201
|
Prydz K, Brändli AW, Bomsel M, Simons K. Surface distribution of the mannose 6-phosphate receptors in epithelial Madin-Darby canine kidney cells. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38390-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
202
|
Valiquette M, Bonin H, Hnatowich M, Caron MG, Lefkowitz RJ, Bouvier M. Involvement of tyrosine residues located in the carboxyl tail of the human beta 2-adrenergic receptor in agonist-induced down-regulation of the receptor. Proc Natl Acad Sci U S A 1990; 87:5089-93. [PMID: 2164220 PMCID: PMC54267 DOI: 10.1073/pnas.87.13.5089] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic exposure of various cell types to adrenergic agonists leads to a decrease in cell surface beta 2-adrenergic receptor (beta 2AR) number. Sequestration of the receptor away from the cell surface as well as a down-regulation of the total number of cellular receptors are believed to contribute to this agonist-mediated regulation of receptor number. However, the molecular mechanisms underlying these phenomena are not well characterized. Recently, tyrosine residues located in the cytoplasmic tails of several membrane receptors, such as the low density lipoprotein and mannose-6-phosphate receptors, have been suggested as playing an important role in the agonist-induced internalization of these receptors. Accordingly, we assessed the potential role of two tyrosine residues in the carboxyl tail of the human beta 2AR in agonist-induced sequestration and down-regulation of the receptor. Tyr-350 and Tyr-354 of the human beta 2AR were replaced with alanine residues by site-directed mutagenesis and both wild-type and mutant beta 2AR were stably expressed in transformed Chinese hamster fibroblasts. The mutation dramatically decreased the ability of the beta 2AR to undergo isoproterenol-induced down-regulation. However, the substitution of Tyr-350 and Tyr-354 did not affect agonist-induced sequestration of the receptor. These results suggest that tyrosine residues in the cytoplasmic tail of human beta 2AR are crucial determinants involved in its down-regulation.
Collapse
Affiliation(s)
- M Valiquette
- Department of Biochemistry, University of Montreal, Canada
| | | | | | | | | | | |
Collapse
|
203
|
Verrey F, Gilbert T, Mellow T, Proulx G, Drickamer K. Endocytosis via coated pits mediated by glycoprotein receptor in which the cytoplasmic tail is replaced by unrelated sequences. CELL REGULATION 1990; 1:471-86. [PMID: 1963794 PMCID: PMC361546 DOI: 10.1091/mbc.1.6.471] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rat 6 fibroblast cell lines expressing wild-type chicken liver glycoprotein receptor (CHL) or chimeric receptors with alternate cytoplasmic tails were produced to study the role of the cytoplasmic tail in mediating receptor localization in coated pits and endocytosis of ligand. Cells expressing CHL or cells expressing a hybrid receptor that contains the cytoplasmic tail of the asialoglycoprotein receptor display high-efficiency endocytosis of N-acetylglucosamine-conjugated bovine serum albumin in experiments designed to measure an initial internalization step, as well as in studies of continuous uptake and degradation. Substitution of the cytoplasmic tail by the equivalent domain of rat Na,K-ATPase beta subunit or by a stretch of Xenopus laevis globin beta chain does not abolish endocytosis but decreases the endocytosis rate constant from 15%-16%/min to 2.4% and 6.5%/min, respectively. Electron microscopy was used to visualize the glycoprotein binding sites at the surface of Rat 6 cells transfected with the various receptors. The percentage of receptors found in coated areas ranged from 32% for CHL to 9% for the Na,K-ATPase hybrid, indicating that clustering in coated pits correlates with efficiency of endocytosis. We concluded that replacement of the CHL cytoplasmic tail with unrelated sequences does not prevent, but decreases to varying extents, coated-pit localization and endocytosis efficiency. The construct with NH2-terminal globin tail lacks a signal for high-efficiency localization in coated pits but nevertheless is directed to the pits by an alternative mechanism.
Collapse
Affiliation(s)
- F Verrey
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| | | | | | | | | |
Collapse
|
204
|
Alvarez E, Gironès N, Davis RJ. A point mutation in the cytoplasmic domain of the transferrin receptor inhibits endocytosis. Biochem J 1990; 267:31-5. [PMID: 2327986 PMCID: PMC1131239 DOI: 10.1042/bj2670031] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rate of receptor-mediated endocytosis of diferric 125I-transferrin by Chinese-hamster ovary cells expressing human transferrin receptors was compared with the rate measured for cells expressing hamster transferrin receptors. It was observed that the rate of endocytosis of the human transferrin receptor was significantly higher than that for the hamster receptor. In order to examine the molecular basis for the difference between the observed rates of endocytosis, a cDNA clone corresponding to the cytoplasmic domain of the hamster receptor was isolated. The predicted primary sequence of the cytoplasmic domain of the hamster transferrin receptor is identical with that of the human receptor, except at position 20, where a tyrosine residue in the human sequence is replaced with a cysteine residue. To test the hypothesis that this structural change in the receptor is related to the difference in the rate of internalization, we used site-directed mutagenesis to examine the effect of the replacement of tyrosine-20 with a cysteine residue in the human transferrin receptor. It was observed that the substitution of tyrosine-20 with cysteine caused a 60% inhibition of the rate of iron accumulation by cells incubated with [59Fe]diferric transferrin. No significant difference between the rate of internalization of the mutant (cysteine-20) human receptor and the hamster receptor was observed. Thus the substitution of tyrosine-20 with a cysteine residue can account for the difference between the rate of endocytosis of the human and hamster transferrin receptors.
Collapse
Affiliation(s)
- E Alvarez
- Department of Biochemistry, University of Massachusetts Medical School, Worcester 01655
| | | | | |
Collapse
|
205
|
|
206
|
McGraw TE, Maxfield FR. Human transferrin receptor internalization is partially dependent upon an aromatic amino acid on the cytoplasmic domain. CELL REGULATION 1990; 1:369-77. [PMID: 2100204 PMCID: PMC361496 DOI: 10.1091/mbc.1.4.369] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The objective of this work is to identify the elements of the human transferrin receptor that are involved in receptor internalization, intracellular sorting, and recycling. We have found that an aromatic side chain at position 20 on the cytoplasmic portion of the human transferrin receptor is required for efficient internalization. The wild-type human transferrin receptor has a tyrosine at this position. Replacement of the Tyr-20 with an aromatic amino acid does not alter the rate constant of internalization, whereas substitution with the nonaromatic amino acids serine, leucine, or cysteine reduces the internalization rate constant approximately three-fold. These results are consistent with similar studies of other receptor systems that have also documented the requirement for a tyrosine in rapid internalization. The amino terminus of the transferrin receptor is cytoplasmic, with the tyrosine 41 amino acids from the membrane. These two features distinguish the transferrin receptor from the other membrane proteins for which the role of tyrosine in internalization has been examined, because these proteins have the opposite polarity with respect to the membrane and because the tyrosines are located closer to the membrane (within 25 amino acids). The externalization rate for the recycling of the transferrin receptor is not altered by any of these substitutions, demonstrating that the aromatic amino acid internalization signal is not required for the efficient exocytosis of internalized receptor.
Collapse
Affiliation(s)
- T E McGraw
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | |
Collapse
|
207
|
von Figura K. [Mannose-6-phosphate receptors: their role in the transport of lysosomal proteins]. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1990; 77:116-22. [PMID: 2160610 DOI: 10.1007/bf01134471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Targetting of newly synthesized lysosomal enzymes to lysosomes requires mannose 6-phosphate receptors. These receptors shuttle between the Golgi apparatus, an organelle of the secretory route, and acidic prelysosomal organelles, which are part of the endocytic route. Vectorial transport of the ligands is ensured by the pH dependence of ligand binding. Ligands are bound at near-neutral pH in the Golgi apparatus and released in the acidic prelysosomal organelles.
Collapse
Affiliation(s)
- K von Figura
- Abteilung Biochemie II der Universität, Göttingen
| |
Collapse
|
208
|
Matter K, Brauchbar M, Bucher K, Hauri HP. Sorting of endogenous plasma membrane proteins occurs from two sites in cultured human intestinal epithelial cells (Caco-2). Cell 1990; 60:429-37. [PMID: 2302734 DOI: 10.1016/0092-8674(90)90594-5] [Citation(s) in RCA: 222] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We studied the postsynthetic sorting of endogenous plasma membrane proteins in a polarized epithelial cell line, Caco-2. Pulse-chase radiolabeling was combined with domain-specific cell surface assays to monitor the arrival of three apical and one basolateral protein at the apical and basolateral cell surface. Apical proteins were inserted simultaneously into both membrane domains. The fraction targeted to the basolateral domain was different for the three apical proteins and was subsequently sorted to the apical domain by transcytosis at different rates. In contrast, a basolateral protein was found in the basolateral membrane only. Thus, sorting of plasma membrane proteins occurred from two sites: the Golgi apparatus and the basolateral membrane. These data explain apparently conflicting results of earlier studies.
Collapse
Affiliation(s)
- K Matter
- Department of Pharmacology, University of Basel, Switzerland
| | | | | | | |
Collapse
|
209
|
NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39742-x] [Citation(s) in RCA: 663] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
210
|
|
211
|
Jing SQ, Spencer T, Miller K, Hopkins C, Trowbridge IS. Role of the human transferrin receptor cytoplasmic domain in endocytosis: localization of a specific signal sequence for internalization. J Biophys Biochem Cytol 1990; 110:283-94. [PMID: 2298808 PMCID: PMC2116009 DOI: 10.1083/jcb.110.2.283] [Citation(s) in RCA: 262] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Wild-type and mutant human transferrin receptors have been expressed in chicken embryo fibroblasts using a helper-independent retroviral vector. The internalization of mutant human transferrin receptors, in which all but four of the 61 amino acids of the cytoplasmic domain had been deleted, was greatly impaired. However, when expressed at high levels, such "tailless" mutant receptors could provide chicken embryo fibroblasts with sufficient iron from diferric human transferrin to support a normal rate of growth. As the rate of recycling of the mutant receptors was not significantly different from wild-type receptors, an estimate of relative internalization rates could be obtained from the distribution of receptors inside the cell and on the cell surface under steady-state conditions. This analysis and the results of iron uptake studies both indicate that the efficiency of internalization of tailless mutant receptors is approximately 10% that of wild-type receptors. Further studies of a series of mutant receptors with different regions of the cytoplasmic domain deleted suggested that residues within a 10-amino acid region (amino acids 19-28) of the human transferrin receptor cytoplasmic domain are required for efficient endocytosis. Insertion of this region into the cytoplasmic domain of the tailless mutant receptors restored high efficiency endocytosis. The only tyrosine residue (Tyr 20) in the cytoplasmic domain of the human transferrin receptor is found within this 10-amino acid region. A mutant receptor containing glycine instead of tyrosine at position 20 was estimated to be approximately 20% as active as the wild-type receptor. We conclude that the cytoplasmic domain of the transferrin receptor contains a specific signal sequence located within amino acid residues 19-28 that determines high efficiency endocytosis. Further, Tyr 20 is an important element of that sequence.
Collapse
Affiliation(s)
- S Q Jing
- Department of Cancer Biology, Salk Institute, San Diego, California 92138
| | | | | | | | | |
Collapse
|
212
|
Nolan CM, Kyle JW, Watanabe H, Sly WS. Binding of insulin-like growth factor II (IGF-II) by human cation-independent mannose 6-phosphate receptor/IGF-II receptor expressed in receptor-deficient mouse L cells. CELL REGULATION 1990; 1:197-213. [PMID: 1966041 PMCID: PMC361444 DOI: 10.1091/mbc.1.2.197] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouse L cells deficient in expression of the murine cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor (CI-MPR/IGF-IIR) were stably transfected with a plasmid containing the cDNA for the human receptor. Transfected cells expressed high levels of the human receptor which functioned in the transport of lysosomal enzymes and was capable of binding 125I-IGF-II, both at the cell surface and intracellularly. Cell surface binding of 125I-IGF-II by the receptor could be inhibited by pretreatment of cells with antibodies to the receptor or by coincubation with the lysosomal enzyme, beta-glucuronidase. Expression of the receptor conferred on transfected cells the ability to internalize and degrade 125I-IGF-II. Cells transfected with the parental vector and those expressing the human CI-MRP/IGF-IIR were found to express an atypical binding site for IGF-II that was distinct from the CI-MPR/IGF-IIR and the type I IGF-receptor. The availability of two cell lines, one of which overexpresses the human CI-MPR/IGF-IIR and one deficient in expression of the murine receptor, may help in the analysis of the role of the receptor in mediating the biological effects of IGF-II. They should also be useful in examining the significance of binding of ligands, such as transforming growth factor-beta 1 precursor and proliferin to this receptor.
Collapse
Affiliation(s)
- C M Nolan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, Missouri 63104
| | | | | | | |
Collapse
|
213
|
The insulin-like growth factor II/mannose-6-phosphate receptor : IGF-II/Man-6-P receptor. Cytotechnology 1989; 2:287-305. [PMID: 22358870 DOI: 10.1007/bf00364994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Recent evidence from molecular cloning, biochemical and immunological experiments has established that the cation-independent mannose-6-phosphate (Man-6-P) receptor and insulin-like growth factor-II (IGF-II) receptor are the same protein. Although the role of the IGF-II/Man-6-P receptor as a transporter of hydrolytic enzymes in the biogenesis of lysosomes is certain, elucidation of the receptor's structure has not yet provided major insights into the function of IGF-II binding. Mutually exclusive binding of IGF-II and naturally occurring phosphomannosyl ligands to distinct but proximal sites on the receptor suggests that the IGF-II/Man-6-P receptor cannot simultaneously fulfill the functional requirements of both IGF-II and lysosomal enzymes. Does the receptor transduce on intracellular signal in order to mediate the biological effects of IGF-II? If so, then the receptor must interact with an effector molecule, perhaps a G protein, in the mechanism of IGF-II action. Further information from ligand binding and especially mutagenesis experiments will be needed to elucidate the potentially multiple functions of the IGF-II/Man-6-P receptor.
Collapse
|
214
|
|