201
|
Smith DL, Subramanian S, Lamont JR, Bywater-Ekegärd M. Signaling in the phytomicrobiome: breadth and potential. FRONTIERS IN PLANT SCIENCE 2015; 6:709. [PMID: 26442023 PMCID: PMC4563166 DOI: 10.3389/fpls.2015.00709] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/24/2015] [Indexed: 05/18/2023]
Abstract
Higher plants have evolved intimate, complex, subtle, and relatively constant relationships with a suite of microbes, the phytomicrobiome. Over the last few decades we have learned that plants and microbes can use molecular signals to communicate. This is well-established for the legume-rhizobia nitrogen-fixing symbiosis, and reasonably elucidated for mycorrhizal associations. Bacteria within the phytomircobiome communicate among themselves through quorum sensing and other mechanisms. Plants also detect materials produced by potential pathogens and activate pathogen-response systems. This intercommunication dictates aspects of plant development, architecture, and productivity. Understanding this signaling via biochemical, genomics, proteomics, and metabolomic studies has added valuable knowledge regarding development of effective, low-cost, eco-friendly crop inputs that reduce fossil fuel intense inputs. This knowledge underpins phytomicrobiome engineering: manipulating the beneficial consortia that manufacture signals/products that improve the ability of the plant-phytomicrobiome community to deal with various soil and climatic conditions, leading to enhanced overall crop plant productivity.
Collapse
Affiliation(s)
- Donald L. Smith
- Plant Science Department, McGill University/Macdonald Campus, Sainte-Anne-de-Bellevue, QCCanada
| | | | - John R. Lamont
- Plant Science Department, McGill University/Macdonald Campus, Sainte-Anne-de-Bellevue, QCCanada
| | | |
Collapse
|
202
|
Kasa P, Modugapalem H, Battini K. Isolation, screening, and molecular characterization of plant growth promoting rhizobacteria isolates of Azotobacter and Trichoderma and their beneficial activities. J Nat Sci Biol Med 2015; 6:360-3. [PMID: 26283830 PMCID: PMC4518410 DOI: 10.4103/0976-9668.160006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES The present study was conducted for isolation, screening, and identification of Azotobacter and Trichoderma from different soil samples. METHODS A total of 10 isolates of Azotobacter and Trichoderma were isolated from rhizospheric soils. The test isolates were biochemically characterized and screened in in-vitro conditions for their plant growth promoting properties. DNA polymorphism of isolates was studied using randomly amplified polymorphic DNA analysis. RESULTS A total of 41 bands were scored, out of which 35 bands were found to be 85.59% polymorphic in Azotobacter and in Trichoderma among total 37 bands scored of which 29 were found to be 78.37% polymorphic. The influence of isolated plant growth promoting rhizobacteria (PGPR) strains on plant growth was studied using different parameters such as height of the plant, number of leaves, and number of branches, and bio-control activity was studied. CONCLUSION The present results concluded that the multiple beneficial activities of PGPR traits increase the plant growth and bio-control activity.
Collapse
Affiliation(s)
- Parameswari Kasa
- Department of Biotechnology, Sri Padmavati Mahila Visva Vidyalayam (Women's University), Tirupati, Andhra Pradesh, India
| | - Hemalatha Modugapalem
- Department of Biotechnology, Sri Padmavati Mahila Visva Vidyalayam (Women's University), Tirupati, Andhra Pradesh, India
| | - Kishori Battini
- Department of Biotechnology, Sri Padmavati Mahila Visva Vidyalayam (Women's University), Tirupati, Andhra Pradesh, India
| |
Collapse
|
203
|
Datta A, Ghosh A, Airoldi C, Sperandeo P, Mroue KH, Jiménez-Barbero J, Kundu P, Ramamoorthy A, Bhunia A. Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control. Sci Rep 2015; 5:11951. [PMID: 26144972 PMCID: PMC4491704 DOI: 10.1038/srep11951] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/09/2015] [Indexed: 11/09/2022] Open
Abstract
The recent increase in multidrug resistance against bacterial infections has become a major concern to human health and global food security. Synthetic antimicrobial peptides (AMPs) have recently received substantial attention as potential alternatives to conventional antibiotics because of their potent broad-spectrum antimicrobial activity. These peptides have also been implicated in plant disease control for replacing conventional treatment methods that are polluting and hazardous to the environment and to human health. Here, we report de novo design and antimicrobial studies of VG16, a 16-residue active fragment of Dengue virus fusion peptide. Our results reveal that VG16KRKP, a non-toxic and non-hemolytic analogue of VG16, shows significant antimicrobial activity against Gram-negative E. coli and plant pathogens X. oryzae and X. campestris, as well as against human fungal pathogens C. albicans and C. grubii. VG16KRKP is also capable of inhibiting bacterial disease progression in plants. The solution-NMR structure of VG16KRKP in lipopolysaccharide features a folded conformation with a centrally located turn-type structure stabilized by aromatic-aromatic packing interactions with extended N- and C-termini. The de novo design of VG16KRKP provides valuable insights into the development of more potent antibacterial and antiendotoxic peptides for the treatment of human and plant infections.
Collapse
Affiliation(s)
- Aritreyee Datta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| | - Anirban Ghosh
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 2016 Milano, Italy
| | - Paola Sperandeo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 2016 Milano, Italy
| | - Kamal H Mroue
- Biophysics and Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | - Jesús Jiménez-Barbero
- 1] Infectious Diseases Program, CIC bioGUNE, Parque Tecnologico de Bizkaia, Building 801A, 48160 Derio, Spain [2] IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | - Anirban Bhunia
- 1] Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India [2] Biophysics and Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
204
|
Lodeiro AR. [Queries related to the technology of soybean seed inoculation with Bradyrhizobium spp]. Rev Argent Microbiol 2015; 47:261-73. [PMID: 26364183 DOI: 10.1016/j.ram.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/29/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022] Open
Abstract
With the aim of exploiting symbiotic nitrogen fixation, soybean crops are inoculated with selected strains of Bradyrhizobium japonicum, Bradyrhizobium diazoefficiens or Bradyrhizobium elkanii (collectively referred to as Bradyrhizobium spp.). The most common method of inoculation used is seed inoculation, whether performed immediately before sowing or using preinoculated seeds or pretreated seeds by the professional seed treatment. The methodology of inoculation should not only cover the seeds with living rhizobia, but must also optimize the chances of these rhizobia to infect the roots and nodulate. To this end, inoculated rhizobia must be in such an amount and condition that would allow them to overcome the competition exerted by the rhizobia of the allochthonous population of the soil, which are usually less effective for nitrogen fixation and thus dilute the effect of inoculation on yield. This optimization requires solving some queries related to the current knowledge of seed inoculation, which are addressed in this article. I conclude that the aspects that require further research are the adhesion and survival of rhizobia on seeds, the release of rhizobia once the seeds are deposited in the soil, and the movement of rhizobia from the vicinity of the seeds to the infection sites in the roots.
Collapse
Affiliation(s)
- Aníbal R Lodeiro
- Laboratorio de Interacciones entre Rizobios y Soja (LIRyS), IBBM-Facultad de Ciencias Exactas, UNLP y CCT-La Plata CONICET, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
205
|
Tani A, Sahin N, Fujitani Y, Kato A, Sato K, Kimbara K. Methylobacterium Species Promoting Rice and Barley Growth and Interaction Specificity Revealed with Whole-Cell Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF/MS) Analysis. PLoS One 2015; 10:e0129509. [PMID: 26053875 PMCID: PMC4460032 DOI: 10.1371/journal.pone.0129509] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
Methylobacterium species frequently inhabit plant surfaces and are able to utilize the methanol emitted from plants as carbon and energy sources. As some of the Methylobacterium species are known to promote plant growth, significant attention has been paid to the mechanism of growth promotion and the specificity of plant-microbe interactions. By screening our Methylobacterium isolate collection for the high growth promotion effect in vitro, we selected some candidates for field and pot growth tests for rice and barley, respectively. We found that inoculation resulted in better ripening of rice seeds, and increased the size of barley grains but not the total yield. In addition, using whole-cell matrix-assister laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) analysis, we identified and classified Methylobacterium isolates from Methylobacterium-inoculated rice plants. The inoculated species could not be recovered from the rice plants, and in some cases, the Methylobacterium community structure was affected by the inoculation, but not with predomination of the inoculated species. The isolates from non-inoculated barley of various cultivars grown in the same field fell into just two species. These results suggest that there is a strong selection pressure at the species level of Methylobacterium residing on a given plant species, and that selection of appropriate species that can persist on the plant is important to achieve growth promotion.
Collapse
Affiliation(s)
- Akio Tani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- * E-mail:
| | - Nurettin Sahin
- Egitim Fakultesi, Mugla Sitki Kocman University, Mugla, Turkey
| | - Yoshiko Fujitani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Akiko Kato
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Kazuhide Kimbara
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
| |
Collapse
|
206
|
Zhang L, Khabbaz SE, Wang A, Li H, Abbasi PA. Detection and characterization of broad-spectrum antipathogen activity of novel rhizobacterial isolates and suppression of Fusarium crown and root rot disease of tomato. J Appl Microbiol 2015; 118:685-703. [PMID: 25512025 DOI: 10.1111/jam.12728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/25/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
AIMS To detect and characterize broad-spectrum antipathogen activity of indigenous bacterial isolates obtained from potato soil and soya bean leaves for their potential to be developed as biofungicides to control soilborne diseases such as Fusarium crown and root rot of tomato (FCRR) caused by Fusarium oxysporum f. sp. radicis-lycopersici (Forl). METHODS AND RESULTS Thirteen bacterial isolates (Bacillus amyloliquefaciens (four isolates), Paenibacillus polymyxa (three isolates), Pseudomonas chlororaphis (two isolates), Pseudomonas fluorescens (two isolates), Bacillus subtilis (one isolate) and Pseudomonas sp. (one isolate)) or their volatiles showed antagonistic activity against most of the 10 plant pathogens in plate assays. Cell-free culture filtrates (CF) of five isolates or 1-butanol extracts of CFs also inhibited the growth of most pathogen mycelia in plate assays. PCR analysis confirmed the presence of most antibiotic biosynthetic genes such as phlD, phzFA, prnD and pltC in most Pseudomonas isolates and bmyB, bacA, ituD, srfAA and fenD in most Bacillus isolates. These bacterial isolates varied in the production of hydrogen cyanide (HCN), siderophores, β-1,3-glucanases, chitinases, proteases, indole-3-acetic acid, salicylic acid, and for nitrogen fixation and phosphate solubilization. Gas chromatography-mass spectrometry analysis identified 10 volatile compounds from 10 isolates and 18 compounds from 1-butanol extracts of CFs of five isolates. Application of irradiated peat formulation of six isolates to tomato roots prior to transplanting in a Forl-infested potting mix and field soil provided protection of tomato plants from FCRR disease and enhanced plant growth under greenhouse conditions. CONCLUSIONS Five of the 13 indigenous bacterial isolates were antagonistic to eight plant pathogens, both in vitro and in vivo. Antagonistic and plant-growth promotion activities of these isolates might be related to the production of several types of antibiotics, lytic enzymes, phytohormones, secondary metabolites, siderophores and volatile compounds; however, any specific role of each needs to be determined. SIGNIFICANCE AND IMPACT OF THE STUDY Indigenous antagonistic bacterial isolates have the potential to be developed as biofungicides for minimizing early crop losses due to soilborne diseases caused by Fusarium and other soilborne pathogens.
Collapse
Affiliation(s)
- L Zhang
- South China Agricultural University, Guangzhou, China; South Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, London, ON, Canada
| | | | | | | | | |
Collapse
|
207
|
Etesami H, Alikhani HA, Mirseyed Hosseini H. Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase: Bacterial Traits Required in Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria. BACTERIAL METABOLITES IN SUSTAINABLE AGROECOSYSTEM 2015. [DOI: 10.1007/978-3-319-24654-3_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
208
|
Santoro MV, Cappellari L, Giordano W, Banchio E. Systemic Induction of Secondary Metabolite Biosynthesis in Medicinal Aromatic Plants Mediated by Rhizobacteria. SOIL BIOLOGY 2015. [DOI: 10.1007/978-3-319-13401-7_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
209
|
da Costa PB, Granada CE, Ambrosini A, Moreira F, de Souza R, dos Passos JFM, Arruda L, Passaglia LMP. A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates. PLoS One 2014; 9:e116020. [PMID: 25542031 PMCID: PMC4277451 DOI: 10.1371/journal.pone.0116020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/01/2014] [Indexed: 11/19/2022] Open
Abstract
Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling.
Collapse
Affiliation(s)
- Pedro Beschoren da Costa
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Adriana Ambrosini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Moreira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rocheli de Souza
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - João Frederico M. dos Passos
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Empresa de Pesquisa e Extensão Agropecuária de Santa Catarina (EPAGRI), Lages, SC, Brazil
| | - Letícia Arruda
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciane M. P. Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
210
|
Hamedi J, Mohammadipanah F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol 2014; 42:157-71. [PMID: 25410828 DOI: 10.1007/s10295-014-1537-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022]
Abstract
Plant growth promoting (PGP) bacteria are involved in various interactions known to affect plant fitness and soil quality, thereby increasing the productivity of agriculture and stability of soil. Although the potential of actinobacteria in antibiotic production is well-investigated, their capacity to enhance plant growth is not fully surveyed. Due to the following justifications, PGP actinobacteria (PGPA) can be considered as a more promising taxonomical group of PGP bacteria: (1) high numbers of actinobacteria per gram of soil and their filamentous nature, (2) genome dedicated to the secondary metabolite production (~5 to 10 %) is distinctively more than that of other bacteria and (3) number of plant growth promoter genera reported from actinobacteria is 1.3 times higher than that of other bacteria. Mechanisms by which PGPA contribute to the plant growth by association are: (a) enhancing nutrients availability, (b) regulation of plant metabolism, (c) decreasing environmental stress, (d) control of phytopathogens and (e) improvement of soil texture. Taxonomical and chemical diversity of PGPA and their biotechnological application along with their associated challenges are summarized in this paper.
Collapse
Affiliation(s)
- Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran,
| | | |
Collapse
|
211
|
Bresson J, Vasseur F, Dauzat M, Labadie M, Varoquaux F, Touraine B, Vile D. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery. PLoS One 2014; 9:e107607. [PMID: 25226036 PMCID: PMC4166611 DOI: 10.1371/journal.pone.0107607] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/02/2014] [Indexed: 12/25/2022] Open
Abstract
Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR) are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm), was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.
Collapse
Affiliation(s)
- Justine Bresson
- Laboratoire d′Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR759, Institut National de la Recherche Agronomique-SupAgro, Montpellier, France
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR113, Université Montpellier 2-IRD-CIRAD-INRA-SupAgro, Montpellier, France
| | - François Vasseur
- Laboratoire d′Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR759, Institut National de la Recherche Agronomique-SupAgro, Montpellier, France
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Myriam Dauzat
- Laboratoire d′Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR759, Institut National de la Recherche Agronomique-SupAgro, Montpellier, France
| | - Marc Labadie
- Laboratoire d′Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR759, Institut National de la Recherche Agronomique-SupAgro, Montpellier, France
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR113, Université Montpellier 2-IRD-CIRAD-INRA-SupAgro, Montpellier, France
| | - Fabrice Varoquaux
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR113, Université Montpellier 2-IRD-CIRAD-INRA-SupAgro, Montpellier, France
| | - Bruno Touraine
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR113, Université Montpellier 2-IRD-CIRAD-INRA-SupAgro, Montpellier, France
| | - Denis Vile
- Laboratoire d′Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR759, Institut National de la Recherche Agronomique-SupAgro, Montpellier, France
| |
Collapse
|
212
|
Plant growth-promoting rhizobacterial strain-mediated induced systemic resistance in tea (Camellia sinensis (L.) O. Kuntze) through defense-related enzymes against brown root rot and charcoal stump rot. Appl Biochem Biotechnol 2014; 174:506-21. [PMID: 25082766 DOI: 10.1007/s12010-014-1090-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
Abstract
Induction of systemic resistance in host plants through microbes and their bioactive metabolites are attaining popularity in modern agricultural practices. In this regard, individual application of two strains of Pseudomonas, RRLJ 134 and RRLJ 04, exhibited development of induced systemic resistance in tea plants against brown root rot and charcoal stump rot under split root experiments. The experimental findings also confirmed that the cuttings treated with fungal test pathogen and plant growth-promoting rhizobacteria (PGPR) strains survived longer as compared with pathogen-alone-treated cuttings. The enzyme level studies revealed that the presence of PGPR strains reduced the viscosity loss of cellulose and pectin by both the pathogens to a significant level. The activity of defense-related enzymes like L-phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase were also recorded higher in tea cuttings treated with PGPR strains in presence of pathogen. Crude bioactive metabolites isolated from these strains also showed in vitro antagonism against the test pathogens besides reducing the number of diseased plants under gnotobiotic conditions. These findings confirm the utilization of these two strains for induction of systemic resistance against two major root diseases in tea plants under plantation conditions.
Collapse
|
213
|
Mancini V, Romanazzi G. Seed treatments to control seedborne fungal pathogens of vegetable crops. PEST MANAGEMENT SCIENCE 2014; 70:860-8. [PMID: 24293285 DOI: 10.1002/ps.3693] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/06/2013] [Accepted: 11/29/2013] [Indexed: 05/22/2023]
Abstract
Vegetable crops are frequently infected by fungal pathogens, which can include seedborne fungi. In such cases, the pathogen is already present within or on the seed surface, and can thus cause seed rot and seedling damping-off. Treatment of vegetable seeds has been shown to prevent plant disease epidemics caused by seedborne fungal pathogens. Furthermore, seed treatments can be useful in reducing the amounts of pesticides required to manage a disease, because effective seed treatments can eliminate the need for foliar application of fungicides later in the season. Although the application of fungicides is almost always effective, their non-target environmental impact and the development of pathogen resistance have led to the search for alternative methods, especially in the past few years. Physical treatments that have already been used in the past and treatments with biopesticides, such as plant extracts, natural compounds and biocontrol agents, have proved to be effective in controlling seedborne pathogens. These have been applied alone or in combination, and they are widely used owing to their broad spectrum in terms of disease control and production yield. In this review, the effectiveness of different seed treatments against the main seedborne pathogens of some important vegetable crops is critically discussed.
Collapse
Affiliation(s)
- Valeria Mancini
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | | |
Collapse
|
214
|
Moreira H, Marques APGC, Franco AR, Rangel AOSS, Castro PML. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9742-9753. [PMID: 24764002 DOI: 10.1007/s11356-014-2848-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 03/28/2014] [Indexed: 06/03/2023]
Abstract
Zea mays (L.) is a crop widely cultivated throughout the world and can be considered suitable for phytomanagement due to its metal resistance and energetic value. In this study, the effect of two plant growth-promoting rhizobacteria, Ralstonia eutropha and Chryseobacterium humi, on growth and metal uptake of Z. mays plants in soils contaminated with up to 30 mg Cd kg(-1) was evaluated. Bacterial inoculation increased plant biomass up to 63% and led to a decrease of up to 81% in Cd shoot levels (4-88 mg Cd kg(-1)) and to an increase of up to 186% in accumulation in the roots (52-134 mg Cd kg(-1)). The rhizosphere community structure changed throughout the experiment and varied with different levels of Cd soil contamination, as revealed by molecular biology techniques. Z. mays plants inoculated with either of the tested strains may have potential application in a strategy of soil remediation, in particular short-term phytostabilization, coupled with biomass production for energy purposes.
Collapse
Affiliation(s)
- Helena Moreira
- CBQF-Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal,
| | | | | | | | | |
Collapse
|
215
|
Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC PLANT BIOLOGY 2014; 14:36. [PMID: 24460926 PMCID: PMC3903769 DOI: 10.1186/1471-2229-14-36] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/23/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria which benefit plants by improving plant productivity and immunity. The mechanisms involved in these processes include the regulation of plant hormone levels such as ethylene and abscisic acid (ABA). The aim of the present study was to determine whether the activity of Bacillus megaterium PGPR is affected by the endogenous ABA content of the host plant. The ABA-deficient tomato mutants flacca and sitiens and their near-isogenic wild-type parental lines were used. Growth, stomatal conductance, shoot hormone concentration, competition assay for colonization of tomato root tips, and root expression of plant genes expected to be modulated by ABA and PGPR were examined. RESULTS Contrary to the wild-type plants in which PGPR stimulated growth rates, PGPR caused growth inhibition in ABA-deficient mutant plants. PGPR also triggered an over accumulation of ethylene in ABA-deficient plants which correlated with a higher expression of the pathogenesis-related gene Sl-PR1b. CONCLUSIONS Positive correlation between over-accumulation of ethylene and a higher expression of Sl-PR1b in ABA-deficient mutant plants could indicate that maintenance of normal plant endogenous ABA content may be essential for the growth promoting action of B. megaterium by keeping low levels of ethylene production.
Collapse
Affiliation(s)
- Rosa Porcel
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ángel María Zamarreño
- CIPAV TimacAGRO International-Roullier Group, Polígono Arazuri-Orkoien, c/C no. 32, 31160-Orkoien, Navarra, Spain
| | - José María García-Mina
- CIPAV TimacAGRO International-Roullier Group, Polígono Arazuri-Orkoien, c/C no. 32, 31160-Orkoien, Navarra, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
216
|
Rastogi G, Coaker GL, Leveau JH. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 2013; 348:1-10. [DOI: 10.1111/1574-6968.12225] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/21/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022] Open
Affiliation(s)
- Gurdeep Rastogi
- Department of Plant Pathology; University of California; Davis; CA; USA
| | - Gitta L. Coaker
- Department of Plant Pathology; University of California; Davis; CA; USA
| | - Johan H.J. Leveau
- Department of Plant Pathology; University of California; Davis; CA; USA
| |
Collapse
|
217
|
Zeitler B, Herrera Diaz A, Dangel A, Thellmann M, Meyer H, Sattler M, Lindermayr C. De-novo design of antimicrobial peptides for plant protection. PLoS One 2013; 8:e71687. [PMID: 23951222 PMCID: PMC3741113 DOI: 10.1371/journal.pone.0071687] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 07/08/2013] [Indexed: 12/17/2022] Open
Abstract
This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of “healthy” food, these peptides might serve as templates for novel antibacterial and antifungal agents.
Collapse
Affiliation(s)
- Benjamin Zeitler
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München-Neuherberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
218
|
Poupin MJ, Timmermann T, Vega A, Zuñiga A, González B. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 2013; 8:e69435. [PMID: 23869243 PMCID: PMC3711820 DOI: 10.1371/journal.pone.0069435] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 06/07/2013] [Indexed: 12/31/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant biological interactions.
Collapse
Affiliation(s)
- María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.
| | | | | | | | | |
Collapse
|
219
|
Guglielmetti S, Basilico R, Taverniti V, Arioli S, Piagnani C, Bernacchi A. Luteibacter rhizovicinus MIMR1 promotes root development in barley (Hordeum vulgare L.) under laboratory conditions. World J Microbiol Biotechnol 2013; 29:2025-32. [PMID: 23653264 DOI: 10.1007/s11274-013-1365-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/27/2013] [Indexed: 01/19/2023]
Abstract
In order to preserve environmental quality, alternative strategies to chemical-intensive agriculture are strongly needed. In this study, we characterized in vitro the potential plant growth promoting (PGP) properties of a gamma-proteobacterium, named MIMR1, originally isolated from apple shoots in micropropagation. The analysis of the 16S rRNA gene sequence allowed the taxonomic identification of MIMR1 as Luteibacter rhizovicinus. The PGP properties of MIMR1 were compared to Pseudomonas chlororaphis subsp. aurantiaca DSM 19603(T), which was selected as a reference PGP bacterium. By means of in vitro experiments, we showed that L. rhizovicinus MIMR1 and P. chlororaphis DSM 19603(T) have the ability to produce molecules able to chelate ferric ions and solubilize monocalcium phosphate. On the contrary, both strains were apparently unable to solubilize tricalcium phosphate. Furthermore, the ability to produce 3-indol acetic acid by MIMR1 was approximately three times higher than that of DSM 19603(T). By using fluorescent recombinants of strains MIMR1 and DSM 19603(T), we also demonstrated that both bacteria are able to abundantly proliferate and colonize the barley rhizosphere, preferentially localizing on root tips and in the rhizoplane. Finally, we observed a negative effect of DSM 19603(T) on barley seed germination and plant growth, whereas MIMR1, compared to the control, determined a significant increase of the weight of aerial part (+22 %), and the weight and length of roots (+53 and +32 %, respectively). The results obtained in this work make L. rhizovicinus MIMR1 a good candidate for possible use in the formulation of bio-fertilizers.
Collapse
Affiliation(s)
- Simone Guglielmetti
- Division of Food Microbiology and Bioprocessing, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy,
| | | | | | | | | | | |
Collapse
|
220
|
Troppens DM, Dmitriev RI, Papkovsky DB, O'Gara F, Morrissey JP. Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae. FEMS Yeast Res 2013; 13:322-34. [PMID: 23445507 DOI: 10.1111/1567-1364.12037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 01/18/2023] Open
Abstract
Saccharomyces cerevisiae is a proven model to investigate the effects of small molecules and drugs on fungal and eukaryotic cells. In this study, the mode of action of an antifungal metabolite, 2,4-diacetylphloroglucinol (DAPG), was determined. Applying a combination of genetic and physiological approaches, it was established that this bacterial metabolite acts as a proton ionophore and dissipates the proton gradient across the mitochondrial membrane. The uncoupling of respiration and ATP synthesis ultimately leads to growth inhibition and is the primary toxic effect of DAPG. A genome-wide screen identified 154 DAPG-tolerant mutants and showed that there are many alterations in cellular metabolism that can confer at least some degree of tolerance to this uncoupler. One mutant, ydc1, was studied in some more detail as it displayed increased tolerance to both DAPG and the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) and appears to be unconnected to other tolerant mutant strains. Deleting YDC1 alters sphingolipid homoeostasis in the cell, and we suggest here that this may be linked to reduced drug sensitivity. Sphingolipids and their derivatives are important eukaryotic signal molecules, and the observation that altering homoeostasis may affect yeast response to metabolic uncoupling agents raises some intriguing questions for future studies.
Collapse
|
221
|
Fighting Plant Diseases Through the Application of Bacillus and Pseudomonas Strains. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-39317-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
222
|
Carvalhais LC, Muzzi F, Tan CH, Hsien-Choo J, Schenk PM. Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities. FRONTIERS IN PLANT SCIENCE 2013; 4:235. [PMID: 23847639 PMCID: PMC3701873 DOI: 10.3389/fpls.2013.00235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/14/2013] [Indexed: 05/03/2023]
Abstract
Plants in natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of roots and the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we examined Arabidopsis thaliana roots and shoots in the presence or absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect on Arabidopsis shoots in the presence of soil microbes compared to plants grown in microbe-free soil under otherwise identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also led to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in nitrogen uptake, oxidative stress/redox signaling, and salicylic acid (SA)-mediated plant defense while upregulating jasmonate (JA) signaling, cell wall organization/biosynthesis and photosynthesis. Multi-species analyses such as simultaneous transcriptional profiling of plants and their interacting microorganisms (metatranscriptomics) coupled to metagenomics may further increase our understanding of the intricate networks underlying plant-microbe interactions.
Collapse
Affiliation(s)
| | | | | | | | - Peer M. Schenk
- *Correspondence: Peer M. Schenk, Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, John Hines Building 62, Mansfield Place, Brisbane, QLD 4072, Australia e-mail:
| |
Collapse
|
223
|
Tak HI, Ahmad F, Babalola OO. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 223:33-52. [PMID: 23149811 DOI: 10.1007/978-1-4614-5577-6_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this review, we briefly describe the biological application of PGPR for purposes of phytoremediating heavy metals. We address the agronomic practices that can be used to maximize the remediation potential of plants. Plant roots have limited ability ability mental from soil, mainly because metals have low solubility in the soil solution. The phytoavailability of metal is closely tired to the soil properties and the metabolites that are released by PGPR (e.g., siderophores, organ acids, and plant growth regulators). The role played by PGPR may be accomplished by their direct effect on plant growth dynamics, or indirectly by acidification, chelation, precipitation, or immobilization of heavy metals in the rhizosphere. From performing this review we have formed the following conclusions: The most critical factor is determining how efficient phytoremediation of metal-contaminated soil will be is the rate of uptake of the metal by plants. In turn, this depends on the rate of bioavailability. We know from our review that beneficial bacteria exist tha can alter metal bioavailability of plants. Using these beneficial bacteria improves the performance of phytoremediation of the metal-contaminated sites. Contaminated sites are often nutrient poor. Such soil can be nutrient enriched by applying metal-tolerant microbes that provide key needed plant nutrients. Applying metal-tolerant microbes therefore may be vital in enhancing the detoxification of heavy-metal-contaminated soils (Glick 2003). Plant stress generated by metal-contaminated soils can be countered by enhancing plant defense responses. Responses can be enhanced by alleviating the stress-mediated impact on plants by enzymatic hydrolysis of ACC, which is intermediate in the biosynthetic pathway of ethylene. These plant-microbe partnerships can act as decontaminators by improving phytoremediation. Soil microorganisms play a central role in maintaining soil structure, fertility and in remediating contaminated soils. Although not yet widely applied, utilizing a plant-microbe partnership is now being recognized as an important tool to enhance successful phytoremediaton of metal-contaminated sites. Hence, soil microbes are essential to soil health and sustainability. The key to their usefulness is their close association with, and positive influence on, plant growth and function. To capitalize on the early success of this technique and to improve it, additional research is needed on successful colonization and survival of inoculums under field conditions, because there are vital for the success of this approach. In addition, the effects of the interaction of PGPR and plant root-mediated process on the metal mobilization in soil are required, to better elucidate the mechanism that underlines bacterial-assisted phytoremediation is important. Finally, applying PGPR-associated phytoremediation under field conditions is important, because, to date, only locally contaminated sites have been treated with this technique, by using microbes cultured in the laboratory.
Collapse
Affiliation(s)
- Hamid Iqbal Tak
- Department of Biological Sciences, Faculty of Agriculture, Science and Technology, North-West University, Mafikeng Campus, X2046, Mmabatho 2735, South Africa
| | | | | |
Collapse
|
224
|
AJILOGBA CAROLINEF, BABALOLA OLUBUKOLAO. Integrated Management Strategies for Tomato Fusarium Wilt. Biocontrol Sci 2013; 18:117-27. [DOI: 10.4265/bio.18.117] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
225
|
Mitter B, Petric A, Shin MW, Chain PSG, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. FRONTIERS IN PLANT SCIENCE 2013; 4:120. [PMID: 23641251 PMCID: PMC3639386 DOI: 10.3389/fpls.2013.00120] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/16/2013] [Indexed: 05/20/2023]
Abstract
Burkholderia phytofirmans PsJN is a naturally occurring plant-associated bacterial endophyte that effectively colonizes a wide range of plants and stimulates their growth and vitality. Here we analyze whole genomes, of PsJN and of eight other endophytic bacteria. This study illustrates that a wide spectrum of endophytic life styles exists. Although we postulate the existence of typical endophytic traits, no unique gene cluster could be exclusively linked to the endophytic lifestyle. Furthermore, our study revealed a high genetic diversity among bacterial endophytes as reflected in their genotypic and phenotypic features. B. phytofirmans PsJN is in many aspects outstanding among the selected endophytes. It has the biggest genome consisting of two chromosomes and one plasmid, well-equipped with genes for the degradation of complex organic compounds and detoxification, e.g., 24 glutathione-S-transferase (GST) genes. Furthermore, strain PsJN has a high number of cell surface signaling and secretion systems and harbors the 3-OH-PAME quorum-sensing system that coordinates the switch of free-living to the symbiotic lifestyle in the plant-pathogen R. solanacearum. The ability of B. phytofirmans PsJN to successfully colonize such a wide variety of plant species might be based on its large genome harboring a broad range of physiological functions.
Collapse
Affiliation(s)
- Birgit Mitter
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbHTulln, Austria
- *Correspondence: Birgit Mitter, Bioresources Unit, Austrian Institute of Technology Gmbh, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria. e-mail:
| | - Alexandra Petric
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbHTulln, Austria
| | - Maria W. Shin
- Department of Energy, Joint Genome InstituteWalnut Creek, CA, USA
| | | | | | | | - Jerzy Nowak
- Department of Agriculture and Life Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Angela Sessitsch
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbHTulln, Austria
| |
Collapse
|
226
|
Berlec A. Novel techniques and findings in the study of plant microbiota: search for plant probiotics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:96-102. [PMID: 22794922 DOI: 10.1016/j.plantsci.2012.05.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/11/2012] [Accepted: 05/20/2012] [Indexed: 05/12/2023]
Abstract
Plants live in intimate relationships with numerous microorganisms present inside or outside plant tissues. The plant exterior provides two distinct ecosystems, the rhizosphere (below ground) and the phyllosphere (above ground), both populated by microbial communities. Most studies on plant microbiota deal with pathogens or mutualists. This review focuses on plant commensal bacteria, which could represent a rich source of bacteria beneficial to plants, alternatively termed plant probiotics. Plant commensal bacteria have been addressed only recently with culture-independent studies. These use next-generation sequencing, DNA microarray technologies and proteomics to decipher microbial community composition and function. Diverse bacterial populations are described in both rhizosphere and phyllosphere of different plants. The microorganisms can emerge from neighboring environmental ecosystems at random; however their survival is regulated by the plant. Influences from the environment, such as pesticides, farming practice and atmosphere, also affect the composition of microbial communities. Apart from community composition studies, some functional studies have also been performed. These include identification of broad-substrate surface receptors and methanol utilization enzymes by the proteomic approach, as well as identification of bacterial species that are important mediators of disease-suppressive soil phenomenon. Experience from more advanced human microbial studies could provide useful information and is discussed in the context of methodology and common trends. Administration of microbial mixtures of whole communities, rather than individual species, is highlighted and should be considered in future agricultural applications.
Collapse
Affiliation(s)
- Aleš Berlec
- Department of Biotechnology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
227
|
Bafana A. Diversity and metabolic potential of culturable root-associated bacteria from Origanum vulgare in sub-Himalayan region. World J Microbiol Biotechnol 2012; 29:63-74. [PMID: 22927014 DOI: 10.1007/s11274-012-1158-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/17/2012] [Indexed: 11/28/2022]
Abstract
Study of rhizospheric bacteria from important plants is very essential, as they are known to influence plant growth and productivity, and also produce industrially important metabolites. Origanum vulgare is a perennial medicinal aromatic plant rich in phenolic antioxidants. Present study investigates the diversity of culturable root-associated bacteria from this plant in Palampur, India, which constitutes a unique ecosystem due to high rain fall, wide temperature fluctuations and acidic soil. Both root endophytes and rhizospheric soil bacteria were isolated, which resulted in a total of 120 morphologically different isolates. They were found to group into 21 phylotypes based on restriction fragment length polymorphism analysis. Growth medium composition had significant effect on the diversity of the isolated bacterial populations. The isolates were characterized for various metabolic, plant growth promoting (PGP) and other biotechnologically useful activities, based on which they were clustered into groups by principal component analysis. Majority of the isolates belonged to γ-Proteobacteria and Firmicutes. Pseudomonas and Stenotrophomonas were the most dominant species and together constituted 27.5 % of the total isolates. Many isolates, especially γ-Proteobacteria, showed very high PGP activities. Few isolates exhibited very high antioxidant activity, which may find potential applications in food and health industries. Firmicutes were catabolically the most versatile group and produced several hydrolytic enzymes. To the best of our knowledge, it is the first study describing rhizospheric microbial community of O. vulgare.
Collapse
Affiliation(s)
- Amit Bafana
- Biotechnology Division, Institute of Himalayan Bioresource Technology (IHBT), Council of Scientific and Industrial Research (CSIR), Palampur 176061, India.
| |
Collapse
|
228
|
Sabbah M, Fontaine F, Grand L, Boukraa M, Efrit ML, Doutheau A, Soulère L, Queneau Y. Synthesis and biological evaluation of new N-acyl-homoserine-lactone analogues, based on triazole and tetrazole scaffolds, acting as LuxR-dependent quorum sensing modulators. Bioorg Med Chem 2012; 20:4727-36. [DOI: 10.1016/j.bmc.2012.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/21/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
|
229
|
Pallai R, Hynes RK, Verma B, Nelson LM. Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6-8 under gnotobiotic conditions. Can J Microbiol 2012; 58:170-8. [PMID: 22292926 DOI: 10.1139/w11-120] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas fluorescens 6-8, a rhizosphere isolate previously shown to enhance root elongation of canola ( Brassica napus L.), was characterized for its ability to produce indole-3-acetic acid and cytokinins in pure culture and in the rhizosphere of canola under gnotobiotic conditions in comparison with the cytokinin-producing strain P. fluorescens G20-18 and its mutant CNT2. Strain 6-8 produced isopentenyl adenosine, zeatin riboside, and dihydroxyzeatin riboside at levels similar to those of G20-18, but only very low concentrations of indole-3-acetic acid. In a gnotobiotic assay canola inoculated with 6-8 and G20-18 had higher concentrations of isopentenyl adenosine and zeatin riboside in the rhizosphere and greater root length than the noninoculated control. The ability of strain 6-8 to colonize canola roots was assessed following transformation with the green fluorescent protein and inoculation onto canola seed in a gnotobiotic assay. Higher populations of strain 6-8 were observed on the proximal region of the root closest to the seed than on the mid and distal portions 9 days after seed inoculation. The ability of P. fluorescens 6-8 to produce cytokinins, colonize the roots of canola seedlings, and enhance root elongation may contribute to its ability to survive in the rhizosphere and may benefit seedling growth.
Collapse
Affiliation(s)
- Rajash Pallai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
230
|
Ahmad F, Siddiqui MA, Babalola OO, Wu HF. Biofunctionalization of nanoparticle assisted mass spectrometry as biosensors for rapid detection of plant associated bacteria. Biosens Bioelectron 2012; 35:235-242. [DOI: 10.1016/j.bios.2012.02.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
|
231
|
Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil. J Microbiol 2012; 50:45-9. [DOI: 10.1007/s12275-012-1415-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/25/2011] [Indexed: 10/28/2022]
|
232
|
|
233
|
Martinez-Absalon S, del C. Orozco-Mosqueda M, Martinez-Pacheco M, Farias-Rodriguez R, Govindappa M, Santoyo G. Isolation and molecular characterization of a novel strain of Bacillus with antifungal activity from the sorghum rhizosphere. GENETICS AND MOLECULAR RESEARCH 2012; 11:2665-73. [DOI: 10.4238/2012.july.10.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
234
|
Phelan VV, Liu WT, Pogliano K, Dorrestein PC. Microbial metabolic exchange--the chemotype-to-phenotype link. Nat Chem Biol 2011; 8:26-35. [PMID: 22173357 DOI: 10.1038/nchembio.739] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The function of microbial interactions is to enable microorganisms to survive by establishing a homeostasis between microbial neighbors and local environments. A microorganism can respond to environmental stimuli using metabolic exchange-the transfer of molecular factors, including small molecules and proteins. Microbial interactions not only influence the survival of the microbes but also have roles in morphological and developmental processes of the organisms themselves and their neighbors. This, in turn, shapes the entire habitat of these organisms. Here we highlight our current understanding of metabolic exchange as well as the emergence of new technologies that are allowing us to eavesdrop on microbial conversations comprising dozens to hundreds of secreted metabolites that control the behavior, survival and differentiation of members of the community. The goal of the rapidly advancing field studying multifactorial metabolic exchange is to devise a microbial 'Rosetta stone' in order to understand the language by which microbial interactions are negotiated and, ultimately, to control the outcome of these conversations.
Collapse
Affiliation(s)
- Vanessa V Phelan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | | | | | | |
Collapse
|
235
|
Functional characterization of the quorum sensing regulator RsaL in the plant-beneficial strain Pseudomonas putida WCS358. Appl Environ Microbiol 2011; 78:726-34. [PMID: 22113916 DOI: 10.1128/aem.06442-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In many bacteria, quorum sensing (QS) systems rely on a signal receptor and a synthase producing N-acyl-homoserine lactone(s) as the signal molecule(s). In some species, the rsaL gene, located between the signal receptor and synthase genes, encodes a repressor limiting signal synthase expression and hence signal molecule production. Here we investigate the molecular mechanism of action of the RsaL protein in the plant growth-promoting rhizobacterium Pseudomonas putida WCS358 (RsaL(WCS)). In P. putida WCS358, RsaL(WCS) displayed a strong repressive effect on the promoter of the QS signal synthase gene, ppuI, while it did not repress the same promoter in Pseudomonas aeruginosa. DNase I protection assays showed that purified RsaL(WCS) specifically binds to ppuI on a DNA region overlapping the predicted σ(70)-binding site, but such protection was observed only at high protein concentrations. Accordingly, electrophoretic mobility shift assays showed that the RsaL(WCS) protein was not able to form stable complexes efficiently with a probe encompassing the ppuI promoter, while it formed stable complexes with the promoter of lasI, the gene orthologous to ppuI in P. aeruginosa. This difference seems to be dictated by the lower dyad symmetry of the RsaL(WCS)-binding sequence on the ppuI promoter relative to that on the lasI promoter. Comparison of the results obtained in vivo and in vitro suggests that RsaL(WCS) needs a molecular interactor/cofactor specific for P. putida WCS358 to repress ppuI transcription. We also demonstrate that RsaL(WCS) regulates siderophore-mediated growth limitation of plant pathogens and biofilm formation, two processes relevant for plant growth-promoting activity.
Collapse
|
236
|
Enhancing plant disease suppression by Burkholderia vietnamiensis through chromosomal integration of Bacillus subtilis chitinase gene chi113. Biotechnol Lett 2011; 34:287-93. [DOI: 10.1007/s10529-011-0760-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
|
237
|
Kumar G, Kanaujia N, Bafana A. Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiol Res 2011; 167:220-5. [PMID: 21968325 DOI: 10.1016/j.micres.2011.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/21/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
Abstract
Present study investigates the cultivable diversity of root-associated bacteria from a medicinal plant Ajuga bracteosa in the Kangra valley, in order to determine their plant growth promoting (PGP) and biotechnological potential. The plant was found to exhibit a positive rhizosphere effect of 1.3-1.5. A total of 123 morphologically different bacteria were isolated from the rhizospheric soil and roots of the plant. Medium composition was found to have significant effect on the composition of isolated bacterial populations. Majority of the rhizospheric soil isolates belonged to α- and γ-Proteobacteria, with Pseudomonas constituting the most dominant species. Endophytic bacterial community, on other hand, consisted almost exclusively of Firmicutes. Majority of the isolates showed PGP activity by producing siderophores and indole acetic acid. Several isolates were found to exhibit very high antioxidant activity in the culture medium. A significant proportion of isolates also demonstrated other ecologically important activities like phosphate solubilization, nitrogen fixation, and production of hydrolytic enzymes including amylase, protease, lipase, chitinase, cellulase, pectinase and phosphatase. Firmicutes were found to be metabolically the most versatile group and performed multiple enzyme activities. This is the first systematic study of culturable bacterial community from the rhizosphere of A. bracteosa, particularly in the Kangra valley region.
Collapse
Affiliation(s)
- Gulshan Kumar
- Biotechnology Division, Institute of Himalayan Bioresource Technology (IHBT), Council of Scientific and Industrial Research (CSIR), Palampur 176061, India
| | | | | |
Collapse
|
238
|
Santoro MV, Zygadlo J, Giordano W, Banchio E. Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1177-1182. [PMID: 21843946 DOI: 10.1016/j.plaphy.2011.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/27/2011] [Indexed: 05/27/2023]
Abstract
Volatile organic compounds (VOCs), characterized by low molecular weight and high vapor pressure, are produced by all organisms as part of normal metabolism, and play important roles in communication within and between organisms. We examined the effects of VOCs released by three species of plant growth-promoting rhizobacteria (Pseudomonas fluorescens, Bacillus subtilis, Azospirillum brasilense) on growth parameters and composition of essential oils (EO) in the aromatic plant Mentha piperita (peppermint). The bacteria and plants were grown on the same Petri dish, but were separated by a physical barrier such that the plants were exposed only to VOCs but not to solutes from the bacteria. Growth parameters of plants exposed to VOCs of P. fluorescens or B. subtilis were significantly higher than those of controls or A. brasilense-treated plants. Production of EOs (monoterpenes) was increased 2-fold in P. fluorescens-treated plants. Two major EOs, (+)pulegone and (-)menthone, showed increased biosynthesis in P. fluorescens-treated plants. Menthol in A. brasilense-treated plants was the only major EO that showed a significant decrease. These findings suggest that VOCs of rhizobacteria, besides inducing biosynthesis of secondary metabolites, affect pathway flux or specific steps of monoterpene metabolism. Bacterial VOCs are a rich source for new natural compounds that may increase crop productivity and EO yield of this economically important plant species.
Collapse
Affiliation(s)
- Maricel Valeria Santoro
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Campus Universitario, 5800 Río Cuarto, Argentina
| | | | | | | |
Collapse
|
239
|
Halgren A, Azevedo M, Mills D, Armstrong D, Thimmaiah M, McPhail K, Banowetz G. Selective inhibition of Erwinia amylovora by the herbicidally active germination-arrest factor (GAF) produced by Pseudomonas bacteria. J Appl Microbiol 2011; 111:949-59. [DOI: 10.1111/j.1365-2672.2011.05098.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
240
|
Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought. Appl Microbiol Biotechnol 2011; 91:1297-304. [PMID: 21769483 DOI: 10.1007/s00253-011-3461-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) increase the viability and health of host plants when they colonize roots and engage in associative symbiosis (Bashan et al. 2004). In return, PGPR viability is increased by host plant roots by the provision of nutrients and a more protective environment (Richardson et al. in Plant Soil 321:305-339, 2009). The PGPR have great potential in agriculture since the combination of certain microorganisms and plants can increase crop production and increase protection against frost, salinity, drought and other environmental stresses such as the presence of xenobiotic pollutants. But there is a great challenge in combining plants and microorganisms without compromising the viability of either microorganisms or seeds. In this paper, we review how anhydrobiotic engineering can be used for the formulation of biotechnological tools that guarantee the supply of both plants and microorganisms in the dry state. We also describe the application of this technology for the selection of desiccation-tolerant PGPR for polycyclic aromatic hydrocarbons bioremediation, in soils subjected to seasonal drought, by the rhizoremediation process.
Collapse
|
241
|
Lee MK, Chauhan PS, Yim WJ, Lee GJ, Kim YS, Park KW, Sa TM. Foliar Colonization and Growth Promotion of Red Pepper (Capsicum annuum L.) by Methylobacterium oryzae CBMB20. ACTA ACUST UNITED AC 2011. [DOI: 10.3839/jabc.2011.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
242
|
Mishra A, Chauhan PS, Chaudhry V, Tripathi M, Nautiyal CS. Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. Antonie van Leeuwenhoek 2011; 100:405-13. [DOI: 10.1007/s10482-011-9596-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
|
243
|
|
244
|
Stes E, Vandeputte OM, El Jaziri M, Holsters M, Vereecke D. A successful bacterial coup d'état: how Rhodococcus fascians redirects plant development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:69-86. [PMID: 21495844 DOI: 10.1146/annurev-phyto-072910-095217] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rhodococcus fascians is a gram-positive phytopathogen that induces differentiated galls, known as leafy galls, on a wide variety of plants, employing virulence genes located on a linear plasmid. The pathogenic strategy consists of the production of a mixture of six synergistically acting cytokinins that overwhelm the plant's homeostatic mechanisms, ensuring the activation of a signaling cascade that targets the plant cell cycle and directs the newly formed cells to differentiate into shoot meristems. The shoots that are formed upon infection remain immature and never convert to source tissues resulting in the establishment of a nutrient sink that is a niche for the epiphytic and endophytic R. fascians subpopulations. Niche formation is accompanied by modifications of the transcriptome, metabolome, physiology, and morphology of both host and pathogen. Here, we review a decade of research and set the outlines of the molecular basis of the leafy gall syndrome.
Collapse
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium.
| | | | | | | | | |
Collapse
|
245
|
Toxicological Effects of Selective Herbicides on Plant Growth Promoting Activities of Phosphate Solubilizing Klebsiella sp. Strain PS19. Curr Microbiol 2010; 62:532-8. [DOI: 10.1007/s00284-010-9740-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/04/2010] [Indexed: 11/30/2022]
|