an autoamplification mechanism. Thus, intracellular Ca2+ is a critical attribute of osteoclastogenic signaling. In addition, osteoclasts are exposed to a very high extracellular Ca2+ concentration ([Ca2+]o) in the bone microenvironment and respond to the change in [Ca2+]o by increasing the intracellular Ca2+, which regulates diverse cellular functions. Investigation of the molecular mechanisms underlying the regulation of intracellular Ca2+ dynamics may open up new directions for therapeutic strategies in bone disease.
Collapse
Affiliation(s)
- Takako Negishi-Koga
- Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
2383
|
Abstract
Imatinib mesylate is a rationally designed tyrosine kinase inhibitor that has revolutionized the treatment of chronic myeloid leukemia and gastrointestinal stromal tumors. Although the efficacy and tolerability of imatinib are a vast improvement over conventional chemotherapies, the drug exhibits off-target effects. An unanticipated side effect of imatinib therapy is hypophosphatemia and hypocalcemia, which in part has been attributed to drug-mediated changes to renal and gastrointestinal handling of phosphate and calcium. However, emerging data suggest that imatinib also targets cells of the skeleton, stimulating the retention and sequestration of calcium and phosphate to bone, leading to decreased circulating levels of these minerals. The aim of this review is to highlight our current understanding of the mechanisms surrounding the effects of imatinib on the skeleton. In particular, it examines recent studies suggesting that imatinib has direct effects on bone-resorbing osteoclasts and bone-forming osteoblasts through inhibition of c-fms, c-kit, carbonic anhydrase II, and the platelet-derived growth factor receptor. The potential application of imatinib in the treatment of cancer-induced osteolysis will also be discussed.
Collapse
|
2384
|
Manthey CL, Johnson DL, Illig CR, Tuman RW, Zhou Z, Baker JF, Chaikin MA, Donatelli RR, Franks CF, Zeng L, Crysler C, Chen Y, Yurkow EJ, Boczon L, Meegalla SK, Wilson KJ, Wall MJ, Chen J, Ballentine SK, Ott H, Baumann C, Lawrence D, Tomczuk BE, Molloy CJ. JNJ-28312141, a novel orally active colony-stimulating factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia. Mol Cancer Ther 2009; 8:3151-61. [PMID: 19887542 DOI: 10.1158/1535-7163.mct-09-0255] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is increasing evidence that tumor-associated macrophages promote the malignancy of some cancers. Colony-stimulating factor-1 (CSF-1) is expressed by many tumors and is a growth factor for macrophages and mediates osteoclast differentiation. Herein, we report the efficacy of a novel orally active CSF-1 receptor (CSF-1R) kinase inhibitor, JNJ-28312141, in proof of concept studies of solid tumor growth and tumor-induced bone erosion. H460 lung adenocarcinoma cells did not express CSF-1R and were not growth inhibited by JNJ-28312141 in vitro. Nevertheless, daily p.o. administration of JNJ-28312141 caused dose-dependent suppression of H460 tumor growth in nude mice that correlated with marked reductions in F4/80(+) tumor-associated macrophages and with increased plasma CSF-1, a possible biomarker of CSF-1R inhibition. Furthermore, the tumor microvasculature was reduced in JNJ-28312141-treated mice, consistent with a role for macrophages in tumor angiogenesis. In separate studies, JNJ-28312141 was compared with zoledronate in a model in which MRMT-1 mammary carcinoma cells inoculated into the tibias of rats led to severe cortical and trabecular bone lesions. Both agents reduced tumor growth and preserved bone. However, JNJ-28312141 reduced the number of tumor-associated osteoclasts superior to zoledronate. JNJ-28312141 exhibited additional activity against FMS-related receptor tyrosine kinase-3 (FLT3). To more fully define the therapeutic potential of this new agent, JNJ-28312141 was evaluated in a FLT3-dependent acute myeloid leukemia tumor xenograft model and caused tumor regression. In summary, this novel CSF-1R/FLT3 inhibitor represents a new agent with potential therapeutic activity in acute myeloid leukemia and in settings where CSF-1-dependent macrophages and osteoclasts contribute to tumor growth and skeletal events.
Collapse
Affiliation(s)
- Carl L Manthey
- Johnson & Johnson Pharmaceutical Research & Development, Welsh and McKean Roads, Spring House, PA 19477, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2385
|
Wittrant Y, Gorin Y, Mohan S, Wagner B, Abboud-Werner SL. Colony-stimulating factor-1 (CSF-1) directly inhibits receptor activator of nuclear factor-{kappa}B ligand (RANKL) expression by osteoblasts. Endocrinology 2009; 150:4977-88. [PMID: 19819976 PMCID: PMC2775986 DOI: 10.1210/en.2009-0248] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Colony-stimulating factor-1 (CSF-1), released by osteoblasts, stimulates the proliferation of osteoclast progenitors via the c-fms receptor (CSF-1R) and, in combination with receptor activator of nuclear factor-kappaB ligand (RANKL), leads to the formation of mature osteoclasts. Whether the CSF-1R is expressed by osteoblasts and mediates specific biological effects in osteoblasts has not been explored. Wild-type primary calvaria osteoblasts (OB) were analyzed for CSF-1R expression (RT-PCR and Western blot) and functionality (immunocomplex kinase assay). OB were serum starved for 24 h, and the effect of CSF-1 (0-100 ng/ml) on OB biological activities was determined at 48 h. In wild-type mouse bone marrow cultures, CSF-1 was tested for its effect on RANKL mRNA and osteoclast formation. Because ROS influence osteoblast RANKL expression, studies analyzed the effect of CSF-1 on reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and Nox1 and Nox4 proteins. Results indicate that OB express CSF-1R mRNA and protein and that CSF-1R could be phosphorylated in the presence of CSF-1. In osteoblasts, CSF-1 decreased RANKL mRNA in a dose- and time-dependent manner. Incubation of bone marrow cultures with CSF-1 resulted in a significant decline in tartrate-resistant acid phosphatase (TRACP) activity and CTR expression. RANKL-decreased expression by CSF-1 was correlated with a decrease of NADPH oxidase activity as well as Nox1 and Nox4 protein levels. These findings provide the first evidence that osteoblasts express CSF-1R and are a target for CSF-1 ligand. CSF-1-mediated inhibition of RANKL expression on osteoblasts may provide an important mechanism for coupling bone formation/resorption and preventing excessive osteoclastogenesis during normal skeletal growth.
Collapse
Affiliation(s)
- Y Wittrant
- South Texas Veteran's Health Care System, Audi L. Murphy Division, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
2386
|
|
2387
|
Quinn JMW, Saleh H. Modulation of osteoclast function in bone by the immune system. Mol Cell Endocrinol 2009; 310:40-51. [PMID: 19056462 DOI: 10.1016/j.mce.2008.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/29/2008] [Accepted: 11/06/2008] [Indexed: 12/27/2022]
Abstract
Osteoclast differentiation and function is regulated by cellular signals and cytokines that also play significant roles in the immune system. There is much scope, therefore, for immune cell influence on osteoclasts and bone metabolism. Many examples of this have been identified and T cells in particular are a source of factors affecting osteoclast formation and activity, a number which have either pro-osteolytic or anti-osteolytic actions depending on the cellular and microenvironmental context. For example, IL-12 and IL-18 participate in inflammatory processes that can lead to highly destructive osteolysis, yet these cytokines potently block osteoclast formation through mediation of T cells. IL-23 participates in chronic inflammatory processes, but lack of this cytokine results in reduced bone mass in mice, pointing to an influence on physiological regulation of bone mass. Such insights suggest that therapies that target immune responses may significantly influence osteolysis. Investigations into links between the immune system and bone metabolism are thus uncovering important information about the functioning of both systems.
Collapse
|
2388
|
Willart MAM, Jan de Heer H, Hammad H, Soullié T, Deswarte K, Clausen BE, Boon L, Hoogsteden HC, Lambrecht BN. The lung vascular filter as a site of immune induction for T cell responses to large embolic antigen. ACTA ACUST UNITED AC 2009; 206:2823-35. [PMID: 19858325 PMCID: PMC2806611 DOI: 10.1084/jem.20082401] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The bloodstream is an important route of dissemination of invading pathogens. Most of the small bloodborne pathogens, like bacteria or viruses, are filtered by the spleen or liver sinusoids and presented to the immune system by dendritic cells (DCs) that probe these filters for the presence of foreign antigen (Ag). However, larger pathogens, like helminths or infectious emboli, that exceed 20 µm are mostly trapped in the vasculature of the lung. To determine if Ag trapped here can be presented to cells of the immune system, we used a model of venous embolism of large particulate Ag (in the form of ovalbumin [OVA]-coated Sepharose beads) in the lung vascular bed. We found that large Ags were presented and cross-presented to CD4 and CD8 T cells in the mediastinal lymph nodes (LNs) but not in the spleen or liver-draining LNs. Dividing T cells returned to the lungs, and a short-lived infiltrate consisting of T cells and DCs formed around trapped Ag. This infiltrate was increased when the Toll-like receptor 4 was stimulated and full DC maturation was induced by CD40 triggering. Under these conditions, OVA-specific cytotoxic T lymphocyte responses, as well as humoral immunity, were induced. The T cell response to embolic Ag was severely reduced in mice depleted of CD11chi cells or Ly6C/G+ cells but restored upon adoptive transfer of Ly6Chi monocytes. We conclude that the lung vascular filter represents a largely unexplored site of immune induction that traps large bloodborne Ags for presentation by monocyte-derived DCs.
Collapse
Affiliation(s)
- Monique A M Willart
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Pulmonary Medicine, University of Ghent, Ghent B-9000, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
2389
|
Ottersbach K, Smith A, Wood A, Göttgens B. Ontogeny of haematopoiesis: recent advances and open questions. Br J Haematol 2009; 148:343-55. [PMID: 19863543 DOI: 10.1111/j.1365-2141.2009.07953.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unravelling the embryonic origins of the haematopoietic system has been the subject of sustained research for more than a century. Nevertheless, many important questions are still either unanswered or remain a matter of intense debate. Recent progress in mouse and embryonic stem cell model systems as well as imaging and post-genomic technologies has provided new insights into many of these open questions. Here we place into context recent reports on the anatomical site of blood stem cell emergence and, using red blood cells as an example, illustrate how the development of stem cells and the other blood lineages is both temporally and spatially decoupled. In addition, we outline how embryonic stem cell assays are increasingly used as a powerful surrogate for studying lineage relationships and developmental potential of early embryonic blood progenitors. Finally, we review how recent progress in the reconstruction of transcriptional regulatory networks is beginning to define the connectivity between key regulators that control early blood development. In light of these rapid recent advances, research into the embryonic origins of the haematopoietic system should remain one of the most vibrant disciplines within the wider field of haematology for the foreseeable future.
Collapse
Affiliation(s)
- Katrin Ottersbach
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
2390
|
Abstract
Paneth cells (PCs) are specialized epithelial cells predominantly found in the small intestinal crypts of Lieberkuehn. They produce different broad spectrum antimicrobial peptides most abundantly the alpha-defensins HD-5 and -6 (DEFA5 und DEFA6). Both these PC products show a specific reduction in small intestinal Crohn's disease (CD) - a form of inflammatory bowel disease (IBD). Their decrease is independent of current inflammation and an association with a NOD2 frameshift mutation has been demonstrated. More recently, another independent and even more frequent mechanism has been found which is linked to diminished levels of the Wnt pathway transcription factor TCF7L2 (also known as TCF4). Besides regulating the expression of HD-5 and HD-6 as TCF4 target genes, the Wnt pathway also orchestrates Paneth cell differentiation and maturation and controls stem cell maintenance in the small intestine. Besides NOD2 (which is predominantly expressed in PC) and ATG16L1 (inter alia important in the exocytosis of PC products), TCF4 is the third gene which is associated with small intestinal CD and Paneth cell antimicrobial function. Thus, Paneth cells seem to be key player emphazising a paramount importance of antimicrobial host defense in small intestinal CD pathogenesis.
Collapse
|
2391
|
Ehses JA, Ellingsgaard H, Böni-Schnetzler M, Donath MY. Pancreatic islet inflammation in type 2 diabetes: from alpha and beta cell compensation to dysfunction. Arch Physiol Biochem 2009; 115:240-7. [PMID: 19645635 DOI: 10.1080/13813450903025879] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Evidence in support of the concept of local pancreatic islet inflammation as a mechanism of beta cell failure in type 2 diabetes is accumulating. Observations in human islets from type 2 diabetic patients and rodent models of the disease indicate the increased presence of IL-1 driven cytokines and chemokines in pancreatic islets, concomitant with immune cell infiltration. Inflammation is the body's protective response to harmful stimuli and tissue damage. However, under chronic stress (e.g. metabolic stress in obesity and type 2 diabetes) the body's own defensive response may become deleterious to tissue function. Here, we summarize the current evidence that islet inflammation is a feature of type 2 diabetes, and discuss its role with respect to alpha and beta cell compensation and eventual beta cell failure.
Collapse
Affiliation(s)
- Jan A Ehses
- Division of Endocrinology, Diabetes and Nutrition, Center for Integrated Human Physiology, University Hospital of Zürich, 8091 Zürich, Switzerland.
| | | | | | | |
Collapse
|
2392
|
Lee PY, Li Y, Kumagai Y, Xu Y, Weinstein JS, Kellner ES, Nacionales DC, Butfiloski EJ, van Rooijen N, Akira S, Sobel ES, Satoh M, Reeves WH. Type I interferon modulates monocyte recruitment and maturation in chronic inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2023-33. [PMID: 19808647 DOI: 10.2353/ajpath.2009.090328] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic inflammation is characterized by continuous recruitment and activation of immune cells such as monocytes in response to a persistent stimulus. Production of proinflammatory mediators by monocytes leads to tissue damage and perpetuates the inflammatory response. However, the mechanism(s) responsible for the sustained influx of monocytes in chronic inflammation are not well defined. In chronic peritonitis induced by pristane, the persistent recruitment of Ly6C(hi) inflammatory monocytes into the peritoneum was abolished in type I interferon (IFN-I) receptor-deficient mice but was unaffected by the absence of IFN-gamma, tumor necrosis factor-alpha, interleukin-6, or interleukin-1. IFN-I signaling stimulated the production of chemokines (CCL2, CCL7, and CCL12) that recruited Ly6C(hi) monocytes via interactions with the chemokine receptor CCR2. Interestingly, after 2,6,10,14-tetramethylpentadecane treatment, the rapid turnover of inflammatory monocytes in the inflamed peritoneum was associated with a lack of differentiation into Ly6C(lo) monocytes/macrophages, a more mature subset with enhanced phagocytic capacity. In contrast, Ly6C(hi) monocytes differentiated normally into Ly6C(lo) cells in IFN-I receptor-deficient mice. The effects of IFN-I were specific for monocytes as granulocyte migration was unaffected in the absence of IFN-I signaling. Taken together, our findings reveal a novel role of IFN-I in promoting the recruitment of inflammatory monocytes via the chemokine receptor CCR2. Continuous monocyte recruitment and the lack of terminal differentiation induced by IFN-I may help sustain the chronic inflammatory response.
Collapse
Affiliation(s)
- Pui Y Lee
- Center for Autoimmune Disease, University of Florida, Gainesville, 32610-0221, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2393
|
Gautier EL, Jakubzick C, Randolph GJ. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29:1412-8. [PMID: 19759373 DOI: 10.1161/atvbaha.108.180505] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Monocytes are central mediators in the advance of atherosclerotic plaque, making them a natural therapeutic target for reducing disease burden. Here, we highlight recent advances in our current understanding of monocyte heterogeneity and its relevance to regulation of monocyte accumulation and function within atherosclerotic plaques. Differences that distinguish monocyte subsets include differential expression of chemokine receptors, especially CCR2 and CX3CR1. Ablation of expression of these 2 receptors (or their ligands) in mice has an additive inhibition on monocyte recruitment to atherosclerotic plaques. Moreover, simultaneously interfering with 3 key pathways--CCR2, CX3CR1, and CCR5--essentially abolishes atherosclerosis in mice. Here, we discuss how these chemokine receptors act at multiple points on at least 1 monocyte subset, regulating their mobilization from bone marrow, survival, or recruitment to plaques. Finally, we discuss how this knowledge may be useful clinically, emphasizing that CX3CR1 may in particular be a viable target for therapeutic manipulation of monocyte-derived cell fate in cardiovascular disease.
Collapse
Affiliation(s)
- Emmanuel L Gautier
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | |
Collapse
|
2394
|
Homeostasis of dendritic cells in lymphoid organs is controlled by regulation of their precursors via a feedback loop. Blood 2009; 114:4411-21. [PMID: 19767511 DOI: 10.1182/blood-2008-11-188045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are key coordinators of the immune response, governing the choice between tolerance and immunity. Despite their importance, the mechanisms controlling the size of the DC compartment are largely unknown. Using a mouse model allowing continuous DC depletion, we show that maintenance of DC numbers in spleen is an active process mediated by Flt3-L-dependent regulation of precursor differentiation into DCs, rather than by changes in proliferation of the differentiated DCs. In particular, the frequency and differentiation potential of intrasplenic DC precursors increased in response to reduced DC numbers. Levels of Flt3-L, a cytokine required for DC differentiation, increased in the blood after DC depletion and returned to normal levels once the DC compartment filled up again. Our data suggest a feedback regulation of DC homeostasis whereby reduction of the DC pool size promotes differentiation of their precursors, via increased Flt3-L availability. This mechanism is different to those known for other immune cell types, such as the B- and T-cell compartments, whereby lymphopenia induces proliferation of already differentiated lymphocytes.
Collapse
|
2395
|
Rivas-Caicedo A, Soldevila G, Fortoul TI, Castell-Rodríguez A, Flores-Romo L, García-Zepeda EA. Jak3 is involved in dendritic cell maturation and CCR7-dependent migration. PLoS One 2009; 4:e7066. [PMID: 19759904 PMCID: PMC2738966 DOI: 10.1371/journal.pone.0007066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/18/2009] [Indexed: 11/18/2022] Open
Abstract
Background CCR7-mediated signalling is important for dendritic cell maturation and homing to the lymph nodes. We have previously demonstrated that Jak3 participates in the signalling pathway of CCR7 in T lymphocytes. Methodology and Principal Findings Here, we used Jak3−/− mice to analyze the role of Jak3 in CCR7-mediated dendritic cells migration and function. First, we found no differences in the generation of DCs from Jak3−/− bone marrow progenitors, when compared to wild type cells. However, phenotypic analysis of the bone marrow derived DCs obtained from Jak3−/− mice showed reduced expression of co-stimulatory molecules compared to wild type (Jak3+/+). In addition, when we analyzed the migration of Jak3−/− and Jak3+/+ mature DCs in response to CCL19 and CCL21 chemokines, we found that the absence of Jak3 results in impaired chemotactic responses both in vitro and in vivo. Moreover, lymphocyte proliferation and contact hypersensitivity experiments showed that DC-mediated T lymphocyte activation is reduced in the absence of Jak3. Conclusion/Significance Altogether, our data provide strong evidence that Jak3 is important for DC maturation, migration and function, through a CCR7-mediated signalling pathway.
Collapse
Affiliation(s)
- Ana Rivas-Caicedo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, México, D.F., Mexico
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, México, D.F., Mexico
| | - Teresa I. Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., Mexico
| | - Andrés Castell-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., Mexico
| | | | - Eduardo A. García-Zepeda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, México, D.F., Mexico
- * E-mail:
| |
Collapse
|
2396
|
GM-CSF and IL-4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M-CSF receptor shedding by up-regulation of TNF-alpha converting enzyme (TACE). Blood 2009; 114:4517-26. [PMID: 19762488 DOI: 10.1182/blood-2009-04-215020] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Monocytes give rise to macrophages, osteoclasts (OCs), and dendritic cells (DCs). Macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappaB (RANK) ligand induce OC differentiation from monocytes, whereas granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) trigger monocytic differentiation into DCs. However, regulatory mechanisms for the polarization of monocytic differentiation are still unclear. The present study was undertaken to clarify the mechanism of triggering the deflection of OC and DC differentiation from monocytes. GM-CSF and IL-4 abolished monocytic differentiation into OCs while inducing DC differentiation even in the presence of M-CSF and RANK ligand. GM-CSF and IL-4 in combination potently up-regulate tumor necrosis factor-alpha (TNF-alpha) converting enzyme (TACE) and activity in monocytes, causing ectodomain shedding of M-CSF receptor, resulting in the disruption of its phosphorylation by M-CSF as well as the induction of osteoclastogenesis from monocytes by M-CSF and RANK ligand. Interestingly, TACE inhibition robustly causes the resumption of the surface expression of M-CSF receptor on monocytes, facilitating M-CSF-mediated phosphorylation of M-CSF receptor and macrophage/OC differentiation while impairing GM-CSF- and IL-4-mediated DC differentiation from monocytes. These results reveal a novel proteolytic regulation of M-CSF receptor expression in monocytes to control M-CSF signaling and monocytic differentiation into macrophage/OC-lineage cells or DCs.
Collapse
|
2397
|
Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D, Greter M, Liu K, Jakubzick C, Ingersoll MA, Leboeuf M, Stanley ER, Nussenzweig M, Lira SA, Randolph GJ, Merad M. Origin of the lamina propria dendritic cell network. Immunity 2009; 31:513-25. [PMID: 19733489 DOI: 10.1016/j.immuni.2009.08.010] [Citation(s) in RCA: 685] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/27/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
Abstract
CX(3)CR1(+) and CD103(+) dendritic cells (DCs) in intestinal lamina propria play a key role in mucosal immunity. However, the origin and the developmental pathways that regulate their differentiation in the lamina propria remain unclear. We showed that monocytes gave rise exclusively to CD103(-)CX(3)CR1(+) lamina propria DCs under the control of macrophage-colony-stimulating factor receptor (M-CSFR) and Fms-like thyrosine kinase 3 (Flt3) ligands. In contrast, common DC progenitors (CDP) and pre-DCs, which give rise to lymphoid organ DCs but not to monocytes, differentiated exclusively into CD103(+)CX(3)CR1(-) lamina propria DCs under the control of Flt3 and granulocyte-macrophage-colony-stimulating factor receptor (GM-CSFR) ligands. CD103(+)CX(3)CR1(-) DCs but not CD103(-)CX(3)CR1(+) DCs in the lamina propria constitutively expressed CCR7 and were the first DCs to transport pathogenic Salmonella from the intestinal tract to the mesenteric lymph nodes. Altogether, these results underline the diverse origin of the lamina propria DC network and identify mucosal DCs that arise from pre-DCs as key sentinels of the gut immune system.
Collapse
Affiliation(s)
- Milena Bogunovic
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2398
|
Deroo BJ, Hewitt SC, Collins JB, Grissom SF, Hamilton KJ, Korach KS. Profile of estrogen-responsive genes in an estrogen-specific mammary gland outgrowth model. Mol Reprod Dev 2009; 76:733-50. [PMID: 19484750 DOI: 10.1002/mrd.21041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both ovarian and pituitary hormones are required for the pubertal development of the mouse mammary gland. Estradiol directs ductal elongation and branching, while progesterone leads to tertiary branching and alveolar development. The purpose of this investigation was to identify estrogen-responsive genes associated with pubertal ductal growth in the mouse mammary gland in the absence of other ovarian hormones and at different stages of development. We hypothesized that the estrogen-induced genes and their associated functions at early stages of ductal elongation would be distinct from those induced after significant ductal elongation had occurred. Therefore, ovariectomized prepubertal mice were exposed to 17beta-estradiol from two to 28 days, and mammary gland global gene expression analyzed by microarray analysis at various times during this period. We found that: (a) gene expression changes in our estrogen-only model mimic those changes that occur in normal pubertal development in intact mice, (b) both distinct and overlapping gene profiles were observed at varying extents of ductal elongation, and (c) cell proliferation, the immune response, and metabolism/catabolism were the most common functional categories associated with mammary ductal growth. Particularly striking was the novel observation that genes active during carbohydrate metabolism were rapidly and robustly decreased in response to estradiol. Lastly, we identified mammary estradiol-responsive genes that are also co-expressed with estrogen receptor alpha in human breast cancer. In conclusion, our genomic data support the physiological observation that estradiol is one of the primary hormonal signals driving ductal elongation during pubertal mammary development.
Collapse
Affiliation(s)
- Bonnie J Deroo
- Receptor Biology Section, NIEHS, NIH, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
2399
|
Colony-stimulating factor-1-induced oscillations in phosphatidylinositol-3 kinase/AKT are required for caspase activation in monocytes undergoing differentiation into macrophages. Blood 2009; 114:3633-41. [PMID: 19721010 DOI: 10.1182/blood-2009-03-208843] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The differentiation of human peripheral blood monocytes into resident macrophages is driven by colony-stimulating factor-1 (CSF-1), which upon interaction with CSF-1 receptor (CSF-1R) induces within minutes the phosphorylation of its cytoplasmic tyrosine residues and the activation of multiple signaling complexes. Caspase-8 and -3 are activated at day 2 to 3 and contribute to macrophage differentiation, for example, through cleavage of nucleophosmin. Here, we show that the phosphatidylinositol-3 kinase and the downstream serine/threonine kinase AKT connect CSF-1R activation to caspase-8 cleavage. Most importantly, we demonstrate that successive waves of AKT activation with increasing amplitude and duration are required to provoke the formation of the caspase-8-activating molecular platform. CSF-1 and its receptor are both required for oscillations in AKT activation to occur, and expression of a constitutively active AKT mutant prevents the macrophage differentiation process. The extracellular receptor kinase 1/2 pathway is activated with a coordinated oscillatory kinetics in a CSF-1R-dependent manner but plays an accessory role in caspase activation and nucleophosmin cleavage. Altogether, CSF-1 stimulation activates a molecular clock that involves phosphatidylinositol-3 kinase and AKT to promote caspase activation. This oscillatory signaling pathway, which is coordinated with extracellular receptor kinase 1/2 oscillatory activation, involves CSF-1 and CSF-1R and controls the terminal differentiation of macrophages.
Collapse
|
2400
|
Amano S, Sekine K, Bonewald LF, Ohmori Y. A novel osteoclast precursor cell line, 4B12, recapitulates the features of primary osteoclast differentiation and function: enhanced transfection efficiency before and after differentiation. J Cell Physiol 2009; 221:40-53. [PMID: 19492422 DOI: 10.1002/jcp.21827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Osteoclasts are bone-resorbing multinucleated cells differentiated from monocyte/macrophage lineage precursors. A novel osteoclast precursor cell line, 4B12 was established from Mac-1(+)c-Fms(+)RANK(+) cells from calvaria of 14-day-old mouse embryos using immunofluorescence and cell-sorting methods. Like M-CSF-dependent bone marrow macrophages (M-BMMs), M-CSF is required for 4B12 cells to differentiate into TRAP-positive multinucleated cells [TRAP(+) MNCs] in the presence of RANKL. Bone-resorbing osteoclasts differentiated from 4B12 cells on dentine slices possess both a clear zone and ruffled borders and express osteoclast-specific genes. Bone-resorbing activity, but not TRAP, was enhanced in the presence of IL-1alpha. The number of TRAP(+) MNCs and the number of pits formed from 4B12 cells on dentine slices was fourfold higher than that from M-BMMs. 4B12 cells were identified as macrophages with Mac-1 and F4/80, yet lost these markers upon differentiation into osteoclasts as determined by confocal laser scanning microscopy. The 4B12 cells do not have the potential to differentiate into dendritic cells indicating commitment to the osteoclast lineage. 4B12 cells are readily transfectable with siRNA transfection before and after differentiation. These data show that 4B12 cells faithfully replicate the properties of primary cells and are a useful and powerful model for analyzing the molecular and cellular regulatory mechanisms of osteoclastogenesis and osteoclast function.
Collapse
Affiliation(s)
- Shigeru Amano
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado City, Saitama, Japan.
| | | | | | | |
Collapse
|