201
|
Abstract
The transcription factor FOXP3 is widely known for its role in the development and function of immunoregulatory T cells. However, it has been discovered recently that FOXP3 is also expressed in epithelial cells of the normal human breast, ovary and prostate. Aggressive cancer of these epithelial tissues often correlates with abnormal expression of FOXP3, which can be either absent or underexpressed at transcript or protein levels. It is becoming clear that this failure of normal FOXP3 expression can result in dysregulation of the expression of a range of oncogenes which have been implicated in the development and metastasis of cancer. Recent evidence suggests that FOXP3 might also regulate chemokine receptor expression, providing a possible explanation for the chemokine-driven, tissue-specific spread that is characteristic of many cancers. This review first summarises the general structure, function and properties of FOXP3. This is followed by an analysis of the tumour-suppressive properties of this transcription factor, with particular reference to the development and chemokine-mediated spread of human breast cancer. A final section focuses on potential applications of this new knowledge for therapeutic intervention.
Collapse
|
202
|
Qinyu L, Long C, Zhen-dong D, Min-min S, Wei-ze W, Wei-ping Y, Cheng-hong P. FOXO6 promotes gastric cancer cell tumorigenicity via upregulation of C-myc. FEBS Lett 2013; 587:2105-11. [PMID: 23714368 DOI: 10.1016/j.febslet.2013.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 12/25/2022]
Abstract
The aberrant regulation of many related genes is involved in the development and progression of gastric carcinoma. In the present study, we show that mRNA and protein levels of FOXO6 are upregulated in gastric cancer tissues. Forced overexpression of FOXO6 promotes gastric cancer cell proliferation, while knockdown of FOXO6 expression inhibits proliferation. We show that ectopic FOXO6 expression induces the expression of C-myc. Furthermore, we found that FOXO6 physically interacts with the transcription factor hepatic nuclear factor 4 (HNF4) in gastric cancer cells. FOXO6 induces C-myc expression by associating to HNF4 and mediating histone acetylation, and the dissociation of HDAC3 from the promoter of the C-myc gene. Therefore, our results suggest a previously unknown FOXO6/HNF4/C-myc molecular network controlling gastric cancer development.
Collapse
Affiliation(s)
- Li Qinyu
- Shanghai Institute of Digestive Surgery, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
203
|
Peck B, Ferber EC, Schulze A. Antagonism between FOXO and MYC Regulates Cellular Powerhouse. Front Oncol 2013; 3:96. [PMID: 23630664 PMCID: PMC3635031 DOI: 10.3389/fonc.2013.00096] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/08/2013] [Indexed: 11/13/2022] Open
Abstract
Alterations in cellular metabolism are a key feature of the transformed phenotype. Enhanced macromolecule synthesis is a prerequisite for rapid proliferation but may also contribute to induction of angiogenesis, metastasis formation, and tumor progression, thereby leading to a poorer clinical outcome. Metabolic adaptations enable cancer cells to survive in suboptimal growth conditions, such as the limited supply of nutrient and oxygen often found in the tumor microenvironment. Metabolic changes, including activation of glycolysis and inhibition of mitochondrial ATP production, are induced under hypoxia to promote survival in low oxygen. FOXO3a, a transcription factor that is inhibited by the phosphatidylinositol 3-kinase/Akt pathway and is upregulated in hypoxia, has emerged as an important negative regulator of MYC function. Recent studies have revealed that FOXO3a acts as a negative regulator of mitochondrial function through inhibition of MYC. Ablation of FOXO3a prevents the inhibition of mitochondrial function induced by hypoxia and results in enhanced oxidative stress. This review will focus on the antagonism between FOXO3a and MYC and discuss their role in cellular bioenergetics, reactive oxygen metabolism, and adaptation to hypoxia, raising questions about the role of FOXO proteins in cancer.
Collapse
Affiliation(s)
- Barrie Peck
- Gene Expression Analysis Laboratory, Cancer Research UK, London Research Institute London, UK
| | | | | |
Collapse
|
204
|
Fox RM, Vaishnavi A, Maruyama R, Andrew DJ. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA. Development 2013; 140:2160-71. [PMID: 23578928 DOI: 10.1242/dev.092924] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.
Collapse
Affiliation(s)
- Rebecca M Fox
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2196, USA
| | | | | | | |
Collapse
|
205
|
The discovery of Foxl2 paralogs in chondrichthyan, coelacanth and tetrapod genomes reveals an ancient duplication in vertebrates. Heredity (Edinb) 2013; 111:57-65. [PMID: 23549337 DOI: 10.1038/hdy.2013.19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Foxl2 (forkhead box L2) gene is an important member of the forkhead domain family, primarily responsible for the development of ovaries during female sex differentiation. The evolutionary studies conducted previously considered the presence of paralog Foxl2 copies only in teleosts. However, to search for possible paralog copies in other groups of vertebrates and ensure that all predicted copies were homolog to the Foxl2 gene, a broad evolutionary analysis was performed, based on the forkhead domain family. A total of 2464 sequences for the forkhead domain were recovered, and subsequently, 64 representative sequences for Foxl2 were used in the evolutionary analysis of this gene. The most important contribution of this study was the discovery of a new subgroup of Foxl2 copies (ortholog to Foxl2B) present in the chondrichthyan Callorhinchus milii, in the coelacanth Latimeria chalumnae, in the avian Taeniopygia guttata and in the marsupial Monodelphis domestica. This new scenario indicates a gene duplication event in an ancestor of gnathostomes. Furthermore, based on the analysis of the syntenic regions of both Foxl2 copies, the duplication event was not exclusive to Foxl2. Moreover, the duplicated copy distribution was shown to be complex across vertebrates, especially in tetrapods, and the results strongly support a loss of this copy in eutherian species. Finally, the scenario observed in this study suggests an update for Foxl2 gene nomenclature, extending the actual suggested teleost naming of Foxl2A and Foxl2B to all vertebrate sequences and contributing to the establishment of a new evolutionary context for the Foxl2 gene.
Collapse
|
206
|
Takashima S, Gold D, Hartenstein V. Stem cells and lineages of the intestine: a developmental and evolutionary perspective. Dev Genes Evol 2013; 223:85-102. [PMID: 23179635 PMCID: PMC3873164 DOI: 10.1007/s00427-012-0422-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/12/2012] [Indexed: 12/19/2022]
Abstract
The intestine consists of epithelial cells that secrete digestive enzymes and mucus (gland cells), absorb food particles (enterocytes), and produce hormones (endocrine cells). Intestinal cells are rapidly turned over and need to be replaced. In cnidarians, mitosis of differentiated intestinal cells accounts for much of the replacement; in addition, migratory, multipotent stem cells (interstitial cells) contribute to the production of intestinal cells. In other phyla, intestinal cell replacement is solely the function of stem cells entering the gut from the outside (such as in case of the neoblasts of platyhelminths) or intestinal stem cells located within the midgut epithelium (as in both vertebrates or arthropods). We will attempt in the following to review important aspects of midgut stem cells in different animal groups: where are they located, what types of lineages do they produce, and how do they develop. We will start out with a comparative survey of midgut cell types found across the animal kingdom; then briefly look at the specification of these cells during embryonic development; and finally focus on the stem cells that regenerate midgut cells during adult life. In a number of model systems, including mouse, zebrafish and Drosophila, the molecular pathways controlling intestinal stem cells proliferation and the specification of intestinal cell types are under intensive investigation. We will highlight findings of the recent literature, focusing on aspects that are shared between the different models and that point at evolutionary ancient mechanisms of intestinal cell formation.
Collapse
Affiliation(s)
- Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
207
|
Kajihara T, Brosens JJ, Ishihara O. The role of FOXO1 in the decidual transformation of the endometrium and early pregnancy. Med Mol Morphol 2013; 46:61-8. [PMID: 23381604 DOI: 10.1007/s00795-013-0018-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022]
Abstract
Successful pregnancy requires coordination of embryo development, decidualization of endometrium, and placenta formation. Decidualization denotes the transformation of endometrial stromal cells into specialized secretory cells, a process further characterized with influx of specialized immune cells into stroma, predominantly uterine natural killer cells and macrophages, and vascular remodeling. This differentiation process depends on the convergence of the cyclic adenosine monophosphate and progesterone signaling pathways. The decidual process is indispensable for the formation of a functional feto-maternal interface as it controls tissue homeostasis during endovascular trophoblast invasion and bestows tissue resistance to environmental stress signals, including protection against oxidative cell death. FOXO proteins have emerged as key mediators of cell fate because of their ability to regulate either pro-apoptotic genes or genes involved in differentiation, cell cycle arrest, oxidative defenses, and DNA repair. In the endometrium, FOXO1 is of particular importance as a critical regulator of progesterone-dependent differentiation, menstrual shedding, and protection of the feto-maternal against oxidative damage during pregnancy.
Collapse
Affiliation(s)
- Takeshi Kajihara
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan.
| | | | | |
Collapse
|
208
|
Kittelmann S, Ulrich J, Posnien N, Bucher G. Changes in anterior head patterning underlie the evolution of long germ embryogenesis. Dev Biol 2012. [PMID: 23201022 DOI: 10.1016/j.ydbio.2012.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Early embryonic stages differ significantly among related animal taxa while subsequent development converges at the conserved phylotypic stage before again diverging. Although this phenomenon has long been observed, its underlying genetic mechanisms remain enigmatic. The dipteran Drosophila melanogaster develops as a long germ embryo where the head anlagen form a cap at the anterior pole of the blastoderm. Consequently, the anterior and terminal maternal systems give crucial input for head patterning. However, in the short germ beetle Tribolium castaneum, as in most insects, the head anlagen is located at a ventral position distant from the anterior pole of the blastoderm. In line with these divergent embryonic anlagen, several differences in the axis formation between the insects have been discovered. We now ask to what extent patterning and morphogenesis of the anterior median region (AMR) of the head, including clypeolabral and stomodeal anlagen, differ among these insects. Unexpectedly, we find that Tc-huckebein is not a terminal gap gene and, unlike its Drosophila ortholog, is not involved in Tribolium head development. Instead, Tc-six3 acts upstream of Tc-crocodile and Tc-cap'n'collar to pattern posterior and anterior parts of the AMR, respectively. We further find that instead of huckebein, Tc-crocodile is required for stomodeum development by activating Tc-forkhead. Finally, a morphogenetic movement not found in Drosophila shapes the embryonic head of Tribolium. Apparently, with anterior displacement of the head anlagen during long germ evolution of Drosophila, the ancestral regulation by the bilaterian anterior control gene six3 was replaced by the anterior and terminal maternal systems, which were further elaborated by adding bicoid, tailless and huckebein as anterior regionalization genes.
Collapse
Affiliation(s)
- Sebastian Kittelmann
- Department of Evolutionary Genetics, Göttingen Center of Molecular Biology, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
209
|
Abstract
The Forkhead box O (FOXO) family transcription factors play critical roles in a series of cellular processes, including the cell cycle, cell death, metabolism, and oxidative stress resistance. FOXO proteins are subject to several post-translational modifications, which are closely related to their activity. In this paper, we review the post-translational modifications of FOXOs and their biological functions.
Collapse
Affiliation(s)
- Qi Xie
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
210
|
Wang Y, Yang S, Ni Q, He S, Zhao Y, Yuan Q, Li C, Chen H, Zhang L, Zou L, Shen A, Cheng C. Overexpression of forkhead box J2 can decrease the migration of breast cancer cells. J Cell Biochem 2012; 113:2729-37. [PMID: 22441887 DOI: 10.1002/jcb.24146] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The prognosis of breast cancer patients with metastases is generally poor, so it is essential to elucidate related molecules mechanisms. Forkhead Box J2 (FOXJ2) is a member of Forkhead Box transcription factors, many of which have been reported to participate in tumor migration and invasion. In this study, we showed the expression of FOXJ2 was higher in primary breast cancer tissues without lymph nodes metastases than those with, and there was statistical significance between the expression of FXOJ2 and the clinical factors. Hence, we identified a novel function of metastasis, which was not previously known for FOXJ2. Overexpression of FOXJ2 decreased the motility property of highly migrative MDA-MB-231 cells in vitro by wound healing assays and trans-well migration assays, and it was concurrent with the increased expression of epithelial marker E-cadherin and the decreased expression of mesenchymal marker vimentin by Western blot analysis, reverse transcription PCR analysis, and immunofluorescence analysis. Consistent with these observations, the repression of FOXJ2 in weakly metastatic MCF-7 cells remarkably promoted cellular motility. Our study demonstrates that FOXJ2 can inhibit the metastasis of human breast cancer by regulating the EMT key markers E-cadherin and vimentin.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Cancer genetics and genomics of human FOX family genes. Cancer Lett 2012; 328:198-206. [PMID: 23022474 DOI: 10.1016/j.canlet.2012.09.017] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 12/16/2022]
Abstract
Forkhead-box (FOX) family proteins, involved in cell growth and differentiation as well as embryogenesis and longevity, are DNA-binding proteins regulating transcription and DNA repair. The focus of this review is on the mechanisms of FOX-related human carcinogenesis. FOXA1 is overexpressed as a result of gene amplification in lung cancer, esophageal cancer, ER-positive breast cancer and anaplastic thyroid cancer and is point-mutated in prostate cancer. FOXA1 overexpression in breast cancer and prostate cancer is associated with good or poor prognosis, respectively. Single nucleotide polymorphism (SNP) within the 5'-UTR of the FOXE1 (TTF2) gene is associated with thyroid cancer risk. FOXF1 overexpression in breast cancer is associated with epithelial-to-mesenchymal transition (EMT). FOXM1 is overexpressed owing to gene amplification in basal-type breast cancer and diffuse large B-cell lymphoma (DLBCL), and it is transcriptionally upregulated owing to Hedgehog-GLI, hypoxia-HIF1α or YAP-TEAD signaling activation. FOXM1 overexpression leads to malignant phenotypes by directly upregulating CCNB1, AURKB, MYC and SKP2 and indirectly upregulating ZEB1 and ZEB2 via miR-200b downregulation. Tumor suppressor functions of FOXO transcription factors are lost in cancer cells as a result of chromosomal translocation, deletion, miRNA-mediated repression, AKT-mediated cytoplasmic sequestration or ubiquitination-mediated proteasomal degradation. FOXP1 is upregulated as a result of gene fusion or amplification in DLBCL and MALT lymphoma and also repression of miRNAs, such as miR-1, miR-34a and miR-504. FOXP1 overexpression is associated with poor prognosis in DLBCL, gastric MALT lymphoma and hepatocellular carcinoma but with good prognosis in breast cancer. In neuroblastoma, the entire coding region of the FOXR1 (FOXN5) gene is fused to the MLL or the PAFAH1B gene owing to interstitial deletions. FOXR1 fusion genes function as oncogenes that repress transcription of FOXO target genes. Whole-genome sequencing data from tens of thousands of human cancers will uncover the mutational landscape of FOX family genes themselves as well as FOX-binding sites, which will be ultimately applied for cancer diagnostics, prognostics, and therapeutics.
Collapse
|
212
|
Wu Z, Sun H, Zeng W, He J, Mao X. Upregulation of MircoRNA-370 induces proliferation in human prostate cancer cells by downregulating the transcription factor FOXO1. PLoS One 2012; 7:e45825. [PMID: 23029264 PMCID: PMC3445500 DOI: 10.1371/journal.pone.0045825] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/24/2012] [Indexed: 01/17/2023] Open
Abstract
Forkhead box protein O1 (FOXO1), a key member of the FOXO family of transcription factors, acts as a tumor suppressor and has been associated with various key cellular functions, including cell growth, differentiation, apoptosis and angiogenesis. Therefore, it is puzzling why FOXO protein expression is downregulated in cancer cells. MicroRNAs, non-coding 20∼22 nucleotide single-stranded RNAs, result in translational repression or degradation and gene silencing of their target genes, and significantly contribute to the regulation of gene expression. In the current study, we report that miR-370 expression was significantly upregulated in five prostate cancer cell lines, compared to normal prostatic epithelial (PrEC) cells. Ectopic expression of miR-370 induced proliferation and increased the anchorage-independent growth and colony formation ability of DU145 and LNCaP prostate cancer cells, while inhibition of miR-370 reduced proliferation, anchorage-independent growth and colony formation ability. Furthermore, upregulation of miR-370 promoted the entry of DU145 and LNCaP prostate cancer cells into the G1/S cell cycle transition, which was associated with downregulation of the cyclin-dependent kinase (CDK) inhibitors, p27Kip1 and p21Cip1, and upregulation of the cell-cycle regulator cyclin D1 mRNA. Additionally, we demonstrated that miR-370 can downregulate expression of FOXO1 by directly targeting the FOXO1 3′-untranslated region. Taken together, our results suggest that miR-370 plays an important role in the proliferation of human prostate cancer cells, by directly suppressing the tumor suppressor FOXO1.
Collapse
Affiliation(s)
- Ziqing Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Huabin Sun
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, P. R. China
| | - Weixia Zeng
- Laura Biotech Co, Ltd., Guangzhou, Guangdong Province, P. R. China
| | - Jincan He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Xiangming Mao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
213
|
Liu W, Gong Y, Li H, Jiang G, Zhan S, Liu H, Wu Y. Arsenic trioxide-induced growth arrest of breast cancer MCF-7 cells involving FOXO3a and IκB kinase β expression and localization. Cancer Biother Radiopharm 2012; 27:504-12. [PMID: 22988968 DOI: 10.1089/cbr.2012.1162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Currently, arsenic has been clinically investigated as a therapeutic agent for a variety of solid malignancies, including breast cancer. However, the exact underlying molecular mechanisms through which arsenic trioxide (As(2)O(3)) induces cell growth arrest and apoptosis in solid tumors have not been clearly understood. The aim of our study was to gain an insight into the effect of As(2)O(3) on the human breast cancer MCF-7 cell line and investigate cell growth inhibition, apoptosis, and the molecular mechanism after As(2)O(3) treatment in MCF-7 cells. Expression of FOXO3a, nuclear-FOXO3a, caspase-3, and IκB kinase β (IKKβ) mRNA levels in MCF-7 cells was determined by reverse transcription-polymerase chain reaction (RT-PCR). The protein expression was examined by the Western blot analysis and immunocytochemical staining. The distribution of apoptotic cells was assessed by flow cytometry, and the morphology of the apoptotic cells was investigated by Hoechest33258 staining. Our results showed that As(2)O(3) significantly induced the apoptosis of MCF-7 cells tested in this study in a dose-dependent manner. As(2)O(3) induced the decrease of IKKβ expression and the increase of total as well as nuclear FOXO3a expression, which triggered the phosphorylation of cytoplasmic FOXO3a at the Thr32 residue decrease. RT-PCR, Western blot analysis, and immunocytochemistry revealed that the expression of IKKβ in MCF-7 cells was upregulated when As(2)O(3) was combined with tumor necrosis factor-α (TNF-α), whereas the expression of FOXO3a was downregulated in comparison with the As(2)O(3)-alone group. These findings indicated a specific molecular mechanism by which MCF-7 cell lines were susceptible to the As(2)O(3) therapy through FOXO3a expression and localization. This FOXO3a accumulation may be well correlated with the As(2)O(3)-induced reduction of active IKKβ, which may provide new insights into As(2)O(3)-related signaling activities.
Collapse
Affiliation(s)
- Wenlou Liu
- Department of Pathology, Xuzhou Medical College, Xuzhou, China
| | | | | | | | | | | | | |
Collapse
|
214
|
Shi X, Wallis AM, Gerard RD, Voelker KA, Grange RW, DePinho RA, Garry MG, Garry DJ. Foxk1 promotes cell proliferation and represses myogenic differentiation by regulating Foxo4 and Mef2. J Cell Sci 2012; 125:5329-37. [PMID: 22956541 DOI: 10.1242/jcs.105239] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In response to severe injury, adult skeletal muscle exhibits a remarkable regenerative capacity due to a resident muscle stem/progenitor cell population. While a number of factors are expressed in the muscle progenitor cell (MPC) population, the molecular networks that govern this cell population remain an area of active investigation. In this study, utilizing knockdown techniques and overexpression of Foxk1 in the myogenic lineage, we observed dysregulation of Foxo and Mef2 downstream targets. Utilizing an array of technologies, we establish that Foxk1 represses the transcriptional activity of Foxo4 and Mef2 and physically interacts with Foxo4 and Mef2, thus promoting MPC proliferation and antagonizing the myogenic lineage differentiation program, respectively. Correspondingly, knockdown of Foxk1 in C2C12 myoblasts results in cell cycle arrest, and Foxk1 overexpression in C2C12CAR myoblasts retards muscle differentiation. Collectively, we have established that Foxk1 promotes MPC proliferation by repressing Foxo4 transcriptional activity and inhibits myogenic differentiation by repressing Mef2 activity. These studies enhance our understanding of the transcriptional networks that regulate the MPC population and muscle regeneration.
Collapse
Affiliation(s)
- Xiaozhong Shi
- Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Flounder (Paralichthys olivaceus) FoxD1 and its regulation on the expression of myogenic regulatory factor, MyoD. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0096-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
216
|
Jiang W, Li L, Tang Y, Zhang WY, Liu WP, Li GD. Expression of FOXP1 in mucosa-associated lymphoid tissue lymphoma suggests a large tumor cell transformation and predicts a poorer prognosis in the positive thyroid patients. Med Oncol 2012; 29:3352-9. [PMID: 22736042 DOI: 10.1007/s12032-012-0288-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 06/14/2012] [Indexed: 02/05/2023]
Abstract
The forkhead box protein P1 (FOXP1) expression resulted from chromosome translocation was found in MALT lymphoma, and its nuclear expression in diffuse large B cell lymphoma has been believed to be a poor prognostic factor. In our study, FOXP1 expression was investigated in its relationship to the occurrence of large tumor cells, clinical features, and prognosis in a series of 115 MALT lymphomas divided into two groups with or without the large tumor cells. All cases were morphologically reviewed, and FOXP1 expression was detected both in mRNA and protein levels by real-time PCR, immunochemical staining, and Western blot hybridization. All available clinical data were collected. In the MALT lymphoma with large cells, FOXP1 expression was higher at both mRNA (P = 0.008) and protein (P = 0.000) levels than that in group without large cells, and most large tumor cells showed FOXP1 positivity. It was also found that cases beyond Ann Arbor stage I have a higher FOXP1 expression rate than cases in stage I (P = 0.01), moreover, FOXP1-positive group has more plasmacytic differentiation (P = 0.025), deeper filtrating depth in digestive tract (P = 0.039), and a higher Ki67 proliferation index (P = 0.022). However, no statistical significance was identified in the involved anatomic sites and prognosis. Our data demonstrated the close relationship between FOXP1 nuclear expression and the occurrence of large tumor cells in MALT lymphoma, which suggested the possibility of large cell transformation of FOXP1-positive cases. And FOXP1 positivity was associated with enhanced invasion and proliferation ability of tumor cells. In the thyroid cases, the FOXP1 positivity showed a poorer prognosis (P = 0.043), but the significance was not found in the overall survival analysis (P = 0.1123).
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Blotting, Western
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Female
- Forkhead Transcription Factors/analysis
- Forkhead Transcription Factors/biosynthesis
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Lymphoma, B-Cell, Marginal Zone/mortality
- Lymphoma, B-Cell, Marginal Zone/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Prognosis
- Real-Time Polymerase Chain Reaction
- Repressor Proteins/analysis
- Repressor Proteins/biosynthesis
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/mortality
- Thyroid Neoplasms/pathology
- Tissue Array Analysis
Collapse
Affiliation(s)
- Wei Jiang
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guoxuexiang Street, Chengdu, Sichuan, 610041, People's Republic of China
| | | | | | | | | | | |
Collapse
|
217
|
Abstract
Sirtuins, which are class III NAD-dependent histone deacetylases that regulate a number of physiological processes, play important roles in the regulation of metabolism, aging, oncogenesis, and cancer progression. Recently, a role for the sirtuins in the regulation of steroid hormone receptor signaling is emerging. In this mini-review, we will summarize current research into the regulation of estrogen, androgen, progesterone, mineralocorticoid, and glucocorticoid signaling by sirtuins in cancer. Sirtuins can regulate steroid hormone signaling through a variety of molecular mechanisms, including acting as co-regulatory transcription factors, deacetylating histones in the promoters of genes with nuclear receptor-binding sites, directly deacetylating steroid hormone nuclear receptors, and regulating pathways that modify steroid hormone receptors through phosphorylation. Furthermore, disruption of sirtuin activity may be an important step in the development of steroid hormone-refractory cancers.
Collapse
Affiliation(s)
- R L Moore
- Cancer Center, Departments of Medicine Biochemistry Pediatrics Microbiology Pathology and Laboratory Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118-2307, USA
| | | | | |
Collapse
|
218
|
Wen Q, Wang H, Little PJ, Quirion R, Zheng W. Forkhead family transcription factor FoxO and neural differentiation. Neurogenetics 2012; 13:105-13. [PMID: 22453702 DOI: 10.1007/s10048-012-0320-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/05/2012] [Indexed: 12/24/2022]
Abstract
The Forkhead Box subgroup O (FoxO) transcription factor family is one of the most important downstream targets of the phosphatidylinositol 3-kinase/protein kinase B signaling pathway playing an important role in many biological functions including transcriptional regulation of cellular differentiation. Neuronal differentiation is a complex process which involves many signaling pathways and molecular mechanisms. Interestingly, recent studies indicate that the FoxO family is involved in a number of signaling pathways regulating cell differentiation. The actions occur at different stages in the differentiation process and by differing mechanisms. This review will focus on FoxO as a novel transcription factor in neural differentiation.
Collapse
Affiliation(s)
- Qiang Wen
- Neuropharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, People's Republic of China
| | | | | | | | | |
Collapse
|
219
|
FOXA1: a transcription factor with parallel functions in development and cancer. Biosci Rep 2012; 32:113-30. [PMID: 22115363 DOI: 10.1042/bsr20110046] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When aberrant, factors critical for organ morphogenesis are also commonly involved in disease progression. FOXA1 (forkhead box A1), also known as HNF3α (hepatocyte nuclear factor 3α), is required for postnatal survival due to its essential role in controlling pancreatic and renal function. In addition to regulating a variety of tissues during embryogenesis and early life, rescue experiments have revealed a specific role for FOXA1 in the postnatal development of the mammary gland and prostate. Activity of the nuclear hormone receptors ERα (oestrogen receptor α) and AR (androgen receptor) is also required for proper development of the mammary gland and prostate respectively. FOXA1 modulates ER and AR function in breast and prostate cancer cells, supporting the postulate that FOXA1 is involved in ER and AR signalling under normal conditions, and that some carcinogenic processes in these tissues stem from hormonally regulated developmental pathways gone awry. In addition to broadly reviewing the function of FOXA1 in various aspects of development and cancer, this review focuses on the interplay of FOXA1/ER and FOXA1/AR, in normal and cancerous mammary and prostate epithelial cells. Given the hormone dependency of both breast and prostate cancer, a thorough understanding of FOXA1's role in both cancer types is critical for battling hormone receptor-positive disease and acquired anti-hormone resistance.
Collapse
|
220
|
Lalmansingh AS, Karmakar S, Jin Y, Nagaich AK. Multiple modes of chromatin remodeling by Forkhead box proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:707-15. [PMID: 22406422 DOI: 10.1016/j.bbagrm.2012.02.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
Forkhead box (FOX) proteins represent a large family of transcriptional regulators unified by their DNA binding domain (DBD) known as a 'forkhead' or 'winged helix' domain. Over 40 FOX genes have been identified in the mammalian genome. FOX proteins share significant sequence similarities in the DBD which allow them to bind to a consensus DNA response element. However, their modes of action are quite diverse as they regulate gene expression by acting as pioneer factors, transcription factors, or both. This review focuses on the mechanisms of chromatin remodeling with an emphasis on three sub-classes-FOXA, FOXO, and FOXP members. FOXA proteins serve as pioneer factors to open up local chromatin structure and thereby increase accessibility of chromatin to factors regulating transcription. FOXP proteins, in contrast, function as classic transcription factors to recruit a variety of chromatin modifying enzymes to regulate gene expression. FOXO proteins represent a hybrid subclass having dual roles as pioneering factors and transcription factors. A subset of FOX proteins interacts with condensed mitotic chromatin and may function as 'bookmarking' agents to maintain transcriptional competence at specific genomic sites. The overall diversity in chromatin remodeling function by FOX proteins is related to unique structural motifs present within the DBD flanking regions that govern selective interactions with core histones and/or chromatin coregulatory proteins. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Avin S Lalmansingh
- Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Sciences, Center for Drug Evaluation and Research, Food and Drug administration, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
221
|
Dong X, Zhai Y, Zhang J, Sun Z, Chen J, Chen J, Zhang W. Fork head transcription factor is required for ovarian mature in the brown planthopper, Nilaparvata lugens (Stål). BMC Mol Biol 2011; 12:53. [PMID: 22208615 PMCID: PMC3288825 DOI: 10.1186/1471-2199-12-53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/31/2011] [Indexed: 11/10/2022] Open
Abstract
Background The brown planthopper (BPH), Nilaparvata lugens, is the most devastating rice pest in many areas throughout Asia. The reproductive system of female N. lugens consists of a pair of ovaries with 24-33 ovarioles per ovary in most individuals which determine its fecundity. The fork head (Fox) is a transcriptional regulatory molecule, which regulates and controls many physiological processes in eukaryotes. The Fox family has several subclasses and members, and several Fox factors have been reported to be involved in regulating fecundity. Results We have cloned a fork head gene in N. lugens. The full-length cDNA of NlFoxA is 1789 bp and has an open reading frame of 1143 bp, encoding a protein of 380 amino acids. Quantitative real-time PCR (RT-qPCR) and Reverse Transcription- PCR (RT-PCR) analysis revealed that NlFoxA mRNA was mainly expressed in the fat body, midgut, cuticle and Malpighian tube, and was expressed continuously with little change during all the developmental stages. NlFoxA belongs to the FoxA subfamily of the Fox transcription factors. Knockdown of NlFoxA expression by RNAi using artificial diet containing double-stranded RNA (dsRNA) significantly decreased the number of offspring and impacted the development of ovaries. ELISA and Western blot analyses showed that feeding-based RNAi of NlFoxA gene also resulted in decreased expression of vitellogenin (Vg) protein. Conclusion NlFoxA plays an important role in regulation of fecundity and development of ovaries in the BPH via regulating vitellogenin expression.
Collapse
Affiliation(s)
- Xiaolin Dong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275 China
| | | | | | | | | | | | | |
Collapse
|
222
|
Yang JY, Hung MC. Deciphering the role of forkhead transcription factors in cancer therapy. Curr Drug Targets 2011; 12:1284-90. [PMID: 21443462 DOI: 10.2174/138945011796150299] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/15/2010] [Indexed: 01/28/2023]
Abstract
Forkhead O transcription factors (FOXO) are critical for the regulation of cell cycle arrest, cell death, and DNA damage repair. Inactivation of FOXO proteins may be associated with tumorigenesis, including breast cancer, prostate cancer, glioblastoma, rhabdomyosarcoma, and leukemia. Accumulated evidence shows that activation of oncogenic pathways such as phosphoinositide-3-kinase/AKT/IKK or RAS/mitogen-activated protein kinase suppresses FOXO transcriptional activity through the phosphorylation of FOXOs at different sites that ultimately leads to nuclear exclusion and degradation of FOXOs. In addition, posttranslational modifications of FOXOs such as acetylation, methylation and ubiquitination also contribute to modulating FOXO3a functions. Several anti-cancer drugs like paclitaxel, imatinib, and doxorubicin activate FOXO3a by counteracting those oncogenic pathways which restrain FOXOs functions. In this review, we will illustrate the regulation of FOXOs and reveal potential therapeutics that target FOXOs for cancer treatment.
Collapse
Affiliation(s)
- Jer-Yen Yang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
223
|
Shen X, Cui J, Gong Q. Fox gene loci in Takifugu rubripes and Tetraodon nigroviridis genomes and comparison with those of medaka and zebrafish genomes. Genome 2011; 54:965-72. [PMID: 22073989 DOI: 10.1139/g11-065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Members of the Fox gene family of transcriptional regulators are essential for animal development and have been extensively studied in vertebrates. The mouse and human genomes contain at least 40 FOX genes which are divided into 19 subclasses based on the sequence similarity of the highly conserved forkhead domain. Using the genome sequence of the Takifugu rubripes and Tetraodon nigroviridis , we examined the genomic complement of fox genes in these organisms to gain insight into the evolutionary relationship of this gene family. We identified 53 fox genes in Tetraodon nigroviridis and Takifugu rubripes genome by searching the forkhead domain. These genes are divided into 18 subclasses as follows: 8 fox genes in subclass O; 6 in subclass P ; 4 in subclasses D, J, and N; 3 in subclasses A, B, C, E, F, and I; 2 in subclasses K, L, and Q; and 1 in subclasses G, H, M, and R. Together with the forkhead domain sequences of human, chicken, frog, zebrafish, medaka, and Caenorhabditis elegans, the phylogenetic relationship of the fox genes in Takifugu rubripes and Tetraodon nigroviridis were analyzed and compared. The genes structure, general features, and the three-dimensional model of these genes were also discussed.
Collapse
Affiliation(s)
- Xueyan Shen
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | | |
Collapse
|
224
|
Micchelli CA. The origin of intestinal stem cells in Drosophila. Dev Dyn 2011; 241:85-91. [PMID: 21972080 DOI: 10.1002/dvdy.22759] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2011] [Indexed: 11/08/2022] Open
Abstract
Renewing tissues in the adult organism such as the gastrointestinal (GI) epithelium depend on stem cells for epithelial maintenance and repair. Yet, little is known about the developmental origins of adult stem cells and their niches. Studies of Drosophila adult midgut precursors (AMPs), a population of endodermal progenitors, demonstrate that adult intestinal stem cells (ISCs) arise from the AMP lineage and provide insight into the stepwise process by which the adult midgut epithelium is established during development. Here, I review the current literature on AMPs, where local, inductive and long-range humoral signals have been found to control progenitor cell behavior. Future studies will be necessary to determine the precise mechanism by which adult intestinal stem cells are established in the endodermal lineage.
Collapse
Affiliation(s)
- Craig A Micchelli
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
225
|
Hirai H, Tani T, Kikyo N. Structure and functions of powerful transactivators: VP16, MyoD and FoxA. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2011; 54:1589-96. [PMID: 21404180 DOI: 10.1387/ijdb.103194hh] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Induced pluripotent stem cell (iPSC) technology is a promising approach for converting one type of a differentiated cell into another type of differentiated cell through a pluripotent state as an intermediate step. Recent studies, however, indicate the possibility of directly converting one cell type to another without going through a pluripotent state. This direct reprogramming approach is dependent on a combination of highly potent transcription factors for cell-type conversion, presumably skipping more physiological and multi-step differentiation processes. A trial-and-error strategy is commonly used to screen many candidate transcription factors to identify the correct combination of factors. We speculate, however, that a better understanding of the functional mechanisms of exemplary transcriptional activators will facilitate the identification of novel factor combinations capable of direct reprogramming. The purpose of this review is to critically examine the literature on three highly potent transcriptional activators: the herpes virus protein, VP16; the master regulator of skeletal muscle differentiation, MyoD and the "pioneer" factor for hepatogenesis, FoxA. We discuss the roles of their functional protein domains, interacting partners and chromatin remodeling mechanisms during gene activation to understand how these factors open the chromatin of inactive genes and reset the transcriptional pattern during cell type conversion.
Collapse
|
226
|
FOXA1: master of steroid receptor function in cancer. EMBO J 2011; 30:3885-94. [PMID: 21934649 DOI: 10.1038/emboj.2011.340] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/29/2011] [Indexed: 12/15/2022] Open
Abstract
FOXA transcription factors are potent, context-specific mediators of development that hold specialized functions in hormone-dependent tissues. Over the last several years, FOXA1 has emerged as a critical mediator of nuclear steroid receptor signalling, manifest at least in part through regulation of androgen receptor and oestrogen receptor activity. Recent findings point towards a major role for FOXA1 in modulating nuclear steroid receptor activity in breast and prostate cancer, and suggest that FOXA1 may significantly contribute to pro-tumourigenic phenotypes. The present review article will focus on the mechanisms, consequence, and clinical relevance of FOXA1-mediated steroid nuclear receptor signalling in human malignancy.
Collapse
|
227
|
Hong ZY, Lee HJ, Shin DY, Kim SK, Seo M, Lee EJ. Inhibition of Akt/FOXO3a signaling by constitutively active FOXO3a suppresses growth of follicular thyroid cancer cell lines. Cancer Lett 2011; 314:34-40. [PMID: 21974806 DOI: 10.1016/j.canlet.2011.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/23/2011] [Accepted: 09/10/2011] [Indexed: 11/24/2022]
Abstract
Akt-dependent FOXO3a cytoplasmic translocation is an important tumorigenic mechanism for escaping from apoptosis in cancer cells. In the present study, we examined whether non-phosphorylatable FOXO3a can inhibit cell growth of various follicular thyroid carcinoma (FTC) cell lines. Adenovirus carrying the FOXO3a-triple mutant (TM) sequence including point mutations at three Akt phosphorylation sites (Ad-FOXO3a-TM) was generated and transduced to the cells to mimic inhibition of Akt/FOXO3a signal. Transduction of Ad-FOXO3a-TM to FTC133 cells induced cell cycle arrest and apoptosis. Injection of Ad-FOXO3a-TM suppressed the growth of xenograft tumors in athymic mice. Consequently, our results indicate that gene therapy based on Ad-FOXO3a-TM has therapeutic potential for FTC.
Collapse
Affiliation(s)
- Zhen-Yu Hong
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
228
|
Bao B, Hong B, Feng QL, Xu WH. Transcription factor fork head regulates the promoter of diapause hormone gene in the cotton bollworm, Helicoverpa armigera, and the modification of SUMOylation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:670-679. [PMID: 21575721 DOI: 10.1016/j.ibmb.2011.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/28/2011] [Accepted: 04/25/2011] [Indexed: 05/30/2023]
Abstract
The transcription factor fork head (FoxA) plays important roles in development and metabolism. Here, we cloned a fork head gene in Helicoverpa armigera, and found that the fork head protein is mainly located in the nucleus. This fork head gene belongs to the FoxA subfamily of the Fox transcription factors. The diapause hormone and pheromone biosynthesis-activating neuropeptide (DH-PBAN), which are two well-documented insect neuropeptides that regulate insect development and pheromone biosynthesis, are encoded by a single mRNA. In the present study, fork head was shown to bind strongly to the promoter of H. armigera DH-PBAN gene, and regulate its promoter activity. Furthermore, the effect of SUMOylation of the FH protein on the regulation of Har-DH-PBAN gene was investigated, and we show that the SUMO can modify Har-FH protein and cause down-regulation of DH-PBAN gene expression. These results suggest that SUMOylated FH plays a key role in insect diapause in H. armigera.
Collapse
Affiliation(s)
- Bin Bao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| | | | | | | |
Collapse
|
229
|
FOXL2 C402G mutation detection using MALDI-TOF-MS in DNA extracted from Israeli granulosa cell tumors. Gynecol Oncol 2011; 122:580-4. [DOI: 10.1016/j.ygyno.2011.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/02/2011] [Accepted: 05/05/2011] [Indexed: 11/17/2022]
|
230
|
The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem 2011; 3:725-31. [PMID: 21860463 DOI: 10.1038/nchem.1114] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/08/2011] [Indexed: 12/12/2022]
Abstract
Transcription factors are proteins that bind specifically to defined DNA sequences to promote gene expression. Targeting transcription factors with small molecules to modulate the expression of certain genes has been notoriously difficult to achieve. The natural product thiostrepton is known to reduce the transcriptional activity of FOXM1, a transcription factor involved in tumorigenesis and cancer progression. Herein we demonstrate that thiostrepton interacts directly with FOXM1 protein in the human breast cancer cells MCF-7. Biophysical analyses of the thiostrepton-FOXM1 interaction provide additional insights on the molecular mode of action of thiostrepton. In cellular experiments, we show that thiostrepton can inhibit the binding of FOXM1 to genomic target sites. These findings illustrate the potential druggability of transcription factors and provide a molecular basis for targeting the FOXM1 family with small molecules.
Collapse
|
231
|
Abstract
Since the discovery of the conserved forkhead (Fkh) DNA binding domain more than 20 years ago, members of the Fkh or forkhead box (FOX) family of transcription factors have been shown to act as important regulators of numerous developmental and homeostatic processes. The human genome contains 44 Fkh genes, several of which have recently been reported to be essential for female fertility. In this review, we highlight the roles of specific FOX proteins in ovarian folliculogenesis and present our current understanding of their molecular function. In particular, we describe what we have learned from loss-of-function studies using mouse models as well as human genetics and illustrate how different stages of folliculogenesis, both in oocytes and in somatic granulosa and theca cells, are regulated by FOXC1, FOXL2, and FOXO subfamily members.
Collapse
Affiliation(s)
- Nina Henriette Uhlenhaut
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin-Buch, Germany.
| | | |
Collapse
|
232
|
Maruyama R, Grevengoed E, Stempniewicz P, Andrew DJ. Genome-wide analysis reveals a major role in cell fate maintenance and an unexpected role in endoreduplication for the Drosophila FoxA gene Fork head. PLoS One 2011; 6:e20901. [PMID: 21698206 PMCID: PMC3116861 DOI: 10.1371/journal.pone.0020901] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/12/2011] [Indexed: 12/19/2022] Open
Abstract
Transcription factors drive organogenesis, from the initiation of cell fate decisions to the maintenance and implementation of these decisions. The Drosophila embryonic salivary gland provides an excellent platform for unraveling the underlying transcriptional networks of organ development because Drosophila is relatively unencumbered by significant genetic redundancy. The highly conserved FoxA family transcription factors are essential for various aspects of organogenesis in all animals that have been studied. Here, we explore the role of the single Drosophila FoxA protein Fork head (Fkh) in salivary gland organogenesis using two genome-wide strategies. A large-scale in situ hybridization analysis reveals a major role for Fkh in maintaining the salivary gland fate decision and controlling salivary gland physiological activity, in addition to its previously known roles in morphogenesis and survival. The majority of salivary gland genes (59%) are affected by fkh loss, mainly at later stages of salivary gland development. We show that global expression of Fkh cannot drive ectopic salivary gland formation. Thus, unlike the worm FoxA protein PHA-4, Fkh does not function to specify cell fate. In addition, Fkh only indirectly regulates many salivary gland genes, which is also distinct from the role of PHA-4 in organogenesis. Our microarray analyses reveal unexpected roles for Fkh in blocking terminal differentiation and in endoreduplication in the salivary gland and in other Fkh-expressing embryonic tissues. Overall, this study demonstrates an important role for Fkh in determining how an organ preserves its identity throughout development and provides an alternative paradigm for how FoxA proteins function in organogenesis.
Collapse
Affiliation(s)
- Rika Maruyama
- Department of Cell Biology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth Grevengoed
- Department of Cell Biology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Peter Stempniewicz
- Department of Cell Biology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Deborah J. Andrew
- Department of Cell Biology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
233
|
Gene expression in bryozoan larvae suggest a fundamental importance of pre-patterned blastemic cells in the bryozoan life-cycle. EvoDevo 2011; 2:13. [PMID: 21645327 PMCID: PMC3133996 DOI: 10.1186/2041-9139-2-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bryozoa is a clade of aquatic protostomes. The bryozoan life cycle typically comprises a larval stage, which metamorphoses into a sessile adult that proliferates by asexual budding to form colonies. The homology of bryozoan larvae with other protostome larvae is enigmatic. Bryozoan larvae exhibit blastemic tissues that contribute to build the adult during morphogenesis. However, it remains unclear if the cells of these tissues are pre-determined according to their future fate or if the cells are undifferentiated, pluripotent stem cells. Gene expression studies can help to identify molecular patterning of larval and adult tissues and enlighten the evolution of bryozoan life cycle stages. RESULTS We investigated the spatial expression of 13 developmental genes in the larval stage of the gymnolaemate bryozoan Bugula neritina. We found most genes expressed in discrete regions in larval blastemic tissues that form definitive components of the adult body plan. Only two of the 13 genes, BnTropomyosin and BnFoxAB, were exclusively expressed in larval tissues that are discarded during metamorphosis. CONCLUSIONS Our results suggest that the larval blastemas in Bugula are pre-patterned according to their future fate in the adult. The gene expression patterns indicate that some of the bryozoan blastemas can be interpreted to correspond to homologous adult tissues of other animals. This study challenges an earlier proposed view that metazoan larvae share homologous undifferentiated "set-aside cells", and instead points to an independent origin of the bryozoan larval stage with respect to other lophotrochozoans.
Collapse
|
234
|
Benayoun BA, Caburet S, Veitia RA. Forkhead transcription factors: key players in health and disease. Trends Genet 2011; 27:224-32. [PMID: 21507500 DOI: 10.1016/j.tig.2011.03.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/16/2022]
Abstract
Forkhead box (FOX) proteins constitute an evolutionarily conserved family of transcription factors with a central role not only during development, but also in the adult organism. Thus, the misregulation and/or mutation of FOX genes often induce human genetic diseases, promote cancer or deregulate ageing. Indeed, germinal FOX gene mutations cause diseases ranging from infertility to language and/or speech disorders and immunological defects. Moreover, because of their central role in signalling pathways and in the regulation of homeostasis, somatic misregulation and/or mutation of FOX genes are associated with cancer. FOX proteins have undergone diversification in terms of their sequence, regulation and function. In addition to dedicated roles, evidence suggests that Forkhead factors have retained some functional redundancy. Thus, combinations of slightly defective alleles might induce disease phenotypes in humans, acting as quantitative trait loci. Uncovering such variants would be a big step towards understanding the functional interdependencies of different FOX members and their implications in complex pathologies.
Collapse
Affiliation(s)
- Bérénice A Benayoun
- CNRS UMR 7592, Institut Jacques Monod, Equipe Génétique et Génomique du Développement Gonadique, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
235
|
Zhang Y, Tan X, Sun W, Xu P, Zhang PJ, Xu Y. Characterization of flounder (Paralichthys olivaceus) FoxD3 and its function in regulating myogenic regulatory factors. In Vitro Cell Dev Biol Anim 2011; 47:399-405. [PMID: 21487921 DOI: 10.1007/s11626-011-9406-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 03/23/2011] [Indexed: 11/30/2022]
Abstract
As one member of winged helix domain transcription factors, FoxD3 plays an important role in the regulation of neural crest development and maintenance of mammalian stem cell lineages. A recent study showed that zebrafish FoxD3 is a downstream gene of Pax3 and can mediate the expression of Myf5. To further understand the function of FoxD3 in fish muscle development, we isolated the FoxD3 gene from flounder, and analyzed its expression pattern and function in regulating myogenic regulatory factors, MyoD and Myf5. In situ hybridization showed that flounder FoxD3 was firstly detected in the premigratory neural crest cells at 90% epiboly stage. The FoxD3 was expressed not only in neural crest cells but also in somite cells that will form muscle in the future. When flounder FoxD3 was over-expressed in zebrafish by microinjection, the expressions of zebrafish Myf5 and MyoD were both affected. It is possible that FoxD3 is involved in myogenesis by regulating the expression of Myf5 and MyoD. Also, over-expression of flounder FoxD3 in zebrafish inhibits the expression of zebrafish endogenic FoxD3.
Collapse
Affiliation(s)
- Yuqing Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
236
|
Pisarska MD, Barlow G, Kuo FT. Minireview: roles of the forkhead transcription factor FOXL2 in granulosa cell biology and pathology. Endocrinology 2011; 152:1199-208. [PMID: 21248146 PMCID: PMC3206711 DOI: 10.1210/en.2010-1041] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The forkhead transcription factor (FOXL2) is an essential transcription factor in the ovary. It is important in ovarian development and a key factor in female sex determination. In addition, FOXL2 plays a significant role in the postnatal ovary and follicle maintenance. The diverse transcriptional activities of FOXL2 are likely attributable to posttranslational modifications and binding to other key proteins involved in granulosa cell function. Mutations of FOXL2 lead to disorders of ovarian function ranging from premature follicle depletion and ovarian failure to unregulated granulosa cell proliferation leading to tumor formation. Thus, FOXL2 is a key regulator of granulosa cell function and a master transcription factor in these cells.
Collapse
Affiliation(s)
- Margareta D Pisarska
- Center for Fertility and Reproductive Medicine, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West Third Street, Suite 160W, Los Angeles, California 90048, USA.
| | | | | |
Collapse
|
237
|
Jackson BC, Carpenter C, Nebert DW, Vasiliou V. Update of human and mouse forkhead box (FOX) gene families. Hum Genomics 2011; 4:345-52. [PMID: 20650821 PMCID: PMC3500164 DOI: 10.1186/1479-7364-4-5-345] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The forkhead box (FOX) proteins are transcription factors that play complex and important roles in processes from development and organogenesis to regulation of metabolism and the immune system. There are 50 FOX genes in the human genome and 44 in the mouse, divided into 19 subfamilies. All human FOX genes have close mouse orthologues, with one exception: the mouse has a single Foxd4, whereas the human gene has undergone a recent duplication to a total of seven (FOXD4 and FOXD4L1 → FOXD4L6). Evolutionarily ancient family members can be found as far back as the fungi and metazoans. The DNA-binding domain, the forkhead domain, is an example of the winged-helix domain, and is very well conserved across the FOX family and across species, with a few notable exceptions in which divergence has created new functionality. Mutations in FOX genes have been implicated in at least four familial human diseases, and differential expression may play a role in a number of other pathologies -- ranging from metabolic disorders to autoimmunity. Furthermore, FOX genes are differentially expressed in a large number of cancers; their role can be either as an oncogene or tumour suppressor, depending on the family member and cell type. Although some drugs that target FOX gene expression or activity, notably proteasome inhibitors, appear to work well, much more basic research is needed to unlock the complex interplay of upstream and downstream interactions with FOX family transcription factors.
Collapse
Affiliation(s)
- Brian C Jackson
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, 80045, USA
| | | | | | | |
Collapse
|
238
|
Kalin TV, Ustiyan V, Kalinichenko VV. Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell Cycle 2011; 10:396-405. [PMID: 21270518 DOI: 10.4161/cc.10.3.14709] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
FoxM1 transcription factor (previously called HFH-11B, Trident, FoxM1b, Win, and MPP2) is expressed in actively dividing cells and critical for cell cycle progression. FoxM1 expression is induced in a variety of tissues during embryogenesis, and Foxm1 (-/-) mice exhibit embryonic lethal phenotype due to multiple abnormalities in the liver, heart, lung and blood vessels. FoxM1 levels are dramatically decreased in adult tissues, but FoxM1 expression is re-activated during organ injury and numerous cancers. In this review, we discussed the role of FoxM1 in different cell lineages using recent data from transgenic mouse models with conditional "gain-of-function" and "loss-of-function" of FoxM1, as well as tissue samples from human patients. In addition, we provided experimental data showing additional sites of FoxM1 expression in the mouse embryo. Novel cell-autonomous roles of FoxM1 in embryonic development, organ injury and cancer formation in vivo were analyzed. Potential application of these findings for the diagnosis and treatment of human diseases were discussed.
Collapse
Affiliation(s)
- Tanya V Kalin
- Division of Pulmonary Biology and Perinatal Institute of the Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA.
| | | | | |
Collapse
|
239
|
Maiese K, Chong ZZ, Shang YC, Hou J. Therapeutic promise and principles: metabotropic glutamate receptors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 1:1-14. [PMID: 19750024 PMCID: PMC2740993 DOI: 10.4161/oxim.1.1.6842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For a number of disease entities, oxidative stress becomes a significant factor in the etiology and progression of cell dysfunction and injury. Therapeutic strategies that can identify novel signal transduction pathways to ameliorate the toxic effects of oxidative stress may lead to new avenues of treatment for a spectrum of disorders that include diabetes, Alzheimer's disease, Parkinson's disease and immune system dysfunction. In this respect, metabotropic glutamate receptors (mGluRs) may offer exciting prospects for several disorders since these receptors can limit or prevent apoptotic cell injury as well as impact upon cellular development and function. Yet the role of mGluRs is complex in nature and may require specific mGluR modulation for a particular disease entity to maximize clinical efficacy and limit potential disability. Here we discuss the potential clinical translation of mGluRs and highlight the role of novel signal transduction pathways in the metabotropic glutamate system that may be vital for the clinical utility of mGluRs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
240
|
Maiese K, Hou J, Chong ZZ, Shang YC. A fork in the path: Developing therapeutic inroads with FoxO proteins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:119-29. [PMID: 20592766 PMCID: PMC2763237 DOI: 10.4161/oxim.2.3.8916] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 12/13/2022]
Abstract
Advances in clinical care for disorders involving any system of the body necessitates novel therapeutic strategies that can focus upon the modulation of cellular proliferation, metabolism, inflammation and longevity. In this respect, members of the mammalian forkhead transcription factors of the O class (FoxOs) that include FoxO1, FoxO3, FoxO4 and FoxO6 are increasingly being recognized as exciting prospects for multiple disorders. These transcription factors govern development, proliferation, survival and longevity during multiple cellular environments that can involve oxidative stress. Furthermore, these transcription factors are closely integrated with several novel signal transduction pathways, such as erythropoietin and Wnt proteins, that may influence the ability of FoxOs to act as a “double-edge sword” to sometimes promote cell survival, but at other times lead to cell injury. Here we discuss the fascinating but complex role of FoxOs during cellular injury and oxidative stress, progenitor cell development, fertility, angiogenesis, cardiovascular function, cellular metabolism and diabetes, cell longevity, immune surveillance and cancer.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
241
|
Bülow MH, Aebersold R, Pankratz MJ, Jünger MA. The Drosophila FoxA ortholog Fork head regulates growth and gene expression downstream of Target of rapamycin. PLoS One 2010; 5:e15171. [PMID: 21217822 PMCID: PMC3013099 DOI: 10.1371/journal.pone.0015171] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/27/2010] [Indexed: 01/05/2023] Open
Abstract
Forkhead transcription factors of the FoxO subfamily regulate gene expression programs downstream of the insulin signaling network. It is less clear which proteins mediate transcriptional control exerted by Target of rapamycin (TOR) signaling, but recent studies in nematodes suggest a role for FoxA transcription factors downstream of TOR. In this study we present evidence that outlines a similar connection in Drosophila, in which the FoxA protein Fork head (FKH) regulates cellular and organismal size downstream of TOR. We find that ectopic expression and targeted knockdown of FKH in larval tissues elicits different size phenotypes depending on nutrient state and TOR signaling levels. FKH overexpression has a negative effect on growth under fed conditions, and this phenotype is not further exacerbated by inhibition of TOR via rapamycin feeding. Under conditions of starvation or low TOR signaling levels, knockdown of FKH attenuates the size reduction associated with these conditions. Subcellular localization of endogenous FKH protein is shifted from predominantly cytoplasmic on a high-protein diet to a pronounced nuclear accumulation in animals with reduced levels of TOR or fed with rapamycin. Two putative FKH target genes, CG6770 and cabut, are transcriptionally induced by rapamycin or FKH expression, and silenced by FKH knockdown. Induction of both target genes in heterozygous TOR mutant animals is suppressed by mutations in fkh. Furthermore, TOR signaling levels and FKH impact on transcription of the dFOXO target gene d4E-BP, implying a point of crosstalk with the insulin pathway. In summary, our observations show that an alteration of FKH levels has an effect on cellular and organismal size, and that FKH function is required for the growth inhibition and target gene induction caused by low TOR signaling levels.
Collapse
Affiliation(s)
- Margret H. Bülow
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Molecular Brain Physiology and Behavior, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Competence Center for Systems Physiology and Metabolic Diseases (CC-SPMD), Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases (CC-SPMD), Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Michael J. Pankratz
- Department of Molecular Brain Physiology and Behavior, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- * E-mail: (MAJ); (MJP)
| | - Martin A. Jünger
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- * E-mail: (MAJ); (MJP)
| |
Collapse
|
242
|
Ouyang W, Li MO. Foxo: in command of T lymphocyte homeostasis and tolerance. Trends Immunol 2010; 32:26-33. [PMID: 21106439 DOI: 10.1016/j.it.2010.10.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 12/31/2022]
Abstract
The forkhead box O (Foxo) family of transcription factors consists of the mammalian orthologs of the Caenorhabditis elegans longevity protein Daf-16, and has an evolutionarily conserved function in the regulation of nutrient sensing and stress responses. Recent studies have shown that Foxo proteins control expression of immune system-specific genes such as Il7ra in naïve T cells and Foxp3 in regulatory T cells, which are crucial regulators of T cell homeostasis and tolerance. These findings reveal that the ancient Foxo pathway has been co-opted to regulate highly specialized T cell activities. The Foxo pathway probably enables a diverse and self-tolerant population of T cells in the steady state, which is an important prerequisite for the establishment of a functional adaptive immune system.
Collapse
Affiliation(s)
- Weiming Ouyang
- Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
243
|
Ismat A, Schaub C, Reim I, Kirchner K, Schultheis D, Frasch M. HLH54F is required for the specification and migration of longitudinal gut muscle founders from the caudal mesoderm of Drosophila. Development 2010; 137:3107-17. [PMID: 20736287 DOI: 10.1242/dev.046573] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HLH54F, the Drosophila ortholog of the vertebrate basic helix-loop-helix domain-encoding genes capsulin and musculin, is expressed in the founder cells and developing muscle fibers of the longitudinal midgut muscles. These cells descend from the posterior-most portion of the mesoderm, termed the caudal visceral mesoderm (CVM), and migrate onto the trunk visceral mesoderm prior to undergoing myoblast fusion and muscle fiber formation. We show that HLH54F expression in the CVM is regulated by a combination of terminal patterning genes and snail. We generated HLH54F mutations and show that this gene is crucial for the specification, migration and survival of the CVM cells and the longitudinal midgut muscle founders. HLH54F mutant embryos, larvae, and adults lack all longitudinal midgut muscles, which causes defects in gut morphology and integrity. The function of HLH54F as a direct activator of gene expression is exemplified by our analysis of a CVM-specific enhancer from the Dorsocross locus, which requires combined inputs from HLH54F and Biniou in a feed-forward fashion. We conclude that HLH54F is the earliest specific regulator of CVM development and that it plays a pivotal role in all major aspects of development and differentiation of this largely twist-independent population of mesodermal cells.
Collapse
Affiliation(s)
- Afshan Ismat
- Mount Sinai School of Medicine, Department of Molecular, Cell and Developmental Biology (currently Developmental and Regenerative Biology), Box 1020, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
244
|
Identification of hookworm DAF-16/FOXO response elements and direct gene targets. PLoS One 2010; 5:e12289. [PMID: 20808816 PMCID: PMC2924398 DOI: 10.1371/journal.pone.0012289] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/29/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The infective stage of the parasitic nematode hookworm is developmentally arrested in the environment and needs to infect a specific host to complete its life cycle. The canine hookworm (Ancylostoma caninum) is an excellent model for investigating human hookworm infections. The transcription factor of A. caninum, Ac-DAF-16, which has a characteristic fork head or "winged helix" DNA binding domain (DBD), has been implicated in the resumption of hookworm development in the host. However, the precise roles of Ac-DAF-16 in hookworm parasitism and its downstream targets are unknown. In the present study, we combined molecular techniques and bioinformatics to identify a group of Ac-DAF-16 binding sites and target genes. METHODOLOGY/PRINCIPAL FINDINGS The DNA binding domain of Ac-DAF-16 was used to select genomic fragments by in vitro genomic selection. Twenty four bound genomic fragments were analyzed for the presence of the DAF-16 family binding element (DBE) and possible alternative Ac-DAF-16 bind motifs. The 22 genes linked to these genomic fragments were identified using bioinformatics tools and defined as candidate direct gene targets of Ac-DAF-16. Their developmental stage-specific expression patterns were examined. Also, a new putative DAF-16 binding element was identified. CONCLUSIONS/SIGNIFICANCE Our results show that Ac-DAF-16 is involved in diverse biological processes throughout hookworm development. Further investigation of these target genes will provide insights into the molecular basis by which Ac-DAF-16 regulates its downstream gene network in hookworm infection.
Collapse
|
245
|
Rojas A, Schachterle W, Xu SM, Martín F, Black BL. Direct transcriptional regulation of Gata4 during early endoderm specification is controlled by FoxA2 binding to an intronic enhancer. Dev Biol 2010; 346:346-55. [PMID: 20692247 DOI: 10.1016/j.ydbio.2010.07.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/22/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
The embryonic endoderm is a multipotent progenitor cell population that gives rise to the epithelia of the digestive and respiratory tracts, the liver and the pancreas. Among the transcription factors that have been shown to be important for endoderm development and gut morphogenesis is GATA4. Despite the important role of GATA4 in endoderm development, its transcriptional regulation is not well understood. In this study, we identified an intronic enhancer from the mouse Gata4 gene that directs expression to the definitive endoderm in the early embryo. The activity of this enhancer is initially broad in all endodermal progenitors, as demonstrated by fate mapping analysis using the Cre/loxP system, but becomes restricted to the dorsal foregut and midgut, and associated organs such as dorsal pancreas and stomach. The function of the intronic Gata4 enhancer is dependent upon a conserved Forkhead transcription factor-binding site, which is bound by recombinant FoxA2 in vitro. These studies identify Gata4 as a direct transcriptional target of FoxA2 in the hierarchy of the transcriptional regulatory network that controls the development of the definitive endoderm.
Collapse
Affiliation(s)
- Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CIBERDEM, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
246
|
Peng K, Li Y, Long L, Li D, Jia Q, Wang Y, Shen Q, Tang Y, Wen L, Kung HF, Peng Y. Knockdown of FoxO3a induces increased neuronal apoptosis during embryonic development in zebrafish. Neurosci Lett 2010; 484:98-103. [PMID: 20674670 DOI: 10.1016/j.neulet.2010.07.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/20/2010] [Accepted: 07/24/2010] [Indexed: 10/19/2022]
Abstract
Neuronal apoptosis sculpts the developing brain, and nearly all identified classes of neurons seem to be produced "in excess" during development. FoxO transcription factors regulate apoptosis in vitro in deprived of neurotrophins. It is unknown if FoxO3a is involved in the development of neurons. Here, we report a role of FoxO3a during neuronal development in zebrafish. By using in situ hybridization, we revealed that FoxO3a transcripts in zebrafish were gradually confined to regions of the central nervous system during embryonic development, including the forebrain, midbrain, midbrain-hindbrain boundary and hindbrain. By using FoxO3a morpholino antisense oligonucleotides, we observed that FoxO3a loss-of-function led to neural developmental defects, including increased neural apoptosis as detected by acridine orange and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling. These defects could be partially rescued by the injection of FoxO3a mRNA. In this study, we found that FoxO3a loss-of-function resulted in the decreased expression of neuronal markers as determined by in situ hybridization and relative quantitative real-time PCR. Furthermore, the activation of FoxO3a was required for the maintenance of neuron survival but not necessary for the induction of neurogenesis. Our results indicated that FoxO3a might be essential for the maintenance of neural development in zebrafish. Therefore, this work provides novel evidence of FoxO3a in the embryonic neurodevelopment from zebrafish to other mammals.
Collapse
Affiliation(s)
- Kou Peng
- Laboratory of Integrated Bioscience, School of Life Science, Sun Yat-sen University, No. 135 West XinGang Road, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Santos ME, Athanasiadis A, Leitão AB, DuPasquier L, Sucena E. Alternative splicing and gene duplication in the evolution of the FoxP gene subfamily. Mol Biol Evol 2010; 28:237-47. [PMID: 20651048 PMCID: PMC3002244 DOI: 10.1093/molbev/msq182] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The FoxP gene subfamily of transcription factors is defined by its characteristic 110 amino acid long DNA-binding forkhead domain and plays essential roles in vertebrate biology. Its four members, FoxP1–P4, have been extensively characterized functionally. FoxP1, FoxP2, and FoxP4 are involved in lung, heart, gut, and central nervous system (CNS) development. FoxP3 is necessary and sufficient for the specification of regulatory T cells (Tregs) of the adaptive immune system. In Drosophila melanogaster, in silico predictions identify one unique FoxP subfamily gene member (CG16899) with no described function. We characterized this gene and established that it generates by alternative splicing two isoforms that differ in the forkhead DNA-binding domain. In D. melanogaster, both isoforms are expressed in the embryonic CNS, but in hemocytes, only isoform A is expressed, hinting to a putative modulation through alternative splicing of FoxP1 function in immunity and/or other hemocyte-dependent processes. Furthermore, we show that in vertebrates, this novel alternative splicing pattern is conserved for FoxP1. In mice, this new FoxP1 isoform is expressed in brain, liver, heart, testes, thymus, and macrophages (equivalent in function to hemocytes). This alternative splicing pattern has arisen at the base of the Bilateria, probably through exon tandem duplication. Moreover, our phylogenetic analysis suggests that in vertebrates, FoxP1 is more related to the FoxP gene ancestral form and the other three paralogues, originated through serial duplications, which only retained one of the alternative exons. Also, the newly described isoform differs from the other in amino acids critical for DNA-binding specificity. The integrity of its fold is maintained, but the molecule has lost the direct hydrogen bonding to DNA bases leading to a putatively lower specificity and possibly affinity toward DNA. With the present comparative study, through the integration of experimental and in silico studies of the FoxP gene subfamily across the animal kingdom, we establish a new model for the FoxP gene in invertebrates and for the vertebrate FoxP1 paralogue. Furthermore, we present a scenario for the structural evolution of this gene class and reveal new previously unsuspected levels of regulation for FoxP1 in the vertebrate system.
Collapse
Affiliation(s)
- M Emília Santos
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
248
|
Boyle MJ, Seaver EC. Expression of FoxA and GATA transcription factors correlates with regionalized gut development in two lophotrochozoan marine worms: Chaetopterus (Annelida) and Themiste lageniformis (Sipuncula). EvoDevo 2010; 1:2. [PMID: 20849645 PMCID: PMC2938726 DOI: 10.1186/2041-9139-1-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 07/05/2010] [Indexed: 12/04/2022] Open
Abstract
Background A through gut is present in almost all metazoans, and most likely represents an ancient innovation that enabled bilaterian animals to exploit a wide range of habitats. Molecular developmental studies indicate that Fox and GATA regulatory genes specify tissue regions along the gut tube in a broad diversity of taxa, although little is known about gut regionalization within the Lophotrochozoa. In this study, we isolated FoxA and GATA456 orthologs and used whole mount in situ hybridization during larval gut formation in two marine worms: the segmented, polychaete annelid Chaetopterus, which develops a planktotrophic larva with a tripartite gut, and the non-segmented sipunculan Themiste lageniformis, which develops a lecithotrophic larva with a U-shaped gut. Results FoxA and GATA456 transcripts are predominantly restricted to gut tissue, and together show regional expression spanning most of the alimentary canal in each of these lophotrochozoans, although neither FoxA nor GATA456 is expressed in the posterior intestine of Chaetopterus. In both species, FoxA is expressed at the blastula stage, transiently in presumptive endoderm before formation of a definitive gut tube, and throughout early larval development in discrete foregut and hindgut domains. GATA456 genes are expressed during endoderm formation, and in endoderm and mesoderm associated with the midgut in each species. Several species-specific differences were detected, including an overlap of FoxA and GATA456 expression in the intestinal system of Themiste, which is instead complimentary in Chaetopterus. Other differences include additional discrete expression domains of FoxA in ectodermal trunk cells in Themiste but not Chaetopterus, and expression of GATA456 in anterior ectoderm and midgut cells unique to Chaetopterus. Conclusions This study of gene expression in a sipunculan contributes new comparative developmental insights from lophotrochozoans, and shows that FoxA and GATA456 transcription factors are part of an ancient patterning mechanism that was deployed during early evolution of the metazoan through gut. The common utilization of FoxA and GATA456 throughout gut formation by species with contrasting life history modes indicates that both genes are core components of a gut-specific gene regulatory network in spiralians. Despite a highly conserved pattern of early development, and probably similar ontogenic origins of gut tissue, there are molecular differences in gut regionalization between lophotrochozoan species.
Collapse
Affiliation(s)
- Michael J Boyle
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96813, USA.
| | | |
Collapse
|
249
|
Kaestner KH. The FoxA factors in organogenesis and differentiation. Curr Opin Genet Dev 2010; 20:527-32. [PMID: 20591647 DOI: 10.1016/j.gde.2010.06.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 11/26/2022]
Abstract
The genetic analysis of the Foxa genes in both total and conditional mutant mice has clearly established that organogenesis of multiple systems is controlled by this subfamily of winged helix transcription factors. These discoveries followed the establishment of the conceptional framework of the mechanism of action of the FoxA proteins as 'pioneer factors' that can engage chromatin before other transcription factors. Recent molecular and genomic studies have also shown that FoxA proteins can facilitate binding of several nuclear receptors to their respective targets in a context-dependent manner, greatly increasing the range and importance of FoxA factors in biology.
Collapse
Affiliation(s)
- Klaus H Kaestner
- Department of Genetics & Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6145, United States.
| |
Collapse
|
250
|
Abstract
FOXP3 is a transcription factor necessary and sufficient for induction of the immunosuppressive functions in regulatory T lymphocytes. Its expression was first considered as specific of this cell type, but FOXP3 can also be transiently expressed in T-cell antigen receptor-activated human nonregulatory T cells. Recent data indicate that FOXP3 is also expressed by some nonlymphoid cells, in which it can repress various oncogenes that are restored following FOXP3 deletion or mutation. This review summarizes major advances in (1) the understanding of Foxp3 functions in human regulatory T cells, (2) the prognostic significance of Foxp3-expressing T cells in human malignancies and (3) the significance of Foxp3 expression in human tumor cells.
Collapse
|