201
|
Öhman J, Erlinge D. The touching story of purinergic signaling in epithelial and endothelial cells. Purinergic Signal 2012; 8:599-608. [PMID: 22528685 DOI: 10.1007/s11302-012-9316-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/20/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jenny Öhman
- Faculty of Medicine, Lund University, Box 117, 221 00, Lund, Sweden.
| | | |
Collapse
|
202
|
Involvement of P2Y13 receptor in suppression of neuronal differentiation. Neurosci Lett 2012; 518:5-9. [PMID: 22521313 DOI: 10.1016/j.neulet.2012.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 01/28/2023]
Abstract
We examined the receptor-mediated effects of extracellular ATP on neuronal differentiation of PC12 cells, Neuro2a cells and MEB5 cells by using a series of receptor antagonists. The P2Y13 receptor antagonist MRS2211 significantly accelerated neurite outgrowth in all cases. Treatment with nerve growth factor (NGF) alone activated ERK1/2 in PC12 cells, and the activation was further increased by MRS2211. These results suggest involvement of P2Y13 receptor in suppression of neuronal differentiation. Thus, P2Y13 receptor antagonists might be candidates for treatment of neurodegenerative diseases.
Collapse
|
203
|
Signaling mechanisms mediating uridine adenosine tetraphosphate-induced proliferation of human vascular smooth muscle cells. J Cardiovasc Pharmacol 2012; 58:654-62. [PMID: 21885991 DOI: 10.1097/fjc.0b013e318231e929] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Proliferation of vascular smooth muscle cells (SMCs) plays an important role in the development of atherosclerosis and restenosis. Extracellular mononucleotides, such as adenosine triphosphate and uridine-5'-triphosphate stimulate SMC proliferation. However, the effects of dinucleotides on SMC proliferation and their underlying signaling mechanisms are less well defined. Recently, increasing evidence suggests that the dinucleotide, uridine adenosine tetraphosphate (Up4A) plays a role in the regulation of cardiovascular function. We have previously demonstrated that Up4A stimulates DNA synthesis and proliferation of human SMCs. This study investigated the signaling mechanisms underlying the proliferative effect of Up4A. Up4A-induced increase in bromodeoxyuridine incorporation was blocked by the mammalian target of rapamycin inhibitor, rapamycin, and the MEK inhibitor, PD98059. Up4A-stimulated phosphorylation and kinase activity of S6 kinase (S6K) and Erk1/2 were inhibited by PD98059, whereas phosphorylation and kinase activity of S6K, but not Erk1/2, were inhibited by rapamycin. Up4A also increased the phosphorylation of Akt, which was blocked by the PI3-kinase inhibitor, LY294002. Up4A-stimulated activation of S6K, but not Erk1/2, was also prevented by LY294002. Furthermore, Up4A-stimulated phosphorylation and kinase activity of S6K and Erk1/2 were inhibited by the P2 receptor antagonist, suramin, but not by the P2X receptor antagonist, Ip5I. Up4A also stimulated an increase in the protein expression of cycle-dependent kinase 2, which was prevented by rapamycin, PD98059, and suramin. These results suggest that the signaling mechanisms underlying the Up4A-stimulated proliferation of SMCs are mediated by P2Y receptors and involve the PI3-K/Akt and mitogen-activated protein kinase pathways, leading to the independent activation of S6K and an increase in cycle-dependent kinase 2 expression. This work stresses the concept that dinucleotides, like mononucleotides, play potentially important roles in the regulation of vascular function.
Collapse
|
204
|
Lu D, Soleymani S, Madakshire R, Insel PA. ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors. FASEB J 2012; 26:2580-91. [PMID: 22415310 DOI: 10.1096/fj.12-204677] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cardiac fibroblasts (CFs) play an essential role in remodeling of the cardiac extracellular matrix. Extracellular nucleotide signaling may provoke a profibrotic response in CFs. We tested the hypothesis that physical perturbations release ATP from CFs and that ATP participates in profibrotic signaling. ATP release was abolished by the channel inhibitor carbenoxolone and inhibited by knockdown of either connexin (Cx)43 or Cx45 (47 and 35%, respectively), implying that hypotonic stimulation induces ATP release via Cx43 and Cx45 hemichannels, although pannexin 1 may also play a role. ATP released by hypotonic stimulation rapidly (<10 min) increased phosphorylated ERK by 5-8 fold, an effect largely eliminated by P2Y(2) receptor knockdown or ATP hydrolysis with apyrase. ATP stimulation of P2Y(2) receptors increased α-smooth muscle actin (α-SMA) production, and in an ERK-dependent manner, ATP increased collagen accumulation by 60% and mRNA expression of profibrotic markers: plasminogen activator inhibitor-1 and monocyte chemotactic protein-1 by 4.5- and 4.0-fold, respectively. Apyrase treatment substantially reduced the basal profibrotic phenotype, decreasing collagen and α-SMA content and increasing matrix metalloproteinase expression. Thus, ATP release activates P2Y(2) receptors to mediate profibrotic responses in CFs, implying that nucleotide release under both basal and activated states is likely an important mechanism for fibroblast homeostasis.
Collapse
Affiliation(s)
- David Lu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
205
|
Regulatory mechanisms underlying the modulation of GIRK1/GIRK4 heteromeric channels by P2Y receptors. Pflugers Arch 2012; 463:625-33. [PMID: 22362083 DOI: 10.1007/s00424-012-1082-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 01/10/2023]
Abstract
The muscarinic K(+) channel (I (K,ACh)) is a heterotetramer composed of GIRK1 (Kir3.1) and GIRK4 (Kir3.4) subunits of a G protein-coupled inwardly rectifying channel, and plays an important role in mediating electrical responses to the vagal stimulation in the heart. I (K,ACh) displays biphasic changes (activation followed by inhibition) through the stimulation of the purinergic P2Y receptors, but the regulatory mechanism involved in these modulation of I (K,ACh) by P2Y receptors remains to be fully elucidated. Various P2Y receptor subtypes and GIRK1/GIRK4 (I (GIRK)) were co-expressed in Chinese hamster ovary cells, and the effect of stimulation of P2Y receptor subtypes on I (GIRK) were examined using the whole-cell patch-clamp method. Extracellular application of 10 μM ATP induced a transient activation of I (GIRK) through the P2Y(1) receptor, which was completely abolished by pretreatment with pertussis toxin. ATP initially caused an additive transient increase in ACh-activated I (GIRK) (via M(2) receptor), which was followed by subsequent inhibition. This inhibition of I (GIRK) by ATP was attenuated by co-expression of regulator of G-protein signaling 2, or phosphatidylinositol-4-phosphate-5-kinase, or intracellular phosphatidylinositol 4,5-bisphosphate loading, but not by the exposure to protein kinase C inhibitors. P2Y(4) stimulation also persistently suppressed the ACh-activated I (GIRK). In addition, I (GIRK) evoked by the stimulation of the P2Y(4) receptor exhibited a transient activation, but that evoked by the stimulation of P2Y(2) or P2Y(12) receptor showed a rather persistent activation. These results reveal (1) that P2Y(1) and P2Y(4) are primarily coupled to the G(q)-phospholipase C-pathway, while being weakly linked to G(i/o), and (2) that P2Y(2) and P2Y(12) involve G(i/o) activation.
Collapse
|
206
|
He HM, Ren LM, Tian HL, Lu HG, Zhao D. Effects of imidazolines on neurogenic contraction in isolated urinary bladder detrusor strips from rabbit. Can J Physiol Pharmacol 2012; 90:219-27. [PMID: 22309408 DOI: 10.1139/y11-112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Moxonidine and clonidine, which are imidazoline compounds, are sympathetic modulators used as centrally acting antihypertensive drugs. Moxonidine, clonidine, and agmatine produce extensive effects in mammalian tissues via imidazoline recognition sites (or receptors) or α(2)-adrenoceptors. To investigate the effects of imidazolines on the function of the urinary bladder, we tested the effects of moxonidine, clonidine, and agmatine on the neurogenic contraction induced by electric field stimulation, and on the post-synaptic receptors in isolated urinary bladder detrusor strips from rabbit. Both moxonidine at 1.0-10.0 µmol/L and clonidine at 0.1-10.0 µmol/L inhibited electric-field-stimulation-induced contraction in a concentration-dependent manner, but not agmatine (10.0-1000.0 µmol/L). Both moxonidine and clonidine failed to affect carbachol or adenosine-triphosphate-induced contractions; however, 1000.0 µmol/L agmatine significantly increased these contractions. Our study indicates that (i) moxonidine and clonidine produce a concentration-dependent inhibition of the neurogenic contractile responses to electric field stimulation in isolated detrusor strips from male New Zealand rabbits; (ii) post-synaptic muscarinic receptor and purinergic receptor stimulation are not involved in the responses of moxinidine and clonidine in this study; (iii) the inhibitory effects of these agents are probably not mediated by presynaptic imidazoline receptors.
Collapse
Affiliation(s)
- Hong-Mei He
- School of Pharmacy, Hebei Medical University, 361 East Zhong-shan Road, Shijiazhuang 050017, Hebei, P.R. China
| | | | | | | | | |
Collapse
|
207
|
Li L, Wu T, Wei C, Han JK, Jia ZH, Wu YL, Ren LM. Exhaustive swimming differentially inhibits P2X1 receptor- and α1-adrenoceptor-mediated vasoconstriction in isolated rat arteries. Acta Pharmacol Sin 2012; 33:221-9. [PMID: 22301861 DOI: 10.1038/aps.2011.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To investigate the effects of exhaustive swimming exercise on P2X1 receptor- and α1-adrenoceptor-mediated vasoconstriction of different types of arteries in rats. METHODS Male Wistar rats were divided into 2 groups: the sedentary control group (SCG) and the exhaustive swimming exercise group (ESEG). The rats in the ESEG were subjected to a swim to exhaustion once a day for 2 weeks. Internal carotid, caudal, pulmonary, mesenteric arteries and aorta were dissected out. Isometric vasoconstrictive responses of the arteries to α,β-methylene ATP (α,β-MeATP) or noradrenaline (NA) were recorded using a polygraph. RESULTS The exhaustive swimming exercise did not produce significant change in the EC(50) values of α,β-MeATP or NA in vasoconstrictive response of most of the arteries studied. The exhaustive swimming exercise inhibited the vasoconstrictive responses to P2X1 receptor activation in the internal carotid artery, whereas it reduced the maximal vasoconstrictive responses to α1-adrenoceptor stimulation in the caudal, pulmonary, mesenteric arteries and aorta. The rank order of the reduction of the maximal vasoconstriction was as follows: mesenteric, pulmonary, caudal, aorta. CONCLUSION Exhaustive swimming exercise differentially affects the P2X1 receptor- and α1-adrenoceptor-regulated vasoconstriction in internal carotid artery and peripheral arteries. The ability to preserve purinergic vasoconstriction in the peripheral arteries would be useful to help in maintenance of the basal vascular tone during exhaustive swimming exercise.
Collapse
|
208
|
Burnstock G. Purinergic signalling: Its unpopular beginning, its acceptance and its exciting future. Bioessays 2012; 34:218-25. [PMID: 22237698 DOI: 10.1002/bies.201100130] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adenosine 5'-triphosphate (ATP) was identified in 1970 as the transmitter responsible for non-adrenergic, non-cholinergic neurotransmission in the gut and bladder and the term 'purinergic' was coined. Purinergic cotransmission was proposed in 1976 and ATP is now recognized as a cotransmitter in all nerves in the peripheral and central nervous systems. P1 (adenosine) and P2 (ATP) receptors were distinguished in 1978. Cloning of these receptors in the early 1990s was a turning point in the acceptance of the purinergic signalling hypothesis. There are both short-term purinergic signalling in neurotransmission, neuromodulation and secretion and long-term (trophic) purinergic signalling of cell proliferation, differentiation and death in development and regeneration. Much is known about the mechanisms of ATP release and its breakdown by ectonucleotidases. Recently, there has been emphasis on purinergic pathophysiology, including neurodegenerative and neuropsychiatric disorders. Purinergic therapeutic strategies are being developed for treatment of gut, kidney, bladder, lung, skeletal and reproductive system disorders, pain and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.
| |
Collapse
|
209
|
Wiedon A, Tölle M, Bastine J, Schuchardt M, Huang T, Jankowski V, Jankowski J, Zidek W, van der Giet M. Uridine adenosine tetraphosphate (Up4A) is a strong inductor of smooth muscle cell migration via activation of the P2Y2 receptor and cross-communication to the PDGF receptor. Biochem Biophys Res Commun 2011; 417:1035-40. [PMID: 22214933 DOI: 10.1016/j.bbrc.2011.12.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 11/28/2022]
Abstract
The recently discovered dinucleotide uridine adenosine tetraphosphate (Up(4)A) was found in human plasma and characterized as endothelium-derived vasoconstrictive factor (EDCF). A further study revealed a positive correlation between Up(4)A and vascular smooth muscle cell (VSMC) proliferation. Due to the dominant role of migration in the formation of atherosclerotic lesions our aim was to investigate the migration stimulating potential of Up(4)A. Indeed, we found a strong chemoattractant effect of Up(4)A on VSMC by using a modified Boyden chamber. This migration dramatically depends on osteopontin secretion (OPN) revealed by the reduction of the migration signal down to 23% during simultaneous incubation with an OPN-blocking antibody. Due to inhibitory patterns using specific and unspecific purinoreceptor inhibitors, Up(4)A mediates it's migratory signal mainly via the P2Y(2). The signaling behind the receptor was investigated with luminex technique and revealed an activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway. By use of the specific PDGF receptor (PDGFR) inhibitor AG1296 and siRNA technique against PDGFR-β we found a strongly reduced migration signal after Up(4)A stimulation in the PDGFR-β knockdown cells compared to control cells. In this study, we present substantiate data that Up(4)A exhibits migration stimulating potential probably involving the signaling cascade of MEK1 and ERK1/2 as well as the matrix protein OPN. We further suggest that the initiation of the migration process occurs predominant through direct activation of the P2Y(2) by Up(4)A and via transactivation of the PDGFR.
Collapse
Affiliation(s)
- Annette Wiedon
- Charité - Universitätsmedizin Berlin, CharitéCentrum, Department of Nephrology, Campus Benjamin Franklin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Kameritsch P, Pogoda K, Ritter A, Münzing S, Pohl U. Gap junctional communication controls the overall endothelial calcium response to vasoactive agonists. Cardiovasc Res 2011; 93:508-15. [PMID: 22198510 DOI: 10.1093/cvr/cvr345] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS A cytosolic calcium (Ca(2+)(i)) increase is an important activation signal for the endothelium. We investigated whether interendothelial spreading of the Ca(2+) signal via gap junctions (GJs) plays a role for the overall Ca(2+)(i) increase in response to vasoactive agonists. METHODS AND RESULTS In human umbilical vein endothelial cells (HUVECs), a Ca(2+)(i) increase (Fura2) in response to histamine or ATP occurred initially only in about 30% of the cells (initially responding cells) reflecting the cell fraction expressing H(1) or purinergic receptors (FACS/immunohistochemistry). In the remaining adjacent cells, Ca(2+)(i) increases occurred only after a delay of up to 5 s. Blockade of GJ communication (meclofenamic acid and heptanol, or H(2)O(2); verified by dye injection) did not affect responses in the initially responding cells but abolished the delayed Ca(2+)(i) response of the remaining adjacent cells. The resulting reduction in the global endothelial Ca(2+)(i) response significantly reduced the nitric oxide synthesis (assessed as cGMP levels). Similar Ca(2+)(i) results were obtained in the endothelium of freshly isolated mouse (C57BL/6) aortas stimulated with ATP. The receptor-independent Ca(2+)(i) response to ionomycin occurred simultaneously in all cells, regardless of GJ inhibition. In separate experiments, inhibition of the IP(3) receptor (xestospongin-C; 40, µmol/L) but not of the ryanodine receptor (ryanodine, 250 µmol/L) reduced the spread of the Ca(2+)(i) signal into adjacent cells over longer distances. CONCLUSION The global Ca(2+)(i) response of the endothelium to agonists is determined decisively by the functionality of GJs, thus establishing a new role for GJs in controlling endothelial activity and vasomotor function.
Collapse
Affiliation(s)
- Petra Kameritsch
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität, Marchioninistr. 27, 81377 Munich, Germany.
| | | | | | | | | |
Collapse
|
211
|
Impaired adenosine-5'-triphosphate release from red blood cells promotes their adhesion to endothelial cells: a mechanism of hypoxemia after transfusion. Crit Care Med 2011; 39:2478-86. [PMID: 21765360 DOI: 10.1097/ccm.0b013e318225754f] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Transfusion of red blood cells has been linked to disappointing clinical outcomes in the critically ill, but specific mechanisms of organ dysfunction after transfusion remain poorly understood. We tested the hypothesis that red blood cell storage impairs the ability of red blood cells to release adenosine-5'-triphosphate and that impaired adenosine-5'-triphosphate release was injurious in vivo, in part through increased red blood cell adhesion. DESIGN Prospective, controlled, mechanistic study. SETTING University research laboratory. SUBJECTS Human and mouse blood donors; nude mouse transfusion recipients. INTERVENTIONS Manipulation of adenosine-5'-triphosphate release, supplemental adenosine-5'-triphosphate, and antibodies to red blood cell and endothelial adhesion receptors were used in vitro and in vivo to probe the roles of released adenosine-5'-triphosphate and adhesion in responses to (transfused) red blood cells. MEASUREMENTS AND MAIN RESULTS The ability of stored red blood cells to release adenosine-5'-triphosphate declined markedly within 14 days after collection despite relatively stable levels of adenosine-5'-triphosphate within the red blood cells. Inhibiting adenosine-5'-triphosphate release promoted the adhesion of stored red blood cells to endothelial cells in vitro and red blood cell sequestration in the lungs of transfused mice in vivo. Unlike transfusion of fresh human red blood cells, stored red blood cell transfusion in mice decreased blood oxygenation and increased extravasation of red blood cells into the lung's alveolar air spaces. Similar findings were seen with transfusion of fresh red blood cells treated with the adenosine-5'-triphosphate release inhibitors glibenclamide and carbenoxolone. These findings were prevented by either coinfusion of an adenosine-5'-triphosphate analog or pretransfusion incubation of the red blood cells with an antibody against the erythrocyte adhesion receptor Landsteiner-Wiener (intercellular adhesion molecule-4). CONCLUSIONS The normal flow of red blood cells in pulmonary microvessels depends in part on the release of antiadhesive adenosine-5'-triphosphate from red blood cells, and storage-induced deficiency in adenosine-5'-triphosphate release from transfused red blood cells may promote or exacerbate microvascular pathophysiology in the lung, in part through increased red blood cell adhesion.
Collapse
|
212
|
Chanyshev B, Shainberg A, Isak A, Chepurko Y, Porat E, Hochhauser E. Conditioned medium from hypoxic cells protects cardiomyocytes against ischemia. Mol Cell Biochem 2011; 363:167-78. [PMID: 22160856 DOI: 10.1007/s11010-011-1169-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/23/2011] [Indexed: 01/20/2023]
Abstract
The hypothesis of the present study is that cardiomyocytes subjected to prolonged ischemia, may release survival factors that will protect new cardiac cells from ischemic stress. We exposed neonatal rat cardiomyocyte primary cultures to hypoxia, collected the supernatant, treated intact cardiac cells by this posthypoxic supernatant, and exposed them to hypoxia. The results show cardioprotection of the treated cells compared with the untreated ones. We named the collected posthypoxic supernatant "conditioned medium" (CM), which acts in a dose-dependent manner to protect new cardiac cells from hypoxia: 100 or 75% of CM diluted in phosphate-buffered saline (PBS) protected cells as if they were not exposed to hypoxia (P < 0.001). When CM was removed from the cells before hypoxia, protection was not observed. CM also protected skeletal muscle cultures from hypoxia, but not cardiac cells against H(2)O(2)-induced cell damage. Finally, CM treatment protected the isolated heart in Langendorff set-up against ischemia. Smaller infarct size (9.9 ± 4.4% vs. 28.3 ± 8.5%, P < 0.05), better Rate Pressure Product (67 ± 11% vs. 48.6 ± 13.4%, P < 0.05) and better rate of contraction and relaxation were observed following ischemia and reperfusion (1341 ± 399 mmHg/s vs. 951 ± 349 mmHg/s, P < 0.05 and 1053 ± 347 mmHg/s vs. 736 ± 314 mmHg/s, P < 0.05). To conclude, there are factors that are released from the heart cells subjected to ischemia/hypoxia that protects cardiomyocytes from ischemic stress.
Collapse
Affiliation(s)
- B Chanyshev
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat Gan, Israel
| | | | | | | | | | | |
Collapse
|
213
|
Morris GE, Nelson CP, Brighton PJ, Standen NB, Challiss RAJ, Willets JM. Arrestins 2 and 3 differentially regulate ETA and P2Y2 receptor-mediated cell signaling and migration in arterial smooth muscle. Am J Physiol Cell Physiol 2011; 302:C723-34. [PMID: 22159081 DOI: 10.1152/ajpcell.00202.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overstimulation of endothelin type A (ET(A)) and nucleotide (P2Y) Gα(q)-coupled receptors in vascular smooth muscle causes vasoconstriction, hypertension, and, eventually, hypertrophy and vascular occlusion. G protein-coupled receptor kinases (GRKs) and arrestin proteins are sequentially recruited by agonist-occupied Gα(q)-coupled receptors to terminate phospholipase C signaling, preventing prolonged/inappropriate contractile signaling. However, these proteins also play roles in the regulation of several mitogen-activated protein kinase (MAPK) signaling cascades known to be essential for vascular remodeling. Here we investigated whether different arrestin isoforms regulate endothelin and nucleotide receptor MAPK signaling in rat aortic smooth muscle cells (ASMCs). When intracellular Ca(2+) levels were assessed in isolated ASMCs loaded with Ca(2+)-sensitive dyes, P2Y(2) and ET(A) receptor desensitization was attenuated by selective small-interfering (si)RNA-mediated depletion of G protein-coupled receptor kinase 2 (GRK2). Using similar siRNA techniques, knockdown of arrestin2 prevented P2Y(2) receptor desensitization and enhanced and prolonged p38 and ERK MAPK signals, while arrestin3 depletion was ineffective. Conversely, arrestin3 knockdown prevented ET(A) receptor desensitization and attenuated ET1-stimulated p38 and ERK signals, while arrestin2 depletion had no effect. Using Transwell assays to assess agonist-stimulated ASMC migration, we found that UTP-stimulated migration was markedly attenuated following arrestin2 depletion, while ET1-stimulated migration was attenuated following knockdown of either arrestin. These data highlight a differential arrestin-dependent regulation of ET(A) and P2Y(2) receptor-stimulated MAPK signaling. GRK2 and arrestin expression are essential for agonist-stimulated ASMC migration, which, as a key process in vascular remodeling, highlights the potential roles of GRK2 and arrestin proteins in the progression of vascular disease.
Collapse
Affiliation(s)
- Gavin E Morris
- Dept. of Cancer Studies and Molecular Medicine, Leicester Royal Infirmary, Leicester, UK
| | | | | | | | | | | |
Collapse
|
214
|
Mercier N, Kiviniemi TO, Saraste A, Miiluniemi M, Silvola J, Jalkanen S, Yegutkin GG. Impaired ATP-induced coronary blood flow and diminished aortic NTPDase activity precede lesion formation in apolipoprotein E-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:419-28. [PMID: 22074736 DOI: 10.1016/j.ajpath.2011.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 09/21/2011] [Accepted: 10/04/2011] [Indexed: 02/02/2023]
Abstract
Intravascular ATP and ADP are important regulators of vascular tone, thrombosis, inflammation, and angiogenesis. This study was undertaken to evaluate the contribution of purinergic signaling to disturbed vasodilation and vascular remodeling during atherosclerosis progression. We used apolipoprotein E-deficient (Apoe(-/-)) mice as an appropriate experimental model for atherosclerosis. Noninvasive transthoracic Doppler echocardiography imaging with adenosine, ATP, and other nucleotides and nonhydrolyzable P2 receptor agonists and antagonists suggests that ATP regulates coronary blood flow in mice through activation of P2Y (most likely, endothelial ATP/UTP-selective P2Y(2)) receptors, rather than via its dephosphorylation to adenosine. Strikingly, compared to age-matched wild-type controls, young (10- to 15-week-old) Apoe(-/-) mice displayed diminished coronary reactivity in response to ATP but not adenosine. The impaired hyperemic response to ATP persisted in older (20- to 30-week-old) Apoe(-/-) mice, which were additionally characterized by mild atherosclerosis (as ascertained by aortic Oil Red O staining) and a systemic increase in plasma ATP and ADP levels. Concurrent thin-layer chromatographic analysis of nucleoside triphosphate diphosphohydrolase (NTPDase) and ecto-5'-nucleotidase/CD73 activities in thoracic aortas, lymph nodes, spleen, and serum revealed that aortic NTPDase was decreased by 40% to 50% in a tissue-specific manner both in young and mature Apoe(-/-) mice. Collectively, disordered purinergic signaling in Apoe(-/-) mice may serve as important prerequisite for impaired blood flow, local accumulation of ATP and ADP at sites of atherogenesis, and eventually, the exacerbation of atherosclerosis.
Collapse
Affiliation(s)
- Nathalie Mercier
- Medicity Research Laboratory and the Department of Medical Microbiology, University of Turku, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
215
|
Bornø A, Ploug T, Bune LT, Rosenmeier JB, Thaning P. Purinergic receptors expressed in human skeletal muscle fibres. Purinergic Signal 2011; 8:255-64. [PMID: 22052557 DOI: 10.1007/s11302-011-9279-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 10/17/2011] [Indexed: 12/24/2022] Open
Abstract
Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy in immunolabelled transverse sections of muscle biopsies. The receptors P2Y(4), P2Y(11) and likely P2X(1) were present intracellularly or in the plasma membrane of muscle fibres and were thus selected for further detailed morphological analysis. P2X(1) receptors were expressed in intracellular vesicles and sarcolemma. P2Y(4) receptors were present in sarcolemma. P2Y(11) receptors were abundantly and diffusely expressed intracellularly and were more explicitly expressed in type I than in type II fibres, whereas P2X(1) and P2Y(4) showed no fibre-type specificity. Both diabetic patients and healthy controls showed similar distribution of receptors. The current study demonstrates that purinergic receptors are located intracellularly in human skeletal muscle fibres. The similar cellular localization of receptors in healthy and diabetic subjects suggests that diabetes is not associated with an altered distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.
Collapse
Affiliation(s)
- A Bornø
- Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
216
|
The role of uridine adenosine tetraphosphate in the vascular system. Adv Pharmacol Sci 2011; 2011:435132. [PMID: 22110488 PMCID: PMC3206368 DOI: 10.1155/2011/435132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022] Open
Abstract
The endothelium plays a pivotal role in vascular homeostasis, and endothelial dysfunction is a major feature of cardiovascular diseases, such as arterial hypertension, atherosclerosis, and diabetes. Recently, uridine adenosine tetraphosphate (Up(4)A) has been identified as a novel and potent endothelium-derived contracting factor (EDCF). Up(4)A structurally contains both purine and pyrimidine moieties, which activate purinergic receptors. There is an accumulating body of evidence to show that Up(4)A modulates vascular function by actions on endothelial and smooth muscle cells. In this paper, we discuss the effects of Up(4)A on vascular function and a potential role for Up(4)A in cardiovascular diseases.
Collapse
|
217
|
Adenosine diphosphate receptor P2Y12-mediated migration of host smooth muscle-like cells and leukocytes in the development of transplant arteriosclerosis. Transplantation 2011; 92:148-54. [PMID: 21629176 DOI: 10.1097/tp.0b013e318221d407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We have recently reported that platelet P2Y12 receptors may play a role in the development of transplant arteriosclerosis (TA). In the present study, we investigated the role of P2Y12 receptors on host-derived smooth muscle-like cells (SMLCs, including bone-marrow-derived SMLCs) and CD45+ leukocytes, both of which are believed to be associated with the development of TA, using P2Y12-deficient (KO) mice. METHODS Orthotopic carotid artery transplantation was performed from C3H/He (H-2k) donors into KO or wild-type (WT) recipient mice (129S:C57BL/6, H-2b). Grafts were harvested at 8 weeks after transplantation for histology. Plasma monocyte chemoattractant protein-1 (MCP-1) levels were analyzed with a kit. Cell migration was examined using a Boyden chamber system. The expression of MCP-1 messenger RNA was assessed by real-time polymerase chain reaction. RESULTS Eight weeks after allotransplantation, KO recipient mice showed a significant reduction of luminal occlusion, host-derived SMLCs, CD45+ leukocytes, MCP-1+ cells in the grafts, and of plasma MCP-1 levels. In addition, the migration of host-derived SMLCs (including bone-marrow-derived SMLCs) and CD45+ leukocytes stimulated with adenosine diphosphate (ADP) or 2-methylthio-ADP (2MeSADP, a stable ADP analog) was significantly decreased in KO mice. There were no significant changes in MCP-1-induced cell migration between WT and KO mice. The low concentration of 2MeSADP plus MCP-1 significantly increased cell migration in WT but not KO mice. Furthermore, 2MeSADP-induced MCP-1 messenger RNA expression was significantly reduced in the cells of KO mice. CONCLUSIONS Thus, the P2Y12-mediated migration of host-derived SMLCs and CD45+ leukocytes may play an important role in the development of TA, partly by MCP-1 pathways.
Collapse
|
218
|
Schuchardt M, Tölle M, Prüfer J, Prüfer N, Huang T, Jankowski V, Jankowski J, Zidek W, van der Giet M. Uridine adenosine tetraphosphate activation of the purinergic receptor P2Y enhances in vitro vascular calcification. Kidney Int 2011; 81:256-65. [PMID: 21956191 DOI: 10.1038/ki.2011.326] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Purinergic signaling has a crucial role in different vascular processes. The endothelial-derived vasoconstrictor uridine adenosine tetraphosphate (Up(4)A) is a potent activator of the purinoceptor P2Y and is released under pathological conditions. Here we sought to measure purinergic effects on vascular calcification and initially found that Up(4)A plasma concentrations are increased in patients with chronic kidney disease. Exploring this further we found that exogenous Up(4)A enhanced mineral deposition under calcifying conditions ex vivo in rat and mouse aortic rings and in vitro in rat vascular smooth muscle cells. The addition of Up(4)A increased the expression of different genes specific for osteochondrogenic vascular smooth muscle cells such as Cbfa1, while decreasing the expression of SM22α, a marker specific for vascular smooth muscle cells. The influence of different P2Y antagonists on Up(4)A-mediated process indicated that P2Y(2/6) receptors may be involved. Mechanisms downstream of P2Y signaling involved phosphorylation of the mitogen-activated kinases MEK and ERK1/2. Thus, Up(4)A activation of P2Y influences phenotypic transdifferentiation of vascular smooth muscle cells to osteochondrogenic cells, suggesting that purinergic signaling may be involved in vascular calcification.
Collapse
Affiliation(s)
- Mirjam Schuchardt
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Simmons GH, Bender SB. Not a fine wine: the ATP hypothesis may not get better with age. J Physiol 2011; 589:2437-8. [PMID: 21572140 DOI: 10.1113/jphysiol.2011.208751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Grant H Simmons
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA.
| | | |
Collapse
|
220
|
Bender SB, Berwick ZC, Laughlin MH, Tune JD. Functional contribution of P2Y1 receptors to the control of coronary blood flow. J Appl Physiol (1985) 2011; 111:1744-50. [PMID: 21940850 DOI: 10.1152/japplphysiol.00946.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of ADP-sensitive P2Y(1) receptors has been proposed as an integral step in the putative "nucleotide axis" regulating coronary blood flow. However, the specific mechanism(s) and overall contribution of P2Y(1) receptors to the control of coronary blood flow have not been clearly defined. Using vertically integrative studies in isolated coronary arterioles and open-chest anesthetized dogs, we examined the hypothesis that P2Y(1) receptors induce coronary vasodilation via an endothelium-dependent mechanism and contribute to coronary pressure-flow autoregulation and/or ischemic coronary vasodilation. Immunohistochemistry revealed P2Y(1) receptor expression in coronary arteriolar endothelial and vascular smooth muscle cells. The ADP analog 2-methylthio-ADP induced arteriolar dilation in vitro and in vivo that was abolished by the selective P2Y(1) antagonist MRS-2179 and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. MRS-2179 did not alter baseline coronary flow in vivo but significantly attenuated coronary vasodilation to ATP in vitro and in vivo and the nonhydrolyzable ATP analog ATPγS in vitro. Coronary blood flow responses to alterations in coronary perfusion pressure (40-100 mmHg) or to a brief 15-s coronary artery occlusion were unaffected by MRS-2179. Our data reveal that P2Y(1) receptors are functionally expressed in the coronary circulation and that activation produces coronary vasodilation via an endothelium/nitric oxide-dependent mechanism. Although these receptors represent a critical component of purinergic coronary vasodilation, our findings indicate that P2Y(1) receptor activation is not required for coronary pressure-flow autoregulation or reactive hyperemia.
Collapse
Affiliation(s)
- Shawn B Bender
- Dept. of Biomedical Sciences, Univ. of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
221
|
Yegutkin GG, Helenius M, Kaczmarek E, Burns N, Jalkanen S, Stenmark K, Gerasimovskaya EV. Chronic hypoxia impairs extracellular nucleotide metabolism and barrier function in pulmonary artery vasa vasorum endothelial cells. Angiogenesis 2011; 14:503-13. [PMID: 21922294 DOI: 10.1007/s10456-011-9234-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/08/2011] [Indexed: 12/20/2022]
Abstract
Vascular remodeling plays a pivotal role in a variety of pathophysiological conditions where hypoxia and inflammation are prominent features. Intravascular ATP, ADP and adenosine are known as important regulators of vascular tone, permeability and homeostasis, however contribution of purinergic signalling to endothelial cell growth and angiogenesis remains poorly understood. By using vasa vasorum endothelial cells (VVEC) isolated from pulmonary artery adventitia of control and chronically hypoxic neonatal calves, these studies were aimed to evaluate the effect of hypoxia on biochemical and functional properties of microvascular endothelial network at the sites of angiogenesis. In comparison with normoxic controls, VVEC from hypoxic animals are characterized by (1) drastically impaired nucleoside triphosphate diphosphohydrolase-1 (NTPDase-1/CD39) and ecto-5'-nucleotidase/CD73 activities with respective increases in basal extracellular ATP and ADP levels (2) higher proliferative responses to low micromolar concentrations of ATP and ADP; and (3) enhanced permeability and disordered adenosinergic control of vascular barrier function (measured as a paracellular flux of 70 kDa fluorescein isothiocyanate-dextran). Together, these results suggest that unique pattern of purine-mediated angiogenic activation and enhanced leakiness of VVEC from chronically hypoxic vessels may be defined by disordered endothelial nucleotide homeostasis at sites of active neovascularization.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory, University of Turku and National Institute of Health and Welfare, Tykistökatu 6A, 20520, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
222
|
Montalbetti N, Leal Denis MF, Pignataro OP, Kobatake E, Lazarowski ER, Schwarzbaum PJ. Homeostasis of extracellular ATP in human erythrocytes. J Biol Chem 2011; 286:38397-38407. [PMID: 21921036 DOI: 10.1074/jbc.m111.221713] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We explored the intra- and extracellular processes governing the kinetics of extracellular ATP (ATPe) in human erythrocytes stimulated with agents that increase cAMP. Using the luciferin-luciferase reaction in off-line luminometry we found both direct adenylyl cyclase activation by forskolin and indirect activation through β-adrenergic stimulation with isoproterenol-enhanced [ATP]e in a concentration-dependent manner. A mixture (3V) containing a combination of these agents and the phosphodiesterase inhibitor papaverine activated ATP release, leading to a 3-fold increase in [ATP]e, and caused increases in cAMP concentration (3-fold for forskolin + papaverine, and 10-fold for 3V). The pannexin 1 inhibitor carbenoxolone and a pannexin 1 blocking peptide ((10)Panx1) decreased [ATP]e by 75-84%. The residual efflux of ATP resulted from unavoidable mechanical perturbations stimulating a novel, carbenoxolone-insensitive pathway. In real-time luminometry experiments using soluble luciferase, addition of 3V led to an acute increase in [ATP]e to a constant value of ∼1 pmol × (10(6) cells)(-1). A similar treatment using a surface attached luciferase (proA-luc) triggered a rapid accumulation of surface ATP levels to a peak concentration of 2.4 pmol × (10(6) cells)(-1), followed by a slower exponential decay (t(½) = 3.7 min) to a constant value of 1.3 pmol × (10(6) cells)(-1). Both for soluble luciferase and proA-luc, ATP efflux was fully blocked by carbenoxolone, pointing to a 3V-induced mechanism of ATP release mediated by pannexin 1. Ecto-ATPase activity was extremely low (∼28 fmol × (10(6) cells min)(-1)), but nevertheless physiologically relevant considering the high density of erythrocytes in human blood.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- IQUIFIB, Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, CIII3AAD, Argentina
| | - Maria F Leal Denis
- IQUIFIB, Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, CIII3AAD, Argentina
| | - Omar P Pignataro
- Laboratory of Molecular Endocrinology and Signal Transduction, Institute of Biology and Experimental Medicine-CONICET, Vuelta de Obligado 2490, CP 1428 Buenos Aires, Argentina; Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, CIII3AAD, Argentina
| | - Eiry Kobatake
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Eduardo R Lazarowski
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599-7248
| | - Pablo J Schwarzbaum
- IQUIFIB, Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, CIII3AAD, Argentina.
| |
Collapse
|
223
|
Alterations in vasoconstrictor responses to the endothelium-derived contracting factor uridine adenosine tetraphosphate are region specific in DOCA-salt hypertensive rats. Pharmacol Res 2011; 65:81-90. [PMID: 21933714 DOI: 10.1016/j.phrs.2011.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/02/2011] [Accepted: 09/07/2011] [Indexed: 11/22/2022]
Abstract
Uridine adenosine tetraphosphate (Up(4)A) has been recently identified as a novel and potent endothelium-derived contracting factor and contains both purine and pyrimidine moieties, which activate purinergic P2X and P2Y receptors. The present study was designed to compare contractile responses to Up(4)A and other nucleotides such as ATP (P2X/P2Y agonist), UTP (P2Y(2)/P2Y(4) agonist), UDP (P2Y(6) agonist), and α,β-methylene ATP (P2X(1) agonist) in different vascular regions [thoracic aorta, basilar, small mesenteric, and femoral arteries] from deoxycorticosterone acetate-salt (DOCA-salt) and control rats. In DOCA-salt rats [vs. control uninephrectomized (Uni) rats]: (1) in thoracic aorta, Up(4)A-, ATP-, and UTP-induced contractions were unchanged; (2) in basilar artery, Up(4)A-, ATP-, UTP- and UDP-induced contractions were increased, and expression for P2X(1), but not P2Y(2) or P2Y(6) was decreased; (3) in small mesenteric artery, Up(4)A-induced contraction was decreased and UDP-induced contraction was increased; expression of P2Y(2) and P2X(1) was decreased whereas P2Y(6) expression was increased; (4) in femoral artery, Up(4)A-, UTP-, and UDP-induced contractions were increased, but expression of P2Y(2), P2Y(6) and P2X(1) was unchanged. The α,β-methylene ATP-induced contraction was bell-shaped and the maximal contraction was reached at a lower concentration in basilar and mesenteric arteries from Uni rats, compared to arteries from DOCA-salt rats. These results suggest that Up(4)A-induced contraction is heterogenously affected among various vascular beds in arterial hypertension. P2Y receptor activation may contribute to enhancement of Up(4)A-induced contraction in basilar and femoral arteries. These changes in vascular reactivity to Up(4)A may be adaptive to the vascular alterations produced by hypertension.
Collapse
|
224
|
Ishida K, Matsumoto T, Taguchi K, Kamata K, Kobayashi T. Mechanisms underlying altered extracellular nucleotide-induced contractions in mesenteric arteries from rats in later-stage type 2 diabetes: effect of ANG II type 1 receptor antagonism. Am J Physiol Heart Circ Physiol 2011; 301:H1850-61. [PMID: 21856926 DOI: 10.1152/ajpheart.00502.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the vascular contractile responsiveness to, and signaling pathways for, extracellular nucleotides in the chronic stage of type 2 diabetes or whether the ANG II type 1 receptor blocker losartan might alter such responses. We hypothesized that nucleotide-induced arterial contractions are augmented in diabetic Goto-Kakizaki (GK) rats and that treatment with losartan would normalize the contractions. Here, we investigated the vasoconstrictor effects of ATP/UTP in superior mesenteric arteries isolated from GK rats (37-42 wk old) that had or had not received 2 wk of losartan (25 mg·kg(-1)·day(-1)). In arteries from GK rats (vs. those from Wistar rats), 1) ATP- and UTP-induced contractions, which were blocked by the nonselective P2 antagonist suramin, were enhanced, and these enhancements were suppressed by endothelial denudation, by cyclooxygenase (COX) inhibitors, or by a cytosolic phospholipase A(2) (cPLA(2)) inhibitor; 2) both nucleotides induced increased release of PGE(2) and PGF(2α); 3) nucleotide-stimulated cPLA(2) phosphorylations were increased; 4) COX-1 and COX-2 expressions were increased; and 5) neither P2Y2 nor P2Y6 receptor expression differed, but P2Y4 receptor expression was decreased. Mesenteric arteries from GK rats treated with losartan exhibited (vs. untreated GK) 1) reduced nucleotide-induced contractions, 2) suppressed UTP-induced release of PGE(2) and PGF(2α), 3) suppressed UTP-stimulated cPLA(2) phosphorylation, 4) normalized expressions of COX-2 and P2Y4 receptors, and 5) reduced superoxide generation. Our data suggest that the diabetes-related enhancement of ATP-mediated vasoconstriction was due to P2Y receptor-mediated activation of the cPLA(2)/COX pathway and, moreover, that losartan normalizes such contractions by a suppressing action within this pathway.
Collapse
Affiliation(s)
- Keiko Ishida
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
225
|
Absence of equilibrative nucleoside transporter 1 in ENT1 knockout mice leads to altered nucleoside levels following hypoxic challenge. Life Sci 2011; 89:621-30. [PMID: 21872611 DOI: 10.1016/j.lfs.2011.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 06/23/2011] [Accepted: 07/27/2011] [Indexed: 01/18/2023]
Abstract
AIMS Equilibrative nucleoside transporters (ENT) modulate the flux of adenosine. The ENT1-null (KO) mouse heart is endogenously cardioprotected but the cellular basis of this phenotype is unknown. Therefore, we investigated the cellular mechanisms underlying ENT1-mediated cardioprotection. MAIN METHODS Circulating adenosine levels were measured in WT and KO mice. Cellular levels of nucleosides and nucleotides were investigated in isolated adult cardiomyocytes from WT and KO mice using HPLC following hypoxic challenge (30 min, 2% O(2)). Changes in hypoxic gene expression were analyzed by PCR arrays and cAMP levels were measured to investigate contributions from adenosine receptors. KEY FINDINGS Circulating adenosine levels were significantly higher in KO (416±42nmol/l, n=12) compared to WT animals (208±21, n=13, p<0.001). Absence of ENT1 led to an elevated expression of genes involved in cardioprotective pathways compared to WT cardiomyocytes. Following hypoxic challenge, extracellular adenosine levels were significantly elevated in KO (4360±1840 pmol/mg protein) versus WT cardiomyocytes (3035±730 pmol/mg protein, n≥12, p<0.05). This effect was enhanced in the presence of dipyridamole (30 μM), which inhibits ENT1 and ENT2. Enhanced extracellular adenosine levels in ENT1-null cardiomyocytes appeared to come from a pool of extracellular nucleotides including IMP, AMP and ADP. Adenosine receptor (AR) activation mimicked increases in cAMP levels due to hypoxic challenge suggesting that ENT1 modulates AR-dependent signaling. SIGNIFICANCE ENT1 contributes to modulation of extracellular adenosine levels and subsequent purinergic signaling via ARs. ENT1-null mice possess elevated circulating adenosine levels and reduced cellular uptake resulting in a perpetually cardioprotected phenotype.
Collapse
|
226
|
Davis FM, Kenny PA, Soo ETL, van Denderen BJW, Thompson EW, Cabot PJ, Parat MO, Roberts-Thomson SJ, Monteith GR. Remodeling of purinergic receptor-mediated Ca2+ signaling as a consequence of EGF-induced epithelial-mesenchymal transition in breast cancer cells. PLoS One 2011; 6:e23464. [PMID: 21850275 PMCID: PMC3151299 DOI: 10.1371/journal.pone.0023464] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/18/2011] [Indexed: 01/15/2023] Open
Abstract
Background The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment. Methodology/Principal Findings We assessed changes in intracellular Ca2+ in cells loaded with Fluo-4 AM using a fluorometric imaging plate reader (FLIPRTETRA) and observed significant changes in the potency of ATP (EC50 0.175 µM (−EGF) versus 1.731 µM (+EGF), P<0.05), and the nature of the ATP-induced Ca2+ transient, corresponding with a 10-fold increase in the mesenchymal marker vimentin (P<0.05). We observed no change in the sensitivity to PAR2-mediated Ca2+ signaling, indicating that these alterations are not simply a consequence of changes in global Ca2+ homeostasis. To determine whether changes in ATP-mediated Ca2+ signaling are preceded by alterations in the transcriptional profile of purinergic receptors, we analyzed the expression of a panel of P2X ionotropic and P2Y metabotropic purinergic receptors using real-time RT-PCR and found significant and specific alterations in the suite of ATP-activated purinergic receptors during EGF-induced EMT in breast cancer cells. Our studies are the first to show that P2X5 ionotropic receptors are enriched in the mesenchymal phenotype and that silencing of P2X5 leads to a significant reduction (25%, P<0.05) in EGF-induced vimentin protein expression. Conclusions The acquisition of a new suite of cell surface purinergic receptors is a feature of EGF-mediated EMT in MDA-MB-468 breast cancer cells. Such changes may impart advantageous phenotypic traits and represent a novel mechanism for the targeting of cancer metastasis.
Collapse
Affiliation(s)
- Felicity M. Davis
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Paraic A. Kenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Eliza T-L. Soo
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- University of Melbourne Department Surgery, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Bryce J. W. van Denderen
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- University of Melbourne Department Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Erik W. Thompson
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- University of Melbourne Department Surgery, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Gregory R. Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
227
|
Cohen R, Shainberg A, Hochhauser E, Cheporko Y, Tobar A, Birk E, Pinhas L, Leipziger J, Don J, Porat E. UTP reduces infarct size and improves mice heart function after myocardial infarct via P2Y2 receptor. Biochem Pharmacol 2011; 82:1126-33. [PMID: 21839729 DOI: 10.1016/j.bcp.2011.07.094] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/06/2011] [Accepted: 07/21/2011] [Indexed: 10/18/2022]
Abstract
Pyrimidine nucleotides are signaling molecules, which activate G protein-coupled membrane receptors of the P2Y family. P2Y(2) and P2Y(4) receptors are part of the P2Y family, which is composed of 8 subtypes that have been cloned and functionally defined. We have previously found that uridine-5'-triphosphate (UTP) reduces infarct size and improves cardiac function following myocardial infarct (MI). The aim of the present study was to determine the role of P2Y(2) receptor in cardiac protection following MI using knockout (KO) mice, in vivo and wild type (WT) for controls. In both experimental groups used (WT and P2Y(2)(-/-) receptor KO mice) there were 3 subgroups: sham, MI, and MI+UTP. 24h post MI we performed echocardiography and measured infarct size using triphenyl tetrazolium chloride (TTC) staining on all mice. Fractional shortening (FS) was higher in WT UTP-treated mice than the MI group (44.7±4.08% vs. 33.5±2.7% respectively, p<0.001). However, the FS of P2Y(2)(-/-) receptor KO mice were not affected by UTP treatment (34.7±5.3% vs. 35.9±2.9%). Similar results were obtained with TTC and hematoxylin and eosin stainings. Moreover, troponin T measurements demonstrated reduced myocardial damage in WT mice pretreated with UTP vs. untreated mice (8.8±4.6 vs. 12±3.1 p<0.05). In contrast, P2Y(2)(-/-) receptor KO mice pretreated with UTP did not demonstrate reduced myocardial damage. These results indicate that the P2Y(2) receptor mediates UTP cardioprotection, in vivo.
Collapse
Affiliation(s)
- R Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Ortega F, Pérez-Sen R, Delicado EG, Teresa Miras-Portugal M. ERK1/2 activation is involved in the neuroprotective action of P2Y13 and P2X7 receptors against glutamate excitotoxicity in cerebellar granule neurons. Neuropharmacology 2011; 61:1210-21. [PMID: 21798274 DOI: 10.1016/j.neuropharm.2011.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
Cerebellar granule neurons express several types of nucleotide receptors, with the metabotropic P2Y(13) and the ionotropic P2X7 being the most relevant in this model. In the present study we investigated the role of P2Y(13) and P2X7 nucleotide receptors in ERK1/2 signalling. The nucleotidic agonists 2MeSADP (2-methylthioadenosine-5'-diphosphate) for P2Y(13) and BzATP (2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate) for P2X7 receptors were coupled to ERK1/2 activation in granule neurons, being able to increase around two-fold the levels of ERK1/2 phosphorylation. These effects were sensitive to the inhibitory action of the antagonists MRS-2211 and A-438079, specific for P2Y(13) and P2X7 receptors, respectively. Although both receptor subtypes shared the same pattern of transient ERK1/2 phosphorylation, they differed in the intracellular cascades they triggered, being PI3K-dependent for P2Y(13) and calcium/calmodulin kinase II (CaMKII)-dependent for P2X7. These two different ERK-mediated pathways were involved in the neuroprotective effects displayed by both P2Y(13) and P2X7 receptors against apoptosis induced by an excitotoxic concentration of glutamate, in a similar manner to the neurotrophin, BDNF. In addition, P2Y(13) and P2X7 receptor agonists were also able to phosphorylate and activate the ERK-dependent target CREB, which could be involved in their neuroprotective effect. These results indicate that nucleotide receptors share with trophic factors the same survival routes in neurons, such as the ERK signalling route, and therefore, can contribute to the maintenance of granule neurons in conditions in which survival is being compromised.
Collapse
Affiliation(s)
- Felipe Ortega
- Department of Biochemistry, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
229
|
Souza A, Detanico BC, Medeiros LF, Rozisky JR, Caumo W, Hidalgo MPL, Battastini AMO, Torres IL. Effects of restraint stress on the daily rhythm of hydrolysis of adenine nucleotides in rat serum. J Circadian Rhythms 2011; 9:7. [PMID: 21798049 PMCID: PMC3160412 DOI: 10.1186/1740-3391-9-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/28/2011] [Indexed: 02/01/2023] Open
Abstract
Background Adenosine 5-triphosphate (ATP) and its breakdown products ADP and adenosine can act as extracellular messengers in a range of biological processes. Extracellular adenine nucleotides are metabolized by a number of enzymes including NTPDases and 5'-nucleotidase, which are considered to be the major regulators of purinergic signaling in the blood. Previous work by our group demonstrated that ATPase and ADPase activities in rat serum exhibit a 24-h temporal pattern, with higher enzyme activity during the dark (activity) phase. It was found that stress can cause disruptions in biological circadian rhythms and in the cardiovascular system. Therefore, the aim of the present study was to examine the influence of acute stress exposure upon temporal patterns of NTPDase and 5-nucleotidase enzyme activities in rat blood serum. Methods Adult male Wistar rats were divided into 4 groups: ZT0, ZT6, ZT12 and ZT18. Each group was subdivided in 4 groups: control, immediately, 6 h and 24 h after one hour of restraint stress. ATP, ADP and AMP hydrolysis were assayed in the serum. Results All stressed groups showed significant decreases in all enzyme activities at ZT 12 and ZT 18 when compared with control. Conclusion Acute stress provokes a decrease in nucleotidase activities dependent on the time that this stress occurs and this effect appears to persist for at least 24 hours. Stress can change levels of nucleotides, related to increased frequency of cardiovascular events during the activity phase. Altered levels of nucleotides in serum may be involved in cardiovascular events more frequent during the activity phase in mammals, and with their etiology linked to stress.
Collapse
Affiliation(s)
- Andressa Souza
- Laboratório de Cronobiologia Experimental, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Guan Z, Inscho EW. Role of adenosine 5'-triphosphate in regulating renal microvascular function and in hypertension. Hypertension 2011; 58:333-40. [PMID: 21768526 DOI: 10.1161/hypertensionaha.110.155952] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ATP is an essential energy substrate for cellular metabolism, but it can also influence many biological processes when released into the extracellular milieu. Research has established that extracellular ATP acts as an autocrine/paracrine factor that regulates many physiological functions. Alternatively, excessive extracellular ATP levels contribute to pathophysiological processes, such as inflammation, cell proliferation and apoptosis, and atherosclerosis. Renal P2 receptors are widely distributed throughout glomeruli, vasculature, and tubular segments and participate in controlling renal vascular resistance, mediating renal autoregulation, and regulating tubular transport function. This review will focus on the role of ATP-P2 receptor signaling in regulating renal microvascular function and autoregulation, recent advances on the role of ATP-P2 signaling in hypertension-associated renal vascular injury, and emerging new directions.
Collapse
Affiliation(s)
- Zhengrong Guan
- Department of Physiology CA3137, Georgia Health Sciences University, 1120 15th St, Augusta, GA 30912, USA
| | | |
Collapse
|
231
|
Crawford C, Kennedy-Lydon TM, Callaghan H, Sprott C, Simmons RL, Sawbridge L, Syme HM, Unwin RJ, Wildman SSP, Peppiatt-Wildman CM. Extracellular nucleotides affect pericyte-mediated regulation of rat in situ vasa recta diameter. Acta Physiol (Oxf) 2011; 202:241-51. [PMID: 21624094 DOI: 10.1111/j.1748-1716.2011.02310.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM We hypothesized that extracellular nucleotides, established as being released from renal tubular epithelial cells, act at pericytes to regulate vasa recta capillary diameter. METHODS A rat live kidney slice model and video imaging techniques were used to investigate the effects of extracellular nucleotides on in situ (subsurface) vasa recta diameter at pericyte and non-pericyte sites. In addition, RT-qPCR was used to quantify P2 receptor mRNA expression in isolated vasa recta. RESULTS Extracellular ATP, UTP, benzylbenzyl ATP (BzATP) or 2-methylthioATP (2meSATP) evoked a significantly greater vasoconstriction of subsurface vasa recta at pericytes than at non-pericyte sites. The rank order of agonist potency was BzATP = 2meSATP > ATP = UTP. The vasoconstriction evoked at pericyte sites by ATP was significantly attenuated by the P2 receptor antagonists suramin, pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS) or Reactive Blue-2 (RB-2). UTP-evoked vasoconstriction at pericytes was attenuated by suramin or RB-2 but not PPADS. Interestingly, suramin or PPADS, when applied in the absence of a P2 receptor agonist, evoked a weak but significant vasoconstriction of vasa recta at pericyte sites, suggesting tonic vasodilation by nucleotides. Significant levels of P2X(1, 3 and 7) and P2Y(4 and 6) receptor mRNA were detected in vasa recta. CONCLUSION Extracellular nucleotides act at pericytes to cause vasoconstriction of in situ vasa recta. Pharmacological characterization, supported by RT-qPCR data, suggests that P2X(1 and 7) and P2Y(4) receptors mediate nucleotide-evoked vasoconstriction of vasa recta by pericytes. We propose that nucleotides released from renal tubular epithelial cells, in close proximity to vasa recta capillaries, are key in regulating renal medullary blood flow.
Collapse
Affiliation(s)
- C Crawford
- Urinary System Physiology Unit, Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Vallon V, Rieg T. Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. Am J Physiol Renal Physiol 2011; 301:F463-75. [PMID: 21715471 DOI: 10.1152/ajprenal.00236.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular nucleotides (e.g., ATP) activate ionotropic P2X and metabotropic P2Y receptors in the plasma membrane to regulate and maintain cell function and integrity. This includes the renal tubular and collecting duct system, where the locally released nucleotides act in a paracrine and autocrine way to regulate transport of electrolytes and water and maintain cell volume. A prominent role has been assigned to Gq-coupled P2Y(2) receptors, which are typically activated by both ATP and UTP. Studies in gene knockout mice revealed an antihypertensive activity of P2Y(2) receptors that is linked to vasodilation and an inhibitory influence on renal salt reabsorption. Flow induces apical ATP release in the thick ascending limb, and first evidence indicates an inhibitory influence of P2Y(2) receptor tone on the expression and activity of the Na-K-2Cl cotransporter NKCC2 in this segment. The apical ATP/UTP/P2Y(2) receptor system in the connecting tubule/cortical collecting duct mediates the inhibitory effect of dietary salt on the open probability of the epithelial sodium channel ENaC and inhibits ENaC activity during aldosterone escape. Connexin 30 has been implicated in the luminal release of the ATP involved in the regulation of ENaC. An increase in collecting duct cell volume in response to manipulating water homeostasis increases ATP release. The subsequent activation of P2Y(2) receptors inhibits vasopressin-induced cAMP formation and water reabsorption, which facilitates water excretion and stabilizes cell volume. Thus recent studies have established the ATP/UTP/P2Y(2) receptor system as a relevant regulator of renal salt and water homeostasis and blood pressure regulation. The pathophysiological relevance and therapeutic potential remains to be determined, but dual effects of P2Y(2) receptor activation on both the vasculature and renal salt reabsorption implicate these receptors as potential therapeutic targets in hypertension.
Collapse
Affiliation(s)
- Volker Vallon
- Dept. of Medicine, Univ. of California San Diego, 92161, USA.
| | | |
Collapse
|
233
|
Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 2011; 1:e9. [PMID: 21364628 PMCID: PMC3032501 DOI: 10.1038/cddis.2009.11] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer.
Collapse
|
234
|
Ding L, Ma W, Littmann T, Camp R, Shen J. The P2Y(2) nucleotide receptor mediates tissue factor expression in human coronary artery endothelial cells. J Biol Chem 2011; 286:27027-38. [PMID: 21652710 DOI: 10.1074/jbc.m111.235176] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The discovery of the role of P2Y(12) receptor in platelet aggregation leads to a new anti-thrombotic drug Plavix; however, little is known about non-platelet P2Y receptors in thrombosis. This study tested the hypothesis that endothelial P2Y receptor(s) mediates up-regulation of tissue factor (TF), the initiator of coagulation cascade. Stimulation of human coronary artery endothelial cells (HCAEC) by UTP/ATP increased the mRNA level of TF but not of its counterpart-tissue factor pathway inhibitor, which was accompanied by up-regulation of TF protein and cell surface activity. RT-PCR revealed a selective expression of P2Y(2) and P2Y(11) receptors in HCAEC. Consistent with this, TF up-regulation was inhibited by suramin or by siRNA silencing of P2Y(2) receptor, but not by NF-157, a P2Y(11)-selective antagonist, suggesting a role for the P2Y(2) receptor. In addition, P2Y(2) receptor activated ERK1/2, JNK, and p38 MAPK pathways without affecting the positive NF-κB and negative AKT regulatory pathways of TF expression. Furthermore, TF up-regulation was abolished or partially suppressed by inhibition of p38 or JNK but not ERK1/2. Interestingly, blockade of the PLC/Ca(2+) pathway did not affect P2Y(2) receptor activation of p38, JNK, and TF induction. However, blockade of Src kinase reduced phosphorylation of p38 but not JNK, eliminating TF induction. In contrast, inhibition of Rho kinase reduced phosphorylation of JNK but not p38, decreasing TF expression. These findings demonstrate that P2Y(2) receptor mediates TF expression in HCAEC through new mechanisms involving Src/p38 and Rho/JNK pathways, possibly contributing to a pro-thrombotic status after vascular injury.
Collapse
Affiliation(s)
- Ling Ding
- Division of Pharmacology, Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | | | |
Collapse
|
235
|
Physiological significance of P2X receptor-mediated vasoconstriction in five different types of arteries in rats. Purinergic Signal 2011; 7:221-9. [PMID: 21559787 DOI: 10.1007/s11302-011-9226-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/01/2011] [Indexed: 10/18/2022] Open
Abstract
P2X(1) receptors, the major subtype of P2X receptors in the vascular smooth muscle, are essential for α,β-methylene adenosine 5'-triphosphate (α,β-MeATP)-induced vasoconstriction. However, relative physiological significance of P2X(1) receptor-regulated vasoconstriction in the different types of arteries in the rat is not clear as compared with α(1)-adrenoceptor-regulated vasoconstriction. In the present study, we found that vasoconstrictive responses to noncumulative administration of α,β-MeATP in the rat isolated mesenteric arteries were significantly smaller than those to single concentration administration of α,β-MeATP. Therefore, we firstly reported the characteristic of α,β-MeATP-regulated vasoconstrictions in rat tail, internal carotid, pulmonary, mesenteric arteries, and aorta using single concentration administration of α,β-MeATP. The rank order of maximal vasoconstrictions for α,β-MeATP (E (max·α,β-MeATP)) was the same as that of maximal vasoconstrictions for noradrenaline (E (max·NA)) in the internal carotid, pulmonary, mesenteric arteries, and aorta. Moreover, the value of (E (max·α,β-MeATP)/E (max·KCl))/(E (max·NA)/E (max·KCl)) was 0.4 in each of the four arteries, but it was 0.8 in the tail artery. In conclusion, P2X(1) receptor-mediated vasoconstrictions are equally important in rat internal carotid, pulmonary, mesenteric arteries, and aorta, but much greater in the tail artery, suggesting its special role in physiological function.
Collapse
|
236
|
Matsumoto T, Tostes RC, Webb RC. Uridine adenosine tetraphosphate-induced contraction is increased in renal but not pulmonary arteries from DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 2011; 301:H409-17. [PMID: 21551273 DOI: 10.1152/ajpheart.00084.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived contracting factor. Up(4)A contains both purine and pyrimidine moieties, which activate purinergic (P2)X and P2Y receptors. However, alterations in the vasoconstrictor responses to Up(4)A in hypertensive states remain unclear. The present study examined the effects of Up(4)A on contraction of isolated renal arteries (RA) and pulmonary arteries (PA) from DOCA-salt rats using isometric tension recording. RA from DOCA-salt rats exhibited increased contraction to Up(4)A versus arteries from control uninephrectomized rats in the absence and presence of N(G)-nitro-l-arginine (nitric oxide synthase inhibitor). On the other hand, the Up(4)A-induced contraction in PA was similar between the two groups. Up(4)A-induced contraction was inhibited by suramin (nonselective P2 antagonist) but not by diinosine pentaphosphate pentasodium salt hydrate (Ip(5)I; P2X(1) antagonist) in RA from both groups. Furthermore, 2-thiouridine 5'-triphosphate tetrasodium salt (2-ThioUTP; P2Y(2) agonist)-, uridine-5'-(γ-thio)-triphosphate trisodium salt (UTPγS; P2Y(2)/P2Y(4) agonist)-, and 5-iodouridine-5'-O-diphosphate trisodium salt (MRS 2693; P2Y(6) agonist)-induced contractions were all increased in RA from DOCA-salt rats. Protein expression of P2Y(2)-, P2Y(4)-, and P2Y(6) receptors in RA was similar between the two groups. In DOCA-salt RA, the enhanced Up(4)A-induced contraction was reduced by PD98059, an ERK pathway inhibitor, and Up(4)A-stimulated ERK activation was increased. These data are the first to indicate that Up(4)A-induced contraction is enhanced in RA from DOCA-salt rats. Enhanced P2Y receptor signaling and activation of the ERK pathway together represent a likely mechanism mediating the enhanced Up(4)A-induced contraction. Up(4)A might be of relevance in the pathophysiology of vascular tone regulation and renal dysfunction in arterial hypertension.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Dept. of Physiology, Georgia Health Sciences Univ., 1120 15th St., Rm. CA-3147, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
237
|
Pochmann D, Innocente AM, Buffon A, Freitas Sarkis JJ, Porciúncula LDO. Biochemical characterization of an ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP, E.C. 3.1.4.1) from rat cardiac soluble and microsomal fractions. J Enzyme Inhib Med Chem 2011; 27:29-36. [DOI: 10.3109/14756366.2011.574129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daniela Pochmann
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| | - Adrine Maria Innocente
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| | - Andréia Buffon
- Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| | - João José Freitas Sarkis
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| | - Lisiane De Oliveira Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| |
Collapse
|
238
|
Thaning P, Bune LT, Zaar M, Saltin B, Rosenmeier JB. Functional sympatholysis during exercise in patients with type 2 diabetes with intact response to acetylcholine. Diabetes Care 2011; 34:1186-91. [PMID: 21447654 PMCID: PMC3114484 DOI: 10.2337/dc10-2129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Sympathetic vasoconstriction is blunted in contracting human skeletal muscles (functional sympatholysis). In young subjects, infusion of adenosine and ATP increases blood flow, and the latter compound also attenuates α-adrenergic vasoconstriction. In patients with type 2 diabetes and age-matched healthy subjects, we tested 1) the sympatholytic capacity during one-legged exercise, 2) the vasodilatory capacity of adenosine and ATP, and 3) the ability to blunt α-adrenergic vasoconstriction during ATP infusion. RESEARCH DESIGN AND METHODS In 10 control subjects and 10 patients with diabetes and normal endothelial function, determined by leg blood flow (LBF) response to acetylcholine infusion, we measured LBF and venous NA, with and without tyramine-induced sympathetic vasoconstriction, during adenosine-, ATP-, and exercise-induced hyperemia. RESULTS LBF during acetylcholine did not differ significantly. LBF increased ninefold during exercise and during adenosine- and ATP-induced hyperemia. Infusion of tyramine during exercise did not reduce LBF in either the control or the patient group. During combined ATP and tyramine infusions, LBF decreased by 30% in both groups. Adenosine had no sympatholytic effect. CONCLUSIONS In patients with type 2 diabetes and normal endothelial function, functional sympatholysis was intact during moderate exercise. The vasodilatory response for adenosine and ATP did not differ between the patients with diabetes and the control subjects; however, the vasodilatory effect of adenosine and ATP and the sympatholytic effect of ATP seem to decline with age.
Collapse
Affiliation(s)
- Pia Thaning
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
239
|
Estrada O, González-Guzmán JM, Salazar-Bookaman M, Fernández AZ, Cardozo A, Alvarado-Castillo C. Pomolic acid of Licania pittieri elicits endothelium-dependent relaxation in rat aortic rings. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:464-9. [PMID: 21112754 DOI: 10.1016/j.phymed.2010.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/30/2010] [Accepted: 10/12/2010] [Indexed: 05/14/2023]
Abstract
Pomolic acid has recently shown hypotensive effect in rats. The purpose of this investigation was to determine the vascular effects of this triterpenoid and to examine its mode of action. Functional experiments in rat aortic rings precontracted with norepinephrine were performed to evaluate the vasorelaxant effect of pomolic acid. This triterpenoid induced a vasorelaxation (IC₅₀ = 2.45 μM) in a concentration- and endothelium-dependent manner and showed no effect on contractions evoked by KCl (25 mM). Pre-treatment of aortic rings with L-NAME (100 μM), methylene blue (100 μM) or glibenclamide (10 μM), totally prevented the vasorelaxation induced by pomolic acid, while indomethacin (10 μM) had no effect on this response. Additionally, pomolic acid relaxation was unaffected under the muscarinic- and β-adrenergic-receptor blocked ensured for atropine and propanolol respectively (10 μM each). In contrast, the vasorelaxant effect of pomolic acid was abolished under the purinergic-receptor blocked ensured for suramin (10 μM). Finally, apyrase (0.8 U/ml) an enzyme which hydrolyses ATP and ADP did not affect pomolic acid relaxation. In summary, pomolic acid has a potent endothelium-dependent vasorelaxant effect, possibly acting through the direct activation of endothelial purinergic receptors via NO-cGMP signaling pathway, which could be part of the mechanism underlying its hypotensive effect.
Collapse
Affiliation(s)
- Omar Estrada
- Laboratorio de Hemostasia y Genética Vascular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Venezuela
| | | | | | | | | | | |
Collapse
|
240
|
García-Villalón AL, Fernández N, Monge L, Diéguez G. Coronary response to diadenosine tetraphosphate after ischemia-reperfusion in the isolated rat heart. Eur J Pharmacol 2011; 660:394-401. [PMID: 21513710 DOI: 10.1016/j.ejphar.2011.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 03/17/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Diadenosine tetraphosphate (AP4A) is a vasoactive mediator that may be released from platelet granules and that may reach higher plasma concentrations during coronary ischemia-reperfusion. The objective of this study was to analyze its coronary effects in such conditions. To this, rat hearts were perfused in a Langendorff preparation and the coronary response to Ap4A (10(-7)-10(-5) M) was recorded. In control hearts, Ap4A produced concentration-dependent vasodilatation both at the basal coronary resting tone and after precontracting coronary vasculature with 11-dideoxy-1a,9a-epoxymethanoprostaglandin F2α (U46619), and this vasodilatation was reduced by reactive blue 2 (2×10(-6) M), glibenclamide (10(-5) M), H89 (10(-6) M), U73122 (5×10(-6) M) and endothelin-1 (10(-9) M), but not by L-NAME (10(-4) M), isatin (10(-4) M), GF109203x (5×10(-7) M), or wortmannin (5×10(-7) M). After ischemia-reperfusion, the vasodilatation to Ap4A diminished, both in hearts with basal or increased vascular tone, and in this case the relaxation to Ap4A was not modified by reactive blue 2, L-NAME, glibenclamide, isatin, H89, GF109203x or wortmannin, although it was reduced by U73122 and endothelin-1. UTP produced coronary relaxation that was also reduced after ischemia-reperfusion. These results suggest that the coronary relaxation to Ap4A is reduced after ischemia-reperfusion, and that this reduction may be due to impaired effects of KATP channels and to reduced response of purinergic P2Y receptors.
Collapse
Affiliation(s)
- Angel Luis García-Villalón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain.
| | | | | | | |
Collapse
|
241
|
The endothelium-derived contracting factor uridine adenosine tetraphosphate induces P2Y(2)-mediated pro-inflammatory signaling by monocyte chemoattractant protein-1 formation. J Mol Med (Berl) 2011; 89:799-810. [PMID: 21487675 DOI: 10.1007/s00109-011-0750-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 12/21/2022]
Abstract
It is very well established that purinergic signaling plays a relevant role in vascular physiology and pathophysiology. Recently, a new purinoceptor agonist uridine adenosine tetraphosphate (Up(4)A) has been identified as a highly potent endothelial-derived contracting factor (EDCF). The purpose of the study was to investigate Up(4)A's influence on pro-inflammatory mechanisms. An early component of the inflammatory response in atherogenesis is the oxidative stress-induced formation of monocyte chemoattractant protein-1 (MCP-1). Here, we investigated the influence of Up(4)A on MCP-1 formation and characterized the underlying signaling transduction mechanisms in rat vascular smooth muscle cells (VSMCs). Up(4)A induced MCP-1 expression and secretion in VSMCs via the activation of P2Y(2) in a concentration-dependent manner. MCP-1 formation depends on generation of reactive oxygen species (ROS). To determine whether the predominant source of ROS in the vasculature, the NAD(P)H oxidase (Nox), is involved, we used different approaches. The ROS scavenger, tiron, the Nox inhibitor, apocynin and diphenyl-iodonium, as well as Nox1 knockdown, diminished the Up(4)A-induced MCP-1 formation. Rac1 activation and p47(phox) translocation from cytosol to the plasma membrane-both required for assembling and activation of Nox, were stimulated by Up(4)A. ERK1/2 and p38 activation is essential for the intracellular signal transduction. In summary, Up(4)A induced Nox1-dependent ROS generation, which further stimulated MCP-1 formation via MAPK phosphorylation in VSMCs. This process requires the activation of the G-protein coupled receptor P2Y(2). Therefore, Up(4)A is not only a potent EDCF but also a potent inductor of pro-inflammatory response in the vascular wall.
Collapse
|
242
|
Heterologous down-regulation of angiotensin type 1 receptors by purinergic P2Y2 receptor stimulation through S-nitrosylation of NF-kappaB. Proc Natl Acad Sci U S A 2011; 108:6662-7. [PMID: 21464294 DOI: 10.1073/pnas.1017640108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cross-talk between G protein-coupled receptor (GPCR) signaling pathways serves to fine tune cellular responsiveness by neurohumoral factors. Accumulating evidence has implicated nitric oxide (NO)-based signaling downstream of GPCRs, but the molecular details are unknown. Here, we show that adenosine triphosphate (ATP) decreases angiotensin type 1 receptor (AT(1)R) density through NO-mediated S-nitrosylation of nuclear factor κB (NF-κB) in rat cardiac fibroblasts. Stimulation of purinergic P2Y(2) receptor by ATP increased expression of inducible NO synthase (iNOS) through activation of nuclear factor of activated T cells, NFATc1 and NFATc3. The ATP-induced iNOS interacted with p65 subunit of NF-κB in the cytosol through flavin-binding domain, which was indispensable for the locally generated NO-mediated S-nitrosylation of p65 at Cys38. β-Arrestins anchored the formation of p65/IκBα/β-arrestins/iNOS quaternary complex. The S-nitrosylated p65 resulted in decreases in NF-κB transcriptional activity and AT(1)R density. In pressure-overloaded mouse hearts, ATP released from cardiomyocytes led to decrease in AT(1)R density through iNOS-mediated S-nitrosylation of p65. These results show a unique regulatory mechanism of heterologous regulation of GPCRs in which cysteine modification of transcriptional factor rather than protein phosphorylation plays essential roles.
Collapse
|
243
|
Ohata Y, Ogata S, Nakanishi K, Kanazawa F, Uenoyama M, Hiroi S, Tominaga S, Kawai T. Expression of P2X4R mRNA and protein in rats with hypobaric hypoxia-induced pulmonary hypertension. Circ J 2011; 75:945-54. [PMID: 21378451 DOI: 10.1253/circj.cj-09-0575] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The experimental pulmonary hypertension that develops in hypobaric hypoxia is characterized by structural remodeling of the heart. The P2X4 receptor (P2X4R) controls vascular tone and vessel remodeling in several blood vessels, and it has emerged as a key factor in the enhancement of cardiovascular performance. METHODS AND RESULTS To study the possible effects of hypobaric hypoxia on the P2X4R-synthesis system, 150 male Wistar rats were housed in a chamber at the equivalent of the 5,500 m altitude level for 21 days. After 14 days' exposure to hypobaric hypoxia, pulmonary arterial pressure (PAP) was significantly increased. In the right ventricle (RV) of the heart, P2X4R expression was significantly increased on days 1 and 14 (mRNA) and on days 7 and 21 (protein) of hypobaric hypoxic exposure. Immunohistochemical staining for P2X4R protein became more intense in RV in the late phase of exposure. These changes in P2X4R synthesis in RV occurred alongside the increase in PAP. In addition, P2X1R and P2Y2R mRNA levels in the RV were significantly increased on days 1, 14, and 21, and day 5, respectively, of exposure. The level of P2X1R protein in the RV was significantly increased on day 21 of exposure. CONCLUSIONS Conceivably, P2 receptors, including P2X4R and P2X1R, might play roles in modulating the RV hypertrophy that occurs due to pulmonary hypertension in hypobaric hypoxia.
Collapse
Affiliation(s)
- Yuichiro Ohata
- Department of Pathology and Laboratory Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Detanico BC, de Souza A, Medeiros LF, Rozisky JR, Caumo W, Hidalgo MPL, Battastini AMO, Torres ILDS. 24-hour temporal pattern of NTPDase and 5'-nucleotidase enzymes in rat blood serum. Chronobiol Int 2011; 27:1751-61. [PMID: 20969521 DOI: 10.3109/07420528.2010.512992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Circadian rhythms represent an important mechanism to prepare the organism for environmental variations. ATP, ADP, AMP, and adenosine can act as extracellular messengers in a range of biological processes and are metabolized by a number of enzymes, including NTPDases and 5'-nucleotidase. In the present study the authors report that ATPase and ADPase activities present 24-h temporal variations that peak during dark (activity) span. These findings suggest that this enzymatic temporal pattern in blood serum might be important for the normal physiology and function of the organism through the maintenance of extracellular nucleotides at physiological levels.
Collapse
Affiliation(s)
- Bernardo Carraro Detanico
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Sugihara M, Morita H, Matsuda M, Umebayashi H, Kajioka S, Ito S, Nishida M, Inoue R, Futatsuki T, Yamazaki J, Mori Y, Inoue R, Ito Y, Abe K, Hirata M. Dual signaling pathways of arterial constriction by extracellular uridine 5'-triphosphate in the rat. J Pharmacol Sci 2011; 115:293-308. [PMID: 21350312 DOI: 10.1254/jphs.10281fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We investigated actions of uridine 5'-triphosphate (UTP) in rat aorta, cerebral and mesenteric arteries, and their single myocytes. UTP (≥10 µM) elicited an inward-rectifying current strongly reminiscent of activation of P2X(1) receptor, and a similar current was also induced by α,β-methylene adenosine 5'-triphosphate (ATP) (≥100 nM). UTP desensitized α,β-methylene ATP-evoked current, and vice versa. The UTP-activated current was insensitive to G-protein modulators, TRPC3 inhibitors, or TRPC3 antibody, but was sensitive to P2-receptor inhibitors or P2X(1)-receptor antibody. Both UTP (1 mM) and α,β-methylene ATP (10 µM) elicited similar conductance single channel activities. UTP (≥10 µM) provoked a dose-dependent contraction of de-endothelialized aortic ring preparation consisting of phasic and tonic components. Removal of extracellular Ca(2+) or bath-applied 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) (30 µM) or nifedipine (10 µM) completely inhibited the phasic contraction while only partially reducing the tonic one. The tonic contraction was almost completely abolished by additional application of thapsigargin (2 µM). Similar biphasic rises in [Ca(2+)](i) were also evoked by UTP in rat aortic myocytes. In contrast to the low expression of TRPC3, significant expression of P2X(1) receptor was detected in all arteries by RT-PCR and immunoblotting, and its localization was limited to plasma membrane of myocytes as indicated by immunohistochemistry. These results suggest that UTP dually activates P2X(1)-like and P2Y receptors, but not TRPC3.
Collapse
Affiliation(s)
- Megumi Sugihara
- Special Patient Oral Care Unit, Kyushu University Hospital, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Gao Y, Liu H, Deng L, Zhu G, Xu C, Li G, Liu S, Xie J, Liu J, Kong F, Wu R, Li G, Liang S. Effect of emodin on neuropathic pain transmission mediated by P2X2/3 receptor of primary sensory neurons. Brain Res Bull 2011; 84:406-13. [PMID: 21303687 DOI: 10.1016/j.brainresbull.2011.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/22/2011] [Accepted: 01/27/2011] [Indexed: 12/11/2022]
Abstract
Neuropathic pain is the most difficult type of pain to cure. The P2X(2/3) receptors play a crucial role in facilitating the transmission of pain at neuropathic pain states. Emodin is a natural anthraquinone in rhubarb. The present research investigated the effects of emodin on the pain transmission in neuropathic pain states that was mediated by P2X(2/3) receptor in primary sensory neurons. Chronic constriction injury (CCI) model was used as neuropathic pain model. Emodin was dissolved in 0.5% sodium carboxymethyl cellulose (CMC) as vehicle. Sprague-Dawley male rats had been randomly divided into Sham+vehicle group, CCI+emodin group, and CCI+vehicle group. Mechanical withdrawal threshold and thermal withdrawal latency were measured. P2X(2/3) expression in L4/L5 dorsal root ganglion (DRG) was detected by immunohistochemistry, in situ hybridization (ISH) and RT-PCR. The mechanical withdrawal threshold and thermal withdrawal latency in CCI+vehicle group were lower than those in Sham+vehicle group and CCI+emodin group (p<0.05), while P2X(2) and P2X(3) receptor expression of L4/L5 DRG in CCI+vehicle group was higher than those in the other two groups (p<0.05). The co-local staining of P2X(2) and P2X(3) in the DRG of CCI group appeared to be more intense than that in the DRG of the other two groups with double-label fluorescence immunohistochemistry. The results showed that the application of emodin alleviated the hyperalgesia of CCI rats and significantly decreased the P2X(2/3) expression of L4/L5 DRG in CCI+emodin group compared with that in CCI+vehicle group (p<0.05). The data of ISH and RT-PCR in P2X(2) and P2X(3) mRNA expression suggest that the pharmacologic mechanism of emodin is involved in the nucleic acid level. The results showed that emodin can inhibit the transmission of neuropathic pain mediated by P2X(2/3) receptor of primary sensory neurons to alleviate chronic neuropathic pain.
Collapse
Affiliation(s)
- Yun Gao
- Department of Physiology, Medical College of Nanchang University, Bayi Road #461, Nanchang, Jiangxi, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Xia M, Zhu Y. Signaling pathways of ATP-induced PGE2 release in spinal cord astrocytes are EGFR transactivation-dependent. Glia 2011; 59:664-74. [PMID: 21294165 DOI: 10.1002/glia.21138] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/09/2010] [Indexed: 01/29/2023]
Abstract
Traumatic spinal cord injury is characterized by an immediate, irreversible loss of tissue at the lesion site, as well as a secondary expansion of tissue damage over time. Although secondary injury should, in principle, be preventable, no effective treatment options currently exist for patients with acute spinal cord injury (SCI). Excessive release of ATP by the traumatized tissue, triggers the rapid release of arachidonic acid (AA) and prostaglandin E2 (PGE2), and has beenimplicated in acute and chronic neuropathic pain and inflammation. But the intracellular pathways between ATP and PGE2 remain largely unknown. We have explored the signaling events involved in this synthesis by primarily culturing spinal cord astrocytes: (1) we determined significant PGE2 production increased by ATP is mainly via Subtype 1 of P2 purinoceptors (P2Y1) but not P2Y2; (2) we found that ATP strongly increased the level of intracellular Ca(2+) via P2Y1 receptor; (3) we indicated that ATP stimulates the definitely release of AA and PGE2 which involved the transactivation of epidermal growth factor (EGF) receptor, the phosphorylation of extracellular-regulated protein kinases 1 and 2 (ERK(1/2) ) and the activation of cytosolic phospholipase A(2) (cPLA(2) ); (4) we examined ATP could increase the phosphorylation of Akt via P2Y1 receptor which also depend on the transactivation of EGFR, but the activation of Akt has no effect on the downstream of cPLA(2) phosphorylation. ATP induced by SCI could mobilize the release of AA and PGE2. And inhibition of PGE2 release reduces behavioral signs of pain after SCI and peripheral nerve injury.
Collapse
Affiliation(s)
- Maosheng Xia
- Department of Orthopaedics, The First Hospital of China Medical University, Heping District, Shenyang, People's Republic of China
| | | |
Collapse
|
248
|
Ding Y, Gao ZG, Jacobson KA, Suffredini AF. Dexamethasone enhances ATP-induced inflammatory responses in endothelial cells. J Pharmacol Exp Ther 2010; 335:693-702. [PMID: 20826566 PMCID: PMC2993554 DOI: 10.1124/jpet.110.171975] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/02/2010] [Indexed: 12/13/2022] Open
Abstract
The purinergic nucleotide ATP is released from stressed cells and is implicated in vascular inflammation. Glucocorticoids are essential to stress responses and are used therapeutically, yet little information is available that describes the effects of glucocorticoids on ATP-induced inflammation. In a human microvascular endothelial cell line, extracellular ATP-induced interleukin (IL)-6 secretion in a dose- and time-dependent manner. When cells were pretreated with dexamethasone, a prototypic glucocorticoid, ATP-induced IL-6 production was enhanced in a time- and dose-dependent manner. Mifepristone, a glucocorticoid receptor antagonist, blocked these effects. ATP-induced IL-6 release was significantly inhibited by a phospholipase C inhibitor [1-[6-[((17β)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione (U73122)] (63.2 ± 3%, p < 0.001) and abolished by a p38 mitogen-activated protein kinase inhibitor [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB 203580)] (88 ± 1%, p < 0.001). Cells treated with dexamethasone induced mRNA expression of the purinergic P2Y(2) receptor (P2Y(2)R) 1.8- ± 0.1-fold and, when stimulated with ATP, enhanced Ca(2+) release and augmented IL-6 mRNA expression. Silencing of the P2Y(2)R by its small interfering RNA decreased ATP-induced IL-6 production by 81 ± 1% (p < 0.001). Dexamethasone enhanced the transcription rate of P2Y(2)R mRNA and induced a dose-related increase in the activity of the P2Y(2)R promoter. Furthermore, dexamethasone-enhanced ATP induction of adhesion molecule transcription and augmented the release of IL-8. Dexamethasone leads to an unanticipated enhancement of endothelial inflammatory mediator production by extracellular ATP via a P2Y(2)R-dependent mechanism. These data define a novel positive feedback loop of glucocorticoids and ATP-induced endothelial inflammation.
Collapse
Affiliation(s)
- Yi Ding
- Critical Care Medicine Department, Clinical Center and Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, Maryland 20892-1662, USA
| | | | | | | |
Collapse
|
249
|
Pelzmann B, Zorn-Pauly K, Hallström S, Mächler H, Jakubowski A, Lang P, Koidl B. Effects of thienopyridines and thienopyrimidinones on L-type calcium current in isolated cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:433-40. [DOI: 10.1007/s00210-010-0557-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 08/25/2010] [Indexed: 12/15/2022]
|
250
|
Geddawy A, Shimosato T, Tawa M, Imamura T, Okamura T. Mechanism underlying endothelium-dependent relaxation by 2-methylthio-ADP in monkey cerebral artery. J Pharmacol Sci 2010; 114:180-8. [PMID: 20838025 DOI: 10.1254/jphs.10144fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We recently reported endothelium-dependent relaxation caused by nucleotides in the non-human primate cerebral artery. Here, we investigated the endothelium-dependent, nitric oxide- and prostanoid-independent relaxation induced by 2-methylthio-ADP (2MeSADP) in monkey cerebral artery. Mechanical responses of isolated monkey cerebral arteries to the agents were isometrically recorded. In endothelium-intact arterial strips treated with indomethacin plus N(G)-nitro-L-arginine and partially contracted with prostaglandin F(2α), 2MeSADP (1 nM - 10 µM) induced concentration-dependent relaxation that was abolished by removal of endothelium but was not influenced by either carboxy PTIO or 18α-glycyrrhetinic acid. The 2MeSADP-induced relaxation was inhibited by MRS2179 and U73122. The relaxation was markedly suppressed by exposure of the strips to high K(+) media, but was not affected by glibenclamide. Combination of charybdotoxin plus apamin markedly suppressed the relaxation, whereas iberiotoxin partially attenuated it. Relaxation induced by 2MeSADP was inhibited by arachidonyl trifluoromethyl ketone, ketoconazole, and 14,15-epoxyeicosa-5(Z)-enoic acid. The inhibitors that affected the 2MeSADP-induced relaxation did not influence relaxation caused by sodium nitroprusside or forskolin. These findings indicate that 2MeSADP elicits 'endothelium-derived hyperpolarizing factor (EDHF)-type' relaxation via stimulation of endothelial P2Y(1) receptors in monkey cerebral artery. Furthermore, phospholipase A(2), cytochrome P450-derived epoxyeicosatrienoic acids and Ca(2+)-activated K(+) channels appear to be involved in the relaxation.
Collapse
Affiliation(s)
- Ayman Geddawy
- Department of Pharmacology, Shiga University of Medical Sciences, Japan
| | | | | | | | | |
Collapse
|