201
|
McGivern DR, Lemon SM. Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene 2011; 30:1969-83. [PMID: 21258404 DOI: 10.1038/onc.2010.594] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of hepatocellular carcinoma (HCC) in persons who are persistently infected with hepatitis C virus (HCV) is a growing problem worldwide. Current antiviral therapies are not effective in many patients with chronic hepatitis C, and a greater understanding of the factors leading to progression of HCC will be necessary to design novel approaches to prevention of HCV-associated HCC. The lack of a small animal model of chronic HCV infection has hampered understanding of these factors. As HCV is an RNA virus with little potential for integration of its genetic material into the host genome, the mechanisms underlying HCV promotion of cancer are likely to differ from other models of viral carcinogenesis. In patients persistently infected with HCV, chronic inflammation resulting from immune responses against infected hepatocytes is associated with progressive fibrosis and cirrhosis. Cirrhosis is an important risk factor for HCC independent of HCV infection, and a majority of HCV-associated HCC arises in the setting of cirrhosis. However, a significant minority arises in the absence of cirrhosis, indicating that cirrhosis is not a prerequisite for cancer. Other lines of evidence suggest that direct, virus-specific mechanisms may be involved. Transgenic mice expressing HCV proteins develop cancer in the absence of inflammation or immune recognition of the transgene. In vitro studies have revealed multiple interactions of HCV-encoded proteins with cell cycle regulators and tumor suppressor proteins, raising the possibility that HCV can disrupt control of cellular proliferation, or impair the cell's response to DNA damage. A combination of virus-specific, host genetic, environmental and immune-related factors are likely to determine the progression to HCC in patients who are chronically infected with HCV. Here, we summarize current knowledge of the virus-specific mechanisms that may contribute to HCV-associated HCC.
Collapse
Affiliation(s)
- D R McGivern
- Lineberger Comprehensive Cancer Center, Center for Translational Research, Inflammatory Diseases Institute, and the Division of Infectious Diseases, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | | |
Collapse
|
202
|
Washington MN, Kim JS, Weigel NL. 1α,25-dihydroxyvitamin D3 inhibits C4-2 prostate cancer cell growth via a retinoblastoma protein (Rb)-independent G1 arrest. Prostate 2011; 71:98-110. [PMID: 20632309 PMCID: PMC2966519 DOI: 10.1002/pros.21226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND The active metabolite of vitamin D, 1α,25-dihydroxyvitamin D(3) (1,25D) reduces the growth of several prostate cancer cell lines, most commonly by inducing a cell-cycle arrest in G(1). This is mediated, in part, through down-regulation of c-Myc, a positive regulator of the transcription factor, E2F. There is evidence that prostate cancer cells lacking functional retinoblastoma protein (Rb), a negative regulator of E2F activity, are poorly responsive to 1,25D treatment. Since up to 60% of prostate cancers demonstrate a loss of heterozygosity for Rb, we sought to determine whether Rb is required for the growth inhibitory effects of 1,25D. METHODS Using siRNA, Rb was reduced in C4-2 prostate cancer cells, and the response of cells to 1,25D treatment or depletion of c-myc measured by [(3)H]-thymidine incorporation and flow cytometry. The effects of 1,25D treatment on E2F levels and activity, and E2F target gene expression were also measured. RESULTS 1,25D treatment and c-Myc depletion both cause a G(1) arrest inhibiting C4-2 cell proliferation independently of Rb. 1,25D reduces c-Myc expression and causes a decrease in E2F and E2F target genes. Bcl-2, an E2F target and positive regulator of C4-2 cell growth, also is down-regulated by 1,25D independently of Rb. CONCLUSIONS Redundant growth inhibitory pathways compensate for the loss of Rb, and tumors lacking functional Rb may be responsive to 1,25D.
Collapse
Affiliation(s)
- Michele N Washington
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030 USA
| | | | | |
Collapse
|
203
|
Ingram L, Munro S, Coutts AS, La Thangue NB. E2F-1 regulation by an unusual DNA damage-responsive DP partner subunit. Cell Death Differ 2011; 18:122-32. [PMID: 20559320 PMCID: PMC3131880 DOI: 10.1038/cdd.2010.70] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 04/02/2010] [Accepted: 05/07/2010] [Indexed: 01/29/2023] Open
Abstract
E2F activity is negatively regulated by retinoblastoma protein (pRb) through binding to the E2F-1 subunit. Within the E2F heterodimer, DP proteins are E2F partner subunits that allow proper cell cycle progression. In contrast to the other DP proteins, the newest member of the family, DP-4, downregulates E2F activity. In this study we report an unexpected role for DP-4 in regulating E2F-1 activity during the DNA damage response. Specifically, DP-4 is induced in DNA-damaged cells, upon which it binds to E2F-1 as a non-DNA-binding E2F-1/DP-4 complex. Consequently, depleting DP-4 in cells re-instates E2F-1 activity that coincides with increased levels of chromatin-bound E2F-1, E2F-1 target gene expression and associated apoptosis. Mutational analysis of DP-4 highlighted a C-terminal region, outside the DNA-binding domain, required for the negative control of E2F-1 activity. Our results define a new pathway, which acts independently of pRb and through a biochemically distinct mechanism, involved in negative regulation of E2F-1 activity.
Collapse
Affiliation(s)
- L Ingram
- Laboratory of Cancer Biology, Department of Clinical Pharmacology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - S Munro
- Laboratory of Cancer Biology, Department of Clinical Pharmacology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - A S Coutts
- Laboratory of Cancer Biology, Department of Clinical Pharmacology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - N B La Thangue
- Laboratory of Cancer Biology, Department of Clinical Pharmacology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
204
|
Kim KC, Lee C. Curcumin Induces Downregulation of E2F4 Expression and Apoptotic Cell Death in HCT116 Human Colon Cancer Cells; Involvement of Reactive Oxygen Species. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:391-7. [PMID: 21311680 DOI: 10.4196/kjpp.2010.14.6.391] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/29/2010] [Accepted: 12/10/2010] [Indexed: 01/30/2023]
Abstract
E2F transcription factors and their target genes have been known to play an important role in cell growth control. We found that curcumin, a polyphenolic phytochemical isolated from the plant Curcuma longa, markedly suppressed E2F4 expression in HCT116 colon cancer cells. Hydrogen peroxide was also found to decrease E2F4 protein level, indicating the involvement of reactive oxygen species (ROS) in curucmin-induced downregulation of E2F4 expression. Involvement of ROS in E2F4 downregulation in response to curcumin was confirmed by the result that pretreatment of cells with N-acetylcystein (NAC) before exposure of curcumin almost completely blocked the reduction of E2F4 expression at the protein as well as mRNA level. Anti-proliferative effect of curcumin was also suppressed by NAC which is consistent to previous reports showing curcumin-superoxide production and induction of poly (ADP-ribose) polymerase (PARP) cleavage as well as apoptosis. Expression of several genes, cyclin A, p21, and p27, which has been shown to be regulated in E2F4-dependent manner and involved in the cell cycle progression was also affected by curcumin. Moreover, decreased (cyclin A) and increased (p21 and p27) expression of these E2F4 downstream genes by curcumin was restored by pretreatment of cells with NAC and E2F4 overexpression which is induced by doxycycline. In addition, E2F4 overexpression was observed to partially ameliorate curcumin-induced growth inhibition by cell viability assay. Taken together, we found curcumin-induced ROS down-regulation of E2F4 expression and modulation of E2F4 target genes which finally lead to the apoptotic cell death in HCT116 colon cancer cells, suggesting that E2F4 appears to be a novel determinant of curcumin-induced cytotoxicity.
Collapse
Affiliation(s)
- Kyung-Chan Kim
- Department of Internal Medicine, College of Medicine, Catholic University of Daegu, Daegu 705-718, Korea
| | | |
Collapse
|
205
|
Clotrimazole induces a late G1 cell cycle arrest and sensitizes glioblastoma cells to radiation in vitro. Anticancer Drugs 2010; 21:841-9. [PMID: 20724915 DOI: 10.1097/cad.0b013e32833e8022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tumor cells are characterized by their high rate of glycolysis and clotrimazole has been shown to disrupt the glycolysis pathway thereby arresting the cells in the G1 cell cycle phase. Herein, we present data to support our hypothesis that clotrimazole arrests tumor cells in a radiosensitizing, late G1 phase. The effects of clotrimazole were studied using the glioblastoma cell line, U-87 MG. Flow cytometry was used to analyze cell cycle redistribution and induction of apoptosis. Immunoblots were probed to characterize a late G1 cell cycle arrest. Nuclear and cytoplasmic fractions were collected to follow the clotrimazole-induced translocation of hexokinase II. Clonogenic assays were designed to determine the radiosensitizing effect by clotrimazole. Our studies have shown a dose-dependent and time-dependent clotrimazole arrest in a late G1 cell cycle phase. Concurrent with the late G1 arrest, we observed an overexpression of p27 along with a decreased expression of p21, cyclin-dependent kinase 1, cyclin-dependent kinase 4, and cyclin D. Clotrimazole induced the translocation of mitochondrial-bound hexokinase II to the cytoplasm and the release of cytochrome c into the cytoplasm. Clotrimazole-induced apoptosis was enhanced when combined with radiation. Clotrimazole was shown to sensitize tumor cells to radiation when the cells were irradiated for 18 h post-clotrimazole treatment. The disruption of the glycolysis pathway by clotrimazole leads to cell cycle arrest of U-87 MG cells in the radiosensitizing late G1 phase. The use of clotrimazole as a radiosensitizing agent for cancer treatment is novel and may have broad therapeutic applications.
Collapse
|
206
|
Singh S, Davis R, Alamanda V, Pireddu R, Pernazza D, Sebti S, Lawrence N, Chellappan S. Rb-Raf-1 interaction disruptor RRD-251 induces apoptosis in metastatic melanoma cells and synergizes with dacarbazine. Mol Cancer Ther 2010; 9:3330-41. [PMID: 21139044 DOI: 10.1158/1535-7163.mct-10-0442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metastatic melanoma is an aggressive cancer with very low response rate against conventional chemotherapeutic agents such as dacarbazine (DTIC). Inhibitor of Rb-Raf-1 interaction RRD-251 was tested against the melanoma cell lines SK-MEL-28, SK-MEL-5, and SK-MEL-2. RRD-251 was found to be a potent inhibitor of melanoma cell proliferation, irrespective of V600E B-Raf mutation status of the cell lines. In a SK-MEL-28 xenograft experiment, RRD-251 exerted a significant suppression of tumor growth compared with vehicle (P = 0.003). Similar to in vitro effects, tumors from RRD-251-treated animals showed decreased Rb-Raf-1 interaction in vivo. Growth suppressive effects of RRD-251 were associated with induction of apoptosis as well as a G(1) arrest, with an accompanying decrease in S-phase cells. RRD-251 inhibited Rb phosphorylation and downregulated E2F1 protein levels in these cells. Real-time PCR analysis showed that RRD-251 caused downregulation of cell-cycle regulatory genes thymidylate synthase (TS) and cdc6 as well as the antiapoptotic gene Mcl-1. Combinatorial treatment of RRD-251 and DTIC resulted in a significantly higher apoptosis in DTIC resistant cell lines SK-MEL-28 and SK-MEL-5, as revealed by increased caspase-3 activity and PARP cleavage. Because aberrant Rb/E2F pathway is associated with melanoma progression and resistance to apoptosis, these results suggest that the Rb-Raf-1 inhibitor could be an effective agent for melanoma treatment, either alone or in combination with DTIC.
Collapse
Affiliation(s)
- Sandeep Singh
- Drug Discovery Department, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Regulation of the p21 Sdi1/Cip1/Waf1DNA Synthesis Inhibitor in Senescent Human Diploid Fibroblasts. Can J Aging 2010. [DOI: 10.1017/s0714980800006772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACTA large body of evidence has demonstrated that normal human fibroblasts have a limited division potential in culture and underwent senescence, a process whereby cells became arrested in the G1 phase of the cell cycle and overexpressed a DNA synthesis inhibitor(s). Cyclin-dependent kinase two (Cdk2) is required for the promotion of the Gi-to-S phase transition in human cells. Senescent fibroblasts contain intact cyclin-Cdk2 complexes but cannot induce Cdk2 protein kinase activity in response to mitogen stimulation. Recently, we cloned p21Sdi1, a potent inhibitor of DNA synthesis and Cdk2 kinase activity, from a senescent cell cDNA library and demonstrated that it was expressed at significantly higher levels in senescent cells than actively proliferating cells. In contrast to actively dividing cells, mitogen-stimulated senescent cells do not down-regulate the expression of p21Sdi1and do not express late G1 phase gene products that are required for entry into S phase. We suggest that the inability of mitogen-stimulated senescent cells to down-regulate p21Sdi1levels contributes to the resulting lack of late Gi gene expression and failure to traverse the G1/S phase boundary.
Collapse
|
208
|
Liao CC, Tsai CY, Chang WC, Lee WH, Wang JM. RB·E2F1 complex mediates DNA damage responses through transcriptional regulation of ZBRK1. J Biol Chem 2010; 285:33134-33143. [PMID: 20713352 PMCID: PMC2963368 DOI: 10.1074/jbc.m110.143461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/29/2010] [Indexed: 11/06/2022] Open
Abstract
RB plays an essential role in DNA damage-induced growth arrest and regulates the expression of several factors essential for DNA repair machinery. However, how RB coordinates DNA damage response through transcriptional regulation of genes involved in growth arrest remains largely unexplored. We examined whether RB can mediate the response to DNA damage through modulation of ZBRK1, a zinc finger-containing transcriptional repressor that can modulate the expression of GADD45A, a DNA damage response gene, to induce cell cycle arrest in response to DNA damage. We found that the ZBRK1 promoter contains an authentic E2F-recognition sequence that specifically binds E2F1, but not E2F4 or E2F6, together with chromatin remodeling proteins CtIP and CtBP to form a repression complex that suppresses ZBRK1 transcription. Furthermore, loss of RB-mediated transcriptional repression led to an increase in ZBRK1 transcript levels, correlating with increased sensitivity to ultraviolet (UV) and methyl methanesulfonate-induced DNA damage. Taken together, these results suggest that the RB·CtIP (CtBP interacting protein)/CtBP (C terminus-binding protein) /E2F1 complex plays a critical role in ZBRK1 transcriptional repression, and loss of this repression may contribute to cellular sensitivity of DNA damage, ultimately leading to carcinogenesis.
Collapse
Affiliation(s)
- Ching-Chun Liao
- From the Institute of Basic Medical Sciences, Tainan, Taiwan
| | - Connie Y Tsai
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Wen-Chang Chang
- Institute of Pharmacology, College of Medicine, Tainan, Taiwan; Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Hwa Lee
- Department of Biological Chemistry, University of California, Irvine, California 92697.
| | - Ju-Ming Wang
- Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University, Tainan, Taiwan; Institute of Biosignal Transduction, Tainan, Taiwan.
| |
Collapse
|
209
|
Singh S, Johnson J, Chellappan S. Small molecule regulators of Rb-E2F pathway as modulators of transcription. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:788-94. [PMID: 20637913 PMCID: PMC2997897 DOI: 10.1016/j.bbagrm.2010.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/24/2010] [Accepted: 07/08/2010] [Indexed: 12/25/2022]
Abstract
The retinoblastoma tumor suppressor protein, Rb, plays a major role in the regulation of mammalian cell cycle progression. It has been shown that Rb function is essential for the proper modulation of G1/S transition and inactivation of Rb contributes to deregulated cell proliferation. Rb exerts its cell cycle regulatory functions mainly by targeting the E2F family of transcription factors and Rb has been shown to physically interact with E2Fs 1, 2 and 3, repressing their transcriptional activity. Multiple genes involved in DNA synthesis and cell cycle progression are regulated by E2Fs, and Rb prevents their expression by inhibiting E2F activity, inducing growth arrest. It has been established that inactivation of Rb by phosphorylation, mutation, or by the interaction of viral oncoproteins leads to a release of the repression of E2F activity, facilitating cell cycle progression. Rb-mediated repression of E2F activity involves the recruitment of a variety of transcriptional co-repressors and chromatin remodeling proteins, including histone deacetylases, DNA methyltransferases and Brg1/Brm chromatin remodeling proteins. Inactivation of Rb by sequential phosphorylation events during cell cycle progression leads to a dissociation of these co-repressors from Rb, facilitating transcription. It has been found that small molecules that prevent the phosphorylation of Rb prevent the dissociation of certain co-repressors from Rb, especially Brg1, leading to the maintenance of Rb-mediated transcriptional repression and cell cycle arrest. Such small molecules have anti-cancer activities and will also act as valuable probes to study chromatin remodeling and transcriptional regulation.
Collapse
Affiliation(s)
- Sandeep Singh
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Jackie Johnson
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Srikumar Chellappan
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| |
Collapse
|
210
|
Delston RB, Matatall KA, Sun Y, Onken MD, Harbour JW. p38 phosphorylates Rb on Ser567 by a novel, cell cycle-independent mechanism that triggers Rb-Hdm2 interaction and apoptosis. Oncogene 2010; 30:588-99. [PMID: 20871633 PMCID: PMC3012146 DOI: 10.1038/onc.2010.442] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The retinoblastoma protein (Rb) inhibits both cell division and apoptosis, but the mechanism by which Rb alternatively regulates these divergent outcomes remains poorly understood. Cyclin dependent kinases (Cdks) promote cell division by phosphorylating and reversibly inactivating Rb by a hierarchical series of phosphorylation events and sequential conformational changes. The stress-regulated mitogen activated protein kinase (MAPK) p38 also phosphorylates Rb, but it does so in a cell cycle-independent manner that is associated with apoptosis rather than with cell division. Here, we show that p38 phosphorylates Rb by a novel mechanism that is distinct from that of Cdks. p38 bypasses the cell cycle-associated hierarchical phosphorylation and directly phosphorylates Rb on Ser567, which is not phosphorylated during the normal cell cycle. Phosphorylation by p38, but not Cdks, triggers an interaction between Rb and the human homologue of murine double minute 2 (Hdm2), leading to degradation of Rb, release of E2F1 and cell death. These findings provide a mechanistic explanation for how Rb regulates cell division and apoptosis through different kinases, and reveal how Hdm2 may functionally link the tumor suppressors Rb and p53.
Collapse
Affiliation(s)
- R B Delston
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
211
|
Gopinath S, Malla RR, Gondi CS, Alapati K, Fassett D, Klopfenstein JD, Dinh DH, Gujrati M, Rao JS. Co-depletion of cathepsin B and uPAR induces G0/G1 arrest in glioma via FOXO3a mediated p27 upregulation. PLoS One 2010; 5:e11668. [PMID: 20661471 PMCID: PMC2908539 DOI: 10.1371/journal.pone.0011668] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 06/24/2010] [Indexed: 12/21/2022] Open
Abstract
Background Cathepsin B and urokinase plasminogen activator receptor (uPAR) are both known to be overexpressed in gliomas. Our previous work and that of others strongly suggest a relationship between the infiltrative phenotype of glioma and the expression of cathepsin B and uPAR. Though their role in migration and adhesion are well studied the effect of these molecules on cell cycle progression has not been thoroughly examined. Methodology/Principal Findings Cathespin B and uPAR single and bicistronic siRNA plasmids were used to downregulate these molecules in SNB19 and U251 glioma cells. FACS analysis and BrdU incorporation assay demonstrated G0/G1 arrest and decreased proliferation with the treatments, respectively. Immunoblot and immunocyto analysis demonstrated increased expression of p27Kip1 and its nuclear localization with the knockdown of cathepsin B and uPAR. These effects could be mediated by αVβ3/PI3K/AKT/FOXO pathway as observed by the decreased αVβ3 expression, PI3K and AKT phosphorylation accompanied by elevated FOXO3a levels. These results were further confirmed with the increased expression of p27Kip1 and FOXO3a when treated with Ly294002 (10 µM) and increased luciferase expression with the siRNA and Ly294002 treatments when the FOXO binding promoter region of p27Kip1 was used. Our treatment also reduced the expression of cyclin D1, cyclin D2, p-Rb and cyclin E while the expression of Cdk2 was unaffected. Of note, the Cdk2-cyclin E complex formation was reduced significantly. Conclusion/Significance Our study indicates that cathepsin B and uPAR knockdown induces G0/G1 arrest by modulating the PI3K/AKT signaling pathway and further increases expression of p27Kip1 accompanied by the binding of FOXO3a to its promoter. Taken together, our findings provide molecular mechanism for the G0/G1 arrest induced by the downregulation of cathepsin B and uPAR in SNB19 and U251 glioma cells.
Collapse
Affiliation(s)
- Sreelatha Gopinath
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Rama Rao Malla
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Christopher S. Gondi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Kiranmai Alapati
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Daniel Fassett
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Jeffrey D. Klopfenstein
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Dzung H. Dinh
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Meena Gujrati
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
| | - Jasti S. Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, Illinois, United States of America
- * E-mail:
| |
Collapse
|
212
|
Mehrotra A, Joshi K, Kaul D. E2F-1 RNomics is critical for reprogramming of cancer cells to quiescent state. Int J Cancer 2010; 127:849-58. [PMID: 20013804 DOI: 10.1002/ijc.25109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The discovery of cooperativity between pRB and E2F greatly prompted various investigators to find how E2F biology contributes to oncogenesis. Although E2F family of transcription factors have been linked to proliferation, apoptosis and differentiation, yet no heed has been paid to understand the role of E2F biology in cellular quiescence. To understand the functional RNomics (regulation of gene transcription through RNA interference) of E2F-1 gene, 2 cancer cell lines, such as Jurkat exhibiting E2F-1 gene overamplification and Hela-229 exhibiting intrinsic downregulation of E2F-1 gene expression, were used in our study. E2F-1 gene knockdown via siRNA within Jurkat cells resulted in upregulation of genes characteristic of quiescence both translationally and transcriptionally, which was accompanied by downregulation of genes at both translational and transcriptional level involved in cell cycle progression and apoptosis. This genomic phenomenon also translated into ultrastructural and phenotypic features typical of quiescent state. These observed results in Jurkat cells were simulated by upregulation of E2F-1 gene in Hela-229 cells through the downregulation of miR 17-5p. This E2F-1-regulated pathway explained as to how Jurkat cells entered exclusively into quiescent state when E2F-1 was downregulated in these cells and how Hela-229 cells proliferate vigorously when E2F-1 was upregulated in such cells. Here, we propose a gene-regulatory pathway which the cell might be using in its entry into either quiescent or proliferative states. Furthermore, this pathway may be useful in designing strategies for the treatment of cancer in general and acute lymphoblastic leukemia in particular.
Collapse
Affiliation(s)
- Aanchal Mehrotra
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | | | | |
Collapse
|
213
|
Xie W, Jin L, Mei Y, Wu M. E2F1 represses beta-catenin/TCF activity by direct up-regulation of Siah1. J Cell Mol Med 2010; 13:1719-1727. [PMID: 20187294 DOI: 10.1111/j.1582-4934.2008.00423.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transcription factor E2F1 is a key regulator of cell proliferation and apoptosis. Its activity is strictly controlled by the pRB/E2F pathway. In the majority of cancer cells, however, this pathway is frequently found deregulated, and the underlying mechanism involving transcriptional control by E2F1 has not yet been fully elucidated. Here we report the identification of two putative E2F1-binding sites located upstream from Siah1 transcription start site (+1). Chromatin immunoprecipitation assay reveals that transcription factor E2F1 is capable of binding to the putative sites, and luciferase reporter assay shows that E2F1 can activate transcription from the Siah1 promoter. Ectopic expression of E2F1 elevates the Siah1 level, hence suppressing the beta-catenin/TCF activity. Consistently, knock-down of endogenous E2F1 by a shRNA strategy results in reduced expression of Siah1. Moreover, repression of beta-catenin/TCF activity by E2F1 can be attenuated by shRNA-based repression of endogenous Siah1, implying that Siah1 is a bona fide E2F1 target gene, which at least partly, mediates the suppression of beta-catenin/TCF signalling pathway.
Collapse
Affiliation(s)
- Wei Xie
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Jin
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yide Mei
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Mian Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
214
|
Pillai S, Kovacs M, Chellappan S. Regulation of vascular endothelial growth factor receptors by Rb and E2F1: role of acetylation. Cancer Res 2010; 70:4931-40. [PMID: 20516113 DOI: 10.1158/0008-5472.can-10-0501] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
E2F transcription factors regulate a variety of cellular processes, but their role in angiogenesis is not clear. We find that many genes involved in angiogenesis such as FLT-1, KDR, and angiopoietin 2 have potential E2F1 binding sites in their promoter. Chromatin immunoprecipitation (ChIP) assays showed that E2F1 can associate with these promoters and the recruitment of E2F1 was enhanced upon vascular endothelial growth factor (VEGF) stimulation with concomitant dissociation of Rb, leading to the transcriptional activation of these promoters. Transient transfection experiments showed that these promoters were induced by E2F1 and repressed by Rb, whereas depletion of E2F1 decreased their expression. The increased binding of E2F1 to these promoters upon VEGF stimulation correlated with the acetylation of histones and E2F1; this required VEGF receptor function, as seen in ChIP-re-ChIP experiments. This suggests the existence of a positive feedback loop regulating E2F1 acetylation and VEGF receptor expression. Acetylation associated with VEGF signaling seems to be predominantly mediated by P300/CBP-associated factor, and the depletion of histone acetyl transferases disrupted the formation of angiogenic tubules. These results suggest a novel role for E2F1 and acetylation in the angiogenic process.
Collapse
Affiliation(s)
- Smitha Pillai
- Drug Discovery Program, Department of Oncologic Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | | |
Collapse
|
215
|
Hallmann A. Key elements of the retinoblastoma tumor suppressor pathway in Volvox carteri. Commun Integr Biol 2010; 2:396-9. [PMID: 19907698 DOI: 10.4161/cib.2.5.8761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 04/14/2009] [Indexed: 11/19/2022] Open
Abstract
The green alga Volvox carteri is one of the simplest multicellular organisms. It consists of only two cell types, somatic and reproductive cells, making it a suitable model system for studying cell division, multicellularity and cellular differentiation. Each of the approximately 2,000-4,000 cells of an adult, asexual organism arises through a sequence of symmetric and asymmetric cleavage divisions from a single, asexual reproductive cell. As in ontogenetic development of higher organisms, the fate of a Volvox blastomere (i.e., whether it undergoes division or differentiation) is determined by a complex balance of regulators. Retinoblastomarelated proteins (RBRs) seem to act as key regulators and hubs in cell cycle control and, therefore, have been investigated in detail in higher organisms. Recently, the identification and characterization of a gender-specific RBR in Volvox, RBR1, revealed a role for the retinoblastoma protein family in sexual development. RBRs are elements of a conserved signal-transduction pathway called the retinoblastoma (RB) tumor suppressor pathway. In addition to RBR1, other key components of this pathway are present in Volvox, demonstrating that the RB signal-transduction pathway is utilized by these simple green algae.
Collapse
Affiliation(s)
- Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, D-33615 Bielefeld, Germany.
| |
Collapse
|
216
|
Helgason GV, O'Prey J, Ryan KM. Oncogene-induced sensitization to chemotherapy-induced death requires induction as well as deregulation of E2F1. Cancer Res 2010; 70:4074-80. [PMID: 20460519 DOI: 10.1158/0008-5472.can-09-2876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The analysis of DNA tumor viruses has provided landmark insights into the molecular pathogenesis of cancer. A paradigm for this field has been the study of the adenoviral E1a protein, which has led to the identification of proteins such as p300, p400, and members of the retinoblastoma family. Through binding Rb family members, E1a causes deregulation of E2F proteins--an event common to most human cancers and a central pathway in which oncogenes, including E1a, sensitize cells to chemotherapy-induced programmed cell death. We report here, however, that E1a not only causes deregulation of E2F, but importantly that it also causes the posttranscriptional upregulation of E2F1 protein levels. This effect is distinct from the deregulation of E2F1, however, as mutants of E2F1 impaired in pRb binding are induced by E1a and E2F1 induction can also be observed in Rb-null cells. Analysis of E1a mutants selectively deficient in cellular protein binding revealed that induction of E2F1 is instead intrinsically linked to p400. Mutants unable to bind p400, despite being able to deregulate E2F1, do not increase E2F1 protein levels and they do not sensitize cells to apoptotic death. These mutants can, however, be complemented by either the knockdown of p400, resulting in the restoration of the ability to induce E2F1, or by the overexpression of E2F1, with both events reenabling sensitization to chemotherapy-induced death. Due to the frequent deregulation of E2F1 in human cancer, these studies reveal potentially important insights into E2F1-mediated chemotherapeutic responses that may aid the development of novel targeted therapies for malignant disease.
Collapse
Affiliation(s)
- G Vignir Helgason
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | | | | |
Collapse
|
217
|
Brown KC, Witte TR, Hardman WE, Luo H, Chen YC, Carpenter AB, Lau JK, Dasgupta P. Capsaicin displays anti-proliferative activity against human small cell lung cancer in cell culture and nude mice models via the E2F pathway. PLoS One 2010; 5:e10243. [PMID: 20421925 PMCID: PMC2857654 DOI: 10.1371/journal.pone.0010243] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/24/2010] [Indexed: 11/18/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is characterized by rapid progression and low survival rates. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin, the active ingredient of chilli peppers, displays anti-proliferative activity in prostate and epidermoid cancer in vitro. However, the anti-proliferative activity of capsaicin has not been studied in human SCLCs. The present manuscript fills this void of knowledge and explores the anti-proliferative effect of capsaicin in SCLC in vitro and in vivo. Methodology/Principal Findings BrdU assays and PCNA ELISAs showed that capsaicin displays robust anti-proliferative activity in four human SCLC cell lines. Furthermore, capsaicin potently suppressed the growth of H69 human SCLC tumors in vivo as ascertained by CAM assays and nude mice models. The second part of our study attempted to provide insight into molecular mechanisms underlying the anti-proliferative activity of capsaicin. We found that the anti-proliferative activity of capsaicin is correlated with a decrease in the expression of E2F-responsive proliferative genes like cyclin E, thymidylate synthase, cdc25A and cdc6, both at mRNA and protein levels. The transcription factor E2F4 mediated the anti-proliferative activity of capsaicin. Ablation of E2F4 levels by siRNA methodology suppressed capsaicin-induced G1 arrest. ChIP assays demonstrated that capsaicin caused the recruitment of E2F4 and p130 on E2F-responsive proliferative promoters, thereby inhibiting cell proliferation. Conclusions/Significance Our findings suggest that the anti-proliferative effects of capsaicin could be useful in the therapy of human SCLCs.
Collapse
Affiliation(s)
- Kathleen C. Brown
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Ted R. Witte
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - W. Elaine Hardman
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Haitao Luo
- Department of Biology, Alderson-Broaddus College, Phillipi, West Virginia, United States of America
| | - Yi C. Chen
- Department of Biology, Alderson-Broaddus College, Phillipi, West Virginia, United States of America
| | - A. Betts Carpenter
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Jamie K. Lau
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Piyali Dasgupta
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
218
|
Wirt SE, Sage J. p107 in the public eye: an Rb understudy and more. Cell Div 2010; 5:9. [PMID: 20359370 PMCID: PMC2861648 DOI: 10.1186/1747-1028-5-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/02/2010] [Indexed: 11/25/2022] Open
Abstract
p107 and its related family members Rb and p130 are critical regulators of cellular proliferation and tumorigenesis. Due to the extent of functional overlap within the Rb family, it has been difficult to assess which functions are exclusive to individual members and which are shared. Like its family members, p107 can bind a variety of cellular proteins to affect the expression of many target genes during cell cycle progression. Unlike Rb and p130, p107 is most highly expressed during the G1 to S phase transition of the cell cycle in actively dividing cells and accumulating evidence suggests a role for p107 during DNA replication. The specific roles for p107 during differentiation and development are less clear, although emerging studies suggest that it can cooperate with other Rb family members to control differentiation in multiple cell lineages. As a tumor suppressor, p107 is not as potent as Rb, yet studies in knockout mice have revealed some tumor suppressor functions in mice, depending on the context. In this review, we identify the unique and overlapping functions of p107 during the cell cycle, differentiation, and tumorigenesis.
Collapse
Affiliation(s)
- Stacey E Wirt
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, CA 94305, USA.
| | | |
Collapse
|
219
|
Drygin D, Rice WG, Grummt I. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 2010; 50:131-56. [PMID: 20055700 DOI: 10.1146/annurev.pharmtox.010909.105844] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The RNA polymerase I (Pol I) transcription machinery in the nucleolus is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production that in turn guides cell growth and proliferation. Cancer cells commonly harbor mutations that inactivate tumor suppressors, hyperactivate oncogenes, and upregulate protein kinases, all of which promote Pol I transcription and drive cell proliferation. The intimate balance between Pol I transcription and growth-factor signaling is perturbed in cancer cells, indicating that upregulation of rRNA synthesis is mandatory for all tumors. Though the emerging picture of transcriptional regulation reveals an unexpected level of complexity, we are beginning to understand the multiple links between rRNA biogenesis and cancer. In this review, we discuss experimental data and potential strategies to downregulate rRNA synthesis and induce an antiproliferative response in cancer cells.
Collapse
Affiliation(s)
- Denis Drygin
- Cylene Pharmaceuticals, San Diego, California, USA.
| | | | | |
Collapse
|
220
|
Burke JR, Deshong AJ, Pelton JG, Rubin SM. Phosphorylation-induced conformational changes in the retinoblastoma protein inhibit E2F transactivation domain binding. J Biol Chem 2010; 285:16286-93. [PMID: 20223825 DOI: 10.1074/jbc.m110.108167] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inactivation of the retinoblastoma protein (Rb) through phosphorylation is an important step in promoting cell cycle progression, and hyperphosphorylated Rb is commonly found in tumors. Rb phosphorylation prevents its association with the E2F transcription factor; however, the molecular basis for complex inhibition has not been established. We identify here the key phosphorylation events and conformational changes that occur in Rb to inhibit the specific association between the E2F transactivation domain (E2F(TD)) and the Rb pocket domain. Calorimetry assays demonstrate that phosphorylation of Rb reduces the affinity of E2F(TD) binding approximately 250-fold and that phosphorylation at Ser(608)/Ser(612) and Thr(356)/Thr(373) is necessary and sufficient for this effect. An NMR assay identifies phosphorylation-driven conformational changes in Rb that directly inhibit E2F(TD) binding. We find that phosphorylation at Ser(608)/Ser(612) promotes an intramolecular association between a conserved sequence in the flexible pocket linker and the pocket domain of Rb that occludes the E2F(TD) binding site. We also find that phosphorylation of Thr(356)/Thr(373) inhibits E2F(TD) binding in a manner that requires the Rb N-terminal domain. Taken together, our results suggest two distinct mechanisms for how phosphorylation of Rb modulates association between E2F(TD) and the Rb pocket and describe for the first time a function for the structured N-terminal domain in Rb inactivation.
Collapse
Affiliation(s)
- Jason R Burke
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
221
|
Swiss VA, Casaccia P. Cell-context specific role of the E2F/Rb pathway in development and disease. Glia 2010; 58:377-90. [PMID: 19795505 DOI: 10.1002/glia.20933] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Development of the central nervous system (CNS) requires the generation of neuronal and glial cell subtypes in appropriate numbers, and this demands the careful coordination of cell-cycle exit, survival, and differentiation. The E2F/Rb pathway is critical for cell-cycle regulation and also modulates survival and differentiation of distinct cell types in the developing and adult CNS. In this review, we first present the specific temporal patterns of expression of the E2F and Rb family members during CNS development and then discuss the genetic ablation of single or multiple members of these two families. Overall, the available data suggest a time-dependent and cell-context specific role of E2F and Rb family members in the developing and adult CNS.
Collapse
Affiliation(s)
- Victoria A Swiss
- Department of Neuroscience and Genetics and Genomics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
222
|
The H3K27me3 demethylase dUTX is a suppressor of Notch- and Rb-dependent tumors in Drosophila. Mol Cell Biol 2010; 30:2485-97. [PMID: 20212086 DOI: 10.1128/mcb.01633-09] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trimethylated lysine 27 of histone H3 (H3K27me3) is an epigenetic mark for gene silencing and can be demethylated by the JmjC domain of UTX. Excessive H3K27me3 levels can cause tumorigenesis, but little is known about the mechanisms leading to those cancers. Mutants of the Drosophila H3K27me3 demethylase dUTX display some characteristics of Trithorax group mutants and have increased H3K27me3 levels in vivo. Surprisingly, dUTX mutations also affect H3K4me1 levels in a JmjC-independent manner. We show that a disruption of the JmjC domain of dUTX results in a growth advantage for mutant cells over adjacent wild-type tissue due to increased proliferation. The growth advantage of dUTX mutant tissue is caused, at least in part, by increased Notch activity, demonstrating that dUTX is a Notch antagonist. Furthermore, the inactivation of Retinoblastoma (Rbf in Drosophila) contributes to the growth advantage of dUTX mutant tissue. The excessive activation of Notch in dUTX mutant cells leads to tumor-like growth in an Rbf-dependent manner. In summary, these data suggest that dUTX is a suppressor of Notch- and Rbf-dependent tumors in Drosophila melanogaster and may provide a model for UTX-dependent tumorigenesis in humans.
Collapse
|
223
|
MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci U S A 2010; 107:3240-4. [PMID: 20133739 DOI: 10.1073/pnas.0914882107] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endothelial cells (ECs) respond to changes in mechanical forces, leading to the modulation of signaling networks and cell function; an example is the inhibition of EC proliferation by steady laminar flow. MicroRNAs (miRs) are short noncoding 20-22 nucleotide RNAs that negatively regulate the expression of target genes at the posttranscriptional level. This study demonstrates that miRs are involved in the flow regulation of gene expression in ECs. With the use of microRNA chip array, we found that laminar shear stress (12 dyn/cm(2), 12 h) regulated the EC expression of many miRs, including miR-19a. We further showed that stable transfection of miR-19a significantly decreased the expression of a reporter gene controlled by a conserved 3'-untranslated region of the cyclinD1 gene and also the protein level of cyclin D1, leading to an arrest of cell cycle at G1/S transition. Laminar flow suppressed cyclin D1 protein level, and this suppressive effect was diminished when the endogenous miR-19a was inhibited. In conclusion, we demonstrated that miR-19a plays an important role in the flow regulation of cyclin D1 expression. These results revealed a mechanism by which mechanical forces modulate endothelial gene expression.
Collapse
|
224
|
Kumar V, Bal A, Gill KD. Aluminium-induced oxidative DNA damage recognition and cell-cycle disruption in different regions of rat brain. Toxicology 2009; 264:137-44. [DOI: 10.1016/j.tox.2009.05.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/20/2009] [Accepted: 05/12/2009] [Indexed: 12/21/2022]
|
225
|
Kim JH, Gurumurthy CB, Naramura M, Zhang Y, Dudley AT, Doglio L, Band H, Band V. Role of mammalian Ecdysoneless in cell cycle regulation. J Biol Chem 2009; 284:26402-10. [PMID: 19640839 DOI: 10.1074/jbc.m109.030551] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Ecdysoneless (Ecd) protein is required for cell-autonomous roles in development and oogenesis in Drosophila, but the function of its evolutionarily conserved mammalian orthologs is not clear. To study the cellular function of Ecd in mammalian cells, we generated Ecd(lox/lox) mouse embryonic fibroblast cells from Ecd floxed mouse embryos. Cre-mediated deletion of Ecd in Ecd(lox/lox) mouse embryonic fibroblasts led to a proliferative block due to a delay in G(1)-S cell cycle progression; this defect was reversed by the introduction of human Ecd. Loss of Ecd led to marked down-regulation of E2F target gene expression. Furthermore, Ecd directly bound to Rb at the pocket domain and competed with E2F for binding to hypophosphorylated Rb. Our results demonstrate that mammalian Ecd plays a role in cell cycle progression via the Rb-E2F pathway.
Collapse
Affiliation(s)
- Jun Hyun Kim
- Department of Genetics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5805, USA
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Bourgo RJ, Braden WA, Wells SI, Knudsen ES. Activation of the retinoblastoma tumor suppressor mediates cell cycle inhibition and cell death in specific cervical cancer cell lines. Mol Carcinog 2009; 48:45-55. [PMID: 18506774 DOI: 10.1002/mc.20456] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-risk human papilloma virus (HPV) encodes two oncoproteins, E6 and E7, which are vital to viral replication and contribute to the development of cervical cancer. HPV16 E7 can target over 20 cellular proteins, but is best known for inactivating the retinoblastoma (RB) tumor suppressor. RB functions by restraining cells from entering S-phase of the cell cycle, thus preventing aberrant proliferation. While it is well established that HPV16 E7 facilitates the degradation of the RB protein, the ability of the RB pathway to overcome E7 action is less well understood. In this study the RB-pathway was activated via the overexpression of the p16ink4a tumor suppressor or ectopic expression of an active allele of RB (PSM-RB). While p16ink4a had no influence on cell cycle progression, PSM-RB expression was sufficient to induce a cell cycle arrest in both SiHa and HeLa cells, HPV positive cervical cancer cell lines. Strikingly, this arrest led to the downregulation of E2F target gene expression, which was antagonized via enhanced HPV-E7 expression. Since downmodulation of E7 function is associated with chronic growth arrest and senescence, the effect of PSM-RB on proliferation and survival was evaluated. Surprisingly, sustained PSM-RB expression impeded the proliferation of SiHa cells, resulting in both cell cycle inhibition and cell death. From these studies we conclude that active RB expression can sensitize specific cervical cancer cells to cell cycle inhibition and cell death. Thus, targeted therapies involving activation of RB function may be effective in inducing cell death in cervical cancer.
Collapse
Affiliation(s)
- Ryan J Bourgo
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
227
|
Harper M, Tillit J, Kress M, Ernoult-Lange M. Phosphorylation-dependent binding of human transcription factor MOK2 to lamin A/C. FEBS J 2009; 276:3137-47. [PMID: 19490114 DOI: 10.1111/j.1742-4658.2009.07032.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human MOK2 is a DNA-binding transcriptional repressor. Previously, we identified nuclear lamin A/C proteins as protein partners of hsMOK2. Furthermore, we found that a fraction of hsMOK2 protein was associated with the nuclear matrix. We therefore suggested that hsMOK2 interactions with lamin A/C and the nuclear matrix may be important for its ability to repress transcription. In this study, we identify JNK-associated leucine zipper and JSAP1 scaffold proteins, two members of c-Jun N-terminal kinase (JNK)-interacting proteins family as partners of hsMOK2. Because these results suggested that hsMOK2 could be phosphorylated, we investigated the phosphorylation status of hsMOK2. We identified Ser38 and Ser129 of hsMOK2 as phosphorylation sites of JNK3 kinase, and Ser46 as a phosphorylation site of Aurora A and protein kinase A. These three serine residues are located in the lamin A/C-binding domain. Interestingly, we were able to demonstrate that the phosphorylation of hsMOK2 interfered with its ability to bind lamin A/C.
Collapse
|
228
|
Advances in genomic research on hepatitis C virus with a useful tool, replicon system. Keio J Med 2009; 57:75-83. [PMID: 18677087 DOI: 10.2302/kjm.57.75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The research for hepatitis C virus (HCV) has long delayed by missing of in vitro culture system. Since the development of replicon system, a replication system of subgenomic HCV RNAs in a hepatoma cell line, has been reported, many virological and clinical findings have been discovered. Recently, in addition of subgenomic replication system, hepatitis C virus full-length RNA replication has been possible, and a few cell culture systems producing viral particles have been produced. These developments enabled us to investigate the life cycle or intracellular circumstance of HCV production. By screening of newly synthesized drugs with this replicon system, several possible medicines have been established and clinical researches are now running. Among them, VX950 and SCH503034 are nearest to clinical use. Other possible agents for reducing viral replication such as cyclophyllin inhibitors, inhibitors of sphingomyelin synthesis, HMG-CoA reductase inhibitors, or RNA-dependent RNA polymerase inhibitors have been also investigated. Furthermore the mechanism for development of hepatocellular carcinoma in the HCV infected liver has been vigorously studied using the HCV replicon system.
Collapse
|
229
|
Stengel KR, Thangavel C, Solomon DA, Angus SP, Zheng Y, Knudsen ES. Retinoblastoma/p107/p130 pocket proteins: protein dynamics and interactions with target gene promoters. J Biol Chem 2009; 284:19265-71. [PMID: 19279001 DOI: 10.1074/jbc.m808740200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma (RB) tumor suppressor and its family members, p107 and p130, function by repressing E2F transcription factor activity to limit the expression of genes required for cell cycle progression. Traditionally, it is thought that the RB family proteins repress E2F target gene expression through complexing with E2F at gene promoters. However, whereas chromatin immunoprecipitation experiments have demonstrated p107 and p130 at E2F-responsive promoters, RB chromatin association has not been reliably observed. Here we used green fluorescent protein-tagged proteins to rigorously explore the mechanism of RB-mediated transcriptional repression relative to its p107 and p130 family members. The use of live cell fluorescent imaging demonstrated that RB, p107, and p130 exhibit similar nuclear dynamics. Although these findings suggest a similar engagement with nuclear structures, chromatin immunoprecipitation approaches with multiple independent antibodies failed to detect the association of RB with target gene promoters. However, by employing antibodies directed against green fluorescent protein, we could utilize the same antibody to assess RB, p107, and p130 engagement. This approach demonstrated RB association with target gene promoters in a fashion analogous to p107 and p130. Extension of this technology demonstrated that direct RB phosphorylation disrupts promoter association to regulate transcription. Thus, RB is associated with promoters in a manner similar to p107/p130 and that association is modulated by phosphorylation during cell cycle progression.
Collapse
Affiliation(s)
- Kristy R Stengel
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
230
|
Hallstrom TC, Nevins JR. Balancing the decision of cell proliferation and cell fate. Cell Cycle 2009; 8:532-5. [PMID: 19182518 DOI: 10.4161/cc.8.4.7609] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The control of cellular proliferation is key in the proper development of a complex organism, the maintenance of tissue homeostasis and the ability to respond to various hormonal and other inducers. Key in the control of proliferation is the retinoblastoma (Rb) protein which regulates the activity of a family of transcription factors known as E2Fs. The E2F proteins are now recognized to regulate the expression of a large number of genes associated with cell proliferation including genes encoding DNA replication as well as mitotic activities. What has also become clear over the past several years is the intimate relationship between the control of cell proliferation and the control of cell fate, particularly the activation of apoptotic pathways. Central in this connection is the Rb/E2F pathway that not only provides the primary signals for proliferation but at the same time, connects with the p53-dependent apoptotic pathway. This review addresses this inter-connection and the molecular mechanisms that control the decision between proliferation and cell death.
Collapse
Affiliation(s)
- Timothy C Hallstrom
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
231
|
Rabkin SW, Klassen SS. Jumonji is a potential regulatory factor mediating nitric oxide-induced modulation of cardiac hypertrophy. J Cardiovasc Med (Hagerstown) 2009; 10:206-11. [DOI: 10.2459/jcm.0b013e3283212ecd] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
232
|
How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 2009; 384:274-84. [PMID: 19150725 DOI: 10.1016/j.virol.2008.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
The review recounts the history of how the study of the DNA tumor viruses including polyoma, SV40 and Adenovirus brought key insights into the structure and function of the Retinoblastoma protein (Rb). Knudsen's model of the two-hit hypothesis to explain patterns of hereditary and sporadic retinoblastoma provided the foundation for the tumor suppressor hypothesis that ultimately led to the cloning of the Rb gene. The discovery that SV40 and Adenovirus could cause tumors when inoculated into animals was startling not only because SV40 had contaminated the poliovirus vaccine and Adenovirus was a common cause of viral induced pneumonia but also because they provided an opportunity to study the genetics and biochemistry of cancer. Studies of mutant forms of these viruses led to the identification of the E1A and Large T antigen (LT) oncogenes and their small transforming elements including the Adenovirus Conserved Regions (CR), the SV40 J domain and the LxCxE motif. The immunoprecipitation studies that initially revealed the size and ultimately the identity of cellular proteins that could bind to these transforming elements were enabled by the widespread development of highly specific monoclonal antibodies against E1A and LT. The identification of Rb as an E1A and LT interacting protein quickly led to the cloning of p107, p130, p300, CBP, p400 and TRRAP and the concept that viral transformation was due, at least in part, to the perturbation of the function of normal cellular proteins. In addition, studies on the ability of E1A to transactivate the Adenovirus E2 promoter led to the cloning of the heterodimeric E2F and DP transcription factor and recognition that Rb repressed transcription of cellular genes required for cell cycle entry and progression. More recent studies have revealed how E1A and LT combine the activity of Rb and the other cellular associated proteins to perturb expression of many genes during viral infection and tumor formation.
Collapse
|
233
|
Sirintrapun SJ, Parwani AV. Molecular Pathology of the Genitourinary Tract: Prostate and Bladder. Surg Pathol Clin 2008; 1:211-36. [PMID: 26837907 DOI: 10.1016/j.path.2008.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The knowledge of cellular mechanisms in tumors of the prostate and bladder has grown exponentially. Molecular technologies have led to the discovery of TMPRSS2 in prostate cancer and the molecular pathways distinguishing low- and high-grade urothelial neoplasms. UroVysion with fluorescence in situ hybridization is already commonplace as an adjunct to cytologic diagnosis of urothelial neoplasms. This trend portends the future in which classification and diagnosis of tumors of the prostate and bladder through morphologic analysis will be supplemented by molecular information correlating with prognosis and targeted therapy. This article outlines tumor molecular pathology of the prostate and bladder encompassing current genomic, epigenomic, and proteonomic findings.
Collapse
Affiliation(s)
- S Joseph Sirintrapun
- Pathology Informatics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anil V Parwani
- Department of Pathology, University of Pittsburgh Medical Center Shadyside Hospital, Room WG 07, 5230 Centre Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
234
|
Nam EJ, Kim JW, Hong JW, Jang HS, Lee SY, Jang SY, Lee DW, Kim SW, Kim JH, Kim YT, Kim S, Kim JW. Expression of the p16 and Ki-67 in relation to the grade of cervical intraepithelial neoplasia and high-risk human papillomavirus infection. J Gynecol Oncol 2008; 19:162-8. [PMID: 19471565 DOI: 10.3802/jgo.2008.19.3.162] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/24/2008] [Accepted: 08/18/2008] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The purposes of this study were to evaluate the expression of p16(INK4a) (referred as to p16) and Ki-67 in cervical intraepithelial neoplasia (CIN), and the correlation between high-risk human papillomavirus (HPV) infection and the above biomarkers. METHODS We analyzed 31 patients who were diagnosed with CIN at Kwandong University Myongji Hospital from October 2006 to September 2007. CIN specimens (CIN1, 12; CIN2, 6; CIN3, 13) were obtained by colposcopy-directed biopsy (CDB) or loop electrical excision procedure (LEEP). The expressions of p16 and Ki-67 were evaluated by immunohistochemical methods with antibodies to p16 and Ki67. The immunohistochemical staining results were classified into four grades: 0, 1, 2 and 3. HPV genotyping or Hybrid Capture-II test was used to detect high-risk HPV. RESULTS The expression of p16 (p<0.001) and Ki-67 (p=0.003) were positively associated with CIN grade. p16 expressions increased significantly with high-risk HPV infection (p=0.014), especially HPV type 16 and 58. Ki-67 expression was not related with high-risk HPV. There was positive correlation between the expression of the p16 and Ki-67 (p=0.007). CONCLUSION CIN grade were positively related to the expression of p16 and Ki-67. p16 expressions of high-risk HPV specimens significantly increased more than Ki-67. Therefore, in the diagnosis of CIN and high-risk HPV infection, p16 can be a useful biomarker.
Collapse
Affiliation(s)
- Eun Ji Nam
- Women's Cancer Clinic, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Abstract
Proteins that are related to the retinoblastoma tumour suppressor pRB and the E2F transcription factor are conserved in many species of plants and animals. The mammalian orthologues of pRB and E2F are best known for their roles in cell proliferation, but it has become clear that they affect many biological processes. Here we describe the functions of pRB-related proteins and E2F proteins that have emerged from genetic and biochemical experiments in Caenorhabditis elegans and Drosophila melanogaster. The similarities that have been observed between worms, flies and mammals provide insight into the core activities of pRB and E2F proteins and show how a common regulatory module can control various biological functions in different organisms.
Collapse
|
236
|
Ulasov IV, Tyler MA, Rivera AA, Nettlebeck DM, Douglas JT, Lesniak MS. Evaluation of E1A double mutant oncolytic adenovectors in anti-glioma gene therapy. J Med Virol 2008; 80:1595-603. [PMID: 18649343 DOI: 10.1002/jmv.21264] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Malignant glioma, in particular glioblastoma multiforme (GBM), represents one of the most devastating cancers currently known and existing treatment regimens do little to change patient prognosis. Conditionally replicating adenoviral vectors (CRAds) represent attractive experimental anti-cancer agents with potential for clinical application. However, early protein products of the wild type adenovirus backbone--such as E1A--limit CRAds' replicative specificity. In this study, we evaluated the oncolytic potency and specificity of CRAds in which p300/CPB and/or pRb binding capacities of E1A were ablated to reduce non-specific replicative cytolysis. In vitro cytopathic assays, quantitative PCR analysis, Western blot, and flow cytometry studies demonstrate the superior anti-glioma efficacy of a double-mutated CRAd, Ad2/24CMV, which harbors mutations that reduce E1A binding to p300/CPB and pRb. When compared to its single-mutated and wild type counterparts, Ad2/24CMV demonstrated attenuated replication and cytotoxicity in representative normal human brain while displaying enhanced replicative cytotoxicity in malignant glioma. These results have implications for the development of double-mutated CRAd vectors for enhanced GBM therapy.
Collapse
Affiliation(s)
- Ilya V Ulasov
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
237
|
Gorges LL, Lents NH, Baldassare JJ. The extreme COOH terminus of the retinoblastoma tumor suppressor protein pRb is required for phosphorylation on Thr-373 and activation of E2F. Am J Physiol Cell Physiol 2008; 295:C1151-60. [PMID: 18768921 DOI: 10.1152/ajpcell.00300.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The retinoblastoma protein pRb plays a pivotal role in G(1)- to S-phase cell cycle progression and is among the most frequently mutated gene products in human cancer. Although much focus has been placed on understanding how the A/B pocket and COOH-terminal domain of pRb cooperate to relieve transcriptional repression of E2F-responsive genes, comparatively little emphasis has been placed on the function of the NH(2)-terminal region of pRb and the interaction of the multiple domains of pRb in the full-length context. Using "reverse mutational analysis" of Rb(DeltaCDK) (a dominantly active repressive allele of Rb), we have previously shown that restoration of Thr-373 is sufficient to render Rb(DeltaCDK) sensitive to inactivation via cyclin-CDK phosphorylation. This suggests that the NH(2)-terminal region plays a more critical role in pRb regulation than previously thought. In the present study, we have expanded this analysis to include additional residues in the NH(2)-terminal region of pRb and further establish that the mechanism of pRb inactivation by Thr-373 phosphorylation is through the dissociation of E2F. Most surprisingly, we further have found that removal of the COOH-terminal domain of either RbDeltaCDK(+T373) or wild-type pRb yields a functional allele that cannot be inactivated by phosphorylation and is repressive of E2F activation and S-phase entry. Our data demonstrate a novel function for the NH(2)-terminal domain of pRb and the necessity for cooperation of multiple domains for proper pRb regulation.
Collapse
Affiliation(s)
- Laura L Gorges
- Dept. of Pharmacological Sciences at Saint Louis Univ., St. Louis, MO 63104, USA
| | | | | |
Collapse
|
238
|
Kianianmomeni A, Nematollahi G, Hallmann A. A gender-specific retinoblastoma-related protein in Volvox carteri implies a role for the retinoblastoma protein family in sexual development. THE PLANT CELL 2008; 20:2399-2419. [PMID: 18790828 PMCID: PMC2570726 DOI: 10.1105/tpc.107.057836] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 08/18/2008] [Accepted: 08/27/2008] [Indexed: 05/26/2023]
Abstract
Here, we describe the cloning and characterization of RETINOBLASTOMA-RELATED PROTEIN1 (RBR1) from the green alga Volvox carteri. RBR1 expression increases substantially during embryogenesis and in response to the sex-inducer glycoprotein, but it decreases significantly under heat stress. While RBR1 is expressed in gonidia (asexual reproductive cells) and embryos, the largest proportion of RBR1 mRNA is found in parental somatic cells. The presence of 4 splice variants and 15 potential cyclin-dependent kinase phosphorylation sites suggests that RBR1 is subject to control at the posttranscriptional and posttranslational levels. Surprisingly, RBR1 is a gender-specific gene, mapping exclusively to the female mating-type locus. A procedure for stable nuclear transformation of males was established to generate RBR1-expressing males. These transformants exhibit enlarged reproductive cells, altered growth characteristics, and a prolonged embryogenesis. The results suggest that a functionally related analog of RBR1 exists in males. The reason for the divergent evolution of RBRs in females and males appears to be based on sexual development: males and females respond to the same sex-inducer with different cleavage programs and substantial differences in cellular differentiation. Thus, the gender-specific presence of RBR1 provides evidence for an additional, novel role for retinoblastoma family proteins in sexual development.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, D-33615 Bielefeld, Germany
| | | | | |
Collapse
|
239
|
Ojeh N, Pekovic V, Jahoda C, Määttä A. The MAGUK-family protein CASK is targeted to nuclei of the basal epidermis and controls keratinocyte proliferation. J Cell Sci 2008; 121:2705-17. [DOI: 10.1242/jcs.025643] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Ca2+/calmodulin-associated Ser/Thr kinase (CASK) binds syndecans and other cell-surface proteins through its PDZ domain and has been implicated in synaptic assembly, epithelial polarity and neuronal gene transcription. We show here that CASK regulates proliferation and adhesion of epidermal keratinocytes. CASK is localised in nuclei of basal keratinocytes in newborn rodent skin and developing hair follicles. Induction of differentiation shifts CASK to the cell membrane, whereas in keratinocytes that have been re-stimulated after serum starvation CASK localisation shifts away from membranes upon entry to S phase. Biochemical fractionation demonstrates that CASK has several subnuclear targets and is found in both nucleoplasmic and nucleoskeletal pools. Knockdown of CASK by RNA interference leads to increased proliferation in cultured keratinocytes and in organotypic skin raft cultures. Accelerated cell cycling in CASK knockdown cells is associated with upregulation of Myc and hyperphosphorylation of Rb. Moreover, CASK-knockdown cells show increased hyperproliferative response to KGF and TGFα, and accelerated attachment and spreading to the collagenous matrix. These functions are reflected in wound healing, where CASK is downregulated in migrating and proliferating wound-edge keratinocytes.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Vanja Pekovic
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Colin Jahoda
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Arto Määttä
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
240
|
Abstract
It is widely accepted that adenoviral E1A exerts its influence on recipient cells through binding to the retinoblastoma (Rb) family proteins, followed by a global release of E2F factors from pocket-protein control. Our study challenges this simple paradigm by demonstrating previously unappreciated complexity. We show that E1A-expressing primary and transformed cells are characterized by the persistence of Rb-E2F1 complexes. We provide evidence that E1A causes Rb stabilization by interfering with its proteasomal degradation. Functional experiments supported by biochemical data reveal not only a dramatic increase in Rb and E2F1 protein levels in E1A-expressing cells but also demonstrate their activation throughout the cell cycle. We further show that E1A activates an Rb- and E2F1-dependent S-phase checkpoint that attenuates the growth of cells that became hyperploid through errors in mitosis and supports the fidelity DNA replication even in the absence of E2F complexes with other Rb family proteins, thereby functionally substituting for the loss of p53. Our results support the essential role of Rb and E2F1 in the regulation of genomic stability and DNA damage checkpoints.
Collapse
|
241
|
E2F1 in gliomas: A paradigm of oncogene addiction. Cancer Lett 2008; 263:157-63. [DOI: 10.1016/j.canlet.2008.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/29/2008] [Accepted: 02/03/2008] [Indexed: 11/19/2022]
|
242
|
Guimarães KS, Przytycka TM. Interrogating domain-domain interactions with parsimony based approaches. BMC Bioinformatics 2008; 9:171. [PMID: 18366803 PMCID: PMC2358894 DOI: 10.1186/1471-2105-9-171] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 03/26/2008] [Indexed: 12/17/2022] Open
Abstract
Background The identification and characterization of interacting domain pairs is an important step towards understanding protein interactions. In the last few years, several methods to predict domain interactions have been proposed. Understanding the power and the limitations of these methods is key to the development of improved approaches and better understanding of the nature of these interactions. Results Building on the previously published Parsimonious Explanation method (PE) to predict domain-domain interactions, we introduced a new Generalized Parsimonious Explanation (GPE) method, which (i) adjusts the granularity of the domain definition to the granularity of the input data set and (ii) permits domain interactions to have different costs. This allowed for preferential selection of the so-called "co-occurring domains" as possible mediators of interactions between proteins. The performance of both variants of the parsimony method are competitive to the performance of the top algorithms for this problem even though parsimony methods use less information than some of the other methods. We also examined possible enrichment of co-occurring domains and homo-domains among domain interactions mediating the interaction of proteins in the network. The corresponding study was performed by surveying domain interactions predicted by the GPE method as well as by using a combinatorial counting approach independent of any prediction method. Our findings indicate that, while there is a considerable propensity towards these special domain pairs among predicted domain interactions, this overrepresentation is significantly lower than in the iPfam dataset. Conclusion The Generalized Parsimonious Explanation approach provides a new means to predict and study domain-domain interactions. We showed that, under the assumption that all protein interactions in the network are mediated by domain interactions, there exists a significant deviation of the properties of domain interactions mediating interactions in the network from that of iPfam data.
Collapse
Affiliation(s)
- Katia S Guimarães
- National Center of Biotechnology, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
243
|
Birkhahn M, Mitra AP, Cote RJ. Molecular markers for bladder cancer: the road to a multimarker approach. Expert Rev Anticancer Ther 2008; 7:1717-27. [PMID: 18062746 DOI: 10.1586/14737140.7.12.1717] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bladder cancer is the seventh most common malignancy worldwide, with almost 14,000 patients dying from this disease in the USA alone. Because of the need for long-term and frequent follow-up, as well as the paucity of sensitive and specific noninvasive tests, bladder cancer management has the highest cost per patient among all cancer types. Several molecular markers, especially members of the cell cycle regulation and apoptosis pathways, have been investigated. However, no individual marker has been prognostically powerful enough to change clinical management. The combined analysis of a panel of markers spanning different pathways is the most promising approach. We give an overview of the most important molecular markers functioning in crucial pathways and focus on their role in multimarker analysis.
Collapse
Affiliation(s)
- Marc Birkhahn
- Heilig Geist-Krankenhaus, Department of Urology, Cologne, Germany.
| | | | | |
Collapse
|
244
|
Rodríguez-Cruz M, Sanchez R, Arenas D, Coral-Vazquez R, Velazquez AC, Ramón-García G, Siordia G, Salamanca F, Salcedo M. pRB detection as a common event in human retinoblastomas: an immunohistochemical study. Acta Histochem 2008; 110:109-16. [PMID: 17963824 DOI: 10.1016/j.acthis.2007.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/28/2007] [Accepted: 07/31/2007] [Indexed: 11/25/2022]
Abstract
Approximately 30% of the cases of retinoblastoma (RB), the childhood eye cancer, are inherited and are manifested by unilateral or bilateral tumor. In sporadic tumors, accounting for 70% of cases, only one eye is affected. RB has three histological features: undifferentiated anaplastic cells, retinoblast pattern, and differentiated pattern characterized by Flexner Wintersteiner rosettes (FWR). Currently, results concerning phosphoprotein RB (pRB) expression in RB tumors are contradictory. In this study we detected pRB immunohistochemically in 10 tumors from bilateral or unilateral RBs, which did not show gross chromosomal alterations in cytogenetic studies. Interestingly, pRB was undetectable in only one tumor where we found distinct histological features. Our results suggest that pRB immunopositivity may be common in these tumors. However, it does not rule out the possibility that pRB is functionally inactive in some cases. This may be due to the protein being present in phosphorylated form or being altered by point mutations not affecting its expression. Another possibility is that mechanisms other than RB1 gene changes may lead to retinoblastoma because not all cases of retinoblastoma show gene alterations. Together these findings may be useful in understanding the molecular mechanisms associated with this type of pediatric tumor.
Collapse
|
245
|
Abstract
Disruption of pRB-E2F interactions by E1A is a key event in the adenoviral life cycle that drives expression of early viral transcription and induces cell cycle progression. This function of E1A is complicated by E2F1, an E2F family member that controls multiple processes besides proliferation, including apoptosis and DNA repair. Recently, a second interaction site in pRB that only contacts E2F1 has been discovered, allowing pRB to control proliferation separately from other E2F1-dependent activities. Based on this new insight into pRB-E2F1 regulation, we investigated how E1A affects control of E2F1 by pRB. Our data reveal that pRB-E2F1 interactions are resistant to E1A-mediated disruption. Using mutant forms of pRB that selectively force E2F1 to bind through only one of the two binding sites on pRB, we determined that E1A is unable to disrupt E2F1's unique interaction with pRB. Furthermore, analysis of pRB-E2F complexes during adenoviral infection reveals the selective maintenance of pRB-E2F1 interactions despite the presence of E1A. Our experiments also demonstrate that E2F1 functions to maintain cell viability in response to E1A expression. This suggests that adenovirus E1A's seemingly complex mechanism of disrupting pRB-E2F interactions provides selectivity in promoting viral transcription and cell cycle advancement, while maintaining cell viability.
Collapse
|
246
|
Majdzadeh N, Morrison BE, D'Mello SR. Class IIA HDACs in the regulation of neurodegeneration. FRONT BIOSCI-LANDMRK 2008; 13:1072-82. [PMID: 17981613 DOI: 10.2741/2745] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurodegenerative diseases affect millions of patients annually and are a significant burden on the health care systems around the world. While there are symptomatic remedies for patients suffering from various neurodegenerative diseases, there are no cures as of today. Cell death by apoptosis is a common hallmark of neurodegeneration. Therefore, deciphering the molecular pathways regulating this process is of significant value to scientists' endeavor to understand neurodegenerative disorders. Efforts along these lines have uncovered a number of molecular pathways that regulate neuronal apoptosis. Recently, a family of proteins known as histone deacetylases (HDACs) has been linked to regulation of cell survival as well as death. The focus of this review is to summarize our current understanding of the role of HDACs and in particular a subgroup of proteins in this family classified as class IIa HDACs in the regulation of neuronal cell death. It is apparent based on the information presented in this review that although very similar in their primary sequence, members of this family of proteins often have distinct roles in orchestrating apoptotic cell death in the brain.
Collapse
Affiliation(s)
- Nazanin Majdzadeh
- University of Texas at Dallas, Department of Molecular and Cell Biology, Richardson, Texas 75080, USA
| | | | | |
Collapse
|
247
|
Ueda Y, Watanabe S, Tei S, Saitoh N, Kuratsu JI, Nakao M. High mobility group protein HMGA1 inhibits retinoblastoma protein-mediated cellular G0 arrest. Cancer Sci 2007; 98:1893-901. [PMID: 17877762 PMCID: PMC11160013 DOI: 10.1111/j.1349-7006.2007.00608.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 07/24/2007] [Accepted: 08/04/2007] [Indexed: 11/30/2022] Open
Abstract
Retinoblastoma protein (RB) acts as a tumor suppressor in many tissue types, by promoting cell arrest via E2F-mediated transcriptional repression. In addition to the aberrant forms of the RB gene found in different types of cancers, many viral oncoproteins including the simian virus 40 large T antigen target RB. However, cellular factors that inhibit RB function remain to be elucidated. Here, we report that RB interacts with the high mobility group protein A1 (HMGA1), a-non-histone architectural chromatin factor that is frequently overexpressed in cancer cells. HMGA1 binds the small pocket domain of RB, and competes with HDAC1. Subsequently, overexpression of HMGA1 abolishes the inhibitory effect of RB on E2F-activated transcription from the cyclin E promoter. Under serum starvation, T98G cells had been previously shown to be arrested in the G0 phase in an RB-mediated manner. The G0 phase was characterized by growth arrest and low levels of transcription, together with the hypophosphorylation of RB and the downregulation of HMGA1. In contrast, such serum-depleted G0 arrest was abrogated in T98G cells overexpressing HMGA1. The overexpressed HMGA1 was found to form complexes with cellular RB, suggesting that downregulation of HMGA1 is required for G0 arrest. There were no phenotypic changes in HMGA1-expressing T98G cells in the presence of serum, but the persistent expression of HMGA1 under serum starvation caused various nuclear abnormalities, which were similarly induced in T antigen-expressing T98G cells. Our present findings indicate that overexpression of HMGA1 disturbs RB-mediated cell arrest, suggesting a negative control of RB by HMGA1.
Collapse
Affiliation(s)
- Yasuaki Ueda
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
248
|
Levidou G, Korkolopoulou P, Thymara I, Vassilopoulos I, Saetta AA, Gakiopoulou H, Konstantinidou A, Kairi-Vassilatou E, Pavlakis K, Patsouris E. Expression and prognostic significance of cyclin D3 in ovarian adenocarcinomas. Int J Gynecol Pathol 2007; 26:410-7. [PMID: 17885491 DOI: 10.1097/pgp.0b013e31804630a7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abnormal expression of cell cycle regulators may contribute to malignant transformation. However, the clinical significance of the expression of cyclin D3 in ovarian cancer remains undefined. We therefore conducted a retrospective investigation to address the role of this cell-cycle protein in this tumor. In our study, paraffin-embedded tissue from 109 nonbenign epithelial ovarian tumors, including 17 tumors of low malignant potential and 92 primary adenocarcinomas, was stained immunohistochemically for cyclin D3. Most of the cases had previously been stained for pRb, p21Cip1, p27Kip1, p53, and Ki-67 antigen. Expression of cyclin D3 was correlated with clinicopathologic features, the expression of other cell cycle regulators, and postoperative survival of patients. Cyclin D3 levels were significantly higher in tumors of low malignant potential than in adenocarcinomas (P = 0.0002). In the latter group, cyclin D3 expression decreased with increasing grade (P = 0.0004) and advancing stage (P = 0.0315). Cyclin D3 expression positively correlated with pRb, p21Cip1, and p27Kip1 levels (P = 0.0021; P = 0.0036; P < 0.0001, respectively) and negatively with p53 and Ki-67 (P = 0.0003; P < 0.0001). Absent cyclin D3 expression was an important indicator of poor survival in univariate analysis in the entire cohort (P > 0.00010) and in the platinum-treated patients (P = 0.001) and in multivariate analysis (P = 0.044). Our results demonstrate that absent or decreased cyclin D3 expression is adversely related to several clinicopathologic indicators of aggressiveness in ovarian adenocarcinomas and is combined with a better prognosis, suggesting that cyclin D3 may have a biological role distinct from that of other G1 cyclins which is possibly regulated through interaction with other cell cycle genes.
Collapse
Affiliation(s)
- Georgia Levidou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Chen J, Irving A, McMillan N, Gu W. Future of RNAi-based therapies for human papillomavirus-associated cervical cancer. Future Virol 2007. [DOI: 10.2217/17460794.2.6.587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over 99% of cervical cancers are associated with infection of high-risk type human papillomaviruses (HPV). These viruses infect epithelial cells lining the cervix and express the early viral genes E6 and E7, which are oncogenes and are primarily responsible for the transformation of the epithelial cells. The continuous expression of those genes is essential for maintenance of the cancer cell phenotype and viability. These viral genes can be silenced using oligonucleotide-based techniques, for example RNAi, antisense RNA and ribozymes. In spite of promising results in vitro and in vivo, in mice, these methods have thus far proved unsuccessful in humans, owing to the lack of an effective delivery system amongst other limitations. In this review we will discuss potential gene-silencing strategies in cervical cancer that would target both viral genes such as E6 and E7, and cellular genes that become deregulated such as E2F, p53, Akt, mTor, NF-κB or Bcl-2. By investigating these approaches we may generate an effective treatment for HPV-induced cervical cancer using gene silencing.
Collapse
Affiliation(s)
- Jiezhong Chen
- University of Queensland, UQ Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Brisbane, QLD 4102, Australia
| | - Aaron Irving
- University of Queensland, UQ Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Brisbane, QLD 4102, Australia
| | - Nigel McMillan
- University of Queensland, UQ Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Brisbane, QLD 4102, Australia
| | - Wenyi Gu
- University of Queensland, UQ Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Brisbane, QLD 4102, Australia
| |
Collapse
|
250
|
Mlechkovich G, Frenkel N. Human herpesvirus 6A (HHV-6A) and HHV-6B alter E2F1/Rb pathways and E2F1 localization and cause cell cycle arrest in infected T cells. J Virol 2007; 81:13499-508. [PMID: 17913805 PMCID: PMC2168879 DOI: 10.1128/jvi.01496-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
E2F transcription factors play pivotal roles in controlling the expression of genes involved in cell viability as well as genes involved in cell death. E2F1 is an important constituent of this protein family, which thus far contains eight members. The interaction of E2F1 with its major regulator, retinoblastoma protein (Rb), has been studied extensively in the past two decades, concentrating on the role of E2F1 in transcriptional regulation and the role of Rb in cell replication and cancer formation. Additionally, the effect of viral infections on E2F1/Rb interactions has been analyzed for different viruses, concentrating on cell division, which is essential for viral replication. In the present study, we monitored E2F1-Rb interactions during human herpesvirus 6A (HHV-6A) and HHV-6B infections of SupT1 T cells. The results have shown the following dramatic alterations in E2F1-Rb pathways compared to the pathways of parallel mock-infected control cultures. (i) The E2F1 levels were elevated during viral infections. (ii) The cellular localization of E2F1 was dramatically altered, and it was found to accumulate both in the cytoplasmic and nuclear fractions, as opposed to the strict nuclear localization seen in the mock-infected cells. (iii) Although E2F1 expression was elevated, two exemplary target genes, cyclin E and MCM5, were not upregulated. (iv) The Rb protein was dephosphorylated early postinfection, a trait that also occurred with UV-inactivated virus. (v) Infection was associated with significant reduction of E2F1/Rb complexing. (vi) HHV-6 infections were accompanied by cell cycle arrest. The altered E2F1-Rb interactions and functions might contribute to the observed cell cycle arrest.
Collapse
Affiliation(s)
- Guy Mlechkovich
- The S. Daniel Abraham Institute for Molecular Virology and the Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|