201
|
Nardo G, Trolese MC, Tortarolo M, Vallarola A, Freschi M, Pasetto L, Bonetto V, Bendotti C. New Insights on the Mechanisms of Disease Course Variability in ALS from Mutant SOD1 Mouse Models. Brain Pathol 2016; 26:237-47. [PMID: 26780365 PMCID: PMC8029191 DOI: 10.1111/bpa.12351] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a heterogeneous disease in terms of progression rate and survival. This is probably one of the reasons for the failure of many clinical trials and the lack of effective therapies. Similar variability is also seen in SOD1(G93A) mouse models based on their genetic background. For example, when the SOD1(G93A) transgene is expressed in C57BL6 background the phenotype is mild with slower disease progression than in the 129Sv mice expressing the same amount of transgene but showing faster progression and shorter lifespan. This review summarizes and discusses data obtained from the analysis of these two mouse models under different aspects such as the motor phenotype, neuropathological alterations in the central nervous system (CNS) and peripheral nervous system (PNS) and the motor neuron autonomous and non-cell autonomous mechanisms with the aim of finding elements to explain the different rates of disease progression. We also discuss the identification of promising prognostic biomarkers by comparative analysis of the two ALS mouse models. This analysis might possibly suggest new strategies for effective therapeutic intervention in ALS to slow significantly or even block the course of the disease.
Collapse
Affiliation(s)
- Giovanni Nardo
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Maria Chiara Trolese
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Massimo Tortarolo
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Antonio Vallarola
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Mattia Freschi
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
- Animal Facility, AriSLA, Fondazione Italiana di ricerca per la Sclerosi Laterale Amiotrofica
| | - Laura Pasetto
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Translational ProteomicsIRCCS‐Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Valentina Bonetto
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Translational ProteomicsIRCCS‐Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Caterina Bendotti
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| |
Collapse
|
202
|
Moujalled D, White AR. Advances in the Development of Disease-Modifying Treatments for Amyotrophic Lateral Sclerosis. CNS Drugs 2016; 30:227-43. [PMID: 26895253 DOI: 10.1007/s40263-016-0317-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive adult-onset, neurodegenerative disease characterized by the degeneration of upper and lower motor neurons. Over recent years, numerous genes ha ve been identified that promote disease pathology, including SOD1, TARDBP, and the expanded hexanucleotide repeat (GGGGCC) within C9ORF72. However, despite these major advances in identifying genes contributing to ALS pathogenesis, there remains only one currently approved therapeutic: the glutamate antagonist, riluzole. Seminal breakthroughs in the pathomechanisms and genetic factors associated with ALS have heavily relied on the use of rodent models that recapitulate the ALS phenotype; however, while many therapeutics have proved to be significant in animal models by prolonging life and rescuing motor deficits, they have failed in human clinical trials. This may be due to fundamental differences between rodent models and human disease, the fact that animal models are based on overexpression of mutated genes, and confounding issues such as difficulties mimicking the dosing schedules and regimens implemented in mouse models to humans. Here, we review the major pathways associated with the pathology of ALS, the rodent models engineered to test efficacy of candidate drugs, the advancements being made in stem cell therapy for ALS, and what strategies may be important to circumvent the lack of successful translational studies in the clinic.
Collapse
Affiliation(s)
- Diane Moujalled
- Department of Pathology and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Anthony R White
- Department of Pathology and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
203
|
Van Dyke JM, Smit-Oistad IM, Macrander C, Krakora D, Meyer MG, Suzuki M. Macrophage-mediated inflammation and glial response in the skeletal muscle of a rat model of familial amyotrophic lateral sclerosis (ALS). Exp Neurol 2016; 277:275-282. [PMID: 26775178 DOI: 10.1016/j.expneurol.2016.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/03/2016] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor dysfunction and loss of large motor neurons in the spinal cord and brain stem. While much research has focused on mechanisms of motor neuron cell death in the spinal cord, degenerative processes in skeletal muscle and neuromuscular junctions (NMJs) are also observed early in disease development. Although recent studies support the potential therapeutic benefits of targeting the skeletal muscle in ALS, relatively little is known about inflammation and glial responses in skeletal muscle and near NMJs, or how these responses contribute to motor neuron survival, neuromuscular innervation, or motor dysfunction in ALS. We recently showed that human mesenchymal stem cells modified to release glial cell line-derived neurotrophic factor (hMSC-GDNF) extend survival and protect NMJs and motor neurons in SOD1(G93A) rats when delivered to limb muscles. In this study, we evaluate inflammatory and glial responses near NMJs in the limb muscle collected from a rat model of familial ALS (SOD1(G93A) transgenic rats) during disease progression and following hMSC-GDNF transplantation. Muscle samples were collected from pre-symptomatic, symptomatic, and end-stage animals. A significant increase in the expression of microglial inflammatory markers (CD11b and CD68) occurred in the skeletal muscle of symptomatic and end-stage SOD1(G93A) rats. Inflammation was confirmed by ELISA for inflammatory cytokines interleukin-1 β (IL-1β) and tumor necrosis factor-α (TNF-α) in muscle homogenates of SOD1(G93A) rats. Next, we observed active glial responses in the muscle of SOD1(G93A) rats, specifically near intramuscular axons and NMJs. Interestingly, strong expression of activated glial markers, glial fibrillary acidic protein (GFAP) and nestin, was observed in the areas adjacent to NMJs. Finally, we determined whether ex vivo trophic factor delivery influences inflammation and terminal Schwann cell (TSC) response during ALS. We found that intramuscular transplantation of hMSC-GDNF tended to exhibit less inflammation and significantly maintained TSC association with NMJs. Understanding cellular responses near NMJs is important to identify suitable cellular and molecular targets for novel treatment of ALS and other neuromuscular diseases.
Collapse
Affiliation(s)
- Jonathan M Van Dyke
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ivy M Smit-Oistad
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Corey Macrander
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Dan Krakora
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael G Meyer
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Masatoshi Suzuki
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
204
|
Aditi, Glass L, Dawson TR, Wente SR. An amyotrophic lateral sclerosis-linked mutation in GLE1 alters the cellular pool of human Gle1 functional isoforms. Adv Biol Regul 2015; 62:25-36. [PMID: 26776475 DOI: 10.1016/j.jbior.2015.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal late onset motor neuron disease with underlying cellular defects in RNA metabolism. In prior studies, two deleterious heterozygous mutations in the gene encoding human (h)Gle1 were identified in ALS patients. hGle1 is an mRNA processing modulator that requires inositol hexakisphosphate (IP6) binding for function. Interestingly, one hGLE1 mutation (c.1965-2A>C) results in a novel 88 amino acid C-terminal insertion, generating an altered protein. Like hGle1A, at steady state, the altered protein termed hGle1-IVS14-2A>C is absent from the nuclear envelope rim and localizes to the cytoplasm. hGle1A performs essential cytoplasmic functions in translation and stress granule regulation. Therefore, we speculated that the ALS disease pathology results from altered cellular pools of hGle1 and increased cytoplasmic hGle1 activity. GFP-hGle1-IVS14-2A>C localized to stress granules comparably to GFP-hGle1A, and rescued stress granule defects following siRNA-mediated hGle1 depletion. As described for hGle1A, overexpression of the hGle1-IVS14-2A>C protein also induced formation of larger SGs. Interestingly, hGle1A and the disease associated hGle1-IVS14-2A>C overexpression induced the formation of distinct cytoplasmic protein aggregates that appear similar to those found in neurodegenerative diseases. Strikingly, the ALS-linked hGle1-IVS14-2A>C protein also rescued mRNA export defects upon depletion of endogenous hGle1, acting in a potentially novel bi-functional manner. We conclude that the ALS-linked hGle1-c.1965-2A>C mutation generates a protein isoform capable of both hGle1A- and hGle1B-ascribed functions, and thereby uncoupled from normal mechanisms of hGle1 regulation.
Collapse
Affiliation(s)
- Aditi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA
| | - Laura Glass
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA
| | - T Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.
| |
Collapse
|
205
|
Natale G, Lenzi P, Lazzeri G, Falleni A, Biagioni F, Ryskalin L, Fornai F. Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis. Front Cell Neurosci 2015; 9:434. [PMID: 26594150 PMCID: PMC4635226 DOI: 10.3389/fncel.2015.00434] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron loss, fails to prolong lifespan. On the other hand, the damage to motor axons plays a pivotal role in determining both lethality and disease course. Thus, in the present article each motor neuron compartment (cell body, central, and peripheral axons) of G93A SOD-1 mice was studied concerning mitochondrial alterations as well as other intracellular structures. We could confirm the occurrence of ALS-related mitochondrial damage encompassing total swelling, matrix dilution and cristae derangement along with non-pathological variations of mitochondrial size and number. However, these alterations occur to a different extent depending on motor neuron compartment. Lithium, a well-known autophagy inducer, prevents most pathological changes. However, the efficacy of lithium varies depending on which motor neuron compartment is considered. Remarkably, some effects of lithium are also evident in wild type mice. Lithium is effective also in vitro, both in cell lines and primary cell cultures from the ventral spinal cord. In these latter cells autophagy inhibition within motor neurons in vitro reproduced ALS pathology which was reversed by lithium. Muscle and glial cells were analyzed as well. Cell pathology was mostly severe within peripheral axons and muscles of ALS mice. Remarkably, when analyzing motor axons of ALS mice a subtotal clogging of axoplasm was described for the first time, which was modified under the effects of lithium. The effects induced by lithium depend on several mechanisms such as direct mitochondrial protection, induction of mitophagy and mitochondriogenesis. In this study, mitochondriogenesis induced by lithium was confirmed in situ by a novel approach using [2-3H]-adenosine.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine, University of Pisa Italy
| | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy ; I.R.C.C.S., Neuromed Pozzilli, Italy
| |
Collapse
|