201
|
Kumar P, Butcher RJ, Patra AK. Ternary Co(II), Ni(II) and Cu(II) complexes containing dipyridophenazine and saccharin: Structures, reactivity, binding interactions with biomolecules and DNA damage activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
202
|
Wang J, Sun J, Hu W, Wang Y, Chou T, Zhang B, Zhang Q, Ren L, Wang H. A Porous Au@Rh Bimetallic Core-Shell Nanostructure as an H 2 O 2 -Driven Oxygenerator to Alleviate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001862. [PMID: 32329171 PMCID: PMC7386557 DOI: 10.1002/adma.202001862] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 05/19/2023]
Abstract
In treatment of hypoxic tumors, oxygen-dependent photodynamic therapy (PDT) is considerably limited. Herein, a new bimetallic and biphasic Rh-based core-shell nanosystem (Au@Rh-ICG-CM) is developed to address tumor hypoxia while achieving high PDT efficacy. Such porous Au@Rh core-shell nanostructures are expected to exhibit catalase-like activity to efficiently catalyze oxygen generation from endogenous hydrogen peroxide in tumors. Coating Au@Rh nanostructures with tumor cell membrane (CM) enables tumor targeting via homologous binding. As a result of the large pores of Rh shells and the trapping ability of CM, the photosensitizer indocyanine green (ICG) is successfully loaded and retained in the cavity of Au@Rh-CM. Au@Rh-ICG-CM shows good biocompatibility, high tumor accumulation, and superior fluorescence and photoacoustic imaging properties. Both in vitro and in vivo results demonstrate that Au@Rh-ICG-CM is able to effectively convert endogenous hydrogen peroxide into oxygen and then elevate the production of tumor-toxic singlet oxygen to significantly enhance PDT. As noted, the mild photothermal effect of Au@Rh-ICG-CM also improves PDT efficacy. By integrating the superiorities of hypoxia regulation function, tumor accumulation capacity, bimodal imaging, and moderate photothermal effect into a single nanosystem, Au@Rh-ICG-CM can readily serve as a promising nanoplatform for enhanced cancer PDT.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Yuhao Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Tsengming Chou
- Laboratory for Multiscale Imaging, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Qiang Zhang
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Lei Ren
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
203
|
Chen D, Yu Q, Huang X, Dai H, Luo T, Shao J, Chen P, Chen J, Huang W, Dong X. A Highly-Efficient Type I Photosensitizer with Robust Vascular-Disruption Activity for Hypoxic-and-Metastatic Tumor Specific Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001059. [PMID: 32378337 DOI: 10.1002/smll.202001059] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 05/11/2023]
Abstract
Hypoxia severely impedes photodynamic therapy (PDT) efficiency. Worse still, considerable tumor metastasis will occur after PDT. Herein, an organic superoxide radical (O2∙- ) nano-photogenerator as a highly effcient type I photosensitizer with robust vascular-disrupting efficiency to combat these thorny issues is designed. Boron difluoride dipyrromethene (BODIPY)-vadimezan conjugate (BDPVDA) is synthesized and enwrapped in electron-rich polymer-brushes methoxy-poly(ethylene glycol)-b-poly(2-(diisopropylamino) ethyl methacrylate) (mPEG- PPDA) to afford nanosized hydrophilic type I photosensitizer (PBV NPs). Owing to outstanding core-shell intermolecular electron transfer between BDPVDA and mPEG-PPDA, remarkable O2∙- can be produced by PBV NPs under near-infrared irradiation even in severe hypoxic environment (2% O2 ), thus to accomplish effective hypoxic-tumor elimination. Simultaneously, the efficient ester-bond hydrolysis of BDPVDA in the acidic tumor microenvironment allows vadimezan release from PBV NPs to disrupt vasculature, facilitating the shut-down of metastatic pathways. As a result, PBV NPs will not only be powerful in resolving the paradox between traditional type II PDT and hypoxia, but also successfully prevent tumor metastasis after type I PDT treatment (no secondary-tumors found in 70 days and 100% survival rate), enabling enhancement of existing hypoxic-and-metastatic tumor treatment.
Collapse
Affiliation(s)
- Dapeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| | - Qing Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| | - Xuan Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| | - Hanming Dai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| | - Tao Luo
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, P. R. China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, P. R. China
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| |
Collapse
|
204
|
Sun J, Du K, Diao J, Cai X, Feng F, Wang S. GSH and H
2
O
2
Co‐Activatable Mitochondria‐Targeted Photodynamic Therapy under Normoxia and Hypoxia. Angew Chem Int Ed Engl 2020; 59:12122-12128. [DOI: 10.1002/anie.202003895] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/13/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Jian Sun
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Ke Du
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Jiajie Diao
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Xuetong Cai
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
205
|
Sun J, Du K, Diao J, Cai X, Feng F, Wang S. GSH and H
2
O
2
Co‐Activatable Mitochondria‐Targeted Photodynamic Therapy under Normoxia and Hypoxia. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003895] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Sun
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Ke Du
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Jiajie Diao
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Xuetong Cai
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
206
|
Li C, Wang Y, Lu Y, Guo J, Zhu C, He H, Duan X, Pan M, Su C. An iridium(III)-palladium(II) metal-organic cage for efficient mitochondria-targeted photodynamic therapy. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
207
|
Liang S, Sun C, Yang P, Ma P, Huang S, Cheng Z, Yu X, Lin J. Core-shell structured upconversion nanocrystal-dendrimer composite as a carrier for mitochondria targeting and catalase enhanced anti-cancer photodynamic therapy. Biomaterials 2020; 240:119850. [DOI: 10.1016/j.biomaterials.2020.119850] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/25/2022]
|
208
|
Chang Y, Zhao F, Wu F, Ma N, Ma X, Zhao Y, Chan KS, Shen Z. Iridium complex of porphycene: a new member of metalloporphycene. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9693-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
209
|
Liu J, Liao X, Xiong K, Kuang S, Jin C, Ji L, Chao H. Boosting two-photon photodynamic therapy with mitochondria-targeting ruthenium-glucose conjugates. Chem Commun (Camb) 2020; 56:5839-5842. [PMID: 32330213 DOI: 10.1039/d0cc01148g] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we present a series of dual-targeted ruthenium-glucose conjugates that can function as two-photon absorption (TPA) PDT agents to effectively destroy tumors by preferentially targeting both tumor cells and mitochondria. The in vivo experiments revealed an excellent tumor inhibitory efficiency of the dual-targeted TPA PSs.
Collapse
Affiliation(s)
- Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
210
|
Lan Y, Zhu X, Tang M, Wu Y, Zhang J, Liu J, Zhang Y. Construction of a near-infrared responsive upconversion nanoplatform against hypoxic tumors via NO-enhanced photodynamic therapy. NANOSCALE 2020; 12:7875-7887. [PMID: 32227004 DOI: 10.1039/c9nr10453d] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) has been extensively used to treat cancer and other malignant diseases because it can offer many unique advantages over other medical treatments such as less invasive, fewer side effects, lower cost, etc. Despite great progress, the efficiency of PDT treatment, as an oxygen-dependent therapy, is still limited by the hypoxic microenvironment in the human tumor region. In this work, we have developed a near-infrared (NIR) activated theranostic nanoplatform based on upconversion nanoparticles (UCNPs), which incorporates PDT photosensitizer (curcumin) and NO donor (Roussin's black salt) in order to overcome hypoxia-associated resistance by reducing cellular respiration with NO presence in the PDT treatment. Our results suggest that the photo-released NO upon NIR illumination can greatly decrease the oxygen consumption rate and hence increase singlet oxygen generation, which ultimately leads to an increased number of cancer cell deaths, especially under hypoxic condition. It is believed that the methodology developed in this study enables to relieve the hypoxia-induced resistance in PDT treatment and also holds great potential for overcoming hypoxia challenges in other oxygen-dependent therapies.
Collapse
Affiliation(s)
- Ying Lan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | | | | | | | | | | | | |
Collapse
|
211
|
Zhao Z, Gao P, Ma L, Chen T. A highly X-ray sensitive iridium prodrug for visualized tumor radiochemotherapy. Chem Sci 2020; 11:3780-3789. [PMID: 34122847 PMCID: PMC8152633 DOI: 10.1039/d0sc00862a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Concomitant treatment of radiotherapy and chemotherapy is widely used in cancer therapy. The search for highly efficient radiochemotherapy drugs for tumor targeting therapy under image-guiding is of considerable interest. Herein we report an Ir-based prodrug Ir-NB with high sensitization efficiency for in vivo tumor microenvironment responsive cancer-targeted bioimaging radiochemotherapy. To the best of our knowledge, the sensitivity enhancement ratio (SER) of the Ir-NB prodrug is the highest among those reported for radiotherapy metal complex drugs. From detailed action mechanism study, we provide evidence that the prodrug is effectively suppresses the tumor growth through inducing mitochondrial dysfunction, and eventually amplifies the apoptotic signal pathway. This study provides an approach for the development of cancer theranostic agents for tumor radiotherapy. A highly X-ray sensitive molecular prodrug, Ir-NB, was reported for visualized tumor radiochemotherapy. To our knowledge, the sensitivity enhancement ratio of the prodrug is the highest among the reported radiotherapy metal complexes drugs.![]()
Collapse
Affiliation(s)
- Zhennan Zhao
- Department of Chemistry, Jinan University Guangzhou 510632 China
| | - Pan Gao
- Department of Chemistry, Jinan University Guangzhou 510632 China
| | - Li Ma
- Department of Chemistry, Jinan University Guangzhou 510632 China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University Guangzhou 510632 China
| |
Collapse
|
212
|
Zhao J, Zhang X, Fang L, Gao C, Xu C, Gou S. Iridium(III) Complex-Derived Polymeric Micelles with Low Dark Toxicity and Strong NIR Excitation for Phototherapy and Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000363. [PMID: 32174002 DOI: 10.1002/smll.202000363] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Iridium(III) complexes are potent candidates for photodynamic therapy. However, their clinical usage is impeded by their poor water solubility, high dark toxicity, and negligible absorption in near-infrared region (NIR region). Here, it is proposed to solve these challenges by developing an iridium(III) complexe-based polymeric micelle system. This system is self-assembled using an iridium(III) complex-containing amphiphilic block polymer. The upconversion nanoparticles are included in the polymeric micelles to permit NIR excitation. Compared with the nonformulated iridium(III) complexes, under NIR stimulation, this polymeric micelle system exhibits higher 1 O2 generation efficiency, negligible dark toxicity, excellent tumor-targeting ability, and synergistic phototherapy-chemotherapy effect both in vitro and in vivo.
Collapse
Affiliation(s)
- Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xinzhong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
213
|
Lu M, Qu A, Li S, Sun M, Xu L, Kuang H, Xu C. Mitochondria‐Targeting Plasmonic Spiky Nanorods Increase the Elimination of Aging Cells in Vivo. Angew Chem Int Ed Engl 2020; 59:8698-8705. [DOI: 10.1002/anie.202002576] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Meiru Lu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Aihua Qu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Si Li
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
214
|
Lu M, Qu A, Li S, Sun M, Xu L, Kuang H, Xu C. Mitochondria‐Targeting Plasmonic Spiky Nanorods Increase the Elimination of Aging Cells in Vivo. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meiru Lu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Aihua Qu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Si Li
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
215
|
Zhao J, Zou M, Huang M, Zhang L, Yang K, Zhao S, Liu YM. A multifunctional nanoprobe for targeting tumors and mitochondria with singlet oxygen generation and monitoring mitochondrion pH changes in cancer cells by ratiometric fluorescence imaging. Chem Sci 2020; 11:3636-3643. [PMID: 34094052 PMCID: PMC8152412 DOI: 10.1039/d0sc00757a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from Osmanthus leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation (λ em = 660 nm). On the other hand, in the pH range of 3-8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors.
Collapse
Affiliation(s)
- Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 China .,Department of Chemistry and Biochemistry, Jackson State University 1400 Lynch St. Jackson MS 39217 USA
| | - Mengbing Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 China
| | - Mengjiao Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 China
| | - Keqin Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University 1400 Lynch St. Jackson MS 39217 USA
| |
Collapse
|
216
|
Lindgren M, Gederaas OA, Siksjø M, Hansen TA, Chen L, Mettra B, Andraud C, Monnereau C. Influence of Polymer Charge on the Localization and Dark- and Photo-Induced Toxicity of a Potential Type I Photosensitizer in Cancer Cell Models. Molecules 2020; 25:molecules25051127. [PMID: 32138280 PMCID: PMC7179247 DOI: 10.3390/molecules25051127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/02/2023] Open
Abstract
A current trend within photo-dynamic therapy (PDT) is the development of molecular systems targeting hypoxic tumors. Thus, type I PDT sensitizers could here overcome traditional type II molecular systems that rely on the photo-initiated production of toxic singlet oxygen. Here, we investigate the cell localization properties and toxicity of two polymeric anthracene-based fluorescent probes (neutral Ant-PHEA and cationic Ant-PIm). The cell death and DNA damage of Chinese hamster ovary cancer cells (CHO-K1) were characterized as combining PDT, cell survival studies (MTT-assay), and comet assay. Confocal microscopy was utilized on samples incubated together with either DRAQ5, Lyso Tracker Red, or Mito Tracker Deep Red in order to map the localization of the sensitizer into the nucleus and other cell compartments. While Ant-PHEA did not cause significant damage to the cell, Ant-PIm showed increased cell death upon illumination, at the cost of a significant dark toxicity. Both anthracene chromophores localized in cell compartments of the cytosol. Ant-PIm showed a markedly improved selectivity toward lysosomes and mitochondria, two important biological compartments for the cell’s survival. None of the two anthracene chromophores showed singlet oxygen formation upon excitation in solvents such as deuterium oxide or methanol. Conclusively, the significant photo-induced cell death that could be observed with Ant-PIm suggests a possible type I PDT mechanism rather than the usual type II mechanism.
Collapse
Affiliation(s)
- Mikael Lindgren
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology, Gløshaugen, NO-7491 Trondheim, Norway; (O.A.G.); (M.S.); (T.A.H.)
- Correspondence: ; Tel.: +47-414-66-510
| | - Odrun A. Gederaas
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology, Gløshaugen, NO-7491 Trondheim, Norway; (O.A.G.); (M.S.); (T.A.H.)
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Laboratoriesentret 5, NO-7491 Trondheim, Norway
| | - Monica Siksjø
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology, Gløshaugen, NO-7491 Trondheim, Norway; (O.A.G.); (M.S.); (T.A.H.)
| | - Tom A. Hansen
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology, Gløshaugen, NO-7491 Trondheim, Norway; (O.A.G.); (M.S.); (T.A.H.)
| | - Lena Chen
- Laboratoire de Chimie, CNRS UMR 5182, ENS de Lyon, Université Lyon 1, F-69342 Lyon, France; (L.C.); (B.M.); (C.A.); (C.M.)
| | - Bastien Mettra
- Laboratoire de Chimie, CNRS UMR 5182, ENS de Lyon, Université Lyon 1, F-69342 Lyon, France; (L.C.); (B.M.); (C.A.); (C.M.)
| | - Chantal Andraud
- Laboratoire de Chimie, CNRS UMR 5182, ENS de Lyon, Université Lyon 1, F-69342 Lyon, France; (L.C.); (B.M.); (C.A.); (C.M.)
| | - Cyrille Monnereau
- Laboratoire de Chimie, CNRS UMR 5182, ENS de Lyon, Université Lyon 1, F-69342 Lyon, France; (L.C.); (B.M.); (C.A.); (C.M.)
| |
Collapse
|
217
|
Bolitho EM, Sanchez-Cano C, Huang H, Hands-Portman I, Spink M, Quinn PD, Harkiolaki M, Sadler PJ. X-ray tomography of cryopreserved human prostate cancer cells: mitochondrial targeting by an organoiridium photosensitiser. J Biol Inorg Chem 2020; 25:295-303. [PMID: 32124100 PMCID: PMC7082392 DOI: 10.1007/s00775-020-01761-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
Abstract The organoiridium complex Ir[(C,N)2(O,O)] (1) where C, N = 1-phenylisoquinoline and O,O = 2,2,6,6-tetramethyl-3,5-heptanedionate is a promising photosensitiser for Photo-Dynamic Therapy (PDT). 1 is not toxic to cells in the dark. However, irradiation of the compound with one-photon blue or two-photon red light generates high levels of singlet oxygen (1O2) (in Zhang et al. Angew Chem Int Ed Engl 56 (47):14898-14902 10.1002/anie.201709082,2017), both within cell monolayers and in tumour models. Moreover, photo-excited 1 oxidises key proteins, causing metabolic alterations in cancer cells with potent antiproliferative activity. Here, the tomograms obtained by cryo-Soft X-ray Tomography (cryo-SXT) of human PC3 prostate cancer cells treated with 1, irradiated with blue light, and cryopreserved to maintain them in their native state, reveal that irradiation causes extensive and specific alterations to mitochondria, but not other cellular components. Such new insights into the effect of 1O2 generation during PDT using iridium photosensitisers on cells contribute to a detailed understanding of their cellular mode of action. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00775-020-01761-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth M Bolitho
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.,Diamond House, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Carlos Sanchez-Cano
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. .,Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, Donostia-San Sebastián, Spain.
| | - Huaiyi Huang
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Ian Hands-Portman
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Matthew Spink
- Diamond House, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Paul D Quinn
- Diamond House, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Maria Harkiolaki
- Diamond House, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
218
|
Li X, Wu J, Wang L, He C, Chen L, Jiao Y, Duan C. Mitochondrial‐DNA‐Targeted Ir
III
‐Containing Metallohelices with Tunable Photodynamic Therapy Efficacy in Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xuezhao Li
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Jinguo Wu
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Lei Wang
- Department of PharmacyDalian University of Technology Dalian 116012 China
| | - Cheng He
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Liyong Chen
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Yang Jiao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Chunying Duan
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| |
Collapse
|
219
|
Li X, Wu J, Wang L, He C, Chen L, Jiao Y, Duan C. Mitochondrial‐DNA‐Targeted Ir
III
‐Containing Metallohelices with Tunable Photodynamic Therapy Efficacy in Cancer Cells. Angew Chem Int Ed Engl 2020; 59:6420-6427. [DOI: 10.1002/anie.201915281] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Xuezhao Li
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Jinguo Wu
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Lei Wang
- Department of PharmacyDalian University of Technology Dalian 116012 China
| | - Cheng He
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Liyong Chen
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Yang Jiao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Chunying Duan
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| |
Collapse
|
220
|
Yuan P, Ruan Z, Yan L. Tetraphenylporphine-Modified Polymeric Nanoparticles Containing NIR Photosensitizer for Mitochondria-Targeting and Imaging-Guided Photodynamic Therapy. ACS Biomater Sci Eng 2020; 6:1043-1051. [PMID: 33464862 DOI: 10.1021/acsbiomaterials.9b01662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Near-infrared (NIR) photodynamic therapy (PDT) is a promising antitumor strategy under NIR light irradiation to kill cancer cells. Mitochondria has a critical function in sustaining cellular viability and death, which is the ideal organelle for PDT. Here, we reported a tetraphenylporphine (TPP)-conjugated amphiphilic copolymer and an iodinated boron dipyrromethene photosensitizer (BDPI) with high singlet oxygen yield to form nanoparticles (PBDPI-TPP), which could realize mitochondria-targeting and improve the NIR imaging-guided PDT. The as-prepared mitochondria-targeting nanoplatform could show effective subcellular localization and bring about significant irreversible mitochondrial injury for enhanced PDT. Both in vitro and in vivo experiments revealed that the mitochondria-targeting PDT system could achieve a remarkable therapeutic effect, indicating that it is a promising nanoplatform for NIR imaging-guided PDT in cancer therapeutics.
Collapse
Affiliation(s)
- Pan Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, P. R. China
| | - Zheng Ruan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, P. R. China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
221
|
Lo KKW. Molecular Design of Bioorthogonal Probes and Imaging Reagents Derived from Photofunctional Transition Metal Complexes. Acc Chem Res 2020; 53:32-44. [PMID: 31916746 DOI: 10.1021/acs.accounts.9b00416] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For more than 15 years, bioorthogonal chemistry has received increasing attention due to its successful applications in the detection and imaging of biomolecules in their native biological environments. The method typically proceeds with the incorporation of a biological substrate appended with a bioorthogonal functional group (chemical reporter), followed by the introduction of the substrate to biological systems. Biomolecules containing the substrate are then recognized by an exogenously delivered bioorthogonal probe. Despite the fact that many useful chemical reporters and bioorthogonal reactions have been developed, most of the bioorthogonal probes reported thus far are fluorescent dyes. A limitation is that stringent washing is required due to the interference caused by the background fluorescence of unreacted probes. Thus, fluorogenic probes with turn-on emission properties upon bioorthogonal labeling have been designed as an alternative strategy. These probes are highly appealing because excellent images can be obtained without the need for washing steps. Nearly all fluorogenic bioorthogonal probes designed are essentially organic dyes, their emission is limited to fluorescence, and the utilization of the probes is confined to bioimaging applications. Recently, there has been a growing interest in the bioimaging and therapeutic applications of luminescent inorganic and organometallic transition metal complexes due to their intriguing photophysical and photochemical properties, high membrane permeability, controllable cellular uptake, intracellular localization, and cytotoxicity. We anticipate that photofunctional transition metal complexes can be exploited as valuable bioorthogonal probes due to these appealing advantages. In this Account, we introduce the molecular design, photophysical and photochemical properties, and biological applications of various bioorthogonal probes and imaging reagents based on photofunctional transition metal complexes. The presence of a cationic metal center significantly enhances the bioorthogonal reactivity of the probes, yet their stability in aqueous solutions can be maintained. Interestingly, some of these metal complexes are strategically modified to display phosphorogenic properties, that is, phosphorescence turn-on upon bioorthogonal labeling reactions. Importantly, these probes not only exhibit favorable photophysical properties after bioorthogonal labeling, but also efficient photoinduced singlet oxygen (1O2) generation. This interesting bioorthogonal reaction-triggered photosensitization capability allows the modulation of 1O2 generation efficiency and contributes to the development of controllable photocytotoxic agents. The exploration of transition metal complex-based probes not only significantly widens the scope of bioorthogonal labeling but also further highlights the unique advantages of these complexes in the design of theranostic reagents. The development of these innovative reagents is expected to contribute to the basic understanding of biological processes in living systems and provide exciting opportunities for new diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
222
|
Guo X, Wu H, Miao W, Wu Y, Hao E, Jiao L. Mitochondria-targeted porphyrin-based photosensitizers containing triphenylphosphonium cations showing efficient in vitro photodynamic therapy effects. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Subcellular organelle-targeted photosensitizers have recently reported to be effective photodynamic therapy (PDT) agents. In this work, three porphyrin-derived photosensitizers, containing one, two or four triphenylphosphonium targeting groups, were synthesized and characterized by NMR, HRMS, UV-vis and fluorescence spectroscopy. These photosensitizers showed similar photophysical properties to classical porphyrins and exhibited excellent [Formula: see text]O[Formula: see text] quantum yields in acetonitrile. Subcellular colocalization indicated that all three photosensitizers specifically stain the mitochondria of HeLa cells. Photosensitizer mito-dp, containing two triphenylphosphonium cations was found to be the most uptaken by cells and exhibited the best PDT effect with an effective phototoxicity (IC[Formula: see text] (light) [Formula: see text] 12.4 nM), suggestive of a higher practicable potential of mitochondria-targeted PDT agents in cancer therapy.
Collapse
Affiliation(s)
- Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Hao Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Wei Miao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Yangchun Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
223
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
224
|
Therapeutic Strategies for Regulating Mitochondrial Oxidative Stress. Biomolecules 2020; 10:biom10010083. [PMID: 31948035 PMCID: PMC7023101 DOI: 10.3390/biom10010083] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/24/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023] Open
Abstract
There have been many reports on the relationship between mitochondrial oxidative stress and various types of diseases. This review covers mitochondrial targeting photodynamic therapy and photothermal therapy as a therapeutic strategy for inducing mitochondrial oxidative stress. We also discuss other mitochondrial targeting phototherapeutic methods. In addition, we discuss anti-oxidant therapy by a mitochondrial drug delivery system (DDS) as a therapeutic strategy for suppressing oxidative stress. We also describe cell therapy for reducing oxidative stress in mitochondria. Finally, we discuss the possibilities and problems associated with clinical applications of mitochondrial DDS to regulate mitochondrial oxidative stress.
Collapse
|
225
|
Imberti C, Zhang P, Huang H, Sadler PJ. New Designs for Phototherapeutic Transition Metal Complexes. Angew Chem Int Ed Engl 2020; 59:61-73. [PMID: 31310436 PMCID: PMC6973108 DOI: 10.1002/anie.201905171] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/19/2019] [Indexed: 12/17/2022]
Abstract
In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light-activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side-effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Pingyu Zhang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen)Sun Yat-sen UniversityGuangzhou510275China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
226
|
Jin Z, Qi S, Guo X, Tian N, Hou Y, Li C, Wang X, Zhou Q. Smart use of “ping-pong” energy transfer to improve the two-photon photodynamic activity of an Ir(iii) complex. Chem Commun (Camb) 2020; 56:2845-2848. [DOI: 10.1039/c9cc09763e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A two-photon excited “Ping-Pong” type energy transfer process is for the first time disclosed for enhancing two-photon PDT.
Collapse
Affiliation(s)
- Zhihui Jin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Shuang Qi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xusheng Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Na Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yuanjun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chao Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
227
|
Wang Z, Jia T, Sun Q, Kuang Y, Liu B, Xu M, Zhu H, He F, Gai S, Yang P. Construction of Bi/phthalocyanine manganese nanocomposite for trimodal imaging directed photodynamic and photothermal therapy mediated by 808 nm light. Biomaterials 2020; 228:119569. [DOI: 10.1016/j.biomaterials.2019.119569] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
|
228
|
|
229
|
Li G, Zhu D, Wang X, Su Z, Bryce MR. Dinuclear metal complexes: multifunctional properties and applications. Chem Soc Rev 2020; 49:765-838. [DOI: 10.1039/c8cs00660a] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dinuclear metal complexes have enabled breakthroughs in OLEDs, photocatalytic water splitting and CO2reduction, DSPEC, chemosensors, biosensors, PDT and smart materials.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Dongxia Zhu
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xinlong Wang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhongmin Su
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
- School of Chemistry and Environmental Engineering
| | | |
Collapse
|
230
|
Yang Z, Wang J, Liu S, Li X, Miao L, Yang B, Zhang C, He J, Ai S, Guan W. Defeating relapsed and refractory malignancies through a nano-enabled mitochondria-mediated respiratory inhibition and damage pathway. Biomaterials 2020; 229:119580. [PMID: 31707296 DOI: 10.1016/j.biomaterials.2019.119580] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 01/10/2023]
Abstract
Hypoxia, which frequently reduces the sensitivity to many therapeutic interventions, including chemotherapy, radiotherapy and phototherapy, has been acknowledged as an important reason for poor prognosis. Burgeoning evidences have proved that the tumor hypoxia microenvironment can reduce the therapeutic effect on tumor through inhibiting the drug efficacy, limiting immune cell infiltration of tumors and accelerating tumor recurrence and metastasis. However, the relationship between oxygen supply and the proliferation of cancer cells is still ambiguous and argued. Different from the current commonly used oxygen supply strategies, this study concentrated on the reduction of endogenous oxygen consumption. Specifically, a novel photosensitizers (IR780) and metformin are packaged in PEG-PCL liposomes. Once such nanoparticles accumulated in tumor tissues, the tumor foci were irradiated through 808 nm laser, generated ROS to further release metformin and IR780. Metformin can directly inhibit the activity of complex Ⅰ in the mitochondrial electron transport chain, thus performed a potent inhibitor of cell respiration. After overcoming tumor hypoxia, the combination of mitochondria-targeted photodynamic therapy (PDT) and photothermic therapy (PTT) via IR780 may achieve superior synergistically therapeutic efficacy. Benefit from excellent characteristics of IR780, such synergistic PDT PTT with the inhibition of mitochondrial respiration can be monitored through near-infrared/photoacoustic dual-modal imaging. Such a conception of reducing endogenous oxygen consumption may offer a novel way to solve the important puzzles of hypoxia-induced tumor resistance to therapeutic interventions, not limited to phototherapy.
Collapse
Affiliation(s)
- Zhengyang Yang
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan RD, Nanjing, 210008, China
| | - Jiafeng Wang
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan RD, Nanjing, 210008, China
| | - Song Liu
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan RD, Nanjing, 210008, China
| | - Xianghui Li
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan RD, Nanjing, 210008, China
| | - Leiying Miao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang RD, Nanjing, 210093, China
| | - Bo Yang
- Nanjing University Press, 22 Hankou RD, Nanjing, 210093, China
| | - Chenlin Zhang
- Department of Computer Science and Technology, Nanjing University, 163 Xianlin RD, Nanjing, 210023, China
| | - Jian He
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan RD, Nanjing, 210008, China.
| | - Shichao Ai
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan RD, Nanjing, 210008, China.
| | - Wenxian Guan
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan RD, Nanjing, 210008, China.
| |
Collapse
|
231
|
Kong Q, Ma B, Yu T, Hu C, Li G, Jiang Q, Wang Y. A two-photon AIE fluorophore as a photosensitizer for highly efficient mitochondria-targeted photodynamic therapy. NEW J CHEM 2020. [DOI: 10.1039/d0nj00822b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nowadays, photodynamic therapy (PDT) has become an effective method for cancer therapy.
Collapse
Affiliation(s)
- Qunshou Kong
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Boxuan Ma
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Tao Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
232
|
Satrialdi, Munechika R, Biju V, Takano Y, Harashima H, Yamada Y. The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-Porter. Chem Commun (Camb) 2020; 56:1145-1148. [DOI: 10.1039/c9cc08563g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-Porter.
Collapse
Affiliation(s)
- Satrialdi
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12
- Nishi-6
- Kita-ku
| | - Reina Munechika
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12
- Nishi-6
- Kita-ku
| | - Vasudevanpillai Biju
- Research Institute for Electronic Science
- Hokkaido University
- Sapporo 001-0020
- Japan
- Graduate School of Environmental Science
| | - Yuta Takano
- Research Institute for Electronic Science
- Hokkaido University
- Sapporo 001-0020
- Japan
- Graduate School of Environmental Science
| | | | - Yuma Yamada
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12
- Nishi-6
- Kita-ku
| |
Collapse
|
233
|
Qin WW, Pan ZY, Cai DH, Li Y, He L. Cyclometalated iridium(iii) complexes for mitochondria-targeted combined chemo-photodynamic therapy. Dalton Trans 2020; 49:3562-3569. [DOI: 10.1039/d0dt00180e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The potency of two anticancer iridium-based molecular compounds was greatly enhanced under light irradiation.
Collapse
Affiliation(s)
- Wei-Wei Qin
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Zheng-Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Dai-Hong Cai
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
| | - Liang He
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
234
|
Chen L, Chen Y, Zhou W, Li J, Zhang Y, Liu Y. Mitochondrion-targeting chemiluminescent ternary supramolecular assembly for in situ photodynamic therapy. Chem Commun (Camb) 2020; 56:8857-8860. [DOI: 10.1039/d0cc01868f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A new ternary supramolecular system can locate at mitochondria and produce chemiluminescence for in situ photodynamic therapy.
Collapse
Affiliation(s)
- Lei Chen
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong Chen
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Weilei Zhou
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Jingjing Li
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yi Zhang
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
235
|
Li G, Zhou R, Zhao W, Yu B, Zhou J, Liu S, Huang W, Zhao Q. Photothermally Responsive Conjugated Polymeric Singlet Oxygen Carrier for Phase Change-Controlled and Sustainable Phototherapy for Hypoxic Tumor. RESEARCH (WASHINGTON, D.C.) 2020; 2020:5351848. [PMID: 33103118 PMCID: PMC7569507 DOI: 10.34133/2020/5351848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023]
Abstract
Hypoxia significantly compromises the therapeutic performance of photodynamic therapy (PDT) owing to the oxygen level which plays a key role in the production of singlet oxygen (1O2). Herein, the photothermally responsive phase change materials (PCM) are used to encapsulate 1,4-dimethylnaphthalene-functionalized platinum(II)-acetylide conjugated polymer (CP1) with intense near-infrared (NIR) absorption to prepare new 1O2 nanocarriers (CP1-NCs). The 1,4-dimethylnaphthalene moieties in CP1-NCs can trap the 1O2 produced from CP1 under irradiation and form a stable endoperoxide. Then, the endoperoxide undergoes cycloreversion to controllably release 1O2 via the NIR light-triggered photothermal effect of CP1 and controllable phase change of PCM, which can be used for oxygen-independent PDT for hypoxic tumor. Furthermore, the in vivo luminescence imaging-guided synergistic PDT and photothermal therapy showed better efficiency in tumor ablation. The smart design shows the potent promise of CP1-NCs in PCM-controlled and sustainable phototherapy under tumor hypoxic microenvironment, providing new insights for constructing oxygen-independent precise cancer phototherapeutic platform.
Collapse
Affiliation(s)
- Guo Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Ruyi Zhou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Weili Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Bo Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Jie Zhou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| |
Collapse
|
236
|
Cyclometalated Iridium (III) complexes: Recent advances in phosphorescence bioimaging and sensing applications. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5413] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
237
|
Fang H, Yao S, Chen Q, Liu C, Cai Y, Geng S, Bai Y, Tian Z, Zacharias AL, Takebe T, Chen Y, Guo Z, He W, Diao J. De Novo-Designed Near-Infrared Nanoaggregates for Super-Resolution Monitoring of Lysosomes in Cells, in Whole Organoids, and in Vivo. ACS NANO 2019; 13:14426-14436. [PMID: 31799834 PMCID: PMC7255917 DOI: 10.1021/acsnano.9b08011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
As the cleaners of cells, lysosomes play an important role in circulating organic matter within cells, recovering damaged organelles, and removing waste via endocytosis. Because lysosome dysfunction is associated with various diseases-lysosomal storage diseases, inherited diseases, rheumatoid arthritis, and even shock-it is vital to monitor the movement of lysosomes in cells and in vivo. To that purpose, a method of optical imaging, super-resolution imaging technology (e.g., SIM and STORM), can overcome the limitations of traditional optical imaging and afford a range of possibilities for fluorescence imaging. However, the short wavelength excitation and easy photobleaching of super-resolution fluorescence probes somewhat problematize super-resolution imaging. As described herein, we designed a low-toxicity, photostable, near-infrared small molecule fluorescence probe HD-Br for use in the super-resolution imaging of lysosomes. The interaction of lysosomes and mitochondria was dynamically traced while using the probe's properties to label the lysosomes. Because the probe has the optimal near-infrared excitation and emission wavelengths, liver organoid 3D imaging and Caenorhabditis elegans imaging were also performed. Altogether, our findings indicate valuable approaches and techniques for super-resolution 3D and in vivo imaging.
Collapse
Affiliation(s)
- Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023 (P. R. China)
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (USA)
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023 (P. R. China)
| | - Qixin Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (USA)
| | - Chunyan Liu
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 (USA)
| | - Yuqi Cai
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 (USA)
| | - Shanshan Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023 (P. R. China)
| | - Yang Bai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023 (P. R. China)
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (USA)
| | - Amanda L. Zacharias
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 (USA)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (USA)
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 (USA)
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 (USA)
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 (USA)
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 (USA)
- Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan)
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023 (P. R. China)
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023 (P. R. China)
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023 (P. R. China)
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (USA)
| |
Collapse
|
238
|
Jeena M, Kim S, Jin S, Ryu JH. Recent Progress in Mitochondria-Targeted Drug and Drug-Free Agents for Cancer Therapy. Cancers (Basel) 2019; 12:cancers12010004. [PMID: 31861339 PMCID: PMC7016936 DOI: 10.3390/cancers12010004] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The mitochondrion is a dynamic eukaryotic organelle that controls lethal and vital functions of the cell. Being a critical center of metabolic activities and involved in many diseases, mitochondria have been attracting attention as a potential target for therapeutics, especially for cancer treatment. Structural and functional differences between healthy and cancerous mitochondria, such as membrane potential, respiratory rate, energy production pathway, and gene mutations, could be employed for the design of selective targeting systems for cancer mitochondria. A number of mitochondria-targeting compounds, including mitochondria-directed conventional drugs, mitochondrial proteins/metabolism-inhibiting agents, and mitochondria-targeted photosensitizers, have been discussed. Recently, certain drug-free approaches have been introduced as an alternative to induce selective cancer mitochondria dysfunction, such as intramitochondrial aggregation, self-assembly, and biomineralization. In this review, we discuss the recent progress in mitochondria-targeted cancer therapy from the conventional approach of drug/cytotoxic agent conjugates to advanced drug-free approaches.
Collapse
|
239
|
Zhao J, Sun S, Li X, Zhang W, Gou S. Enhancing Photodynamic Therapy Efficacy of Upconversion-Based Nanoparticles Conjugated with a Long-Lived Triplet Excited State Iridium(III)-Naphthalimide Complex: Toward Highly Enhanced Hypoxia-Inducible Factor-1. ACS APPLIED BIO MATERIALS 2019; 3:252-262. [DOI: 10.1021/acsabm.9b00774] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shuchen Sun
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoyan Li
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Zhang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
240
|
Thomas AP, Lee AJ, Palanikumar L, Jana B, Kim K, Kim S, Ok H, Seol J, Kim D, Kang BH, Ryu JH. Mitochondrial heat shock protein-guided photodynamic therapy. Chem Commun (Camb) 2019; 55:12631-12634. [PMID: 31580341 DOI: 10.1039/c9cc06411g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria targeting sensitizers are continuing to gain importance in photodynamic therapy (PDT). Members of the 90 kDa heat shock protein (Hsp90) family, including TRAP1 (Hsp75), are overexpressed in cancer cells and help to control the antiapoptotic protein activity. The present work introduces an Hsp90 inhibitor-mitochondria targeting indocyanine dye conjugate (IR-PU) for high PDT efficacy.
Collapse
Affiliation(s)
- Ajesh P Thomas
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan-44919, South Korea
| | - An-Jung Lee
- Department of Biological Sciences, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan-44919, South Korea.
| | - L Palanikumar
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan-44919, South Korea
| | - Batakrishna Jana
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan-44919, South Korea
| | - Kibeom Kim
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan-44919, South Korea
| | - Sangpil Kim
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan-44919, South Korea
| | - Haewon Ok
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan-44919, South Korea
| | - Jihoon Seol
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan-44919, South Korea
| | - Dongseok Kim
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan-44919, South Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan-44919, South Korea.
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan-44919, South Korea
| |
Collapse
|
241
|
Yang G, Chen C, Zhu Y, Liu Z, Xue Y, Zhong S, Wang C, Gao Y, Zhang W. GSH-Activatable NIR Nanoplatform with Mitochondria Targeting for Enhancing Tumor-Specific Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44961-44969. [PMID: 31692323 DOI: 10.1021/acsami.9b15996] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing smart photosensitizers that are sensitive to tumor-specific signals for minimal side effects and enhanced antitumor efficacy is a tremendous challenge for tumor phototherapies. Herein, we construct a nanoplatform with glutathione (GSH)-activatable and mitochondria-targeted pro-photosensitizer encapsulated by ultrasensitive pH-responsive polymer for achieving imaging-guided tumor-specific photodynamic therapy (PDT). The GSH-activatable pro-photosensitizer, di-cyanine (DCy7), has been synthesized where two cyanine moieties are covalently conjugated by a disulfide bond, and the hydrophobic DCy7 is further encapsulated with an amphiphilic pH-responsive diblock copolymer POEGMA-b-PDPA to form P@DCy7 nanoparticles. Upon endocytosis by cancer cells, P@DCy7 nanoparticles dissociate at endosome first and then DCy7 is released to cytoplasm and subsequently activated by the high concentration of GSH, finally targets mitochondria for organelle-targeted PDT. Moreover, intracellular antioxidant GSH is consumed during the activation procedure that is beneficial to efficient PDT. These P@DCy7 nanoparticles display selective phototoxicity against tumor cells (HepG2 or 4T1 cells) over normal cells (BEAS-2B cells) in vitro, and their GSH-activatable enhanced PDT efficacy is further confirmed in tumor-bearing mice. Thus, P@DCy7 nanoparticles allow for accurate and highly efficient PDT with minimal side effects, providing an attractive nanoplatform for organelle-targeted precise PDT.
Collapse
|
242
|
Cheng H, Fan GL, Fan JH, Yuan P, Deng FA, Qiu XZ, Yu XY, Li SY. Epigenetics-inspired photosensitizer modification for plasma membrane-targeted photodynamic tumor therapy. Biomaterials 2019; 224:119497. [DOI: 10.1016/j.biomaterials.2019.119497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
|
243
|
Zhai W, Zhang Y, Liu M, Zhang H, Zhang J, Li C. Universal Scaffold for an Activatable Photosensitizer with Completely Inhibited Photosensitivity. Angew Chem Int Ed Engl 2019; 58:16601-16609. [DOI: 10.1002/anie.201907510] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/12/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Wenhao Zhai
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Yongkang Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Ming Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Hao Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Junqing Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| |
Collapse
|
244
|
Zhao Z, Ru J, Zhou P, Wang Y, Shan C, Yang X, Cao J, Liu W, Guo H, Tang Y. A smart nanoprobe based on a gadolinium complex encapsulated by ZIF-8 with enhanced room temperature phosphorescence for synchronous oxygen sensing and photodynamic therapy. Dalton Trans 2019; 48:16952-16960. [PMID: 31687715 DOI: 10.1039/c9dt03955d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The phosphorescence lifetime approach based on the room temperature phosphorescence (RTP) property has received considerable attention in recent years due to its excellent performance in the precise measurement of oxygen. Herein, a smart nanoprobe, Gd[PC]@ZIF-8, was designed and assembled by homogenously encapsulating a rare-earth complex phosphor Gd[(Pyr)4cyclen] (Pyr = pyrenol) into a zeolitic imidazolate framework (ZIF-8). Because of the restriction of the metal-organic framework (MOF) matrix and host-guest interactions, the nanoprobe Gd[PC]@ZIF-8 exhibited highly enhanced RTP properties, including intensity, quantum yield, and elongated decay lifetime. It displayed an outstanding linear relationship between the phosphorescence decay lifetime, intensity and oxygen concentration, which can be applied in the field of oxygen sensing. Moreover, the complex Gd[(Pyr)4cyclen] in the nanoprobe Gd[PC]@ZIF-8 served as a favorable photosensitizer that resulted in the simultaneous conversion of sufficient oxygen molecules into single state oxygen (1O2) under irradiation during the phosphorescence quenching process, which is conducive to photodynamic therapy (PDT). Thus, the design of the smart nanoprobe Gd[PC]@ZIF-8 in this study provides an ingenious strategy of utilizing a MOF as a matrix to enhance the RTP properties of phosphors for synchronous oxygen sensing and PDT.
Collapse
Affiliation(s)
- Zhongli Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jiaxi Ru
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China.
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yunsheng Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Changfu Shan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiaoxi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Weisheng Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China.
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
245
|
Karaman O, Almammadov T, Emre Gedik M, Gunaydin G, Kolemen S, Gunbas G. Mitochondria-Targeting Selenophene-Modified BODIPY-Based Photosensitizers for the Treatment of Hypoxic Cancer Cells. ChemMedChem 2019; 14:1879-1886. [PMID: 31663667 DOI: 10.1002/cmdc.201900380] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/06/2019] [Indexed: 01/01/2023]
Abstract
Two red-absorbing, water-soluble and mitochondria (MT)-targeting selenophene-substituted BODIPY-based photosensitizers (PSs) were realized (BOD-Se, BOD-Se-I), and their potential as photodynamic therapy (PDT) agents were evaluated. BOD-Se-I showed higher 1 O2 generation yield thanks to the enhanced heavy-atom effect, and this derivative was further tested in detail in cell culture studies under both normoxic and hypoxic conditions. BOD-Se-I not only effectively functioned under hypoxic conditions, but also showed highly selective photocytotoxicity towards cancer cells. The selectivity is believed to arise from differences in mitochondrial membrane potentials of healthy and cancerous cells. To the best of our knowledge, this marks the first example of a MT-targeted BODIPY PS that functions under hypoxic conditions. Remarkably, thanks to the design strategy, all these properties where realized by a compound that was synthesized in only five steps with 32 % overall yield. Hence, this material holds great promise for the realization of next-generation PDT drugs for the treatment of hypoxic solid tumors.
Collapse
Affiliation(s)
- Osman Karaman
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkey
| | | | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University, 06100, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University, 06100, Ankara, Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koc University, 34450, Istanbul, Turkey.,Koc University (KU), Surface Science and Technology Center (KUYTAM), 34450, Istanbul, Turkey
| | - Gorkem Gunbas
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkey
| |
Collapse
|
246
|
Dai X, Du T, Han K. Engineering Nanoparticles for Optimized Photodynamic Therapy. ACS Biomater Sci Eng 2019; 5:6342-6354. [DOI: 10.1021/acsbiomaterials.9b01251] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinxin Dai
- College of Science, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, China
| | - Kai Han
- College of Science, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Pharmacy, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
247
|
Qiu K, Zhu H, Rees TW, Ji L, Zhang Q, Chao H. Recent advances in lysosome-targeting luminescent transition metal complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
248
|
Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S, Frochot C. Fighting Hypoxia to Improve PDT. Pharmaceuticals (Basel) 2019; 12:E163. [PMID: 31671658 PMCID: PMC6958374 DOI: 10.3390/ph12040163] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) has drawn great interest in recent years mainly due to its low side effects and few drug resistances. Nevertheless, one of the issues of PDT is the need for oxygen to induce a photodynamic effect. Tumours often have low oxygen concentrations, related to the abnormal structure of the microvessels leading to an ineffective blood distribution. Moreover, PDT consumes O2. In order to improve the oxygenation of tumour or decrease hypoxia, different strategies are developed and are described in this review: 1) The use of O2 vehicle; 2) the modification of the tumour microenvironment (TME); 3) combining other therapies with PDT; 4) hypoxia-independent PDT; 5) hypoxia-dependent PDT and 6) fractional PDT.
Collapse
Affiliation(s)
- Ludivine Larue
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | | | - Amina Ben-Mihoub
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Albert Moussaron
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Noémie Thomas
- Biologie, Signaux et Systèmes en Cancérologie et Neurosciences, CRAN, UMR 7039, Université de Lorraine, CNRS, 54000 Nancy, France.
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| |
Collapse
|
249
|
Zhang C, Gao F, Wu W, Qiu WX, Zhang L, Li R, Zhuang ZN, Yu W, Cheng H, Zhang XZ. Enzyme-Driven Membrane-Targeted Chimeric Peptide for Enhanced Tumor Photodynamic Immunotherapy. ACS NANO 2019; 13:11249-11262. [PMID: 31566945 DOI: 10.1021/acsnano.9b04315] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Here, a protein farnesyltransferase (PFTase)-driven plasma membrane (PM)-targeted chimeric peptide, PpIX-C6-PEG8-KKKKKKSKTKC-OMe (PCPK), was designed for PM-targeted photodynamic therapy (PM-PDT) and enhanced immunotherapy via tumor cell PM damage and fast release of damage-associated molecular patterns (DAMPs). The PM targeting ability of PCPK originates from the cellular K-Ras signaling, which occurs exclusively to drive the corresponding proteins to PM by PFTase. With the conjugation of the photosensitizer protoporphyrin IX (PpIX), PCPK could generate cytotoxic reactive oxygen species to deactivate membrane-associated proteins, initiate lipid peroxidation, and destroy PM with an extremely low concentration (1 μM) under light irradiation. The specific PM damage further induced the fast release of DAMPs (high-mobility group box 1 and ATP), resulting in antitumor immune responses stronger than those of conventional cytoplasm-localized PDT. This immune-stimulating PM-PDT strategy also exhibited the inhibition effect for distant metastatic tumors when combined with programmed cell death receptor 1 blockade therapy.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Fan Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Wei Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Wen-Xiu Qiu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Lu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Runqing Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Ze-Nan Zhuang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Wuyang Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Han Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| |
Collapse
|
250
|
Liu B, Monro S, Jabed MA, Cameron CG, Colón KL, Xu W, Kilina S, McFarland SA, Sun W. Neutral iridium(iii) complexes bearing BODIPY-substituted N-heterocyclic carbene (NHC) ligands: synthesis, photophysics, in vitro theranostic photodynamic therapy, and antimicrobial activity. Photochem Photobiol Sci 2019; 18:2381-2396. [PMID: 31432864 PMCID: PMC6785369 DOI: 10.1039/c9pp00142e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/08/2019] [Indexed: 12/29/2022]
Abstract
The synthesis, photophysics, and photobiological activities of a series of novel neutral heteroleptic cyclometalated iridium(iii) complexes incorporating boron dipyrromethene (BODIPY) substituted N-heterocyclic carbene (NHC) ligands (Ir1-Ir5) are reported. The effect of the substitution position of BODIPY on the NHC ligands, either on C4 of the phenyl ring (Ir1-Ir3) or C5 of the benzimidazole unit (Ir4 and Ir5), and its linker type (single or triple bond) on the photophysical properties was studied. Ir1-Ir5 exhibited BODIPY-localized intense 1IL (intraligand transition)/1MLCT (metal-to-ligand charge transfer) absorption at 530-543 nm and 1,3IL/1,3CT (charge transfer) emission at 582-610 nm. The nanosecond transient absorption results revealed that the lowest triplet excited states of these complexes were the BODIPY-localized 3π,π* states. Complexes Ir4 and Ir5 exhibited blue-shifted 1IL absorption and 1,3IL/1,3CT emission bands compared to the corresponding absorption and emission bands in complexes Ir1 and Ir3. However, replacing the methyl substituents on N3 of benzimidazole in complexes Ir1 and Ir4 with oligoether substituents in Ir3 and Ir5, respectively, did not impact the energies of the low-energy absorption and emission bands in the corresponding complexes. Water-soluble complexes Ir3 and Ir5 have been explored as photosensitizers for in vitro photodynamic therapy (PDT) effects toward human SKMEL28 melanoma cells. Ir3 showed no dark cytotoxicity (EC50 > 300 μM) but good photocytotoxic activity (9.66 ± 0.28 μM), whereas Ir5 exhibited a higher dark cytotoxicity (20.2 ± 1.26 μM) and excellent photocytotoxicity (0.15 ± 0.01 μM). The phototherapeutic indices with visible light (400-700 nm) activation were >31 for Ir3 and 135 for Ir5. Ir3 and Ir5 displayed 1O2 quantum yields of 38% and 22% in CH3CN, respectively, upon 450 nm excitation. Ir5 was more effective at generating reactive oxygen species (ROS) in vitro. Ir5 was also active against Staphylococcus aureus upon visible light activation, with a phototherapeutic index of >15 and EC50 value of 6.67 μM. These photobiological activities demonstrated that these neutral Ir(iii) complexes are promising in vitro PDT reagents, and substitution at C5 on the benzimidazole group of the NHC ligand was superior to C4 substitution on the phenyl ring.
Collapse
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|