201
|
Ali S, Fonseca V. Overview of metformin: special focus on metformin extended release. Expert Opin Pharmacother 2012; 13:1797-805. [DOI: 10.1517/14656566.2012.705829] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
202
|
Lamming DW, Sabatini DM, Baur JA. Pharmacologic Means of Extending Lifespan. JOURNAL OF CLINICAL & EXPERIMENTAL PATHOLOGY 2012; Suppl 4:7327. [PMID: 25379357 PMCID: PMC4219537 DOI: 10.4172/2161-0681.s4-002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Dudley W. Lamming
- Department of Biology, MIT, Cambridge, MA 02139, Howard
Hughes Medical Institute, MIT, Cambridge, MA 02139; Whitehead Institute for
Biomedical Research, Cambridge MA 02142, Broad Institute of Harvard and MIT, Seven
Cambridge Center, Cambridge, MA 02142, The David H. Koch Institute for Integrative
Cancer Research at MIT, Cambridge, MA 02139, USA
| | - David M. Sabatini
- Department of Biology, MIT, Cambridge, MA 02139, Howard
Hughes Medical Institute, MIT, Cambridge, MA 02139; Whitehead Institute for
Biomedical Research, Cambridge MA 02142, Broad Institute of Harvard and MIT, Seven
Cambridge Center, Cambridge, MA 02142, The David H. Koch Institute for Integrative
Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Joseph A. Baur
- Department of Physiology, Institute for Diabetes, Obesity,
and Metabolism, Perelman School of Medicine, University of Pennsylvania,
Philadelphia PA 19104, USA
| |
Collapse
|
203
|
Holst JJ, McGill MA. Potential new approaches to modifying intestinal GLP-1 secretion in patients with type 2 diabetes mellitus: focus on bile acid sequestrants. Clin Drug Investig 2012; 32:1-14. [PMID: 21958333 DOI: 10.2165/11595370-000000000-00000] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 2 diabetes mellitus is associated with a progressive decline in insulin-producing pancreatic β-cells, an increase in hepatic glucose production, and a decrease in insulin sensitivity. The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) stimulate glucose-induced insulin secretion; however, in patients with type 2 diabetes, the incretin system is impaired by loss of the insulinotropic effects of GIP as well as a possible reduction in secretion of GLP-1. Agents that modify GLP-1 secretion may have a role in the management of type 2 diabetes. The currently available incretin-based therapies, GLP-1 receptor agonists (incretin mimetics) and dipeptidyl peptidase-4 (DPP-4) inhibitors (CD26 antigen inhibitors) [incretin enhancers], are safe and effective in the treatment of type 2 diabetes. However, they may be unable to halt the progression of type 2 diabetes, perhaps because they do not increase secretion of endogenous GLP-1. Therapies that directly target intestinal L cells to stimulate secretion of endogenous GLP-1 could possibly prove more effective than treatment with GLP-1 receptor agonists and DPP-4 inhibitors. Potential new approaches to modifying intestinal GLP-1 secretion in patients with type 2 diabetes include G-protein-coupled receptor (GPCR) agonists, α-glucosidase inhibitors, peroxisome proliferator-activated receptor (PPAR) agonists, metformin, bile acid mimetics and bile acid sequestrants. Both the GPCR agonist AR231453 and the novel bile acid mimetic INT-777 have been shown to stimulate GLP-1 release, leading to increased insulin secretion and improved glucose tolerance in mice. Similarly, a study in insulin-resistant rats demonstrated that the bile acid sequestrant colesevelam increased GLP-1 secretion and improved glucose levels and insulin resistance. In addition, the bile acid sequestrant colestimide (colestilan) has been shown to increase GLP-1 secretion and decrease glucose levels in patients with type 2 diabetes; these results suggest that the glucose-lowering effects of bile acid sequestrants may be partly due to their ability to increase endogenous GLP-1 levels. Evidence suggests that GPCR agonists, α-glucosidase inhibitors, PPAR agonists, metformin, bile acid mimetics and bile acid sequestrants may represent a new approach to management of type 2 diabetes via modification of endogenous GLP-1 secretion.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.
| | | |
Collapse
|
204
|
Abstract
The huge increase in type 2 diabetes is a burden worldwide. Many marketed compounds do not address relevant aspects of the disease; they may already compensate for defects in insulin secretion and insulin action, but loss of secreting cells (β-cell destruction), hyperglucagonemia, gastric emptying, enzyme activation/inhibition in insulin-sensitive cells, substitution or antagonizing of physiological hormones and pathways, finally leading to secondary complications of diabetes, are not sufficiently addressed. In addition, side effects for established therapies such as hypoglycemias and weight gain have to be diminished. At present, nearly 1000 compounds have been described, and approximately 180 of these are going to be developed (already in clinical studies), some of them directly influencing enzyme activity, influencing pathophysiological pathways, and some using G-protein-coupled receptors. In addition, immunological approaches and antisense strategies are going to be developed. Many compounds are derived from physiological compounds (hormones) aiming at improving their kinetics and selectivity, and others are chemical compounds that were obtained by screening for a newly identified target in the physiological or pathophysiological machinery. In some areas, great progress is observed (e.g., incretin area); in others, no great progress is obvious (e.g., glucokinase activators), and other areas are not recommended for further research. For all scientific areas, conclusions with respect to their impact on diabetes are given. Potential targets for which no chemical compound has yet been identified as a ligand (agonist or antagonist) are also described.
Collapse
Affiliation(s)
- E J Verspohl
- Department of Pharmacology, Institute of Medicinal Chemistry, University of Muenster, Hittorfstr. 58-62, 48149 Muenster, Germany.
| |
Collapse
|
205
|
van Genugten RE, van Raalte DH, Diamant M. Dipeptidyl peptidase-4 inhibitors and preservation of pancreatic islet-cell function: a critical appraisal of the evidence. Diabetes Obes Metab 2012; 14:101-11. [PMID: 21752172 DOI: 10.1111/j.1463-1326.2011.01473.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) develops as a consequence of progressive β-cell dysfunction in the presence of insulin resistance. None of the currently-available T2DM therapies is able to change the course of the disease by halting the relentless decline in pancreatic islet cell function. Recently, dipeptidyl peptidase (DPP)-4 inhibitors, or incretin enhancers, have been introduced in the treatment of T2DM. This class of glucose-lowering agents enhances endogenous glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) levels by blocking the incretin-degrading enzyme DPP-4. DPP-4 inhibitors may restore the deranged islet-cell balance in T2DM, by stimulating meal-related insulin secretion and by decreasing postprandial glucagon levels. Moreover, in rodent studies, DPP-4 inhibitors demonstrated beneficial effects on (functional) β-cell mass and pancreatic insulin content. Studies in humans with T2DM have indicated improvement of islet-cell function, both in the fasted state and under postprandial conditions and these beneficial effects were sustained in studies with a duration up to 2 years. However, there is at present no evidence in humans to suggest that DPP-4 inhibitors have durable effects on β-cell function after cessation of therapy. Long-term, large-sized trials using an active blood glucose lowering comparator followed by a sufficiently long washout period after discontinuation of the study drug are needed to assess whether DPP-4 inhibitors may durably preserve pancreatic islet-cell function in patients with T2DM.
Collapse
Affiliation(s)
- R E van Genugten
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
206
|
Smushkin G, Sathananthan A, Man CD, Zinsmeister AR, Camilleri M, Cobelli C, Rizza RA, Vella A. Defects in GLP-1 response to an oral challenge do not play a significant role in the pathogenesis of prediabetes. J Clin Endocrinol Metab 2012; 97:589-98. [PMID: 22090278 PMCID: PMC3275363 DOI: 10.1210/jc.2011-2561] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CONTEXT There has been much speculation as to whether defects in glucagon-like peptide-1 (GLP-1) secretion play a role in the pathogenesis of type 2 diabetes and the progression from normal glucose tolerance to prediabetes and diabetes. OBJECTIVE Our objective was to determine whether fasting and postchallenge concentrations of active and total GLP-1 decrease as glucose tolerance and insulin secretion worsen across the spectrum of prediabetes. DESIGN This was a cross-sectional study. SETTING The study was performed in the clinical research unit of an academic medical center. PARTICIPANTS Participants included 165 subjects with a fasting glucose below 7.0 mmol/liter and not taking medications known to affect gastrointestinal motility or glucose metabolism. INTERVENTION Intervention included a 2-h, 75-g oral glucose tolerance test with insulin, C-peptide, glucagon, and GLP-1 measurements at seven time points. MAIN OUTCOME MEASURE We evaluated the association of integrated, incremental active, and total GLP-1 concentrations with integrated, incremental glucose response to 75 g oral glucose. RESULTS After accounting for covariates, there was no evidence of a relationship of incremental glucose concentrations after oral glucose tolerance test with active and total GLP-1 (r(s) = -0.16 and P = 0.14, and r(s) = 0.00 and P > 0.9, respectively). There also was no association of GLP-1 concentrations with insulin secretion and action. CONCLUSIONS The lack of association of GLP-1 concentrations with glucose tolerance status and with insulin secretion and action in a cohort encompassing the full spectrum of prediabetes strongly argues against a significant contribution of defects in GLP-1 secretion to the pathogenesis of prediabetes.
Collapse
Affiliation(s)
- Galina Smushkin
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
207
|
The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats. Brain Res 2012; 1444:11-9. [PMID: 22325091 DOI: 10.1016/j.brainres.2012.01.028] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/07/2012] [Accepted: 01/12/2012] [Indexed: 11/22/2022]
Abstract
Metformin appears to be involved in altering energy expenditure and thermogenesis, and could affect hypothalamic feeding circuits. However, it is not clear whether metformin is able to cross the blood-brain barrier (BBB) to reach the hypothalamus and exert a direct effect on the central nervous system. Here we show the presence of metformin in cerebrospinal fluid (CSF) of diabetic rats administered orally with metformin which was confirmed by detecting the concentration of metformin with liquid chromatography-tandem mass spectrometry. Food intake of diabetic rats treated with metformin was reduced, and glucose homeostasis was gained. Expression of orexigenic peptides neuropeptide Y (NPY) and agouti-related protein (AgRP) decreased in the hypothalamus of metformin-treated diabetic rats, though anorexigenic peptides pro-opiomelanocortin (POMC) did not change significantly. The phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased but phosphorylated AMP-activated kinase (AMPK) was similar in the hypothalamus of metformin-treated diabetic rats. Our findings suggest that metformin may cross BBB and play a central mechanism on regulation of food intake in the hypothalamus. The anorexic effect of metformin may be mediated by inhibition of NPY and AgRP gene expression through the STAT3 signaling pathway.
Collapse
|
208
|
Abstract
Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin, a potent antihyperglycaemic agent now recommended as the first-line oral therapy for T2D (Type 2 diabetes). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The demonstration that respiratory chain complex I, but not AMPK, is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism, metformin has been reported to restore ovarian function in PCOS (polycystic ovary syndrome), reduce fatty liver, and to lower microvascular and macrovascular complications associated with T2D. Its use has also recently been suggested as an adjuvant treatment for cancer or gestational diabetes and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent findings from pharmacogenetic studies linking genetic variations to drug response, a promising new step towards personalized medicine in the treatment of T2D.
Collapse
|
209
|
Andújar-Plata P, Pi-Sunyer X, Laferrère B. Metformin effects revisited. Diabetes Res Clin Pract 2012; 95:1-9. [PMID: 22000494 PMCID: PMC5209790 DOI: 10.1016/j.diabres.2011.09.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 01/22/2023]
Abstract
Metformin is a cornerstone in the treatment of type 2 diabetes. Although its mechanism of action is not well understood, there is new evidence about its possible role in cancer. A Pubmed search from 1990 to 2011 was done using the terms metformin, cancer, mechanism of action, diabetes treatment and prevention. We found more than one thousand articles and reviewed studies that had assessed the efficacy of metformin in treatment and prevention of type 2 diabetes and its mechanisms of actions, as well as articles on its antitumoral effects. We found that the United Kingdom Prospective Diabetes Study and the Diabetes Prevention Program have demonstrated the efficacy of metformin in terms of treatment and prevention of type 2 diabetes; metformin is safe, cost effective and remains the first line of diabetes therapy with diet and exercise. The mechanisms of action include a decrease of hepatic insulin resistance, change in bile acids metabolism, incretins release and decreased amyloid deposits. The AMP-activated protein kinase seems to be an important target for these effects. Epidemiological retrospective studies point out a possible association between metformin and decreased cancer risk, data supported by in vitro and animal studies. These data should trigger randomized controlled trials to prove or disprove this additional benefit of metformin.
Collapse
Affiliation(s)
- P Andújar-Plata
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
210
|
Hirao K, Maeda H, Shirabe SI, Yamamoto R, Hirao T, Hirao S, Yamauchi M, Arai K. Combination Therapy with a Dipeptidyl Peptidase-4 Inhibitor, Sulfonylurea, and Metformin Markedly Improves HbA1c Levels in Japanese Patients with Type 2 Diabetes Mellitus. JAPANESE CLINICAL MEDICINE 2012; 3:1-7. [PMID: 23946679 PMCID: PMC3738556 DOI: 10.4137/jcm.s8571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Combination therapy with a dipeptidyl peptidase (DPP)-4 inhibitor and metformin or sulfonylurea results in substantial and additive glucose-lowering effects in patients with type 2 diabetes mellitus (T2DM). However, it is not known whether triple combination therapy with a DPP-4 inhibitor, metformin, and sulfonylurea has greater additive effects or synergic effects. In the present report, we investigated the effect of addition of sitagliptin, the first-in-class DPP-4 inhibitor, to ongoing metformin and sulfonylurea therapy in three female Japanese patients with T2DM who refused insulin therapy. Combined treatment with all three drugs resulted in marked improvements in HbA1c. In the first patient, HbA1c levels decreased from 11.1% to 6.1% after the addition of sitagliptin to metformin 1000 mg, glibenclamide, and miglitol, even though the dose of glibenclamide was decreased. HbA1c levels decreased similarly in the second patient, who was being treated with metformin and glibenclamide, from 7.9% to 6.0% after addition of sitagliptin and an increase in metformin to 2250 mg; this patient ceased glibenclamide because of hypoglycemia and instead was started on low-dose glimepiride. In the third patient, HbA1c levels decreased from 8.6% to 7.1% after addition of glimepiride to ongoing sitagliptin and metformin therapy. All three patients had refused insulin therapy, despite the fact that ongoing combination therapy had failed to achieve satisfactory glycemic control. Based on these results, it is likely that the addition of sitagliptin to metformin and at least a small dose of sulfonylurea may be effective in reducing HbA1c levels without weight gain. This triple combination therapy may prove useful in at least some patients who need initiation of insulin therapy.
Collapse
|
211
|
Lamont BJ, Li Y, Kwan E, Brown TJ, Gaisano H, Drucker DJ. Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice. J Clin Invest 2011; 122:388-402. [PMID: 22182839 DOI: 10.1172/jci42497] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) circulates at low levels and acts as an incretin hormone, potentiating glucose-dependent insulin secretion from islet β cells. GLP-1 also modulates gastric emptying and engages neural circuits in the portal region and CNS that contribute to GLP-1 receptor-dependent (GLP-1R-dependent) regulation of glucose homeostasis. To elucidate the importance of pancreatic GLP-1R signaling for glucose homeostasis, we generated transgenic mice that expressed the human GLP-1R in islets and pancreatic ductal cells (Pdx1-hGLP1R:Glp1r-/- mice). Transgene expression restored GLP-1R-dependent stimulation of cAMP and Akt phosphorylation in isolated islets, conferred GLP-1R-dependent stimulation of β cell proliferation, and was sufficient for restoration of GLP-1-stimulated insulin secretion in perifused islets. Systemic GLP-1R activation with the GLP-1R agonist exendin-4 had no effect on food intake, hindbrain c-fos expression, or gastric emptying but improved glucose tolerance and stimulated insulin secretion in Pdx1-hGLP1R:Glp1r-/- mice. i.c.v. GLP-1R blockade with the antagonist exendin(9-39) impaired glucose tolerance in WT mice but had no effect in Pdx1-hGLP1R:Glp1r-/- mice. Nevertheless, transgenic expression of the pancreatic GLP-1R was sufficient to normalize both oral and i.p. glucose tolerance in Glp1r-/- mice. These findings illustrate that low levels of endogenous GLP-1 secreted from gut endocrine cells are capable of augmenting glucoregulatory activity via pancreatic GLP-1Rs independent of communication with neural pathways.
Collapse
Affiliation(s)
- Benjamin J Lamont
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
212
|
Mulherin AJ, Oh AH, Kim H, Grieco A, Lauffer LM, Brubaker PL. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology 2011; 152:4610-9. [PMID: 21971158 DOI: 10.1210/en.2011-1485] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1(7-36NH2) (GLP-1) is secreted by the intestinal L cell in response to both nutrient and neural stimulation, resulting in enhanced glucose-dependent insulin secretion. GLP-1 is therefore an attractive therapeutic for the treatment of type 2 diabetes. The antidiabetic drug, metformin, is known to increase circulating GLP-1 levels, although its mechanism of action is unknown. Direct effects of metformin (5-2000 μm) or another AMP kinase activator, aminoimidazole carboxamide ribonucleotide (100-1000 μm) on GLP-1 secretion were assessed in murine human NCI-H716, and rat FRIC L cells. Neither agent stimulated GLP-1 secretion in any model, despite increasing AMP kinase phosphorylation (P < 0.05-0.01). Treatment of rats with metformin (300 mg/kg, per os) or aminoimidazole carboxamide ribonucleotide (250 mg/kg, sc) increased plasma total GLP-1 over 2 h, reaching 37 ± 9 and 29 ± 9 pg/ml (P < 0.001), respectively, compared with basal (7 ± 1 pg/ml). Plasma activity of the GLP-1-degrading enzyme, dipeptidylpeptidase-IV, was not affected by metformin treatment. Pretreatment with the nonspecific muscarinic antagonist, atropine (1 mg/kg, iv), decreased metformin-induced GLP-1 secretion by 55 ± 11% (P < 0.05). Pretreatment with the muscarinic (M) 3 receptor antagonist, 1-1-dimethyl-4-diphenylacetoxypiperidinium iodide (500 μg/kg, iv), also decreased the GLP-1 area under curve, by 48 ± 8% (P < 0.05), whereas the antagonists pirenzepine (M1) and gallamine (M2) had no effect. Furthermore, chronic bilateral subdiaphragmatic vagotomy decreased basal secretion compared with sham-operated animals (7 ± 1 vs. 13 ± 1 pg/ml, P < 0.001) but did not alter the GLP-1 response to metformin. In contrast, pretreatment with the gastrin-releasing peptide antagonist, RC-3095 (100 μg/kg, sc), reduced the GLP-1 response to metformin, by 55 ± 6% (P < 0.01) at 30 min. These studies elucidate the mechanism underlying metformin-induced GLP-1 secretion and highlight the benefits of using metformin with dipeptidylpeptidase-IV inhibitors in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Andrew J Mulherin
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
213
|
Abstract
The pathogenetic mechanisms causing type 2 diabetes are complex, and include a significant reduction of the incretin effect. In patients with type 2 diabetes, GLP-1 secretion may be impaired, while GIP secretion seems unaffected. In contrast, the insulinotropic activity of GIP is severely altered, whereas that of GLP-1 is maintained to a great extent. Better understanding of the role of incretin hormones in glucose homeostasis has led to the development of incretin-based therapies that complement and offer important advantages over previously used agents. Incretin-based agents have significant glucose-lowering effects, promote weight loss (or are weight-neutral), inhibit glucagon secretion while maintaining counter-regulatory mechanisms, exhibit cardiovascular benefits, and protect β-cells while possessing a low risk profile. At present, incretin-based therapies are most widely used as add on to metformin to provide sufficient glycemic control after metformin failure. However, they are also recommended as monotherapy early in the disease course, and later in triple combination. These agents may also be a promising therapeutic tool in prediabetic subjects. Therefore, a therapeutic algorithm is needed for their optimal application at different stages of diabetes, as suggested in this article.
Collapse
Affiliation(s)
- Simona Cernea
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Targu Mures, Romania.
| |
Collapse
|
214
|
Combination of TS-021 with metformin improves hyperglycemia and synergistically increases pancreatic β-cell mass in a mouse model of type 2 diabetes. Life Sci 2011; 89:662-70. [DOI: 10.1016/j.lfs.2011.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/14/2011] [Accepted: 07/28/2011] [Indexed: 11/17/2022]
|
215
|
Torekov SS, Madsbad S, Holst JJ. Obesity - an indication for GLP-1 treatment? Obesity pathophysiology and GLP-1 treatment potential. Obes Rev 2011; 12:593-601. [PMID: 21401851 DOI: 10.1111/j.1467-789x.2011.00860.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Obesity is common and associated with a high rate of morbidity and mortality; therefore, treatment is of great interest. At present, bariatric surgery is the only truly successful treatment of severe obesity. Mimicking one of the effects of bariatric surgery, namely the increased secretion of glucagon-like peptide (GLP)-1, by artificially increasing the levels of GLP-1 might prove successful as obesity treatment. Recent studies have shown that GLP-1 is a physiological regulator of appetite and food intake. The effect on food intake and satiety is preserved in obese subjects and GLP-1 may therefore have a therapeutic potential. The GLP-1 analogues result in a moderate average weight loss, which is clinically relevant in relation to reducing the risk of type 2 diabetes and cardiovascular disease. Inspired by the hormone profile after gastric bypass, a future strategy in obesity drug development could be to combine several hormones, and thereby produce a superior appetite suppressing hormone profile that may result in a weight loss exceeding that seen in single-agent trials. In conclusion, with the GLP-1 analogues combining a moderate weight loss with beneficial effects on metabolic and cardiovascular risk factors, it seems that we are on the right track for future treatment of obesity.
Collapse
Affiliation(s)
- S S Torekov
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
216
|
Abstract
BACKGROUND/AIMS Pancreatogenic, or type 3c, diabetes (T3cDM) occurs due to inherited or acquired pancreatic disease or resection. Although similar to the more prevalent type 1 and type 2 diabetes, pancreatogenic diabetes has a unique pattern of hormonal and metabolic characteristics and a high incidence of pancreatic carcinoma in the majority of patients with T3cDM. Despite these differences, no guidelines for therapy have been described. METHODS Published studies on the prevalence, pathophysiology, and cancer associations of T3cDM were reviewed. The recent studies on the protective role and mechanism of metformin therapy as both an anti-diabetic and anti-neoplastic agent were reviewed, and studies on the cancer risk of other anti-diabetic drugs were surveyed. RESULTS T3cDM accounts for 5-10% of Western diabetic populations and is associated with mild to severe disease. Hepatic insulin resistance is characteristic of T3cDM and is caused by deficiencies of both insulin and pancreatic polypeptide. 75% of T3cDM is due to chronic pancreatitis, which carries a high risk for pancreatic carcinoma. Insulin and insulin secretagogue treatment increases the risk of malignancy, whereas metformin therapy reduces it. Pancreatic exocrine insufficiency associated with T3cDM contributes to nutritional deficiencies and the development of metabolic bone disease. CONCLUSIONS Until consensus recommendations are reached, the glycemic treatment of T3cDM should avoid insulin and insulin secretagogues if possible. Metformin should be the first line of therapy, and continued if insulin treatment must be added for adequate glucose control. Pancreatic enzyme therapy should be added to prevent secondary nutritional and metabolic complications. and IAP.
Collapse
Affiliation(s)
- Yunfeng Cui
- Department of Surgery, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | |
Collapse
|
217
|
Zolotov S, Ben Yosef D, Rishe ND, Yesha Y, Karnieli E. Metabolic profiling in personalized medicine: bridging the gap between knowledge and clinical practice in Type 2 diabetes. Per Med 2011; 8:445-456. [DOI: 10.2217/pme.11.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (DM2) is the most commonly diagnosed metabolic disease and its prevalence is expected to increase. Epidemiological studies clearly show excess mortality associated with DM2, as well as an increased risk of DM2-related complications. Advances in personalized medicine would greatly improve patient care in the field of diabetes and other metabolic diseases. Prediction of the disease in asymptomatic patients as well as its harsh complications in patients already diagnosed is becoming a necessity, with the considerable increase in the cost of the treatment. In the current article, we review the known clinical, molecular metabolic and genetic biomarkers that should be integrated in a future bioinformatic platform to be used at the point-of-care, and discuss the challenges we face in applying this vision of personalized medicine for diabetes into reality.
Collapse
Affiliation(s)
- Sagit Zolotov
- Institue of Endocrinology, Diabetes & Metabolism, Rambam Medical Center & Galil Center for Telemedicine, Medical Informatics & Personalized Medicine, RB Rappaport Faculty of Medicine – Technion, 12 Ha’alya St, Sami Ofer Tower, #8 Fl, PO Box 9602 Haifa 31096, Israel
| | - Dafna Ben Yosef
- Institue of Endocrinology, Diabetes & Metabolism, Rambam Medical Center & Galil Center for Telemedicine, Medical Informatics & Personalized Medicine, RB Rappaport Faculty of Medicine – Technion, 12 Ha’alya St, Sami Ofer Tower, #8 Fl, PO Box 9602 Haifa 31096, Israel
| | | | - Yelena Yesha
- University of Maryland, Baltimore County, MD, USA
| | | |
Collapse
|
218
|
Resveratrol increases glucose induced GLP-1 secretion in mice: a mechanism which contributes to the glycemic control. PLoS One 2011; 6:e20700. [PMID: 21673955 PMCID: PMC3108962 DOI: 10.1371/journal.pone.0020700] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/07/2011] [Indexed: 01/24/2023] Open
Abstract
Resveratrol (RSV) is a potent anti-diabetic agent when used at high doses. However, the direct targets primarily responsible for the beneficial actions of RSV remain unclear. We used a formulation that increases oral bioavailability to assess the mechanisms involved in the glucoregulatory action of RSV in high-fat diet (HFD)-fed diabetic wild type mice. Administration of RSV for 5 weeks reduced the development of glucose intolerance, and increased portal vein concentrations of both Glucagon-like peptid-1 (GLP-1) and insulin, and intestinal content of active GLP-1. This was associated with increased levels of colonic proglucagon mRNA transcripts. RSV-mediated glucoregulation required a functional GLP-1 receptor (Glp1r) as neither glucose nor insulin levels were modulated in Glp1r-/- mice. Conversely, levels of active GLP-1 and control of glycemia were further improved when the Dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin was co-administered with RSV. In addition, RSV treatment modified gut microbiota and decreased the inflammatory status of mice. Our data suggest that RSV exerts its actions in part through modulation of the enteroendocrine axis in vivo.
Collapse
|
219
|
Yin M, van der Horst ICC, van Melle JP, Qian C, van Gilst WH, Silljé HHW, de Boer RA. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol 2011; 301:H459-68. [PMID: 21572014 DOI: 10.1152/ajpheart.00054.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metformin is the first choice drug for the treatment of patients with diabetes, but its use is debated in patients with advanced cardiorenal disease. Epidemiological data suggest that metformin may reduce cardiac events, in patients both with and without heart failure. Experimental evidence suggests that metformin reduces cardiac ischemia-reperfusion injury. It is unknown whether metformin improves cardiac function (remodeling) in a long-term post-MI remodeling model. We therefore studied male, nondiabetic, Sprague-Dawley rats that were subjected to either myocardial infarction (MI) or sham operation. Animals were randomly allocated to treatment with normal water or metformin-containing water (250 mg·kg(-1)·day(-1)). At baseline, 6 wk, and 12 wk, metabolic parameters were analyzed and oral glucose tolerance tests (OGTT) were performed. Echocardiography and hemodynamic parameters were assessed 12 wk after MI. In the MI model, infarct size was significantly smaller after 12-wk metformin treatment (29.6 ± 3.2 vs. 38.0 ± 2.2%, P < 0.05). Moreover, metformin resulted in less left ventricular dilatation (6.0 ± 0.4 vs. 7.6 ± 0.6 mm, P < 0.05) and preservation of left ventricular ejection fraction (65.8 ± 3.7% vs. 48.6 ± 5.6%, P < 0.05) compared with MI control. The improved cardiac function was associated with decreased atrial natriuretic peptide mRNA levels in the metformin-treated group (50% reduction compared with MI, P < 0.05). Insulin resistance did not occur during cardiac remodeling (as indicated by normal OGTT) and fasting glucose levels and the pattern of the OGTT were not affected by metformin. Molecular analyses suggested that altered AMP kinase phosphorylation status and low insulin levels mediate the salutary effects of metformin. Altogether our results indicate that metformin may have potential to attenuate heart failure development after myocardial infarction, in the absence of diabetes and independent of systemic glucose levels.
Collapse
Affiliation(s)
- Meimei Yin
- University Medical Center Groningen, Thorax Center, Department of Cardiology, University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
220
|
Kim SJ, Nian C, McIntosh CHS. Adipocyte expression of the glucose-dependent insulinotropic polypeptide receptor involves gene regulation by PPARγ and histone acetylation. J Lipid Res 2011; 52:759-70. [PMID: 21245029 PMCID: PMC3053207 DOI: 10.1194/jlr.m012203] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/04/2011] [Indexed: 01/17/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that exerts insulinotropic and growth and survival effects on pancreatic β-cells. Additionally, there is increasing evidence supporting an important role for GIP in the regulation of adipocyte metabolism. In the current study we examined the molecular mechanisms involved in the regulation of GIP receptor (GIPR) expression in 3T3-L1 cells. GIP acted synergistically with insulin to increase neutral lipid accumulation during progression of 3T3-L1 preadipocytes to the adipocyte phenotype. Both GIPR protein and mRNA expression increased during 3T3-L1 cell differentiation, and this increase was associated with upregulation of nuclear levels of sterol response element binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor γ (PPARγ), as well as acetylation of histones H3/H4. The PPARγ receptor agonists LY171883 and rosiglitazone increased GIPR expression in differentiated 3T3-L1 adipocytes, whereas the antagonist GW9662 ablated expression. Additionally, both PPARγ and acetylated histones H3/H4 were shown to bind to a region of the GIPR promoter containing the peroxisome proliferator response element (PPRE). Knockdown of PPARγ in differentiated 3T3-L1 adipocytes, using RNA interference, reduced GIPR expression, supporting a functional regulatory role. Taken together, these studies show that GIP and insulin act in a synergistic manner on 3T3-L1 cell development and that adipocyte GIPR expression is upregulated through a mechanism involving interactions between PPARγ and a GIPR promoter region containing an acetylated histone region.
Collapse
Affiliation(s)
| | | | - Christopher H. S. McIntosh
- Department of Cellular and Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|