201
|
Sakamoto N, Hoshino Y, Misaka T, Mizukami H, Suzuki S, Sugimoto K, Yamaki T, Kunii H, Nakazato K, Suzuki H, Saitoh SI, Takeishi Y. Serum tenascin-C level is associated with coronary plaque rupture in patients with acute coronary syndrome. Heart Vessels 2013; 29:165-70. [PMID: 23532307 DOI: 10.1007/s00380-013-0341-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
Abstract
Tenascin-C, a large oligometric glycoprotein of the extracellular matrix, increases the expression of matrix metalloproteinases that lead to plaque instability and rupture, resulting in acute coronary syndrome (ACS). We hypothesized that a high serum tenascin-C level is associated with plaque rupture in patients with ACS. Fifty-two consecutive ACS patients who underwent emergency percutaneous coronary intervention (PCI) and, as a control, 66 consecutive patients with stable angina pectoris (SAP) were enrolled in this study. Blood samples were obtained from the ascending aorta just prior to the PCI procedures. After coronary guide-wire crossing, intravascular ultrasonography (IVUS) was performed for assessment of plaque characterization. Based on the IVUS findings, ACS patients were assigned to two groups according to whether there was ruptured plaque (ruptured ACS group) or not (nonruptured ACS group). There were 23 patients in the ruptured group and 29 patients in the nonruptured group. Clinical characteristics and IVUS measurements did not differ between the two groups. Tenascin-C levels were significantly higher in the ruptured ACS group than in the SAP group, whereas there was no significant difference between the nonruptured ACS and SAP groups. Importantly, in the ruptured ACS group, tenascin-C levels were significantly higher than in the nonruptured ACS group (71.9 ± 34.9 vs 50.5 ± 20.5 ng/ml, P < 0.005). Our data demonstrate that tenascin-C level is associated with pathologic conditions in ACS, especially the presence of ruptured plaque.
Collapse
Affiliation(s)
- Nobuo Sakamoto
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Maqbool A, Hemmings KE, O'Regan DJ, Ball SG, Porter KE, Turner NA. Interleukin-1 has opposing effects on connective tissue growth factor and tenascin-C expression in human cardiac fibroblasts. Matrix Biol 2013; 32:208-14. [PMID: 23454256 DOI: 10.1016/j.matbio.2013.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/22/2022]
Abstract
Cardiac fibroblasts (CF) play a central role in the repair and remodeling of the heart following injury and are important regulators of inflammation and extracellular matrix (ECM) turnover. ECM-regulatory matricellular proteins are synthesized by several myocardial cell types including CF. We investigated the effects of pro-inflammatory cytokines on matricellular protein expression in cultured human CF. cDNA array analysis of matricellular proteins revealed that interleukin-1α (IL-1α, 10ng/ml, 6h) down-regulated connective tissue growth factor (CTGF/CCN2) mRNA by 80% and up-regulated tenascin-C (TNC) mRNA levels by 10-fold in human CF, without affecting expression of thrombospondins 1-3, osteonectin or osteopontin. Western blotting confirmed these changes at the protein level. In contrast, tumor necrosis factor α (TNFα) did not modulate CCN2 expression and had only a modest stimulatory effect on TNC levels. Signaling pathway inhibitor studies suggested an important role for the p38 MAPK pathway in suppressing CCN2 expression in response to IL-1α. In contrast, multiple signaling pathways (p38, JNK, PI3K/Akt and NFκB) contributed to IL-1α-induced TNC expression. In conclusion, IL-1α reduced CCN2 expression and increased TNC expression in human CF. These observations are of potential value for understanding how inflammation and ECM regulation are linked at the level of the CF.
Collapse
Affiliation(s)
- Azhar Maqbool
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics (LIGHT), University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
203
|
Klingberg F, Hinz B, White ES. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 2013; 229:298-309. [PMID: 22996908 DOI: 10.1002/path.4104] [Citation(s) in RCA: 559] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/09/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022]
Abstract
Myofibroblasts, and the extracellular matrix (ECM) in which they reside, are critical components of wound healing and fibrosis. The ECM, traditionally viewed as the structural elements within which cells reside, is actually a functional tissue whose components possess not only scaffolding characteristics, but also growth factor, mitogenic, and other bioactive properties. Although it has been suggested that tissue fibrosis simply reflects an 'exuberant' wound-healing response, examination of the ECM and the roles of myofibroblasts during fibrogenesis instead suggest that the organism may be attempting to recapitulate developmental programmes designed to regenerate functional tissue. Evidence of this is provided by the temporospatial re-emergence of embryonic ECM proteins by fibroblasts and myofibroblasts that induce cellular programmatic responses intended to produce a functional tissue. In the setting of wound healing (or physiological fibrosis), this occurs in a highly regulated and exquisitely choreographed fashion which results in cessation of haemorrhage, restoration of barrier integrity, and re-establishment of tissue function. However, pathological tissue fibrosis, which oftentimes causes organ dysfunction and significant morbidity or mortality, likely results from dysregulation of normal wound-healing processes or abnormalities of the process itself. This review will focus on the myofibroblast ECM and its role in both physiological and pathological fibrosis, and will discuss the potential for therapeutically targeting ECM proteins for treatment of fibrotic disorders.
Collapse
Affiliation(s)
- Franco Klingberg
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5S 3E2, Canada
| | | | | |
Collapse
|
204
|
Abstract
The disappearance of melanocytes because of defective adhesion is one of the accepted theories to explain vitiligo. Tenascin-C is a large, extracellular matrix glycoprotein that is thought to inhibit adhesion of melanocytes to fibronectin. The current study aimed to evaluate the pattern of tenascin-C expression in vitiligenous skin compared with normal pigmented skin by means of immunohistochemistry. The study was carried out on skin biopsies from lesional and perilesional skin of 30 patients with vitiligo and on normal skin of 10 healthy volunteers. Several histopathologic changes were observed in vitiliginous skin such as keratinocyte vacuolization, a thickened basement membrane, and dermal inflammatory changes. Tenascin-C was expressed in keratinocytes of the basal epidermal layer of normal skin biopsies at a mild intensity but it did not stain the dermis, whereas vitiligenous skin showed tenascin-C expression in most cases (93.3% ), in the papillary dermis, epidermis, and in both. Diffuse epidermal expression of tenascin-C correlated with more loss of pigment and continuous staining of tenascin-C in the papillary dermis correlated with progressive forms of vitiligo. Intense tenascin-C expression was associated with a more progressive course of the disease assessed by the vitiligo disease activity score. From this study, tenascin-C is highly expressed in the dermis, epidermis, and both of vitiligo as a secondary event for the disease. Keratinocyte is a source of tenascin-C in vitiligo, and diffuse epidermal expression of tenascin-C may induce more loss of melanocytes and melanin pigment. Dermal expression of tenascin-C in the vitiligenous lesion may be linked to the disease more than epidermal expression, because this pattern is only seen in a vitiligenous lesion and it is completely absent in normal and perilesional skin.
Collapse
|
205
|
Ruggiero S, Cosgarea R, Potempa J, Potempa B, Eick S, Chiquet M. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C. Biochim Biophys Acta Mol Basis Dis 2013; 1832:517-26. [PMID: 23313574 DOI: 10.1016/j.bbadis.2013.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/18/2012] [Accepted: 01/02/2013] [Indexed: 01/06/2023]
Abstract
Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease.
Collapse
Affiliation(s)
- Sabrina Ruggiero
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
206
|
Maeda H, Wada N, Tomokiyo A, Monnouchi S, Akamine A. Prospective potency of TGF-β1 on maintenance and regeneration of periodontal tissue. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:283-367. [PMID: 23809439 DOI: 10.1016/b978-0-12-407696-9.00006-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontal ligament (PDL) tissue, central in the periodontium, plays crucial roles in sustaining tooth in the bone socket. Irreparable damages of this tissue provoke tooth loss, causing a decreased quality of life. The question arises as to how PDL tissue is maintained or how the lost PDL tissue can be regenerated. Stem cells included in PDL tissue (PDLSCs) are widely accepted to have the potential to maintain or regenerate the periodontium, but PDLSCs are very few in number. In recent studies, undifferentiated clonal human PDL cell lines were developed to elucidate the applicable potentials of PDLSCs for the periodontal regenerative medicine based on cell-based tissue engineering. In addition, it has been suggested that transforming growth factor-beta 1 is an eligible factor for the maintenance and regeneration of PDL tissue.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
207
|
Zhao G, Rodriguez BL. Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int J Nanomedicine 2012; 8:61-71. [PMID: 23293520 PMCID: PMC3534304 DOI: 10.2147/ijn.s37859] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Liposomes are biodegradable and can be used to deliver drugs at a much higher concentration in tumor tissues than in normal tissues. Both passive and active drug delivery by liposomal nanoparticles can significantly reduce the toxic side effects of anticancer drugs and enhance the therapeutic efficacy of the drugs delivered. Active liposomal targeting to tumors is achieved by recognizing specific tumor receptors through tumor-specific ligands or antibodies coupled onto the surface of the liposomes, or by stimulus-sensitive drug carriers such as acid-triggered release or enzyme-triggered drug release. Tumors are often composed of tumor cells and nontumor cells, which include endothelial cells, pericytes, fibroblasts, stromal, mesenchymal cells, innate, and adaptive immune cells. These nontumor cells thus form the tumor microenvironment, which could be targeted and modified so that it is unfavorable for tumor cells to grow. In this review, we briefly summarized articles that had taken advantage of liposomal nanoparticles as a carrier to deliver anticancer drugs to the tumor microenvironment, and how they overcame obstacles such as nonspecific uptake, interaction with components in blood, and toxicity. Special attention is devoted to the liposomal targeting of anticancer drugs to the endothelium of tumor neovasculature, tumor associated macrophages, fibroblasts, and pericytes within the tumor microenvironment.
Collapse
Affiliation(s)
- Gang Zhao
- Institute of Materia Medica, Shandong Academy of Medical Science, Shandong, China
| | | |
Collapse
|
208
|
Häkkinen L, Larjava H, Koivisto L. Granulation tissue formation and remodeling. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/etp.12008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
209
|
Extracellular Matrix is an Important Component of Limbal Stem Cell Niche. J Funct Biomater 2012; 3:879-94. [PMID: 24955751 PMCID: PMC4030928 DOI: 10.3390/jfb3040879] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 02/07/2023] Open
Abstract
Extracellular matrix plays an important role in stem cell niche which maintains the undifferentiated stem cell phenotype. Human corneal epithelial stem cells are presumed to reside mainly at the limbal basal epithelium. Efforts have been made to characterize different components of the extracellular matrix that are preferentially expressed at the limbus. Mounting evidence from experimental data suggest that these components are part of the stem cell niche and play a role in the homeostasis of limbal stem cells. The extracellular matrix provides a mechanical and structural support as well as regulates cellular functions such as adhesion, migration, proliferation, self-renewal and differentiation. Optimization of the extracellular matrix components might be able to recreate an ex vivo stem cell niche to expand limbal stem cells.
Collapse
|
210
|
Piccinini AM, Midwood KS. Endogenous control of immunity against infection: tenascin-C regulates TLR4-mediated inflammation via microRNA-155. Cell Rep 2012; 2:914-26. [PMID: 23084751 PMCID: PMC3607221 DOI: 10.1016/j.celrep.2012.09.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/30/2012] [Accepted: 09/07/2012] [Indexed: 01/08/2023] Open
Abstract
Endogenous molecules generated upon pathogen invasion or tissue damage serve as danger signals that activate host defense; however, their precise immunological role remains unclear. Tenascin-C is an extracellular matrix glycoprotein that is specifically induced upon injury and infection. Here, we show that its expression is required to generate an effective immune response to bacterial lipopolysaccharide (LPS) during experimental sepsis in vivo. Tenascin-C enables macrophage translation of proinflammatory cytokines upon LPS activation of toll-like receptor 4 (TLR4) and suppresses the synthesis of anti-inflammatory cytokines. It mediates posttranscriptional control of a specific subset of inflammatory mediators via induction of the microRNA miR-155. Thus, tenascin-C plays a key role in regulating the inflammatory axis during pathogenic activation of TLR signaling.
Collapse
Affiliation(s)
- Anna M Piccinini
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, 65 Aspenlea Road, London W6 8LH, UK
| | | |
Collapse
|
211
|
Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Rotellar F, Valentí V, Silva C, Gil MJ, Salvador J, Frühbeck G. Increased tenascin C and Toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity. J Clin Endocrinol Metab 2012; 97:E1880-9. [PMID: 22851489 PMCID: PMC3462948 DOI: 10.1210/jc.2012-1670] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Obesity is associated with an altered inflammatory and extracellular matrix (ECM) profile. Tenascin C (TNC) is an ECM glycoprotein with proinflammatory effects. OBJECTIVE We aimed to explore the expression levels of TNC in adipose tissue analyzing the contribution of adipocytes and stromovascular fraction cells (SVFC) as well as its impact on inflammation and ECM regulation. We also analyzed the effect of the stimulation with TNF-α and lipopolysaccharide (LPS) on both SVFC and adipocytes. PATIENTS AND METHODS Samples obtained from 75 subjects were used in the study. Expression levels of TNC, TLR4, MMP2, and MMP9 were analyzed in visceral adipose tissue (VAT) as well as in both adipocytes and SVFC. In addition, Tnc expression was measured in two mice models of obesity. RESULTS We show, for the first time, that VAT expression levels of TNC are increased in normoglycemic and type 2 diabetic obese patients (P<0.01) as well as in obese patients with nonalcoholic steatohepatitis (P<0.01). Furthermore, expression levels of Tnc in epididymal adipose tissue from two different mice models of obesity were significantly increased (P<0.01). TNC and TLR4 were mainly expressed by SVFC, and its expression was significantly enhanced (P<0.01) by TNF-α treatment. LPS treatment also increased mRNA levels of TNC. Moreover, the addition of exogenous TNC induced (P<0.05) TLR4 and CCL2 mRNA expression in human adipocyte cultures. CONCLUSIONS These findings indicate that TNC is involved in the etiopathology of obesity via visceral adipose tissue inflammation representing a link with ECM remodeling.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Department of Surgery, Clínica Universidad de Navarra, Avenuda Pío XII, 36, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
d'Amaro R, Scheidegger R, Blumer S, Pazera P, Katsaros C, Graf D, Chiquet M. Putative functions of extracellular matrix glycoproteins in secondary palate morphogenesis. Front Physiol 2012; 3:377. [PMID: 23055981 PMCID: PMC3457052 DOI: 10.3389/fphys.2012.00377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/04/2012] [Indexed: 11/17/2022] Open
Abstract
Cleft palate is a common birth defect in humans. Elevation and fusion of paired palatal shelves are coordinated by growth and transcription factors, and mutations in these can cause malformations. Among the effector genes for growth factor signaling are extracellular matrix (ECM) glycoproteins. These provide substrates for cell adhesion (e.g., fibronectin, tenascins), but also regulate growth factor availability (e.g., fibrillins). Cleft palate in Bmp7 null mouse embryos is caused by a delay in palatal shelf elevation. In contrast, palatal shelves of Tgf-β3 knockout mice elevate normally, but a cleft develops due to their failure to fuse. However, nothing is known about a possible functional interaction between specific ECM proteins and Tgf-β/Bmp family members in palatogenesis. To start addressing this question, we studied the mRNA and protein distribution of relevant ECM components during secondary palate development, and compared it to growth factor expression in wildtypewild type and mutant mice. We found that fibrillin-2 (but not fibrillin-1) mRNA appeared in the mesenchyme of elevated palatal shelves adjacent to the midline epithelial cells, which were positive for Tgf-β3 mRNA. Moreover, midline epithelial cells started expressing fibronectin upon contact of the two palatal shelves. These findings support the hypothesis that fibrillin-2 and fibronectin are involved in regulating the activity of Tgf-β3 at the fusing midline. In addition, we observed that tenascin-W (but not tenascin-C) was misexpressed in palatal shelves of Bmp7-deficient mouse embryos. In contrast to tenascin-C, tenascin-W secretion was strongly induced by Bmp7 in embryonic cranial fibroblasts in vitro. These results are consistent with a putative function for tenascin-W as a target of Bmp7 signaling during palate elevation. Our results indicate that distinct ECM proteins are important for morphogenesis of the secondary palate, both as downstream effectors and as regulators of Tgf-β/Bmp activity.
Collapse
Affiliation(s)
- Rocca d'Amaro
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
213
|
Brellier F, Martina E, Degen M, Heuzé-Vourc'h N, Petit A, Kryza T, Courty Y, Terracciano L, Ruiz C, Chiquet-Ehrismann R. Tenascin-W is a better cancer biomarker than tenascin-C for most human solid tumors. BMC Clin Pathol 2012; 12:14. [PMID: 22947174 PMCID: PMC3444373 DOI: 10.1186/1472-6890-12-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022] Open
Abstract
Background Tenascins are large glycoproteins found in the extracellular matrix of many embryonic and adult tissues. Tenascin-C is a well-studied biomarker known for its high overexpression in the stroma of most solid cancers. Tenascin-W, the least studied member of the family, is highly expressed in the stroma of colon and breast tumors and in gliomas, but not in the corresponding normal tissues. Other solid tumors have not been analyzed. The present study was undertaken to determine whether tenascin-W could serve as a cancer-specific extracellular matrix protein in a broad range of solid tumors. Methods We analyzed the expression of tenascin-W and tenascin-C by immunoblotting and by immunohistochemistry on multiple frozen tissue microarrays of carcinomas of the pancreas, kidney and lung as well as melanomas and compared them to healthy tissues. Results From all healthy adult organs tested, only liver and spleen showed detectable levels of tenascin-W, suggesting that tenascin-W is absent from most human adult organs under normal, non-pathological conditions. In contrast, tenascin-W was detectable in the majority of melanomas and their metastases, as well as in pancreas, kidney, and lung carcinomas. Comparing lung tumor samples and matching control tissues for each patient revealed a clear overexpression of tenascin-W in tumor tissues. Although the number of samples examined is too small to draw statistically significant conclusions, there seems to be a tendency for increased tenascin-W expression in higher grade tumors. Interestingly, in most tumor types, tenascin-W is also expressed in close proximity to blood vessels, as shown by CD31 co-staining of the samples. Conclusions The present study extends the tumor biomarker potential of tenascin-W to a broad range of solid tumors and shows its accessibility from the blood stream for potential therapeutic strategies.
Collapse
Affiliation(s)
- Florence Brellier
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | - Enrico Martina
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland.,Present address: Department of Dermatology, Brigham and Women's Hospital, Harvard Skin Disease Research Center, Harvard Medical School, Boston, MA, USA
| | - Martin Degen
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland.,Present address: Department of Dermatology, Brigham and Women's Hospital, Harvard Skin Disease Research Center, Harvard Medical School, Boston, MA, USA
| | - Nathalie Heuzé-Vourc'h
- Université François Rabelais, EA 6305, F-37032, Tours, France.,Centre d'Etude des Pathologies Respiratoires, UMR 1100/EA6305, F-37032, Tours, France
| | - Agnès Petit
- Centre d'Etude des Pathologies Respiratoires, UMR 1100/EA6305, F-37032, Tours, France
| | - Thomas Kryza
- Université François Rabelais, EA 6305, F-37032, Tours, France.,Centre d'Etude des Pathologies Respiratoires, UMR 1100/EA6305, F-37032, Tours, France
| | - Yves Courty
- Centre d'Etude des Pathologies Respiratoires, UMR 1100/EA6305, F-37032, Tours, France
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Christian Ruiz
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
214
|
Hayashi R, Miura S, Saito Y, Osada S, Iyoda T, Fukai F, Kodama H. The cell adhesion and proliferation activities of a peptide derived from human tenascin-C are dependent on two Ile residues. Bioorg Med Chem 2012; 20:4608-13. [DOI: 10.1016/j.bmc.2012.06.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 11/26/2022]
|
215
|
Yang PJ, Levenston ME, Temenoff JS. Modulation of mesenchymal stem cell shape in enzyme-sensitive hydrogels is decoupled from upregulation of fibroblast markers under cyclic tension. Tissue Eng Part A 2012; 18:2365-75. [PMID: 22703182 DOI: 10.1089/ten.tea.2011.0727] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Our laboratory has developed a tensile culture bioreactor as a system for understanding mesenchymal stem cell (MSC) differentiation toward a tendon/ligament fibroblast phenotype in response to cyclic tensile strain. In this study, we investigated whether increased degradability of the biomaterial carrier would induce changes in MSC morphology and subsequent upregulation of tendon/fibroblast markers under tensile strain. Degradability of a synthetic poly(ethylene glycol) hydrogel was introduced by incorporating either fast- or slow-degrading matrix metalloproteinase (MMP)-sensitive peptide sequences into the polymer backbone. Although a decline in cellularity was observed over culture in all sample groups, at 14 days, MSCs were significantly more spread in fast-cleaving gels (84%±8%) compared with slow-cleaving gels (59%±4%). Cyclic tensile strain upregulated tendon/ligament fibroblast-related genes, such as collagen III (3.8-fold vs. 2.1-fold in fast-degrading gels) and tenascin-C (2.5-fold vs. 1.7-fold in fast-degrading gels). However, few differences were observed in gene expression between different gel types. Immunostaining demonstrated increased collagen III deposition in dynamically strained gels at day 14, as well as increased collagen I and tenascin-C deposition at day 14 in all groups. Results suggest that cell spreading may not be a major factor controlling MSC response to cyclic strain in this system over 14 days. However, these findings provide key parameters for the design of future biomaterial carriers and strain regimens to prime stem cells to a tendon/ligament phenotype prior to release and use in vivo.
Collapse
Affiliation(s)
- Peter J Yang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
216
|
Abstract
The term matricellular proteins describes a family of structurally unrelated extracellular macromolecules that, unlike structural matrix proteins, do not play a primary role in tissue architecture, but are induced following injury and modulate cell-cell and cell-matrix interactions. When released to the matrix, matricellular proteins associate with growth factors, cytokines, and other bioactive effectors and bind to cell surface receptors transducing signaling cascades. Matricellular proteins are upregulated in the injured and remodeling heart and play an important role in regulation of inflammatory, reparative, fibrotic and angiogenic pathways. Thrombospondin (TSP)-1, -2, and -4 as well as tenascin-C and -X secreted protein acidic and rich in cysteine (SPARC), osteopontin, periostin, and members of the CCN family (including CCN1 and CCN2/connective tissue growth factor) are involved in a variety of cardiac pathophysiological conditions, including myocardial infarction, cardiac hypertrophy and fibrosis, aging-associated myocardial remodeling, myocarditis, diabetic cardiomyopathy, and valvular disease. This review discusses the properties and characteristics of the matricellular proteins and presents our current knowledge on their role in cardiac adaptation and disease. Understanding the role of matricellular proteins in myocardial pathophysiology and identification of the functional domains responsible for their actions may lead to design of peptides with therapeutic potential for patients with heart disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer G46B, Bronx, NY 10461, USA.
| |
Collapse
|
217
|
Elevated Tenascin-C Levels in Bronchoalveolar Lavage Fluid of Patients with Sarcoidosis. Lung 2012; 190:537-43. [DOI: 10.1007/s00408-012-9400-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/13/2012] [Indexed: 12/29/2022]
|
218
|
Liu R, He Y, Li B, Liu J, Ren Y, Han W, Wang X, Zhang L. Tenascin-C produced by oxidized LDL-stimulated macrophages increases foam cell formation through Toll-like receptor-4. Mol Cells 2012; 34:35-41. [PMID: 22699754 PMCID: PMC3887780 DOI: 10.1007/s10059-012-0054-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/02/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease in which both innate and adaptive immunity are involved. Although there have been major advances in the involvement of toll-like receptor 4 (TLR4) and CD36 in the initiation and development of this disease, detailed mechanisms remain unknown. Here, we show that tenascin-C (TN-C) can stimulate foam cell formation and this can be inhibited by a TLR4-blocking antibody or CD36 gene silencing. Our results identify TN-C-TLR4 activation as a common molecular mechanism in oxLDL-stimulated foam cell formation and atherosclerosis. In addition, CD36 is the major scavenger receptor responsible for the TN-C-mediated foam cell formation. Taken together, we have identified that TNC produced by oxLDL-stimulated macrophages increases foam cell formation through TLR4 and scavenger receptor CD36.
Collapse
Affiliation(s)
- Rui Liu
- Department of Geriatrics, Tangdu hospital, The Fourth Military Medical University, Xi’an,
P.R. China
| | - Yong He
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an,
P.R. China
| | - Bo Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an,
P.R. China
| | - Jun Liu
- Department of Geriatrics, Tangdu hospital, The Fourth Military Medical University, Xi’an,
P.R. China
| | - Yingang Ren
- Department of Geriatrics, Tangdu hospital, The Fourth Military Medical University, Xi’an,
P.R. China
| | - Wei Han
- Department of Geriatrics, Tangdu hospital, The Fourth Military Medical University, Xi’an,
P.R. China
| | - Xing Wang
- Department of Geriatrics, Tangdu hospital, The Fourth Military Medical University, Xi’an,
P.R. China
| | - Lihua Zhang
- Department of Geriatrics, Tangdu hospital, The Fourth Military Medical University, Xi’an,
P.R. China
| |
Collapse
|
219
|
Wiese S, Karus M, Faissner A. Astrocytes as a source for extracellular matrix molecules and cytokines. Front Pharmacol 2012; 3:120. [PMID: 22740833 PMCID: PMC3382726 DOI: 10.3389/fphar.2012.00120] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/06/2012] [Indexed: 12/19/2022] Open
Abstract
Research of the past 25 years has shown that astrocytes do more than participating and building up the blood-brain barrier and detoxify the active synapse by reuptake of neurotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a consequence, respond to stimuli. Within the tripartite synapse, the astrocytes owe more and more importance. Besides the functional aspects the differentiation of astrocytes has gained a more intensive focus. Deeper knowledge of the differentiation processes during development of the central nervous system might help explaining and even help treating neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis, Parkinsons disease, and psychiatric disorders in which astrocytes have been shown to play a role. Specific differentiation of neural stem cells toward the astroglial lineage is performed as a multi-step process. Astrocytes and oligodendrocytes develop from a multipotent stem cell that prior to this has produced primarily neuronal precursor cells. This switch toward the more astroglial differentiation is regulated by a change in receptor composition on the cell surface and responsiveness to Fibroblast growth factor and Epidermal growth factor (EGF). The glial precursor cell is driven into the astroglial direction by signaling molecules like Ciliary neurotrophic factor, Bone Morphogenetic Proteins, and EGF. However, the early astrocytes influence their environment not only by releasing and responding to diverse soluble factors but also express a wide range of extracellular matrix (ECM) molecules, in particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been shown to participate in glial development. In this regard, especially the matrix protein Tenascin C (Tnc) proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development. Nevertheless, ECM molecules expressed by reactive astrocytes are also known to act mostly in an inhibitory fashion under pathophysiological conditions. Thus, we further summarize resent data concerning the role of chondroitin sulfate proteoglycans and Tnc under pathological conditions.
Collapse
Affiliation(s)
- Stefan Wiese
- Group for Molecular Cell Biology, Department for Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum Bochum, Germany
| | | | | |
Collapse
|
220
|
Tenascin-C and its functions in neuronal plasticity. Int J Biochem Cell Biol 2012; 44:825-9. [DOI: 10.1016/j.biocel.2012.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 01/29/2023]
|
221
|
Davis JT, Wen Q, Janmey PA, Otteson DC, Foster WJ. Muller cell expression of genes implicated in proliferative vitreoretinopathy is influenced by substrate elastic modulus. Invest Ophthalmol Vis Sci 2012; 53:3014-9. [PMID: 22447866 DOI: 10.1167/iovs.11-8450] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Matrix stiffness is recognized increasingly as a significant factor in cell and tissue function. To understand better the mechanosensitivity of Müller cells and its association with vitreoretinal disorders, we examined morphology, propagation, and expression of genes in Müller cells that were cultured on substrates of varying elastic moduli. METHODS A conditionally immortalized mouse Müller cell line was cultured on laminin-coated polyacrylamide substrates with calibrated Young's moduli. Glass was used as a control. Phase contrast, fluorescence, and atomic force microscopy were used to study cell morphology and propagation. Expression of extracellular matrix (ECM) genes was analyzed using quantitative reverse-transcription PCR. RESULTS The adherent area, stiffness, and propagation of Müller cells all are affected by matrix stiffness, but to different extents and with different ranges of sensitivity. Of 85 ECM genes tested 11 showed a continuous >4-fold increase or decrease in mRNA expression as a function of the substrate elastic modulus. The changes were statistically significant in four genes: connective tissue growth factor (Ctgf, P = 0.04), tenascin C (Tnc, P = 0.035), Collagen Iα1 (Col1a1, P = 0.0001), and Collagen IVα3 (Col4a3, P = 0.05), with all showing increased expression on softer substrates. CONCLUSIONS There are significant changes in morphology, cytoskeletal integrity, and gene regulation in Müller cells as a function of the stiffness of the substrate. Changes in local tissue elastic modulus may have a role in vitreoretinal disorders. These findings also may have implications for strategies for improved integration of retinal prosthetics, and for stem cell therapies, particularly targeting the transcriptional regulators YAP and TAZ.
Collapse
Affiliation(s)
- Joshua T Davis
- Department of Physics, The University of Houston, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
222
|
Oliveira DV, Silva TS, Cordeiro OD, Cavaco SI, Simes DC. Identification of proteins with potential osteogenic activity present in the water-soluble matrix proteins from Crassostrea gigas nacre using a proteomic approach. ScientificWorldJournal 2012; 2012:765909. [PMID: 22666151 PMCID: PMC3361287 DOI: 10.1100/2012/765909] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/30/2011] [Indexed: 01/22/2023] Open
Abstract
Nacre, when implanted in vivo in bones of dogs, sheep, mice, and humans, induces a biological response that includes integration and osteogenic activity on the host tissue that seems to be activated by a set of proteins present in the nacre water-soluble matrix (WSM). We describe here an experimental approach that can accurately identify the proteins present in the WSM of shell mollusk nacre. Four proteins (three gigasin-2 isoforms and a cystatin A2) were for the first time identified in WSM of Crassostrea gigas nacre using 2DE and LC-MS/MS for protein identification. These proteins are thought to be involved in bone remodeling processes and could be responsible for the biocompatibility shown between bone and nacre grafts. These results represent a contribution to the study of shell biomineralization process and opens new perspectives for the development of new nacre biomaterials for orthopedic applications.
Collapse
Affiliation(s)
- Daniel V Oliveira
- Center of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | |
Collapse
|
223
|
Garwood J, Theocharidis U, Calco V, Dobbertin A, Faissner A. Existence of tenascin-C isoforms in rat that contain the alternatively spliced AD1 domain are developmentally regulated during hippocampal development. Cell Mol Neurobiol 2012; 32:279-87. [PMID: 21968644 PMCID: PMC11498625 DOI: 10.1007/s10571-011-9759-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Tenascin-C (TN-C) is a multimodular glycoprotein of the extracellular matrix which is important for the development of the nervous system and has a range of different functions which are mediated by the different protein domains present. TN-C contains eight constitutive fibronectin type III (FNIII) domains and a region of alternatively spliced FNIII domains. In the mouse and chick, six of these domains have been described and characterized, whereas in human there are nine of them. In this report, we show that seven alternatively spliced FNIII domains exist in rat and describe the differential expression pattern of the additional domain AD1 during embryonic and postnatal rat brain development. The AD1 domain of rat is homologous to the ones described in human and chick proteins but does not exist in mouse. Its expression can be located to the developing rat hippocampus and the lining of the lateral ventricle, regions where the TN-C protein may affect the behavior of stem and progenitor cells. During hippocampal development AD1 and the other alternatively spliced domains are differentially expressed as shown by RT-PCRs, immunocytochemistry and in situ hybridizations.
Collapse
Affiliation(s)
- J. Garwood
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University, NDEF 05/593, Universitätsstraße 150, 44780 Bochum, Germany
| | - U. Theocharidis
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University, NDEF 05/593, Universitätsstraße 150, 44780 Bochum, Germany
| | - V. Calco
- Département Neurotransmission et Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Centre National de la Recherche Scientifique et Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - A. Dobbertin
- Université Paris Descartes, INSERM U686, Centre universitaire des Saints-Pères, 75006 Paris, France
| | - A. Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University, NDEF 05/593, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
224
|
Halter M, Sisan DR, Chalfoun J, Stottrup BL, Cardone A, Dima AA, Tona A, Plant AL, Elliott JT. Cell cycle dependent TN-C promoter activity determined by live cell imaging. Cytometry A 2012; 79:192-202. [PMID: 22045641 DOI: 10.1002/cyto.a.21028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix protein tenascin-C plays a critical role in development, wound healing, and cancer progression, but how it is controlled and how it exerts its physiological responses remain unclear. By quantifying the behavior of live cells with phase contrast and fluorescence microscopy, the dynamic regulation of TN-C promoter activity is examined. We employ an NIH 3T3 cell line stably transfected with the TN-C promoter ligated to the gene sequence for destabilized green fluorescent protein (GFP). Fully automated image analysis routines, validated by comparison with data derived from manual segmentation and tracking of single cells, are used to quantify changes in the cellular GFP in hundreds of individual cells throughout their cell cycle during live cell imaging experiments lasting 62 h. We find that individual cells vary substantially in their expression patterns over the cell cycle, but that on average TN-C promoter activity increases during the last 40% of the cell cycle. We also find that the increase in promoter activity is proportional to the activity earlier in the cell cycle. This work illustrates the application of live cell microscopy and automated image analysis of a promoter-driven GFP reporter cell line to identify subtle gene regulatory mechanisms that are difficult to uncover using population averaged measurements.
Collapse
Affiliation(s)
- Michael Halter
- Cell Systems Science Group/Biochemical Science Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Shivshankar P, Brampton C, Miyasato S, Kasper M, Thannickal VJ, Le Saux CJ. Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice. Am J Respir Cell Mol Biol 2012; 47:28-36. [PMID: 22362388 DOI: 10.1165/rcmb.2011-0349oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Idiopathic pulmonary fibrosis is associated with a decreased expression of caveolin-1 (cav-1), yet its role remains unclear. To investigate the role of cav-1, we induced pulmonary fibrosis in wild-type (WT) and cav-1-deficient (cav-1(-/-)) mice using intratracheal instillation of bleomycin. Contrary to expectations, significantly less collagen deposition was measured in tissue from cav-1(-/-) mice than in their WT counterparts, consistent with reduced mRNA expression of procollagen1a2 and procollagen3a1. Moreover, cav-1(-/-) mice demonstrated 77% less α-smooth muscle actin staining, suggesting reduced mesenchymal cell activation. Levels of pulmonary injury, assessed by tenascin-C mRNA expression and CD44v10 detection, were significantly increased at Day 21 after injury in WT mice, an effect significantly attenuated in cav-1(-/-) mice. The apparent protective effect against bleomycin-induced fibrosis in cav-1(-/-) mice was attributed to reduce cellular senescence and apoptosis in cav-1(-/-) epithelial cells during the early phase of lung injury. Reduced matrix metalloproteinase (MMP)-2 and MMP-9 expressions indicated a low profile of senescence-associated secretory phenotype (SASP) in the bleomycin-injured cav-1(-/-) mice. However, IL-6 and macrophage inflammatory protein 2 were increased in WT and cav-1(-/-) mice after bleomycin challenge, suggesting that bleomycin-induced inflammatory response substantiated the SASP pool. Thus, loss of cav-1 attenuates early injury response to bleomycin by limiting stress-induced cellular senescence/apoptosis in epithelial cells. In contrast, decreased cav-1 expression promotes fibroblast activation and collagen deposition, effects that may be relevant in later stages of reparative response. Hence, therapeutic strategies to modulate the expression of cav-1 should take into account cell-specific effects in the regenerative responses of the lung epithelium to injury.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Department of Medicine, Division of Cardiology/Pulmonary diseases, University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | | | | | | | |
Collapse
|
226
|
Burgess JK, Weckmann M. Matrikines and the lungs. Pharmacol Ther 2012; 134:317-37. [PMID: 22366287 DOI: 10.1016/j.pharmthera.2012.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 01/09/2023]
Abstract
The extracellular matrix is a complex network of fibrous and nonfibrous molecules that not only provide structure to the lung but also interact with and regulate the behaviour of the cells which it surrounds. Recently it has been recognised that components of the extracellular matrix proteins are released, often through the action of endogenous proteases, and these fragments are termed matrikines. Matrikines have biological activities, independent of their role within the extracellular matrix structure, which may play important roles in the lung in health and disease pathology. Integrins are the primary cell surface receptors, characterised to date, which are used by the matrikines to exert their effects on cells. However, evidence is emerging for the need for co-factors and other receptors for the matrikines to exert their effects on cells. The potential for matrikines, and peptides derived from these extracellular matrix protein fragments, as therapeutic agents has recently been recognised. The natural role of these matrikines (including inhibitors of angiogenesis and possibly inflammation) make them ideal targets to mimic as therapies. A number of these peptides have been taken forward into clinical trials. The focus of this review will be to summarise our current understanding of the role, and potential for highly relevant actions, of matrikines in lung health and disease.
Collapse
Affiliation(s)
- Janette K Burgess
- Cell Biology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
227
|
Wang L, Wang W, Shah PK, Song L, Yang M, Sharifi BG. Deletion of tenascin-C gene exacerbates atherosclerosis and induces intraplaque hemorrhage in Apo-E-deficient mice. Cardiovasc Pathol 2012; 21:398-413. [PMID: 22300502 DOI: 10.1016/j.carpath.2011.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 12/20/2022] Open
Abstract
AIMS Tenascin-C (TNC), a matricellular protein, is up-regulated in atherosclerotic plaques. We investigated whether the deletion of TNC gene affects the development of atherosclerosis in a murine model. METHODS TNC-/-/apo E-/- mice were generated and used for atherosclerosis studies. We compared these results to those observed in control groups of apo E-/- mice. RESULTS The en face analysis of aortic area showed that the mean aortic lesion area of the double knockout (KO) mice was significantly higher than that of control mice at different times after feeding of atherogenic diet; the accumulation of lesional macrophages and lipids was significantly higher. Analysis of cell adhesion molecules revealed that vascular cell adhesion molecule-1 (VCAM-1), but not intercellular adhesion molecule-1, was up-regulated 1 week after feeding of atherogenic diet in the double KO mouse as compared to apo E-/- mouse. Cell culture studies revealed that the expression of VCAM-1 in endothelial cells isolated from the double KO mouse is more sensitive to the tumor necrosis factor α stimulation than the cells isolated from apo E-/- mice. Cell adhesion studies showed that the adherence of RAW monocytic cells to the endothelial cells was significantly enhanced in the cultured endothelial cells from the TNC gene-deleted cells. Following the prolonged feeding of an atherogenic diet (28-30 weeks), the aortic and carotid atherosclerotic lesions frequently demonstrated large grossly visible areas of intraplaque hemorrhage in the double KO mice compared to control. CONCLUSIONS These data unveil a protective role for TNC in atherosclerosis and suggest that TNC signaling may have the potential to reduce atherosclerosis, in part by modulating VCAM-1 expression.
Collapse
Affiliation(s)
- Lai Wang
- Oppenheimer Atherosclerosis Research Center and the Division of Cardiology, Cedars Sinai Heart Institute, Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
228
|
Roll L, Mittmann T, Eysel UT, Faissner A. The laser lesion of the mouse visual cortex as a model to study neural extracellular matrix remodeling during degeneration, regeneration and plasticity of the CNS. Cell Tissue Res 2012; 349:133-45. [DOI: 10.1007/s00441-011-1313-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/20/2011] [Indexed: 02/06/2023]
|
229
|
Development and maturation of the spinal cord: implications of molecular and genetic defects. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:3-30. [PMID: 23098703 DOI: 10.1016/b978-0-444-52137-8.00001-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The human central nervous system (CNS) may be the most complex structure in the universe. Its development and appropriate specification into phenotypically and spatially distinct neural subpopulations involves a precisely orchestrated response, with thousands of transcriptional regulators combining with epigenetic controls and specific temporal cues in perfect synchrony. Understandably, our insight into the sophisticated molecular mechanisms which underlie spinal cord development are as yet limited. Even less is known about abnormalities of this process - putative genetic and molecular causes of well-described defects have only begun to emerge in recent years. Nonetheless, modern scientific techniques are beginning to demonstrate common patterns and principles amid the tremendous complexity of spinal cord development and maldevelopment. These advances are important, given that developmental anomalies of the spinal cord are an important cause of mortality and morbidity (Sadler, 2000); it is hoped that research advances will lead to better methods to detect, treat, and prevent these lesions.
Collapse
|
230
|
Jestaedt L, Lemke D, Weiler M, Pfenning PN, Heiland S, Wick W, Bendszus M. Gadofluorine M enhanced MRI in experimental glioma: superior and persistent intracellular tumor enhancement compared with conventional MRI. J Magn Reson Imaging 2011; 35:551-60. [PMID: 22045630 DOI: 10.1002/jmri.22869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 10/03/2011] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To compare conventional magnetic resonance imaging (MRI) techniques (T2-w and Gadolinium-DTPA-enhanced T1-w images) and Gadofluorine-M (GfM), a novel contrast agent in MRI, in murine gliomas. MATERIALS AND METHODS Growth monitoring of murine gliomas (induced in mice) was performed on a 2.3 Tesla Bruker Biospec MRI unit. First all animals were investigated with conventional MRI techniques. In group I GfM was applied at an early stage of disease, in group II at a later stage. After injection of GfM follow-up MRI was performed without further injection of contrast agent. On MR images tumor size and signal intensities were assessed. Animals were killed for histological evaluation. RESULTS In both groups GfM delineated tumor extents larger and more precisely than conventional MRI techniques. The difference between GfM and conventional MRI techniques reached level of significance at both tumor stages. Follow-up MRI after singular injection of GfM showed persistence of GfM in tumor tissue. On tissue sections GfM-enhancing areas corresponded closely to vital tumor tissue. GfM showed a mainly intracellular accumulation. CONCLUSION Application of GfM resulted in superior delineation of experimental glioma compared with conventional MRI techniques. Thus, GfM bears a high potential in clinical application.
Collapse
Affiliation(s)
- Leonie Jestaedt
- Department of Neuroradiology, University of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
Tenascins regulate cell interaction with the surrounding pericellular matrix. Within bone, tenascins C and W influence osteoblast adhesion and differentiation, although little is known about the regulation of tenascin expression. In this study we examined the effect of osteogenic differentiation, bone morphogenetic protein (BMP) and Wnt growth factors, and mechanical loading on tenascin expression in osteogenic cells. Osteogenic differentiation increased tenascin C (TnC), and decreased tenascin W (TnW), expression. Both growth factors and mechanical loading increased both TnC and TnW expression, albeit via distinct signaling mechanisms. Both BMP-2 and Wnt5a induction of tenascin expression were mediated by MAP kinases. These data establish a role for BMP, Wnts, and mechanical loading in the regulation of tenascin expression in osteoblasts.
Collapse
Affiliation(s)
- Jessica M. Morgan
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616 USA
| | - Alice Wong
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616 USA
| | - Clare E. Yellowley
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616 USA
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616 USA
| |
Collapse
|
232
|
Trembley JH, Unger GM, Korman VL, Tobolt DK, Kazimierczuk Z, Pinna LA, Kren BT, Ahmed K. Nanoencapsulated anti-CK2 small molecule drug or siRNA specifically targets malignant cancer but not benign cells. Cancer Lett 2011; 315:48-58. [PMID: 22050909 DOI: 10.1016/j.canlet.2011.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/06/2011] [Indexed: 12/19/2022]
Abstract
CK2, a pleiotropic Ser/Thr kinase, is an important target for cancer therapy. We tested our novel tenfibgen-based nanocapsule for delivery of the inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) and an siRNA directed against both CK2α and α' catalytic subunits to prostate cancer cells. We present data on the TBG nanocapsule itself and on CK2 inhibition or downregulation in treated cells, including effects on Nuclear Factor-kappa B (NF-κB) p65. By direct comparison of two CK2-directed cargos, our data provide proof that the TBG encapsulation design for delivery of drugs specifically to cancer cells has strong potential for small molecule- and nucleic acid-based cancer therapy.
Collapse
|
233
|
Cerebrospinal Fluid Tenascin-C in Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage. J Neurosurg Anesthesiol 2011; 23:310-7. [DOI: 10.1097/ana.0b013e31822aa1f2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
234
|
WATTS AE, NIXON AJ, YEAGER AE, MOHAMMED HO. A collagenase gel/physical defect model for controlled induction of superficial digital flexor tendonitis. Equine Vet J 2011; 44:576-86. [DOI: 10.1111/j.2042-3306.2011.00471.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
235
|
Steude A, Schmidt S, Robitzki AA, Pänke O. An electrode array for electrochemical immuno-sensing using the example of impedimetric tenascin C detection. LAB ON A CHIP 2011; 11:2884-2892. [PMID: 21750833 DOI: 10.1039/c1lc20267g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Electrochemical biosensors allow simple, fast and sensitive analyte detection for various analytical problems. Especially immunosensors are favourable due to specificity and affinity of antigen recognition by the associated antibody. We present a novel electrode array qualified for parallel analysis and increased sample throughput. The chip has nine independent sample chambers. Each chamber contains a circular gold working electrode with a diameter of 1.9 mm that is surrounded by a ring-shaped auxiliary electrode with a platinum surface. The corresponding silver/silver chloride reference electrodes are embedded in a sealing lid. The chip is open to the full range of electrochemical real-time detection methods. Among these techniques, impedance spectroscopy is an attractive tool to detect fast and label-free interfacial changes originating from the biorecognition event at the electrode surface. The capabilities of the novel electrode array are demonstrated using the example of tumour marker tenascin C detection. This glycoprotein of the extracellular matrix is expressed in cancerous tissues, especially in solid tumours such as glioma or breast carcinoma. Electrodes covered with specific antibodies were exposed to tenascin C containing samples. Non-occupied binding sites were identified using a secondary peroxidase-conjugated antibody that generated an insoluble precipitate on the electrode in a subsequent amplification procedure. The charge transfer resistance obtained from impedimetric analysis of ferri-/ferrocyanide conversion at the electrode served as analytic parameter. This assay detected 14 ng (48 fmol) tenascin C that is sufficient for clinical diagnostics. The electrode surface could be regenerated at least 20-fold without loss of its analytical performance.
Collapse
Affiliation(s)
- Anja Steude
- Centre for Biotechnology and Biomedicine (BBZ), University of Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, D-04103 Leipzig, Germany
| | | | | | | |
Collapse
|
236
|
Chowdhury UR, Jea SY, Oh DJ, Rhee DJ, Fautsch MP. Expression profile of the matricellular protein osteopontin in primary open-angle glaucoma and the normal human eye. Invest Ophthalmol Vis Sci 2011; 52:6443-51. [PMID: 21743018 DOI: 10.1167/iovs.11-7409] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. To characterize the role of osteopontin (OPN) in primary open-angle glaucoma (POAG) and normal eyes. METHODS. OPN quantification was performed by enzyme-linked immunosorbent assay in aqueous humor (AH) obtained from human donor eyes (POAG and normal) and surgical samples (POAG and elective cataract removal). OPN expression and localization in whole eye tissue sections and primary normal human trabecular meshwork (NTM) cells were studied by Western blot and immunohistochemistry. Latanoprost-free acid (LFA)-treated NTM cells were analyzed for OPN gene and protein expression. Intraocular pressure was measured by tonometry, and central corneal thickness was measured by optical coherence tomography in young OPN(-/-) and wild-type mice. RESULTS. OPN levels were significantly reduced in donor POAG AH compared with normal AH (0.54 ± 0.18 ng/μg [n = 8] vs. 0.77 ± 0.23 ng/μg [n = 9]; P = 0.039). A similar trend was observed in surgical AH (1.05 ± 0.31 ng/μg [n = 20] vs. 1.43 ± 0.88 ng/μg [n = 20]; P = 0.083). OPN was present in the trabecular meshwork, corneal epithelium and endothelium, iris, ciliary body, retina, vitreous humor, and optic nerve. LFA increased OPN gene expression, but minimal change in OPN protein expression was observed. No difference in intraocular pressure (17.5 ± 2.0 mm Hg [n = 56] vs. 17.3 ± 1.9 mm Hg [n = 68]) but thinner central corneal thickness (91.7 ± 3.6 μm [n = 50] vs. 99.2 ± 5.5 μm [n = 70]) was noted between OPN(-/-) and wild-type mice. CONCLUSIONS. OPN is widely distributed in the human eye and was found in lower concentrations in POAG AH. Reduction of OPN in young mice does not affect IOP.
Collapse
|
237
|
Sidgwick GP, Bayat A. Extracellular matrix molecules implicated in hypertrophic and keloid scarring. J Eur Acad Dermatol Venereol 2011; 26:141-52. [PMID: 21838832 DOI: 10.1111/j.1468-3083.2011.04200.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tissue regeneration repairs the fabric of the skin to maintain homeostasis after injury. The expression and proliferation of extracellular matrix (ECM) molecules in the dermis, mediated by a range of growth factors and cytokines, is a fundamental element of wound repair. Previous work focused on how these complex molecular mechanisms relate to the formation of raised dermal scars, including keloid and hypertrophic scars, characterized by excessive deposition of ECM molecules. However, the mechanisms in the wound repair pathway which lead to the differential expression and organization of ECM molecules observed in different types of scar tissue are not fully understood. To summarize what is known about the expression and composition of ECM molecules in abnormal scarring, an extensive search of the literature was conducted, focusing on keywords connected to skin scarring, hypertrophic scars and keloid disease. The transcription and translation of collagen I and III, fibronectin, laminin, periostin and tenascin are all increased in raised dermal scar tissue. However, hyaluronic acid, dermatopontin and decorin are decreased, and the expression and localisation of fibrillin and elastin fibres in the dermis are altered compared with normal skin and scars. Recent whole genome profiling and proteomic studies have led to the identification of regulatory elements with different expression profiles in hypertrophic and keloid tissue. If the mechanisms of raised dermal scar formation are to be elucidated and effective therapeutic treatments developed, an integrated approach to research is required, focussing on the interactions between ECM molecules, regulatory elements and pathways.
Collapse
Affiliation(s)
- G P Sidgwick
- Plastic and Reconstructive Surgery Research, School of Translational Medicine, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | | |
Collapse
|
238
|
Iijima J, Konno K, Itano N. Inflammatory alterations of the extracellular matrix in the tumor microenvironment. Cancers (Basel) 2011; 3:3189-205. [PMID: 24212952 PMCID: PMC3759193 DOI: 10.3390/cancers3033189] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 01/08/2023] Open
Abstract
Complex interactions between cancer cells and host stromal cells result in the formation of the "tumor microenvironment", where inflammatory alterations involve the infiltration of tumor-associated fibroblasts and inflammatory leukocytes that contribute to the acquisition of malignant characteristics, such as increased cancer cell proliferation, invasiveness, metastasis, angiogenesis, and avoidance of adaptive immunity. The microenvironment of a solid tumor is comprised not only of cellular compartments, but also of bioactive substances, including cytokines, growth factors, and extracellular matrix (ECM). ECM can act as a scaffold for cell migration, a reservoir for cytokines and growth factors, and a signal through receptor binding. During inflammation, ECM components and their degraded fragments act directly and indirectly as inflammatory stimuli in certain cases and regulate the functions of inflammatory and immune cells. One such ECM component, hyaluronan, has recently been implicated to modulate innate immune cell function through pattern recognition toll-like receptors and accelerate the recruitment and activation of tumor-associated macrophages in inflamed cancers. Here, we will summarize the molecular mechanism linking inflammation with ECM remodeling in the tumor microenvironment, with a particular emphasis on the role of hyaluronan in controlling the inflammatory response.
Collapse
Affiliation(s)
- Junko Iijima
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; E-Mail:
| | - Kenjiro Konno
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; E-Mail:
| | - Naoki Itano
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; E-Mail:
| |
Collapse
|
239
|
Advances in tenascin-C biology. Cell Mol Life Sci 2011; 68:3175-99. [PMID: 21818551 PMCID: PMC3173650 DOI: 10.1007/s00018-011-0783-6] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 12/11/2022]
Abstract
Tenascin-C is an extracellular matrix glycoprotein that is specifically and transiently expressed upon tissue injury. Upon tissue damage, tenascin-C plays a multitude of different roles that mediate both inflammatory and fibrotic processes to enable effective tissue repair. In the last decade, emerging evidence has demonstrated a vital role for tenascin-C in cardiac and arterial injury, tumor angiogenesis and metastasis, as well as in modulating stem cell behavior. Here we highlight the molecular mechanisms by which tenascin-C mediates these effects and discuss the implications of mis-regulated tenascin-C expression in driving disease pathology.
Collapse
|
240
|
Okamoto H, Imanaka-Yoshida K. Matricellular proteins: new molecular targets to prevent heart failure. Cardiovasc Ther 2011; 30:e198-209. [PMID: 21884011 DOI: 10.1111/j.1755-5922.2011.00276.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Matricellular proteins are highly expressed in reparative responses to pressure and volume overload, ischemia, oxidative stress after myocardial injury, and modulate the inflammatory and fibrotic process in ventricular remodeling, which leads to cardiac dysfunction and eventually overt heart failure. Generally, matricellular proteins loosen strong adhesion of cardiomyocytes to extracellular matrix, which would help cells to move for rearrangement and allow inflammatory cells and capillary vessels to spread during tissue remodeling. Among matricellular proteins, osteopontin (OPN) and tenascin-C (TN-C) are de-adhesion proteins and upregulate the expression and activity of matrix metalloproteinases. These matricellular proteins could be key molecules to diagnose cardiac remodeling and also might be targets for the prevention of adverse ventricular remodeling. This review provides an overview of the role of matricellular proteins such as OPN and TN-C in cardiac function and remodeling, as determined by both in basic and in clinical studies.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Department of Cardiovascular Medicine, Hokkaido Medical Center, Sapporo, Japan. okamotoh@ med.hokudai.ac.jp
| | | |
Collapse
|
241
|
Patel L, Sun W, Glasson SS, Morris EA, Flannery CR, Chockalingam PS. Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage. BMC Musculoskelet Disord 2011; 12:164. [PMID: 21762512 PMCID: PMC3146914 DOI: 10.1186/1471-2474-12-164] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/15/2011] [Indexed: 11/25/2022] Open
Abstract
Background Tenascin-C (TN-C) is an extracellular matrix glycoprotein that is involved in tissue injury and repair processes. We analyzed TN-C expression in normal and osteoarthritic (OA) human cartilage, and evaluated its capacity to induce inflammatory and catabolic mediators in chondrocytes in vitro. The effect of TN-C on proteoglycan loss from articular cartilage in culture was also assessed. Methods TN-C in culture media, cartilage extracts, and synovial fluid of human and animal joints was quantified using a sandwich ELISA and/or analyzed by Western immunoblotting. mRNA expression of TN-C and aggrecanases were analyzed by Taqman assays. Human and bovine primary chondrocytes and/or explant culture systems were utilized to study TN-C induced inflammatory or catabolic mediators and proteoglycan loss. Total proteoglycan and aggrecanase -generated ARG-aggrecan fragments were quantified in human and rat synovial fluids by ELISA. Results TN-C protein and mRNA expression were significantly upregulated in OA cartilage with a concomitant elevation of TN-C levels in the synovial fluid of OA patients. IL-1 enhanced TN-C expression in articular cartilage. Addition of TN-C induced IL-6, PGE2, and nitrate release and upregulated ADAMTS4 mRNA in cultured primary human and bovine chondrocytes. TN-C treatment resulted in an increased loss of proteoglycan from cartilage explants in culture. A correlation was observed between TN-C and aggrecanase generated ARG-aggrecan fragment levels in the synovial fluid of human OA joints and in the lavage of rat joints that underwent surgical induction of OA. Conclusions TN-C expression in the knee cartilage and TN-C levels measured in the synovial fluid are significantly enhanced in OA patients. Our findings suggest that the elevated levels of TN-C could induce inflammatory mediators and promote matrix degradation in OA joints.
Collapse
Affiliation(s)
- Lisha Patel
- Tissue Repair, BioTherapeutics Research & Development, Pfizer, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
242
|
Kimura T, Yoshimura K, Aoki H, Imanaka-Yoshida K, Yoshida T, Ikeda Y, Morikage N, Endo H, Hamano K, Imaizumi T, Hiroe M, Aonuma K, Matsuzaki M. Tenascin-C is expressed in abdominal aortic aneurysm tissue with an active degradation process. Pathol Int 2011; 61:559-64. [PMID: 21951663 DOI: 10.1111/j.1440-1827.2011.02699.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a common disease caused by segmental weakening of the aortic walls and progressive aortic dilation leading to the eventual rupture of the aorta. Currently no biomarkers have been established to indicate the disease status of AAA. Tenascin-C (TN-C) is a matricellular protein that is synthesized under pathological conditions. In the current study, we related TN-C expression to the clinical course and the histopathology of AAA to investigate whether the pattern of TN-C expression could indicate the status of AAA. We found that TN-C and matrix metalloproteinase (MMP)-9 were highly expressed in human AAA. In individual human AAA TN-C deposition associated with the tissue destruction, overlapped mainly with the smooth muscle actin-positive cells, and showed a pattern distinct from macrophages and MMP-9. In the mouse model of AAA high TN-C expression was associated with rapid expansion of the AAA diameter. Histological analysis revealed that TN-C was produced mainly by vascular smooth muscle cells and was deposited in the medial layer of the aorta during tissue inflammation and excessive destructive activities. Our findings suggest that TN-C may be a useful biomarker for indicating the pathological status of smooth muscle cells and interstitial cells in AAA.
Collapse
Affiliation(s)
- Taizo Kimura
- Department of Molecular Cardiovascular Biology, Yamaguchi University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Paron I, Berchtold S, Vörös J, Shamarla M, Erkan M, Höfler H, Esposito I. Tenascin-C enhances pancreatic cancer cell growth and motility and affects cell adhesion through activation of the integrin pathway. PLoS One 2011; 6:e21684. [PMID: 21747918 PMCID: PMC3126842 DOI: 10.1371/journal.pone.0021684] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 06/08/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PDAC) is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC), a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs). In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells. METHODS Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition. RESULTS Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt. CONCLUSION TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and might therefore play a role in PDAC spreading and metastasis in vivo.
Collapse
Affiliation(s)
- Igor Paron
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Sonja Berchtold
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Julia Vörös
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Madhavi Shamarla
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mert Erkan
- Department of General Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Heinz Höfler
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
244
|
Asparuhova MB, Ferralli J, Chiquet M, Chiquet-Ehrismann R. The transcriptional regulator megakaryoblastic leukemia-1 mediates serum response factor-independent activation of tenascin-C transcription by mechanical stress. FASEB J 2011; 25:3477-88. [PMID: 21705668 DOI: 10.1096/fj.11-187310] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The extracellular matrix protein tenascin-C (TNC) is up-regulated in processes influenced by mechanical stress, such as inflammation, tissue remodeling, wound healing, and tumorigenesis. Cyclic strain-induced TNC expression depends on RhoA-actin signaling, the pathway that regulates transcriptional activity of serum response factor (SRF) by its coactivator megakaryoblastic leukemia-1 (MKL1). Therefore, we tested whether MKL1 controls TNC transcription. We demonstrate that overexpression of MKL1 strongly induces TNC expression in mouse NIH3T3 fibroblasts and normal HC11 and transformed 4T1 mammary epithelial cells. Part of the induction was dependant on SRF and a newly identified atypical CArG box in the TNC promoter. Another part was independent of SRF but required the SAP domain of MKL1. An MKL1 mutant incapable of binding to SRF still strongly induced TNC, while induction of the SRF target c-fos was abolished. Cyclic strain failed to induce TNC in MKL1-deficient but not in SRF-deficient fibroblasts, and strain-induced TNC expression strongly depended on the SAP domain of MKL1. Promoter-reporter and chromatin immunoprecipitation experiments unraveled a SAP-dependent, SRF-independent interaction of MKL1 with the proximal promoter region of TNC, attributing for the first time a functional role to the SAP domain of MKL1 in regulating gene expression.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
245
|
Schwager K, Bootz F, Imesch P, Kaspar M, Trachsel E, Neri D. The antibody-mediated targeted delivery of interleukin-10 inhibits endometriosis in a syngeneic mouse model. Hum Reprod 2011; 26:2344-52. [PMID: 21705369 DOI: 10.1093/humrep/der195] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Endometriosis is still a highly underdiagnosed disease, and the current medical and surgical treatment of endometriosis is associated with a high recurrence rate. This study investigates the use of derivatives of the human antibody F8, specific to the alternatively spliced extra-domain A of fibronectin (Fn), for the imaging and treatment of endometriosis. METHODS Immunohistochemistry and immunofluorescence was used to evaluate antigen expression in endometriotic tissue of human endometriosis and of a syngeneic mouse model of the disease. The in vivo targeting performance of a fluorescent derivative of the F8 antibody was assessed by imaging mice with endometriosis using a near-infrared fluorescence imager, 24 h following i.v. injection of the antibody conjugate. Furthermore, the mouse model was used for therapy experiments using two recombinant F8-based immunocytokines [F8-interleukin-10 (IL10) and F8-IL2] or saline for the treatment groups. RESULTS A very strong vascular expression of splice isoforms of Fn and of tenascin-C was observed in human endometriotic lesions by immunohistochemistry and immunofluorescence techniques. After i.v. administration, a selective accumulation of the F8 antibody in endometriotic lesions could be observed in a syngeneic mouse model. These targeting data were used as a basis for therapy experiments with a pro-inflammatory (F8-IL2) and an anti-inflammatory (F8-IL10) cytokine fusion protein of the F8 antibody. The average lesion size in the F8-IL10 treatment group was clearly reduced compared with the saline control group and with the F8-IL2 group, for which no therapeutic effects were observed. CONCLUSIONS The F8 antibody targets endometriotic lesions in vivo in a mouse model of endometriosis and may be used for the non-invasive imaging of the disease and for the pharmacodelivery of anti-inflammatory cytokines, such as IL10.
Collapse
Affiliation(s)
- Kathrin Schwager
- Philochem AG, c/o ETH Zurich, Institute of Pharmaceutical Sciences, Wolfgang-Pauli-Str. 10 HCI E520, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
246
|
Frey K, Fiechter M, Schwager K, Belloni B, Barysch MJ, Neri D, Dummer R. Different patterns of fibronectin and tenascin-C splice variants expression in primary and metastatic melanoma lesions. Exp Dermatol 2011; 20:685-8. [PMID: 21649738 DOI: 10.1111/j.1600-0625.2011.01314.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated the staining patterns of primary and metastatic melanoma lesions using F8, L19 and F16. These three clinical-stage antibodies are currently being studied in clinical trials for the pharmacodelivery of cytokines or therapeutic radionuclides to neoplastic sites in patients with cancer. Frozen sections of 24 primary and 29 metastatic melanoma lesions were stained, using immunofluorescence procedures, with biotinylated preparations of the F8, L19 and F16 antibodies, which are specific to the alternatively spliced extra domain A and extra domain B domains of fibronectin and A1 domain of tenascin-C, respectively. Blood vessels were costained using von Willebrand factor-specific antibodies. In primary cutaneous melanoma lesions, F16 and F8 (but not L19) strongly stained the basal lamina at the interface between epidermis and dermis, with a strikingly complementary pattern. By contrast, metastatic melanoma lesions displayed a strong and diffuse pattern of immunoreactivity with all three antibodies. It was found that the extracellular matrix in melanoma undergoes extensive remodelling during the transition from primary to metastatic lesions. The intense staining of metastatic melanoma lesions by the F8, L19 and F16 antibodies provides a strong rationale for the use of these antibodies and their derivatives for the treatment of melanoma patients and possibly for the personalized choice of the best performing antibody in individual patients.
Collapse
Affiliation(s)
- Katharina Frey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
247
|
Planck T, Parikh H, Brorson H, Mårtensson T, Åsman P, Groop L, Hallengren B, Lantz M. Gene expression in Graves' ophthalmopathy and arm lymphedema: similarities and differences. Thyroid 2011; 21:663-74. [PMID: 21510802 DOI: 10.1089/thy.2010.0217] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Graves' ophthalmopathy (GO) and lymphedema share some pathogenetic mechanisms, such as edema, inflammation, and adipogenesis. The aim of this study was to examine similarities and differences between chronic GO and chronic lymphedema. METHODS Intraorbital adipose tissue was collected from patients with active (n = 10) or chronic GO (n = 10) and thyroid-healthy controls (n = 10). Arm subcutaneous adipose tissue was obtained from patients with chronic arm lymphedema (n = 10), where the unaffected arm served as a control. Gene expression was studied using microarray and real-time polymerase chain reaction. RESULTS The following genes were significantly upregulated (p < 0.05) in lymphedema but not in GO and have functions in wound healing, fibrosis, fat metabolism, inflammation, differentiation, development, adhesion, and the cytoskeleton: ATP-binding cassette, sub-family G (WHITE), member 1 (ABCG1), actin, alpha 2, smooth muscle, aorta (ACTA2), secreted frizzled-related protein 2 (SFRP2), tenascin C (TNC), pentraxin-related gene, rapidly induced by IL-1 beta (PTX3), and carboxypeptidase X (M14 family), member 1 (CPMX1). In chronic GO, but not in lymphedema, adipocyte-related immediate early genes known to be overexpressed in patients with active GO were upregulated but at a lower level than previously shown for the active phase. Genes of the Wnt pathway, such as secreted frizzled-related protein 1, 2, and 3, were up- and downregulated in both chronic GO and lymphedema. Parathyroid hormone-like hormone (PTHLH) was downregulated (p = 0.01) and apolipoprotein L domain containing 1 (APOLD1) was upregulated (p = 0.05) in both active and chronic GO. CONCLUSIONS There are more differences than similarities between chronic ophthalmopathy and chronic lymphedema, but both conditions exhibit less inflammation and adipogenesis compared to the active phases. In lymphedema, fibrosis dominates. PTHLH, which can inhibit adipogenesis, is downregulated both in active and chronic ophthalmopathy, indicating the possibility of an increased risk of adipogenesis.
Collapse
Affiliation(s)
- Tereza Planck
- Department of Endocrinology, Skåne University Hospital, CRC, Malmö, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Cardiac extracellular matrix tenascin-C deposition during fibronectin degradation. Biochem Biophys Res Commun 2011; 409:321-7. [DOI: 10.1016/j.bbrc.2011.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/03/2011] [Indexed: 11/18/2022]
|
249
|
Barreto I, Costa AF, Martins MT, Furuse C, de Araújo VC, Altemani A. Immunohistochemical study of stromal and vascular components of tonsillar polyps: high endothelial venules as participants of the polyp's lymphoid tissue. Virchows Arch 2011; 459:65-71. [PMID: 21562903 DOI: 10.1007/s00428-011-1088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 12/30/2022]
Abstract
Tonsillar polyps are nonneoplastic lesions usually composed of variable amounts of lymphoid and vascular and connective tissues. All of them are generally assumed to be hamartomatous proliferations, but the profile of vascular and connective components has yet to be explored. The vascular system of the tonsils is complex and includes highly specialized structures (i.e., high endothelial venules (HEVs)) involved in lymphocyte homing into lymphoid tissues. In 14 tonsillar polyps and 26 control tonsils, an immunohistochemical study was performed using CD34 (blood vessels and HEVs), MECA-79 (HEVs), D2-40 (lymphatic vessels), Ki-67, collagens I and III, fibronectin, and tenascin-C. The polyps showed increased total lymphatic area, whereas the number of blood vessels and lymphatics and the blood vascular area did not differ significantly from those of control tonsils. Rare Ki-67+ endothelial cells were found. In the polyps, we detected, possibly for the first time, HEVs amid lymphoid tissue, and that the amount of the latter correlated positively with HEV density. The polyps also presented lesser amounts of fibronectin and collagens I and III than in normal tonsils, which were distributed in a disorganized fashion. Tenascin-C expression was uncommon in the polyps and control tonsils. Tonsillar polyps are composed of disorganized connective tissue and lymphatic channels which can be considered hamartomatous proliferations. However, the lymphoid component is possibly reactive due to its relationship with the HEVs. The highly differentiated phenotype of the HEVs and their complex biology are not in agreement with what would be expected for a component of hamartomatous nature.
Collapse
Affiliation(s)
- Icléia Barreto
- Department of Pathology, Medical Science Faculty, University of Campinas, Rua Tessália Vieira de Camargo 126, 13084-971, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
250
|
Tenascin-C in chronic sclerosing sialadenitis. Head Neck Pathol 2011; 5:221-5. [PMID: 21559807 PMCID: PMC3173529 DOI: 10.1007/s12105-011-0265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
Tenascin-C is an extracellular matrix glycoprotein that has been implicated in the development of fibrosis in certain chronic inflammatory/sclerosing conditions. This study was undertaken to expand our understanding of the processes involved in fibrosis that occurs in chronic sclerosing sialadenitis (CSS) by investigating the distribution of tenascin-C. Fifteen specimens of CSS with varying degrees of fibrosis and five normal submandibular glands were retrospectively examined immunohistochemically for the distribution of TNC. Linear deposition of TNC was found around collecting ducts in normal glands and around collecting ducts without surrounding fibrotic tissue in CSS; percentage incidences were not statistically different. In contrast, broader, band-like deposition of TNC was found in the fibrous tissue around collecting ducts in CSS with widespread degree of fibrosis compared to little or no fibrosis; the percentage incidence was statistically different. In addition, deposition of TNC was found around duct-like structures and extremely atrophic acini but, interestingly, however, was not found in fibrotic interlobular septa. The results of this investigation suggest that TNC is likely involved in the fibrosis that occurs around collecting ducts in CSS.
Collapse
|