201
|
Aksu DA, Agca C, Aksu S, Bagis H, Akkoc T, Caputcu AT, Arat S, Taskin AC, Kizil SH, Karasahin T, Akyol N, Satilmis M, Sagirkaya H, Ustuner B, Nur Z, Agca Y. Gene expression profiles of vitrified in vitro- and in vivo-derived bovine blastocysts. Mol Reprod Dev 2012; 79:613-25. [DOI: 10.1002/mrd.22068] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/26/2012] [Indexed: 01/13/2023]
|
202
|
Wale PL, Gardner DK. Oxygen Regulates Amino Acid Turnover and Carbohydrate Uptake During the Preimplantation Period of Mouse Embryo Development1. Biol Reprod 2012; 87:24, 1-8. [DOI: 10.1095/biolreprod.112.100552] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
203
|
Plourde D, Vigneault C, Lemay A, Breton L, Gagné D, Laflamme I, Blondin P, Robert C. Contribution of oocyte source and culture conditions to phenotypic and transcriptomic variation in commercially produced bovine blastocysts. Theriogenology 2012; 78:116-31.e1-3. [DOI: 10.1016/j.theriogenology.2012.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
|
204
|
Prados FJ, Debrock S, Lemmen JG, Agerholm I. The cleavage stage embryo. Hum Reprod 2012; 27 Suppl 1:i50-71. [PMID: 22752610 DOI: 10.1093/humrep/des224] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fernando J Prados
- Unidad de Reproducción, Hospital Universitario Madrid-Montepríncipe, Avenida Montepríncipe, 25, 28660 Boadilla del Monte, Spain.
| | | | | | | |
Collapse
|
205
|
Niakan KK, Han J, Pedersen RA, Simon C, Pera RAR. Human pre-implantation embryo development. Development 2012; 139:829-41. [PMID: 22318624 DOI: 10.1242/dev.060426] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding human pre-implantation development has important implications for assisted reproductive technology (ART) and for human embryonic stem cell (hESC)-based therapies. Owing to limited resources, the cellular and molecular mechanisms governing this early stage of human development are poorly understood. Nonetheless, recent advances in non-invasive imaging techniques and molecular and genomic technologies have helped to increase our understanding of this fascinating stage of human development. Here, we summarize what is currently known about human pre-implantation embryo development and highlight how further studies of human pre-implantation embryos can be used to improve ART and to fully harness the potential of hESCs for therapeutic goals.
Collapse
Affiliation(s)
- Kathy K Niakan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
206
|
Hemmings KE, Leese HJ, Picton HM. Amino acid turnover by bovine oocytes provides an index of oocyte developmental competence in vitro. Biol Reprod 2012; 86:165, 1-12. [PMID: 22378762 DOI: 10.1095/biolreprod.111.092585] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
Amino acid profiling has been used to distinguish between human embryos of differing developmental competence. We sought to determine whether amino acid profiling could be used to distinguish between metaphase II (MII) bovine oocytes with different developmental capabilities in vitro. Amino acid turnover was assayed during the final 6 h of in vitro maturation prior to oocytes undergoing individual fertilization in vitro. Following insemination, zygotes were immobilized in groups of 16 on the base of a Petri dish using Cell-Tak tissue adhesive to enable the developmental progress of each to be tracked to the blastocyst stage. Spent droplets of in vitro maturation medium were analyzed by high performance liquid chromatography, which revealed glutamine, arginine, and asparagine were depleted in the greatest quantities. Incompetent MII oocytes that failed to cleave by 72 h postfertilization depleted significantly more glutamine from (P = 0.0006) and released more alanine (P = 0.0001) into the medium than oocytes that cleaved. When cutoff values were selected for the turnover of alanine, arginine, glutamine, leucine, and tryptophan and modeled to predict fertilization and cleavage potential, oocytes that did not exceed the cutoff values for ≥2 of these key amino acids were more likely to cleave. The sensitivity, specificity, accuracy, and positive predictive value of this model were 60.5%, 76.8%, 63.5%, and 92.0%, respectively. Significant differences (P ≤ 0.015) in the consumption/production of alanine and glutamine were also observed when comparing uncleaved oocytes with those that produced blastocysts. The data show that noninvasive amino acid profiling can be used to measure oocyte developmental competence.
Collapse
Affiliation(s)
- Karen E Hemmings
- Division of Reproduction and Early Development, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, United Kingdom.
| | | | | |
Collapse
|
207
|
Market Velker BA, Denomme MM, Mann MR. Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture. Biol Reprod 2012; 86:143, 1-16. [PMID: 22278980 PMCID: PMC4480067 DOI: 10.1095/biolreprod.111.096602] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/27/2011] [Accepted: 01/16/2012] [Indexed: 12/12/2022] Open
Abstract
Currently, the stage of embryo development has been proposed as one of many criteria for identifying healthy embryos in infertility clinics with the fastest embryos being highlighted as the healthiest. However the validity of this as an accurate criterion with respect to genomic imprinting is unknown. Given that embryo development in culture generally requires an extra day compared to in vivo development, we hypothesized that loss of imprinting correlates with slower rates of embryonic development. To evaluate this, embryos were recovered at the 2-cell stage, separated into four groups based on morphological stage at two predetermined time points, and cultured to blastocysts. We examined cell number, embryo volume, embryo sex, imprinted Snrpn and H19 methylation, imprinted Snrpn, H19, and Cdkn1c expression, and expression of genes involved in embryo metabolism-Atp1a1, Slc2a1, and Mapk14-all within the same individual embryo. Contrary to our hypothesis, we observed that faster developing embryos exhibited greater cell numbers and embryo volumes as well as greater perturbations in genomic imprinting and metabolic marker expression. Embryos with slower rates of preimplantation development were most similar to in vivo derived embryos, displaying similar cell numbers, embryo volumes, Snrpn and H19 imprinted methylation, H19 imprinted expression, and Atp1a1 and Slc2a1 expression. We conclude that faster development rates in vitro are correlated with loss of genomic imprinting and aberrant metabolic marker expression. Importantly, we identified a subset of in vitro cultured embryos that, according to the parameters evaluated, are very similar to in vivo derived embryos and thus are likely most suitable for embryo transfer.
Collapse
Affiliation(s)
- Brenna A. Market Velker
- Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| | - Michelle M. Denomme
- Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| | - Mellissa R.W. Mann
- Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
208
|
Abstract
This review considers how our understanding of preimplantation embryo metabolism has progressed since the pioneering work on this topic in the late 1960s and early 1970s. Research has been stimulated by a desire to understand how metabolic events contribute to the development of the zygote into the blastocyst, the need for biomarkers of embryo health with which to improve the success of assisted conception technologies, and latterly by the ‘Developmental Origins of Health and Disease’ (DOHaD) concept. However, arguably, progress has not been as great as it might have been due to methodological difficulties in working with tiny amounts of tissue and the low priority assigned to fundamental research on fertility and infertility, with developments driven more by technical than scientific advances. Nevertheless, considerable progress has been made in defining the roles of the traditional nutrients: pyruvate, glucose, lactate, and amino acids; originally considered as energy sources and biosynthetic precursors, but now recognized as having multiple, overlapping functions. Other nutrients; notably lipids, are beginning to attract the attention they deserve. The pivotal role of mitochondria in early embryo development and the DOHaD concept, and in providing a cellular focus for metabolic events is now recognized. Some unifying ideas are discussed; namely ‘stress–response models’ and the ‘quiet embryo hypothesis’; the latter aiming to relate the metabolism of individual preimplantation embryos to their subsequent viability. The review concludes by updating the state of knowledge of preimplantation embryo metabolism in the early 1970s and listing some future research questions.
Collapse
|
209
|
Elaimi A, Gardner K, Kistnareddy K, Harper J. The effect of GM-CSF on development and aneuploidy in murine blastocysts. Hum Reprod 2012; 27:1590-5. [PMID: 22461004 DOI: 10.1093/humrep/des108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Growth factors and cytokines are present in small quantities in the oviduct and uterus and some are synthesized by the growing embryo. Granulocytes-macrophage colony-stimulating factor (GM-CSF) is known as an important regulator, which enhances cell proliferation and reduces apoptosis in developing blastocysts, during normal fetal and placental development. The purpose of this study is to investigate whether adding GM-CSF to the culture media affects blastulation or the chromosomal status of mouse embryos. METHODS Murine embryos were cultured in vitro from the 2-cell stage until the blastocyst stage in the presence of different concentrations of GM-CSF of 0 ng/ml (control), 1, 2, 5 and 10 ng/ml. The development of each embryo was noted and the embryos were then spread for fluorescence in situ hybridization (FISH) using locus-specific probes (LSI) for chromosomes 2, 11 and 16 in all embryos. RESULTS No difference in the blastulation potential was noted with the addition of 1 and 2 ng/ml of GM-CSF compared with the controls, but there was a significant decrease (P < 0.001) in the blastulation rate in the 5 and 10 ng/ml concentrations. The rate of mosaicism/aneuploidy noted in all GM-CSF groups (1, 2, 5 and 10 ng/ml) was slightly higher than in the control group (0 ng/ml GM-CSF) but the differences were not significant. In the mosaic embryos from the GM-CSF cultured groups, the percentage of aneuploid cells was statistically higher than in the control group. CONCLUSIONS GM-CSF exerted a negative impact on blastocyst development at higher concentrations. GM-CSF did not affect the rates of mosaicism/aneuploidy, but did increase the percentage of aneuploid cells within the mosaic embryos. Adding GM-CSF to the culture media for clinical use requires further studies either on human or animal models to evaluate its long-term effects.
Collapse
Affiliation(s)
- Aisha Elaimi
- Institute for Women's Health, University College London, London, UK.
| | | | | | | |
Collapse
|
210
|
Calle A, Fernandez-Gonzalez R, Ramos-Ibeas P, Laguna-Barraza R, Perez-Cerezales S, Bermejo-Alvarez P, Ramirez MA, Gutierrez-Adan A. Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology 2012; 77:785-93. [DOI: 10.1016/j.theriogenology.2011.07.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 01/10/2023]
|
211
|
Peippo J, Machaty Z, Peter A. Terminologies for the pre-attachment bovine embryo. Theriogenology 2012; 76:1373-9. [PMID: 21855984 DOI: 10.1016/j.theriogenology.2011.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 06/09/2011] [Accepted: 06/16/2011] [Indexed: 10/17/2022]
Abstract
There are numerous publications regarding bovine embryos, ranging from descriptions of their appearance and development to emerging techniques in the field of assisted reproductive technology (ART). Concurrently, several specialized terms have been developed to describe the bovine embryo. Many of these terms are simple, some are difficult to understand and use, and others are antiquated and may not be scientifically accurate. For example, use of terms such as syngamy, conception rate, implantation and embryo resorption should be revisited. This review presents a brief overview of current knowledge regarding the pre-attachment period of the bovine embryo and attempts to define the terms. In this process, conventional terminology is presented, and contemporary and novel terms are proposed from a biological perspective.
Collapse
Affiliation(s)
- Jaana Peippo
- MTT Agrifood Research Finland, Biotechnology and Food Research, FI-31600 Jokioinen, Finland
| | | | | |
Collapse
|
212
|
Abstract
Amino acids are beneficial for the developing preimplantation embryo and therefore form an important component of culture media. This chapter will critically review the importance of amino acids for preimplantation embryos and the impact of this research for the development of sequential culture media used in many assisted conception units. The advantages of culturing embryos in a full complement of amino acids, at close to physiological concentrations will be considered. Moreover, the noninvasive measurement of amino acid turnover by individual embryos, a method which holds great promise to assess developmental competency prior to transfer, will also be discussed. Thus, this chapter highlights the fundamental role of amino acids for the metabolic and homeostatic regulation of the preimplantation embryo.
Collapse
|
213
|
Abstract
During preimplantation development, major epigenetic reprogramming occurs, erasing gametic modifications, and establishing embryonic epigenetic modifications. Given the plasticity of these modifications, they are susceptible to disruption by assisted reproductive technologies, including embryo culture. The current state of evidence is presented for the effects of embryo culture on global DNA methylation and histone modifications, retroviral silencing, X-inactivation, and genomic imprinting. Several salient points emerge from the literature; that culture in the absence of other procedures can lead to epigenetic perturbations; that all media are suboptimal; and that embryo response to in vitro culture is stochastic. We propose that embryos adapt to the suboptimal environment generated by embryo culture, including epigenetic adaptations, and that "quiet" embryos may be the least epigenetically compromised by in vitro culture.
Collapse
|
214
|
Harper J, Cristina Magli M, Lundin K, Barratt CLR, Brison D. When and how should new technology be introduced into the IVF laboratory? Hum Reprod 2011; 27:303-13. [DOI: 10.1093/humrep/der414] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
215
|
Chason RJ, Csokmay J, Segars JH, DeCherney AH, Armant DR. Environmental and epigenetic effects upon preimplantation embryo metabolism and development. Trends Endocrinol Metab 2011; 22:412-20. [PMID: 21741268 PMCID: PMC3183171 DOI: 10.1016/j.tem.2011.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/10/2011] [Accepted: 05/25/2011] [Indexed: 12/20/2022]
Abstract
In vitro fertilization has provided a unique window into the metabolic processes that drive embryonic growth and development from a fertilized ovum to a competent blastocyst. Post-fertilization development is dependent upon a dramatic reshuffling of the parental genomes during meiosis, as well as epigenetic changes that provide a new and autonomous set of instructions to guide cellular differentiation both in the embryo and beyond. Although early literature focused simply on the substrates and culture conditions required for progress through embryonic development, more recent insights lead us to suggest that the surrounding environment can alter the epigenome, which can, in turn, impact upon embryonic metabolism and developmental competence.
Collapse
Affiliation(s)
- Rebecca J Chason
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
216
|
Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ, Bols PEJ, Leroy JLMR. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 2011; 6:e23183. [PMID: 21858021 PMCID: PMC3157355 DOI: 10.1371/journal.pone.0023183] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/07/2011] [Indexed: 12/21/2022] Open
Abstract
Elevated concentrations of serum non-esterified fatty acids (NEFA), associated with maternal disorders such as obesity and type II diabetes, alter the ovarian follicular micro-environment and have been associated with subfertility arising from reduced oocyte developmental competence. We have asked whether elevated NEFA concentrations during oocyte maturation affect the development and physiology of zygotes formed from such oocytes, using the cow as a model. The zygotes were grown to blastocysts, which were evaluated for their quality in terms of cell number, apoptosis, expression of key genes, amino acid turnover and oxidative metabolism. Oocyte maturation under elevated NEFA concentrations resulted in blastocysts with significantly lower cell number, increased apoptotic cell ratio and altered mRNA abundance of DNMT3A, IGF2R and SLC2A1. In addition, the blastocysts displayed reduced oxygen, pyruvate and glucose consumption, up-regulated lactate consumption and higher amino acid metabolism. These data indicate that exposure of maturing oocytes to elevated NEFA concentrations has a negative impact on fertility not only through a reduction in oocyte developmental capacity but through compromised early embryo quality, viability and metabolism.
Collapse
Affiliation(s)
- Veerle Van Hoeck
- Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Côté I, Vigneault C, Laflamme I, Laquerre J, Fournier É, Gilbert I, Scantland S, Gagné D, Blondin P, Robert C. Comprehensive cross production system assessment of the impact of in vitro microenvironment on the expression of messengers and long non-coding RNAs in the bovine blastocyst. Reproduction 2011; 142:99-112. [DOI: 10.1530/rep-10-0477] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In vitroproduction (IVP) of cattle embryos over the past two decades has revealed several negative impacts that have been attributed to the artificial microenvironment. Studies on embryos producedin vitroclearly point to aberrant gene expression levels. So far, the causal association between phenotype and measured gene expression has not led to substantial improvement of IVP systems. The aim of this study was to generate a unique dataset composed of microarray-derived relative transcript abundance values for blastocysts produced in tenin vitrosystems differing primarily in culture medium formulation. Between-group comparisons determine the level of overall similarity among systems relative toin vivoreference embryos. The use of the dataset to contrast allin vitrotreatments with thein vivoblastocysts pointed to a single common gene network. The ‘boutique’ array contained a panel of novel uncharacterized transcripts that were variably expressed depending on the medium in which the blastocysts were produced. These novel transcripts were differentially expressed in blastocysts even as carryover from conditions encountered 7 days earlier during oocyte maturation. All of the selected novel candidates thus expressed were from intergenic regions. The function of this long non-coding RNA remains unknown but clearly points to an additional level of complexity in early embryo development.
Collapse
|
218
|
Duran HE, Simsek-Duran F, Oehninger SC, Jones HW, Castora FJ. The association of reproductive senescence with mitochondrial quantity, function, and DNA integrity in human oocytes at different stages of maturation. Fertil Steril 2011; 96:384-8. [PMID: 21683351 DOI: 10.1016/j.fertnstert.2011.05.056] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To determine the impact of reproductive aging on oocyte mitochondrial quantity, function, and DNA (mtDNA) integrity. DESIGN Prospective observational study. SETTING IVF clinic in a tertiary academic care center. PATIENT(S) One hundred two oocytes from 32 women undergoing IVF. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Adenosine triphosphate (ATP) levels, mtDNA number, and mtDNA deletion occurrence in individual oocytes. RESULT(S) Oocyte ATP content increases with maturation (786 ± 87 fmol, 1,037 ± 57 fmol, and 1,201 ± 59 fmol for prophase 1 [P1], metaphase 1 [M1], and metaphase 2 [M2] oocytes, respectively), whereas mtDNA copy numbers do not change (64,500 ± 20,440, 180,000 ± 44,040, and 143,000 ± 31,210 for P1, M1, and M2 oocytes, respectively). Stepwise multiple regression analysis identified developmental stage as a determinant of oocyte ATP, whereas number of oocytes retrieved and cycle day 3 FSH level were determinants of mtDNA copy number. Of the 15 oocytes found to possess the 5-kb mtDNA deletion, 10 were arrested or degenerated oocytes. CONCLUSION(S) Although no direct association was found between female age and oocyte mitochondrial quantity and function, the number of mitochondria was predicted by ovarian reserve indicators. As the oocyte matures, ATP content increases.
Collapse
Affiliation(s)
- Hakan E Duran
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine, Norfolk, Virginia, USA
| | | | | | | | | |
Collapse
|
219
|
The role of nutritional supplementation on the outcome of superovulation in cattle. Anim Reprod Sci 2011; 126:1-10. [DOI: 10.1016/j.anireprosci.2011.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/03/2011] [Accepted: 05/16/2011] [Indexed: 11/20/2022]
|
220
|
Gruber I, Klein M. Embryo culture media for human IVF: which possibilities exist? J Turk Ger Gynecol Assoc 2011; 12:110-7. [PMID: 24591972 DOI: 10.5152/jtgga.2011.25] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/22/2011] [Indexed: 11/22/2022] Open
Abstract
The last three decades have seen considerable progress in the development of culture media for ART and infertility treatment. Basic research on the metabolism of mammalian preimplantation embryos demonstrated the specific needs in the evolving stage of the embryo growing in vitro. Two different philosophies led to two different culture strategies for human preimplantation embryos: the 'back-to-nature' or sequential culture principle, and 'let-the-embryo-choose' or one-step culture principle. Both systems are commercially available and the discussion between the different groups of scientists is ongoing. As a matter of fact, all ART culture media currently used are not optimal for the growing human preimplantation embryo. However, further research is needed to reduce stress to the human preimplantation embryo and determine how many embryos from a treatment cycle are capable of producing a live birth.
Collapse
Affiliation(s)
- Irmhild Gruber
- Department of Gynecology and Obstetrics, Landesklinikum St. Poelten, St. Poelten, Austria
| | - Matthias Klein
- Department of Gynecology and Obstetrics, Landesklinikum St. Poelten, St. Poelten, Austria
| |
Collapse
|
221
|
Purcell SH, Moley KH. The impact of obesity on egg quality. J Assist Reprod Genet 2011; 28:517-24. [PMID: 21625966 DOI: 10.1007/s10815-011-9592-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/23/2011] [Indexed: 11/29/2022] Open
Abstract
Obesity in women is a concern in many countries. This causes numerous health issues; however, this review focuses on the impact of obesity on women's reproduction, and in particular the oocyte. Data from infertility clinics and experimental animal models that address the effects of obesity are presented. Bidirectional communication and metabolic support from the surrounding cumulus cells are critical for oocyte development, and the impact of obesity on these cells is also addressed. Both oocyte maturation and metabolism are impaired due to obesity, negatively impacting further development. In addition to reproductive hormones, obesity induced elevations in insulin, glucose, or free fatty acids, and changes in adipokines appear to impact the developmental competence of the oocyte. The data indicate that any one of these hormones or metabolites can impair oocyte developmental competence in vivo, and the combination of all of these factors and their interactions are the subject of ongoing investigations.
Collapse
Affiliation(s)
- Scott H Purcell
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | | |
Collapse
|
222
|
Gardner DK, Wale PL, Collins R, Lane M. Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum Reprod 2011; 26:1981-6. [PMID: 21572086 DOI: 10.1093/humrep/der143] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aim of this study was to determine the relationship between nutrient utilization by the human embryo and its subsequent viability after transfer. METHODS The embryos of 50 patients having single blastocyst transfer were cultured individually from Day 3 in 10 µl drops of medium G2 under Ovoil in 5%O(2), 6%CO(2), 89%N(2). Patient inclusion in the study was maternal age ≤ 38. Embryos were moved to fresh drops of medium every 24 h. Spent media samples, including controls containing no embryo, were coded, frozen and subsequently analysed blind. Analysis of glucose was performed by microfluorimetry. The sex of children born was recorded. RESULTS Clinical pregnancy and live birth rates were 58 and 56%, respectively. Glucose consumption by embryos which resulted in a pregnancy was significantly higher on both Day 4 and Day 5 than that by embryos which failed to develop post-transfer (P < 0.01). Furthermore, on Day 4 female embryos consumed 28% more glucose compared with males (P < 0.05). Glucose uptake was independent of embryo grade. CONCLUSIONS The rapid screening of glucose metabolism by the human embryo on Day 4 and 5 may prove to be a useful metric in the development of algorithms for the selection of embryos for transfer in human IVF. Also, the observed sex-related metabolic difference provides preliminary data to support the hypothesis that male and female human embryos differ in their physiology due to the presence of two active X chromosomes and an altered proteome for a finite time during the preimplantation period.
Collapse
Affiliation(s)
- David K Gardner
- Department of Zoology, University of Melbourne, Melbourne, Australia.
| | | | | | | |
Collapse
|
223
|
Gad A, Besenfelder U, Rings F, Ghanem N, Salilew-Wondim D, Hossain M, Tesfaye D, Lonergan P, Becker A, Cinar U, Schellander K, Havlicek V, Hölker M. Effect of reproductive tract environment following controlled ovarian hyperstimulation treatment on embryo development and global transcriptome profile of blastocysts: implications for animal breeding and human assisted reproduction. Hum Reprod 2011; 26:1693-707. [DOI: 10.1093/humrep/der110] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
224
|
Mukherjee S, Forde R, Belton A, Duttaroy A. SOD2, the principal scavenger of mitochondrial superoxide, is dispensable for embryogenesis and imaginal tissue development but essential for adult survival. Fly (Austin) 2011; 5:39-46. [PMID: 21212740 DOI: 10.4161/fly.5.1.14007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Definitive evidence on the impact of MnSOD/SOD2-deficiency and the consequent effects of high flux of mitochondrial reactive oxygen species (ROS) on pre-natal/pre-adult development has yet to be reported for either Drosophila or mice. Here we report that oocytes lacking maternal SOD2 protein develop into adults just like normal SOD2-containing oocytes suggesting that maternal SOD2-mediated protection against mitochondrial ROS is not essential for oocyte viability. However, the capacity of SOD2-null larvae to undergo successful metamorphosis into adults is negatively influenced in the absence of SOD2. We therefore determined the impact of a high superoxide environment on cell size, progression through the cell cycle, cell differentiation, and cell death and found no difference between SOD2-null and SOD2+ larva and pupa. Thus loss of SOD2 activity clearly has no effect on pre-adult imaginal tissues. Instead, we found that the high mitochondrial superoxide environment arising from the absence of SOD2 leads to the induction of autophagy. Such autophagic response may underpin the resistance of pre-adult tissues to unscavenged ROS. Finally, while our data establish that SOD2 activity is less essential for normal development, the mortality of Sod2-/- neonates of both Drosophila and mice suggests that SOD2 activity is indeed essential for the viability of adults. We therefore asked if the early mortality of SOD2-null young adults could be rescued by activation of SOD2 expression. The results support the conclusion that the early mortality of SOD2-null adults is largely attributable to the absence of SOD2 activity in the adult per se. This finding somewhat contradicts the widely held notion that failure to scavenge the high volume of superoxide emanating from the oxidative demands of development would be highly detrimental to developing tissues.
Collapse
|
225
|
Noninvasive bovine oocyte quality assessment: possibilities of a single oocyte culture. Theriogenology 2010; 74:1509-20. [DOI: 10.1016/j.theriogenology.2010.06.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 11/23/2022]
|
226
|
Bauer BK, Isom SC, Spate LD, Whitworth KM, Spollen WG, Blake SM, Springer GK, Murphy CN, Prather RS. Transcriptional Profiling by Deep Sequencing Identifies Differences in mRNA Transcript Abundance in In Vivo-Derived Versus In Vitro-Cultured Porcine Blastocyst Stage Embryos1. Biol Reprod 2010; 83:791-8. [DOI: 10.1095/biolreprod.110.085936] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
227
|
Picton HM, Elder K, Houghton FD, Hawkhead JA, Rutherford AJ, Hogg JE, Leese HJ, Harris SE. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol Hum Reprod 2010; 16:557-69. [PMID: 20571076 PMCID: PMC2907220 DOI: 10.1093/molehr/gaq040] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/21/2010] [Accepted: 05/18/2010] [Indexed: 01/11/2023] Open
Abstract
This study investigated the relationship between human preimplantation embryo metabolism and aneuploidy rates during development in vitro. One hundred and eighty-eight fresh and cryopreserved embryos from 59 patients (33.9 +/- 0.6 years) were cultured for 2-5 days. The turnover of 18 amino acids was measured in spent media by high-performance liquid chromatography. Embryos were either fixed for interphase fluorescent in situ hybridization analysis of chromosomes 13, 18, 19, 21, X or Y, or were assayed for mitochondrial activity. Amino acid turnover was different (P < 0.05) between stage-matched fresh and cryopreserved embryos due to blastomere loss following warming. The proportion of embryos with aneuploid cells increased as cell division progressed from pronucleate- (23%) to late cleavage stages (50-70%). Asparagine, glycine and valine turnover was significantly different between uniformly genetically normal and uniformly abnormal embryos on Days 2-3 of culture. By Days 3-4, the profiles of serine, leucine and lysine differed between uniformly euploid versus aneuploid embryos. Gender significantly (P < 0.05) affected the metabolism of tryptophan, leucine and asparagine by cleavage-stage embryos. Pronucleate zygotes had a significantly higher proportion of active:inactive mitochondria compared with cleavage-stage embryos. Furthermore, mitochondrial activity was correlated (P < 0.05) with altered aspartate and glutamine turnover. These results demonstrate the association between the metabolism, cytogenetic composition and health of human embryos in vitro.
Collapse
Affiliation(s)
- Helen M Picton
- Division of Reproduction and Early Development, Leeds Institute for Genetics, Health and Therapeutics, University of Leeds, Leeds, UK.
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Sturmey RG, Bermejo-Alvarez P, Gutierrez-Adan A, Rizos D, Leese HJ, Lonergan P. Amino acid metabolism of bovine blastocysts: a biomarker of sex and viability. Mol Reprod Dev 2010; 77:285-96. [PMID: 20058302 DOI: 10.1002/mrd.21145] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ratio of male/female embryos may be modified by environmental factors such as maternal diet in vivo and the composition of embryo culture media in vitro. We have used amino acid profiling, a noninvasive marker of developmental potential to compare the effect of sex on the metabolism of bovine blastocysts conceived in vivo and in vitro. Blastocysts were incubated individually for 24 hr in a close-to-physiological mixture of amino acids and the depletion or appearance of 18 amino acids measured using HPLC. Blastocysts were then sexed by PCR. Amino acid depletion by in vitro-produced blastocysts and expanded blastocysts was higher than in embryos conceived in vivo (P = 0.02). When cultured in vitro, female embryos exhibited increased depletion of arginine, glutamate, and methionine and appearance of glycine, while male embryos displayed increased depletion of phenylalanine, tyrosine, and valine. Overall, in vitro-produced blastocysts exhibited sex-specific differences in metabolic profiles of 7 out of 18 amino acids; in vivo-produced, in 2 out of 18. These differences had disappeared by the expanded blastocyst stages. We have also shown that amino acid metabolism can predict the ability of bovine zygotes to develop to the blastocyst stage, providing "proof of principle" for the use of this technology in clinical IVF to select single embryos for transfer and thereby avoid the problem of multiple births.
Collapse
Affiliation(s)
- R G Sturmey
- Department of Biology (Area 3), University of York, York, North Yorkshire YO105YW, UK.
| | | | | | | | | | | |
Collapse
|
229
|
Vajta G, Rienzi L, Cobo A, Yovich J. Embryo culture: can we perform better than nature? Reprod Biomed Online 2009; 20:453-69. [PMID: 20202911 DOI: 10.1016/j.rbmo.2009.12.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/20/2009] [Accepted: 12/09/2009] [Indexed: 11/27/2022]
Abstract
Culture of preimplantation-stage embryos has always been a key element of laboratory embryology and has contributed substantially to the success of many assisted reproduction procedures. During the past decade, its importance has increased as extended in-vitro embryo culture and single blastocyst transfer have become indispensable parts of the approach to decreasing the chance of multiple pregnancy while preserving the overall efficiency of the treatment. However, in spite of the scientific and commercial challenge stimulating research worldwide to optimize embryo culture conditions, a consensus is missing even in the basic principles, including composition and exchange of media, the required physical and biological environment and even the temperature of incubation. This review attempts to summarize the controversies, demonstrate the fragility of some widely accepted dogmas and generate an open-minded debate towards rapid and efficient optimization. New approaches expanding the traditional frames of mammalian embryo culture are also discussed. Although some researchers suppose that the efficiency of the presently applied in-vitro culture systems have already approached the biological limits, authors are confident that substantial improvement may be achieved that may expand considerably the possibilities of future assisted reproduction in humans.
Collapse
Affiliation(s)
- Gábor Vajta
- Cairns Fertility Centre, Cairns, QLD 4870, Australia.
| | | | | | | |
Collapse
|
230
|
Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim 2009; 44 Suppl 3:50-8. [PMID: 19660080 DOI: 10.1111/j.1439-0531.2009.01402.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos.
Collapse
Affiliation(s)
- R G Sturmey
- Department of Biology (Area 3), University of York, York, YO10 5YW, UK.
| | | | | | | |
Collapse
|
231
|
Transcriptome profiling of human pre-implantation development. PLoS One 2009; 4:e7844. [PMID: 19924284 PMCID: PMC2773928 DOI: 10.1371/journal.pone.0007844] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 09/18/2009] [Indexed: 11/30/2022] Open
Abstract
Background Preimplantation development is a crucial step in early human development. However, the molecular basis of human preimplantation development is not well known. Methodology By applying microarray on 397 human oocytes and embryos at six developmental stages, we studied the transcription dynamics during human preimplantation development. Principal Findings We found that the preimplantation development consisted of two main transitions: from metaphase-II oocyte to 4-cell embryo where mainly the maternal genes were expressed, and from 8-cell embryo to blastocyst with down-regulation of the maternal genes and up-regulation of embryonic genes. Human preimplantation development proved relatively autonomous. Genes predominantly expressed in oocytes and embryos are well conserved during evolution. Significance Our database and findings provide fundamental resources for understanding the genetic network controlling early human development.
Collapse
|
232
|
Chin PY, Macpherson AM, Thompson JG, Lane M, Robertson SA. Stress response genes are suppressed in mouse preimplantation embryos by granulocyte-macrophage colony-stimulating factor (GM-CSF). Hum Reprod 2009; 24:2997-3009. [DOI: 10.1093/humrep/dep307] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
233
|
Combelles CMH, Gupta S, Agarwal A. Could oxidative stress influence the in-vitro maturation of oocytes? Reprod Biomed Online 2009; 18:864-80. [PMID: 19490793 DOI: 10.1016/s1472-6483(10)60038-7] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the efforts aimed at improving the quality of in-vitro-matured human oocytes, the dynamic balance and roles of pro-/antioxidants merit further consideration. In-vitro maturation (IVM) is emerging as a popular technology at the forefront of fertility treatment and preservation. However, standard in-vitro culture conditions exert oxidative stress or an imbalance between oxidants and antioxidants. Reactive oxygen species (ROS) are oxygen-derived molecules formed as intermediary products of cellular metabolism. By acting as powerful oxidants, ROS can oxidatively modify any molecule, resulting in structural and functional alterations. ROS are neutralized by an elaborate defence system consisting of enzymatic and nonenzymatic antioxidants. This review captures the inherent and external factors that may modulate the oxidative stress status of oocytes. It discusses the suspected impacts of oxidative stress on the gamut of events associated with IVM, including prematuration arrest, meiotic progression, chromosomal segregation, cytoskeletal architecture and gene expression. In-vivo and in-vitro strategies that may overcome the potential influences of oxidative stress on oocyte IVM are presented. Future studies profiling the oxidative stress status of the oocyte may permit not only the formulation of a superior IVM medium that maintains an adequate pro-/antioxidant balance, but also the identification of predictors of oocyte quality.
Collapse
|
234
|
Dumollard R, Carroll J, Duchen MR, Campbell K, Swann K. Mitochondrial function and redox state in mammalian embryos. Semin Cell Dev Biol 2009; 20:346-53. [PMID: 19530278 DOI: 10.1016/j.semcdb.2008.12.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitochondria play a central and multifaceted role in the mammalian egg and early embryo, contributing to many different aspects of early development. While the contribution of mitochondria to energy production is fundamental, other roles for mitochondria are starting to emerge. Mitochondria are central to intracellular redox metabolism as they produce reactive oxygen species (ROS, the mediators of oxidative stress) and they can generate TCA cycle intermediates and reducing equivalents that are used in antioxidant defence. A high cytosolic lactate dehydrogenase activity coupled with dynamic levels of cytosolic pyruvate is responsible for a very dynamic intracellular redox state in the oocyte and embryo. Mammalian embryos have a low glucose metabolism during the earliest stages of development, as both glycolysis and the pentose phosphate pathway are suppressed. The mitochondrial TCA cycle is therefore the major source of reducing equivalents in the cytosol so that any change in mitochondrial function in the embryo will be reflected in changes in the intracellular redox state. In the mouse, the metabolic substrates used by the oocyte and early embryo each have a different impact on the intracellular redox state. Pyruvate which oxidises the cytosolic redox state, acts as an energetic and redox substrate whereas lactate, which reduces the cytosolic redox state, acts only as a redox substrate. Mammalian early embryos are very sensitive to oxidative stress which can cause permanent developmental arrest before zygotic genome activation and apoptosis in the blastocyst. The oocyte stockpiles antioxidant defence for the early embryo to cope with exogenous and endogenous oxidant insults arising during early development. Mitochondria provide ATP for glutathione (GSH) production during oocyte maturation and also participate in the regeneration of NADPH and GSH during early development. Finally, a number of pathological conditions or environmental insults impair early development by altering mitochondrial function, illustrating the centrality of mitochondrial function in embryo development.
Collapse
Affiliation(s)
- R Dumollard
- Laboratoire de Biologie du Développement, UMR 7009, Station Zoologique, 06230 Villefranche sur Mer, France.
| | | | | | | | | |
Collapse
|
235
|
Abstract
This review argues that the question "What does an embryo need?" cannot be adequately answered in quantitative terms to allow the formulation of media for culturing early mammalian embryos. It can be shown experimentally that "needs" in terms of the nutrients an embryo chooses to consume, and their rates of consumption, vary widely, as they are determined by the concentration of the nutrients under consideration and other constituents in the culture medium. Similarly, it is impossible to define "needs" from knowledge of the kinetic properties of nutrient transport systems. Measurements of nutrient consumption, are, however, valuable in determining overall metabolic activity and the balance between oxidative and glycolytic metabolism, in demonstrating qualitative requirements for specific nutrients and in providing markers of normality or abnormality against which to devise methods for diagnosing embryo health. On the basis of these and other considerations, a strategy is proposed for the formulation of embryo culture media that promotes metabolism that is "quiet" rather than "active", reduces the concentrations of nutrients to match those in the Fallopian tube, selects the "quietest" embryos for transfer, and trusts the autonomy of the embryo.
Collapse
Affiliation(s)
- Henry J Leese
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK
| |
Collapse
|
236
|
Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update 2009; 15:553-72. [DOI: 10.1093/humupd/dmp016] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
237
|
|
238
|
Fernández-González R, de Dios Hourcade J, López-Vidriero I, Benguría A, De Fonseca FR, Gutiérrez-Adán A. Analysis of gene transcription alterations at the blastocyst stage related to the long-term consequences of in vitro culture in mice. Reproduction 2009; 137:271-83. [DOI: 10.1530/rep-08-0265] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have reported thatin vitroculture (IVC) of preimplantation mouse embryos in the presence of FCS produces long-term effects (LTE) on development, growth and behaviour of the offspring at adult age. To analyse the mechanisms underlying this phenomenon, we have examined development and global alterations in gene expression in the mouse blastocysts produced in the presence of FCS, conditions known to be suboptimal and that generate LTE. Embryos culturedin vitroin KSOM and in KSOM+FCS had a reduced number of cells in the inner cell mass at the blastocyst stage compared within vivoderived embryos; however, only culture in KSOM+FCS leads to a reduction in the number of trophoblast cells. Gene expression levels were measured by comparison among three groups of blastocysts (in vivo, IVC in KSOM and IVC in KSOM+FCS). Different patterns of gene expression and development were found between embryos culturedin vitroorin vivo. Moreover, when we compared the embryos produced in KSOM versus KSOM+FCS, we observed that the presence of FCS affected the expression of 198 genes. Metabolism, proliferation, apoptosis and morphogenetic pathways were the most common processes affected by IVC. However, the presence of FCS during IVC preferentially affected genes associated with certain molecular and biological functions related to epigenetic mechanisms. These results suggest that culture-induced alterations in transcription at the blastocyst stage related to epigenetic mechanisms provide a foundation for understanding the molecular origin at the time of preimplantation development of the long-term consequences of IVC in mammals.
Collapse
|
239
|
Velazquez MA, Zaraza J, Oropeza A, Webb R, Niemann H. The role of IGF1 in the in vivo production of bovine embryos from superovulated donors. Reproduction 2009; 137:161-80. [DOI: 10.1530/rep-08-0362] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
IGF1 plays an important role in bovine follicular growth, acquisition of oocyte competence and embryo viability. Current data also indicate a critical role for IGF1 in both the ovarian response and the embryo yield following the superovulatory treatments. IGF1 can have either positive or negative effects on embryo viability which is related to the concentration of IGF1 induced by superovulation treatment. These effects impact either on oocyte competence or directly on the embryo. Concentrations in the physiological range appear to result in the production of higher quality embryos, mainly due to the mitogenic and the anti-apoptotic activities of IGF1. However, high superovulatory responses are associated with decreased embryo viability and a concomitant increase in apoptosis. Studies in mice suggest that this increase in apoptosis is related to the downregulation of the IGF1 receptor in the embryo associated with high IGF1 concentrations. Strategies capable of controlling the IGF1 concentrations could be one approach to improve superovulation responses. A range of possible approaches for research within the IGF system in gonadotrophin-stimulated cattle is discussed in this review, including the possible use of superovulated female cattle as an alternative animal experimental model for research on reproductive disorders in humans associated with abnormal IGF1 concentrations.
Collapse
|
240
|
Mitchell M, Schulz SL, Armstrong DT, Lane M. Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention. Biol Reprod 2009; 80:622-30. [PMID: 19129514 DOI: 10.1095/biolreprod.108.072595] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Dietary supply of nutrients, both periconception and during pregnancy, influence the growth and development of the fetus and offspring and their health into adult life. Despite the importance of research efforts surrounding the developmental origins of health and disease hypothesis, the biological mechanisms involved remain elusive. Mitochondria are of major importance in the oocyte and early embryo, particularly as a source of ATP generation, and perturbations in their function have been related to reduced embryo quality. The present study examined embryo development following periconception exposure of females to a high-protein diet (HPD) or a low-protein diet (LPD) relative to a medium-protein diet (MPD; control), and we hypothesized that perturbed mitochondrial metabolism in the mouse embryo may be responsible for the impaired embryo and fetal development reported by others. Although the rate of development to the blastocyst stage did not differ between diets, both the HPD and LPD reduced the number of inner cell mass cells in the blastocyst-stage embryo. Furthermore, mitochondrial membrane potential was reduced and mitochondrial calcium levels increased in the 2-cell embryo. Embryos from HPD females had elevated levels of reactive oxygen species and ADP concentrations, indicative of metabolic stress and, potentially, the uncoupling of oxidative phosphorylation, whereas embryos from LPD females had reduced mitochondrial clustering around the nucleus, suggestive of an overall quietening of metabolism. Thus, although periconception dietary supply of different levels of protein is permissive of development, mitochondrial metabolism is altered in the early embryo, and the nature of the perturbation differs between HPD and LPD exposure.
Collapse
Affiliation(s)
- Megan Mitchell
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
241
|
Dinnyes A, Nedambale TL. Cryopreservation of manipulated embryos: tackling the double jeopardy. Reprod Fertil Dev 2009; 21:45-59. [DOI: 10.1071/rd08220] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of the present review is to provide information to researchers and practitioners concerning the reasons for the altered viability and the medium- and long-term consequences of cryopreservation of manipulated mammalian embryos. Embryo manipulation is defined herein as the act or process of manipulating mammalian embryos, including superovulation, AI, IVM, IVF, in vitro culture, intracytoplasmic sperm injection, embryo biopsy or splitting, somatic cell nuclear transfer cloning, the production of sexed embryos (by sperm sexing), embryo cryopreservation, embryo transfer or the creation of genetically modified (transgenic) embryos. With advances in manipulation technologies, the application of embryo manipulation will become more frequent; the proper prevention and management of the resulting alterations will be crucial in establishing an economically viable animal breeding technology.
Collapse
|
242
|
Sturmey RG, Hawkhead JA, Barker EA, Leese HJ. DNA damage and metabolic activity in the preimplantation embryo. Hum Reprod 2009; 24:81-91. [PMID: 18835872 DOI: 10.1093/humrep/den346] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Embryos with greater viability have a lower or 'quieter' amino acid metabolism than those which arrest. We have hypothesized this is due to non-viable embryos possessing greater cellular/molecular damage and consuming more nutrients, such as amino acids for repair processes. We have tested this proposition by measuring physical damage to DNA in bovine, porcine and human embryos at the blastocyst stage and relating the data to amino acid profiles during embryo development. METHODS Amino acid profiles of in vitro-derived porcine and bovine blastocysts were measured by high-performance liquid chromatography and the data related retrospectively to DNA damage in each individual blastomere using a modified alkaline comet assay. Amino acid profiles of spare human embryos on Day 2-3 were related to DNA damage at the blastocyst stage. RESULTS A positive correlation between amino acid turnover and DNA damage was apparent when each embryo was examined individually; a relationship exhibited by all three species. There was no relationship between DNA damage and embryo grade. CONCLUSIONS Amino acid profiling of single embryos can provide a non-invasive marker of DNA damage at the blastocyst stage. The data are consistent with the quiet embryo hypothesis with viable embryos (lowest DNA damage) having the lowest amino acid turnover. Moreover, these data support the notion that metabolic profiling, in terms of amino acids, might be used to select single embryos for transfer in clinical IVF.
Collapse
Affiliation(s)
- Roger G Sturmey
- Biology Department (Area 3), University of York, York YO10 5YW, UK.
| | | | | | | |
Collapse
|
243
|
Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod 2008; 14:667-72. [PMID: 19019836 PMCID: PMC2639445 DOI: 10.1093/molehr/gan065] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/31/2008] [Accepted: 11/02/2008] [Indexed: 01/09/2023] Open
Abstract
This review examines the 'Quiet Embryo Hypothesis' which proposes that viable preimplantation embryos operate at metabolite or nutrient turnover rates distributed within lower ranges than those of their less viable counterparts. The 'quieter' metabolism consistent with this hypothesis is considered in terms of (i) 'functional' quietness; the contrasting levels of intrinsic metabolic activity in different cell types as a consequence of their specialized functions, (ii) inter-individual embryo/cell differences in metabolism and (iii) loss of quietness in response to environmental stress. Data are reviewed which indicate that gametes and early embryos function in vivo at a lower temperature than core body temperature, which could encourage the expression of a quiet metabolism. We call for research to determine the optimum temperature for mammalian gamete/embryo culture. The review concludes by examining the key role of reactive oxygen species, which can induce molecular damage, trigger a cellular stress response and lead to a loss of quietness.
Collapse
Affiliation(s)
- Henry J Leese
- Department of Biology (Area 3) and Hull York Medical School, University of York, Heslington, York YO10 5DD, UK.
| | | | | | | | | |
Collapse
|
244
|
Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril 2008; 90:473-83. [PMID: 18847602 DOI: 10.1016/j.fertnstert.2008.08.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze critically the reasons justifying the choice of two-step protocols requiring two media for the culture of human preimplantation embryos from the zygote to the blastocyst. DESIGN Literature review. RESULT(S) Two types of protocol are used for the culture of human preimplantation embryos from the zygote to the blastocyst, using either one medium (one-step protocol) or two media of different composition (two-step protocol). Two-step protocols are the most widely used, largely because all but one of the commercially available protocols are of this type. The reasons for the adoption of two-step protocols are described and critically analyzed. They are based on considerations of the functions of glucose, ethylenediaminetetraacetic acid (EDTA), glutamine, and amino acids that are included in the media. A reappraisal of the reasons for selecting two-step protocols is important because recent animal experiments and clinical observations have raised doubts as to whether the more complex, two-step protocols have any advantage over one-step protocols. The analyses show that all of conclusions reached should be considered equivocal. CONCLUSION(S) Clinical embryologists should evaluate the justification for selecting two-step protocols for the culture of human preimplantation embryos from the zygote to the blastocyst.
Collapse
Affiliation(s)
- John D Biggers
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
245
|
Mitchell M, Cashman KS, Gardner DK, Thompson JG, Lane M. Disruption of mitochondrial malate-aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Biol Reprod 2008; 80:295-301. [PMID: 18971426 DOI: 10.1095/biolreprod.108.069864] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The nutrient requirements and metabolic pathways used by the developing embryo transition from predominantly pyruvate during early cleavage stages to glucose at the blastocyst; however, the complexities involved in the regulation of metabolism at different developmental stages are not clear. The aims of this study were to examine the role of the malate-aspartate shuttle (MAS) in nutrient metabolism pathways in the developing mouse blastocyst and the consequences of impaired metabolism on embryo viability and fetal and placental growth. Eight-cell-stage mouse embryos were cultured in the presence of the MAS inhibitor amino-oxyacetate, with or without pyruvate as an energy substrate in the media. When the MAS was inhibited, the rate of glycolysis and lactate production was significantly elevated and glucose uptake reduced, relative to control cultured embryos in the presence of pyruvate. Despite these changes in embryo metabolism, this did not influence development to the blastocyst stage, but it did reduce the number of inner cell mass and trophectoderm cells. When these embryos were transferred to psuedopregnant females, inhibition of the MAS significantly reduced the proportion of embryos that implanted and developed into fetuses on Day 18 of pregnancy. Finally, fetal growth was reduced while placental weight was maintained, leading to a decreased fetal:placental weight ratio relative to control embryos. These results suggest that impaired metabolism of glucose in the blastocyst via the MAS alters the ability of the embryos to implant and form a pregnancy and leads to reduced fetal weight, likely via altered placental development and function.
Collapse
Affiliation(s)
- Megan Mitchell
- Research Centre for Reproductive Health, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | | | |
Collapse
|
246
|
Jin XL, Chandrakanthan V, Morgan HD, O'Neill C. Preimplantation embryo development in the mouse requires the latency of TRP53 expression, which is induced by a ligand-activated PI3 kinase/AKT/MDM2-mediated signaling pathway. Biol Reprod 2008; 80:286-94. [PMID: 18923161 DOI: 10.1095/biolreprod.108.070102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A universal response to cellular stress is the expression of transformation-related protein 53 (TRP53). This transcription factor reduces cell proliferation and/or survival and is classed as a tumour suppressor protein. Several stresses (including culture) cause increased TRP53 expression in blastocysts and their reduced long-term developmental potential. This study shows that culture from the zygote stage (but not the 2-cell stage) reduced the development of C57BL6 inbred (but not hybrid) strain mouse embryos. Reduced viability was TRP53 dependent, being partially reversed by a TRP53 inhibitor (Pifithrin-alpha). However, the presence of culture did not cause an increase in Trp53 mRNA levels (levels were reduced following culture, P < 0.001). Transformed mouse 3T3 cell double minute 2 (MDM2) causes the ubiquitination and degradation of TRP53. MDM2 activation is accompanied by phosphorylation of Ser-166, and this is commonly catalyzed by the phosphatidylinositol-3 kinase and RAC-alpha serine/threonine-protein kinase (AKT) signaling pathway. Paf is an autocrine embryotrophin that activates the phosphatidylinositol-3 kinase/AKT pathway. High levels of TRP53 expression occurred following the culture of zygotes lacking the Paf receptor (Ptafr(-/-)) and following inhibition of phosphatidylinositol-3 kinase or AKT. Inhibition of MDM2 caused a Trp53-dependent reduction in zygote development. Inbred strain embryos cultured from the zygote stage expressed less phosphorylated MDM2 than similar embryos collected from the uterus. The addition of Paf to the media caused increased phosphorylation of MDM2, and this was blocked by inhibitors of phosphatidylinositol-3 kinase and AKT. The study identifies trophic ligand signaling via the activation of phosphatidylinositol-3 kinase and AKT as a mechanism resulting in the activation of MDM2.
Collapse
Affiliation(s)
- X L Jin
- Human Reproduction Unit, Disciplines of Physiology and Medicine, Royal North Shore Hospital, University of Sydney, St Leonards, New South Wales 2065, Australia
| | | | | | | |
Collapse
|
247
|
Abstract
The accumulation of oxygen in the earth's atmosphere enabled metabolic pathways based on high-energy electron transfers that were capable of sustaining complex multicellular organisms to evolve. This advance came at a price, however, for the high reactivity of oxygen posed a major challenge as biological molecules became susceptible to oxidative damage, resulting in potential loss of function. Many extant physiological systems are therefore adapted, and homeostatically regulated, to supply sufficient oxygen to meet energy demands whilst also protecting cells, and mitochondria in particular, from excessive concentrations that could lead to oxidative damage. The invasive form of implantation displayed by the human conceptus presents particular challenges in this respect. During the first trimester, the conceptus develops in a low oxygen environment that favours organogenesis in the embryo, and cell proliferation and angiogenesis in the placenta. Later in pregnancy, higher oxygen concentrations are required to support the rapid growth of the fetus. This transition, which appears unique to the human placenta, must be negotiated safely for a successful pregnancy. Normally, onset of the maternal placental circulation is a progressive periphery-centre phenomenon, and is associated with extensive villous regression to form the chorion laeve. In cases of miscarriage, onset of the circulation is both precocious and disorganized, and excessive placental oxidative stress and villous regression undoubtedly contribute to loss of the pregnancy. Comparison of experimental and in vivo data indicates that fluctuations in placental oxygen concentration are a more powerful stimulus for the generation of oxidative stress than chronic hypoxia alone. Placental oxidative and endoplasmic reticulum stress appear to play key roles in the pathophysiology of complications of pregnancy, such as intrauterine growth restriction and preeclampsia, through their adverse impacts on placental function and growth. Establishing an inviolable maternal blood supply for the second and third trimesters is therefore one of the most crucial aspects of human placentation.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research, Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK.
| |
Collapse
|
248
|
Sturmey RG, Brison DR, Leese HJ. Symposium: innovative techniques in human embryo viability assessment. Assessing embryo viability by measurement of amino acid turnover. Reprod Biomed Online 2008; 17:486-96. [PMID: 18854101 DOI: 10.1016/s1472-6483(10)60234-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review assesses the ability of non-invasive 'amino acid profiling' to predict early embryo viability. The history of amino acid supplementation of embryo culture media and the role of amino acids in early embryo development are first considered and these are followed by a review of methods to quantify amino acid depletion and production by single embryos. Data on amino acid profiling of embryos from a number of species are then discussed. It is concluded that this technology has excellent potential to improve the selection of single embryos for transfer in clinical IVF.
Collapse
|
249
|
Sinclair KD, Lunn LA, Kwong WY, Wonnacott K, Linforth RST, Craigon J. Amino acid and fatty acid composition of follicular fluid as predictors of in-vitro embryo development. Reprod Biomed Online 2008; 16:859-68. [PMID: 18549697 DOI: 10.1016/s1472-6483(10)60153-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The value of using the amino acid and fatty acid composition of follicular fluid as predictors of embryo development was assessed in a bovine model of in-vitro maturation (IVM), IVF and blastocyst culture (IVC). A total of 445 cumulus-oocyte complexes (COC) aspirated from visually healthy follicles underwent IVM and IVF singly (n = 138) or in groups (n = 307). Of these COC, 349 cleaved (78%) following IVF and 112 went on to form blastocysts (32% of cleaved) following IVC. Culture method (singly or in groups) had no effect on development. In contrast to fatty acids, which had no predictive value, the amino acid composition of follicular fluid was associated with morphological assessments of COC quality and with post-fertilization development to the blastocyst stage. Principal component analysis identified two amino acids (i.e. alanine and glycine) that had the highest value for predicting early post-fertilization development. The predictive value of these two amino acids, in terms of the percentage of oocytes that cleaved following IVF, was greatest for COC with the poorest morphological grades but, with respect to blastocyst yields, was independent of morphological grade, and so may serve as a useful additional non-invasive measure of COC quality.
Collapse
Affiliation(s)
- K D Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK.
| | | | | | | | | | | |
Collapse
|
250
|
Lost in the zygote: the dilution of paternal mtDNA upon fertilization. Heredity (Edinb) 2008; 101:429-34. [DOI: 10.1038/hdy.2008.74] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|