201
|
Zhou Q, Li Y, Zhu Y, Yu C, Jia H, Bao B, Hu H, Xiao C, Zhang J, Zeng X, Wan Y, Xu H, Li Z, Yang X. Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. J Control Release 2018; 275:67-77. [PMID: 29471038 DOI: 10.1016/j.jconrel.2018.02.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/29/2018] [Accepted: 02/16/2018] [Indexed: 01/06/2023]
Abstract
Heterogeneous distribution of drug inside tumor is ubiquitous, causing regional insufficient chemotherapy, which might be the hotbed for drug resistance, tumor cell repopulation and metastasis. Herein, we verify, for the first time, that heterogeneous drug distribution induced insufficient chemotherapy would accelerate the process of epithelial mesenchymal transition (EMT), consequently resulting in the promotion of tumor metastasis. To eliminate the insufficient chemotherapy promoted metastasis, we conceived a co-delivery strategy by hydroxyethyl starch-polylactide (HES-PLA) nanoparticle, in which DOX and TGF-β receptor inhibitor, LY2157299 (LY), were administered together. In vitro and in vivo studies demonstrate that this co-delivery strategy can simultaneously suppress primary tumor and distant metastasis. Further study on immunofluorescence images of primary tumor verifies that low dose of DOX exasperates the EMT process, whereas the co-delivery nanoparticle can dramatically inhibit the progression of EMT. We reveal the impact of heterogeneous drug distribution on tumor metastasis and develop an effective co-delivery strategy to suppress the metastasis, providing guidance for clinical cancer therapy.
Collapse
Affiliation(s)
- Qing Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yihui Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chan Yu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Binghao Bao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jianqi Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaofan Zeng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Huibi Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, PR China; Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan 430040, PR China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
202
|
Xu B, Xu Y, Su G, Zhu H, Zong L. A multifunctional nanoparticle constructed with a detachable albumin outer shell and a redox-sensitive inner core for efficient siRNA delivery to hepatocellular carcinoma cells. J Drug Target 2018; 26:941-954. [PMID: 29564911 DOI: 10.1080/1061186x.2018.1455840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful delivery of small interfering RNA (siRNA) into the cytoplasm of target cells relies on biocompatible and efficient vectors. In this study, a novel multifunctional core/shell nanoparticle [CS-SS-9R/BSA-c(RGDyK)] was developed to effectively deliver siVEGF to hepatocellular carcinoma cells (Bel-7402 cells). To improve the gene payload and transfection efficiency, a positively charged inner core (CS-SS-9R) was constructed by grafting nona-arginine (9R) onto chitosan (CS) using disulphide bonds. The negatively charged outer shell [BSA-c(RGDyK)] assembled on the surface of the inner core by electrostatic forces that shielded high cationic charges and provided improved targeting. The protein outer shell gradually detached from the inner core in the acidic lysosomal environment, leaving the cationic inner core exposed in order to escape from lysosomes. The nanoparticles were capable of delivering siVEGF into Bel-7402 cells via integrin receptor-mediated endocytosis. Successful lysosomal escape of the inner core and the rapid release of siVEGF into the cytoplasm resulted in a 78.9% decrease in VEGF expression and 81.2% inhibition of tumour cell proliferation. In conclusion, this nanoparticle is responsive to the intracellular environment and accurately delivered siRNA into the cytoplasm, providing a safe and highly efficient gene delivery strategy for cancer therapy.
Collapse
Affiliation(s)
- Bohui Xu
- a School of Pharmacy , China Pharmaceutical University , Nanjing , China.,b School of Pharmacy , Nantong University , Nantong , China
| | - Yan Xu
- b School of Pharmacy , Nantong University , Nantong , China
| | - Gaoxing Su
- b School of Pharmacy , Nantong University , Nantong , China
| | - Hongyan Zhu
- b School of Pharmacy , Nantong University , Nantong , China
| | - Li Zong
- a School of Pharmacy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
203
|
Li X, Jiang X. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Adv Drug Deliv Rev 2018; 128:101-114. [PMID: 29277543 DOI: 10.1016/j.addr.2017.12.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production.
Collapse
|
204
|
Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv Drug Deliv Rev 2018; 128:84-100. [PMID: 29567396 DOI: 10.1016/j.addr.2018.03.008] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023]
Abstract
Lipid-based nanobiomaterials as liposomes and lipid nanoparticles (LNPs) are the most widely used nanocarriers for drug delivery systems (DDSs). Extracellular vesicles (EVs) and exosomes are also expected to be applied as DDS nanocarriers. The performance of nanomedicines relies on their components such as lipids, targeting ligands, encapsulated DNA, encapsulated RNA, and drugs. Recently, the importance of the nanocarrier sizes smaller than 100nm is attracting attention as a means to improve nanomedicine performance. Microfluidics and lab-on-a chip technologies make it possible to produce size-controlled LNPs by a simple continuous flow process and to separate EVs from blood samples by using a surface marker, ligand, or electric charge or by making a mass or particle size discrimination. Here, we overview recent advances in microfluidic devices and techniques for liposomes, LNPs, and EVs and their applications for DDSs.
Collapse
|
205
|
Zhang T, Zhou S, Hu L, Peng B, Liu Y, Luo X, Liu X, Song Y, Deng Y. Polysialic acid-polyethylene glycol conjugate-modified liposomes as a targeted drug delivery system for epirubicin to enhance anticancer efficiency. Drug Deliv Transl Res 2018. [DOI: 10.1007/s13346-018-0496-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
206
|
Urnauer S, Klutz K, Grünwald GK, Morys S, Schwenk N, Zach C, Gildehaus FJ, Rödl W, Ogris M, Wagner E, Spitzweg C. Systemic tumor-targeted sodium iodide symporter (NIS) gene therapy of hepatocellular carcinoma mediated by B6 peptide polyplexes. J Gene Med 2018; 19. [PMID: 28423213 DOI: 10.1002/jgm.2957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/03/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Nonviral polymer-based gene transfer represents an adaptable system for tumor-targeted gene therapy because various design strategies of shuttle systems, together with the mechanistic concept of active tumor targeting, lead to improved gene delivery vectors resulting in higher tumor specificity, efficacy and safety. METHODS Using the sodium iodide symporter (NIS) as a theranostic gene, nonviral gene delivery vehicles based on linear polyethylenimine (LPEI), polyethylene glycol (PEG) and coupled to the synthetic peptide B6 (LPEI-PEG-B6), which specifically binds to tumor cells, were investigated in a hepatocellular carcinoma xenograft model for tumor selectivity and transduction efficiency. RESULTS In vitro incubation of three different tumor cell lines with LPEI-PEG-B6/NIS resulted in significant increase in iodide uptake activity compared to untargeted and empty vectors. After establishment of subcutaneous HuH7 tumors, NIS-conjugated nanoparticles were injected intravenously followed by analysis of radioiodide biodistribution using 123 I-scintigraphy showing significant perchlorate-sensitive iodide accumulation in tumors of LPEI-PEG-B6/NIS-treated mice (8.0 ± 1.5% ID/g 123 I; biological half-life of 4 h). After four cycles of repetitive polyplex/131 I applications, a significant delay of tumor growth was observed, which was associated with markedly improved survival in the therapy group. CONCLUSIONS These results clearly demonstrate that systemic in vivo NIS gene transfer using nanoparticle vectors coupled to B6 tumor targeting ligand is capable of inducing tumor-specific radioiodide uptake. This promising gene therapy approach opens the exciting prospect of NIS-mediated radionuclide therapy in metastatic cancer, together with the possibility of combining several targeting ligands to enhance selective therapeutic efficacy in a broad field of cancer types with various receptor expression profiles.
Collapse
Affiliation(s)
- Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Kathrin Klutz
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Geoffrey K Grünwald
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Stephan Morys
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology and Center for Nanoscience (CeNS), LMU Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Christian Zach
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Germany
| | | | - Wolfgang Rödl
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology and Center for Nanoscience (CeNS), LMU Munich, Germany
| | - Manfred Ogris
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology and Center for Nanoscience (CeNS), LMU Munich, Germany.,Division of Clinical Pharmacy and Diagnostics, University of Vienna, Austria
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology and Center for Nanoscience (CeNS), LMU Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| |
Collapse
|
207
|
Jhaveri A, Deshpande P, Pattni B, Torchilin V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Control Release 2018. [PMID: 29522834 DOI: 10.1016/j.jconrel.2018.03.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glioblastomas (GBMs) are highly aggressive brain tumors with a very grim prognosis even after multi-modal therapeutic regimens. Conventional chemotherapeutic agents frequently lead to drug resistance and result in severe toxicities to non-cancerous tissues. Resveratrol (RES), a natural polyphenol with pleiotropic health benefits, has proven chemopreventive effects in all the stages of cancer including initiation, promotion and progression. However, the poor physico-chemical properties of RES severely limit its use as a free drug. In this study, RES was loaded into PEGylated liposomes (RES-L) to counter its drawbacks as a free drug. Since transferrin receptors (TfRs) are up-regulated in GBM, the liposome surface was modified with transferrin moieties (Tf-RES-L) to make them cancer cell-specific. The liposomal nanomedicines developed in this project were aimed at enhancing the physico-chemical properties of RES and exploiting the passive and active targeting capabilities of liposomes to effectively treat GBM. The RES-L were stable, had a good drug-loading capacity, prolonged drug-release in vitro and were easily scalable. Flow cytometry and confocal microscopy were used to study the association with, and internalization of, Tf-L into U-87 MG cells. The Tf-RES-Ls were significantly more cytotoxic and induced higher levels of apoptosis accompanied by activation of caspases 3/7 in GBM cells when compared to free RES or RES-L. The ability of RES to arrest cells in the S-phase of the cell cycle, and selectively induce production of reactive oxygen species in cancer cells were probably responsible for its cytotoxic effects. The therapeutic efficacy of RES formulations was evaluated in a subcutaneous xenograft mouse model of GBM. A tumor growth inhibition study and a modified survival study showed that Tf-RES-Ls were more effective than other treatments in their ability to inhibit tumor growth and improve survival in mice. Overall, the liposomal nanomedicines of RES developed in this project exhibited favorable in vitro and in vivo efficacies, which warrant their further investigation for the treatment of GBMs.
Collapse
Affiliation(s)
- Aditi Jhaveri
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Pranali Deshpande
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Bhushan Pattni
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
208
|
Liu X, Li Y, Tan X, Rao R, Ren Y, Liu L, Yang X, Liu W. Multifunctional hybrid micelles with tunable active targeting and acid/phosphatase-stimulated drug release for enhanced tumor suppression. Biomaterials 2018; 157:136-148. [PMID: 29268144 DOI: 10.1016/j.biomaterials.2017.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 12/19/2022]
Abstract
Therapeutic efficacy of conventional single PEGylated polymeric micelles is significantly reduced by limited endocytosis and intracellular drug release. To improve drug delivery efficiency, poly (ethylene glycol)-block-poly (l-lactic acid)/(Arg-Gly-Asp-Phe)-poly (aminoethyl ethylene phosphate)-block-poly (l-lactic acid) (PEG-PLLA/RGDF-PAEEP-PLLA) hybrid micelles with tunable active targeting and acid/phosphatase-stimulated drug release are developed. The optimized hybrid micelles with 6 wt % of RGDF have favorable in vitro and in vivo activities. The hybrid micelles could temporarily shield the targeting efficacy of RGDF at pH 7.4 due to the steric effect exerted by concealment of RGDF peptides in the PEG corona, which strongly decreases the clearance by mononuclear phagocyte system and consequently improves the tumor accumulation. Inside the solid tumor with a lower acidic pH, the hybrid micelles restore the active tumor targeting property with exposed RGDF on the surface of the micelles because of the increased protonation and stretching degree of PAEEP blocks. RGDF-mediated endocytosis improves the tumor cell uptake. The hybrid micelles would also enhance intracellular drug release because of the hydrolysis of the acid/phosphatase-sensitivity of PAEEP blocks in endo/lysosome. Systemic administration of the hybrid micelles significantly inhibits tumor growth by 96% due to the integration of enhanced circulation time, tumor accumulation, cell uptake and intracellular drug release.
Collapse
Affiliation(s)
- Xuhan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yinghuan Li
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China.
| | - Xi Tan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Rong Rao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yuanyuan Ren
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lingyan Liu
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
209
|
Jiang K, Song X, Yang L, Li L, Wan Z, Sun X, Gong T, Lin Q, Zhang Z. Enhanced antitumor and anti-metastasis efficacy against aggressive breast cancer with a fibronectin-targeting liposomal doxorubicin. J Control Release 2018; 271:21-30. [PMID: 29277681 DOI: 10.1016/j.jconrel.2017.12.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/24/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022]
Abstract
The chemotherapy of aggressive breast tumor is usually accompanied by a poor prognosis because of the metastasis of tumor cells. Thus, it is important to simultaneously enhance antitumor and anti-metastasis efficacy. Fibronectin and its complexes are expressed on the walls of tumor vessels and in tumor stroma. Moreover, the expression of fibronectin in metastatic sites is even higher than that in primary tumors. Herein, we designed a fibronectin-targeting CREKA-modified liposomal doxorubicin (CREKA-Lipo-Dox) for the therapy of metastatic breast tumor. CREKA-Lipo was uniformly formed with high entrapment efficiency. It exhibited longer blood circulation time compared with free Dox, and there was no significant change compared with PEG-Lipo-Dox. Immunofluorescence results revealed that the CREKA-Lipo-Dox could specifically bind to fibronectin in the tumor vessels and tumor stroma. The antitumor and anti-metastasis efficacy of CREKA-loaded liposome was more obvious than that of free Dox or unmodified Dox-Lipo. Taken together, binding fibronectin by CREKA could be an attractive therapeutic strategy for metastatic breast cancer in the future.
Collapse
Affiliation(s)
- Kejun Jiang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xu Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Liuqing Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Lin Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
210
|
Wang X, Shi C, Wang L, Luo J. Polycation-telodendrimer nanocomplexes for intracellular protein delivery. Colloids Surf B Biointerfaces 2018; 162:405-414. [PMID: 29247913 PMCID: PMC5801074 DOI: 10.1016/j.colsurfb.2017.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 11/17/2022]
Abstract
Intracellular delivery of protein therapeutics by cationic polymer vehicles is an emerging technique that is, however, encountering poor stability, high cytotoxicity and non-specific cell uptake. Herein, we present a facile strategy to optimize the protein-polycation complexes by encapsulating with linear-dendritic telodendrimers. The telodendrimers with well-defined structures enable the rational design and integration of multiple functionalities for efficient encapsulation of the protein-polycation complexes by multivalent and hybrid supramolecular interactions to produce sub-20 nm nanoparticles. This strategy not only reduces the polycation-associated cytotoxicity and hemolytic activity, but also eliminates the aggregation and non-specific binding of polycations to other biomacromolecules. Moreover, the telodendrimers dissociate readily from the complexes during the cellular uptake process, which restores the capability of polycations for intracellular protein delivery. This strategy overcomes the limitations of polycationic vectors for intracellular delivery of protein therapeutics.
Collapse
Affiliation(s)
- Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Lili Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
211
|
Wu X, Chen H, Wu C, Wang J, Zhang S, Gao J, Wang H, Sun T, Yang YG. Inhibition of intrinsic coagulation improves safety and tumor-targeted drug delivery of cationic solid lipid nanoparticles. Biomaterials 2018; 156:77-87. [DOI: 10.1016/j.biomaterials.2017.11.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 01/18/2023]
|
212
|
Rahman MA, Matsumura Y, Yano S, Ochiai B. pH-Responsive Charge-Conversional and Hemolytic Activities of Magnetic Nanocomposite Particles for Cell-Targeted Hyperthermia. ACS OMEGA 2018; 3:961-972. [PMID: 30023794 PMCID: PMC6045334 DOI: 10.1021/acsomega.7b01918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/16/2018] [Indexed: 05/12/2023]
Abstract
Magnetic nanocomposite particle (MNP)-induced hyperthermia therapy has been restricted by inefficient cellular targeting. pH-responsive charge-conversional MNPs can enhance selective cellular uptake in acidic cells like tumors by sensing extracellular acidity based on their charge alteration. We have synthesized new, pH-induced charge-conversional, superparamagnetic, and single-cored Fe3O4 nanocomposite particles coated by N-itaconylated chitosan (NICS) cross-linked with ethylene glycol diglycidyl ether (EGDE) (Fe3O4-NICS-EGDE) using a simple, one-step chemical coprecipitation-coating process. The surface of the Fe3O4-NICS-EGDE nanocomposite particles was modified with ethanolamine (EA) via aza-Michael addition to enhance their buffering capacity, aqueous stability, and pH sensitivity. The designed Fe3O4-NICS-EGDE-EA nanocomposite particles showed pH-dependent charge-conversional properties, colloidal stability, and excellent hemocompatibility in physiological media. By contrast, the charge-conversional properties enabled microwave-induced hemolysis only under weakly acidic conditions. Therefore, the composite particles are highly feasible for magnetically induced and targeted cellular thermotherapeutic applications.
Collapse
Affiliation(s)
- Md. Abdur Rahman
- Department
of Chemistry and Chemical Engineering, Graduate School
of Science and Engineering and Department of Biochemical Engineering, Graduate
School of Science and Engineering, Yamagata
University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yoshimasa Matsumura
- Department
of Chemistry and Chemical Engineering, Graduate School
of Science and Engineering and Department of Biochemical Engineering, Graduate
School of Science and Engineering, Yamagata
University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shigekazu Yano
- Department
of Chemistry and Chemical Engineering, Graduate School
of Science and Engineering and Department of Biochemical Engineering, Graduate
School of Science and Engineering, Yamagata
University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Bungo Ochiai
- Department
of Chemistry and Chemical Engineering, Graduate School
of Science and Engineering and Department of Biochemical Engineering, Graduate
School of Science and Engineering, Yamagata
University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
- E-mail:
| |
Collapse
|
213
|
Optimization of the Preparation Conditions of Borneol-Modified Ginkgolide Liposomes by Response Surface Methodology and Study of Their Blood Brain Barrier Permeability. Molecules 2018; 23:molecules23020303. [PMID: 29385087 PMCID: PMC6017666 DOI: 10.3390/molecules23020303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 01/13/2023] Open
Abstract
Ginkgolides (GG), containing ginkgolide A (GA), ginkgolide B (GB) and ginkgolide C (GC), are mainly prescribed for ischemic stroke and cerebral infarction. However, the ginkgolides can hardly pass the blood-brain barrier (BBB) into the brain. The purpose of this study was to prepare borneol-modified ginkgolides liposomes (GGB-LPs) to study whether borneol could enhance the transport of ginkgolides across the BBB. The preparation conditions of GGB-LPs were optimized by a response surface-central composite design. Also, pharmacokinetics and biodistribution studies of GGB-LPs were conducted using UPLC-MS. The optimal preparation conditions for GGB-LP were as follows: ratio of lipid to drug (w/w) was 9:1, ratio of phospholipid to cholesterol (w/w) was 7:1, and hydrate volume was 17.5 mL. Under these conditions, the GGB-LP yield was 89.73 ± 3.45%. With GGB-LPs, borneol significantly promoted the transport of ginkgolide across the BBB. The pharmacokinetic parameters of GGB-LP were significantly improved too, with Tmax of 15 min and a high drug concentration of 3.39 μg/g in brain. Additionally, the drug targeting index and relative uptake rate of GGB-LP was increased. Borneol-modified ginkgolide liposomes can thus potentially be used to improve the BBB permeability of gingkolide formulations.
Collapse
|
214
|
Roointan A, Kianpour S, Memari F, Gandomani M, Gheibi Hayat SM, Mohammadi-Samani S. Poly(lactic-co-glycolic acid): The most ardent and flexible candidate in biomedicine! INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1405350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Memari
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Molood Gandomani
- Department of Bioengineering, Biotechnology Research Center, Cyprus international University, Nicosia, Cyprus
| | - Seyed Mohammad Gheibi Hayat
- Student Research Committee, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
215
|
Martins RM, Teodoro JS, Furtado E, Rolo AP, Palmeira CM, Tralhão JG. Recent insights into mitochondrial targeting strategies in liver transplantation. Int J Med Sci 2018; 15:248-256. [PMID: 29483816 PMCID: PMC5820854 DOI: 10.7150/ijms.22891] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury in liver transplantation can disrupt the normal activity of mitochondria in the hepatic parenchyma. This potential dysfunction of mitochondria after I/R injury could be responsible for the initial poor graft function or primary nonfunction observed after liver transplantation. Thus, determining the mechanisms that lead to human hepatic mitochondrial dysfunction might contribute to improving the outcome of liver transplantation. Furthermore, early identification of novel prognostic factors involved in I/R injury could serve as a key endpoint to predict the outcome of liver grafts and also to promote the early adoption of novel strategies that protect against I/R injury. Here, we briefly review recent advances in the study of mitochondrial dysfunction and I/R injury, particularly in relation to liver transplantation. Next, we highlight various pharmacological therapeutic strategies that could be applied, and discuss their relationship to relevant mitochondrion-related processes and targets. Lastly, we note that although considerable progress has been made in our understanding of I/R injury and mitochondrial dysfunction, further investigation is required to elucidate the cellular and molecular mechanisms underlying these processes, thereby identifying biomarkers that can help in evaluating donor organs.
Collapse
Affiliation(s)
- Rui Miguel Martins
- Department of Surgery, Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - João Soeiro Teodoro
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; and Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Emanuel Furtado
- Unidade de Transplantação Hepática de Crianças e Adultos, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Anabela Pinto Rolo
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; and Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos Marques Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; and Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Guilherme Tralhão
- Department of Surgery A, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Clínica Universitária de Cirurgia III, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; and Center for Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
216
|
Failure of active targeting by a cholesterol-anchored ligand and improvement by altering the lipid composition to prevent ligand desorption. Int J Pharm 2018; 536:42-49. [DOI: 10.1016/j.ijpharm.2017.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/12/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
|
217
|
Xiao YP, Zhang J, Liu YH, Chen XC, Yu QY, Luan CR, Zhang JH, Wei X, Yu XQ. Ring-opening polymerization of diepoxides as an alternative method to overcome PEG dilemma in gene delivery. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.11.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
218
|
YAMANOUCHI T, KATSUYAMA N, HIRUTA Y, AYANO E, KANAZAWA H. Development of Nanocarriers Functionalized with Stimuli-Responsive Polymer for Controlled Cellular Uptake. KOBUNSHI RONBUNSHU 2018. [DOI: 10.1295/koron.2017-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Yuki HIRUTA
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| | - Eri AYANO
- Faculty of Pharmacy, Keio University
| | | |
Collapse
|
219
|
Zhang Y, Xu J. Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzyme-responsive tumour targeting and controlled release. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170986. [PMID: 29410811 PMCID: PMC5792888 DOI: 10.1098/rsos.170986] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 05/21/2023]
Abstract
This paper proposes a novel type of multifunctional envelope-type mesoporous silica nanoparticle (MSN) to achieve cancer cell targeting and drug-controlled release. In this system, MSNs were first modified by active targeting moiety hyaluronic acid (HA) for breast cancer cell targeting and hyaluronidases (Hyal)-induced intracellular drug release. Then gelatin, a proteinaceous biopolymer, was grafted onto the MSNs to form a capping layer via glutaraldehyde-mediated cross-linking. To shield against unspecific uptake of cells and prolong circulation time, the nanoparticles were further decorated with poly(ethylene glycol) polymers (PEG) to obtain MSN@HA-gelatin-PEG (MHGP). Doxorubicin (DOX), as a model drug, was loaded into PEMSN to assess the breast cancer cell targeting and drug release behaviours. In vitro study revealed that PEG chains protect the targeting ligand and shield against normal cells. After reaching the breast cancer cells, MMP-2 overpressed by cells hydrolyses gelatin layer to deshield PEG and switch on the function of HA. As a result, DOX-loaded MHGP was selectively trapped by cancer cells through HA receptor-mediated endocytosis and subsequently release DOX due to Hyal-catalysed degradation of HA. This system presents successful bienzyme-responsive targeting drug delivery in an optimal fashion and provides potential applications for targeted cancer therapy.
Collapse
Affiliation(s)
| | - Juan Xu
- Department of Obstetrics and Gynecology, Tengzhou Central People's Hospital, No. 181 Xingtan Road, Shandong 277599, People's Republic of China
| |
Collapse
|
220
|
Huang Y, Chen Q, Lu H, An J, Zhu H, Yan X, Li W, Gao H. Near-infrared AIEgen-functionalized and diselenide-linked oligo-ethylenimine with self-sufficing ROS to exert spatiotemporal responsibility for promoted gene delivery. J Mater Chem B 2018; 6:6660-6666. [DOI: 10.1039/c8tb02207k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We attempted to synthesize an oligo-ethyleneimine (OEI)-crosslinked polycation, characterized with self-sufficing ROS by virtue of a functional AIE component and an ROS-labile diselenide linkage.
Collapse
Affiliation(s)
- Yongkang Huang
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Qixian Chen
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Hongguang Lu
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Jinxia An
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Huajie Zhu
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Xiangjie Yan
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Wei Li
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Hui Gao
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
221
|
Appelbe OK, Kim BK, Rymut N, Wang J, Kron SJ, Yeo Y. Radiation-enhanced delivery of plasmid DNA to tumors utilizing a novel PEI polyplex. Cancer Gene Ther 2017; 25:196-206. [PMID: 29255216 PMCID: PMC6008165 DOI: 10.1038/s41417-017-0004-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 01/17/2023]
Abstract
The excitement surrounding the potential of gene therapy has been tempered due to the challenges that have thus far limited its successful implementation in the clinic such as issues regarding stability, transfection efficiency, and toxicity. In this study, low molecular weight linear polyethyleneimine (2.5 kDa) was modified by conjugation to a lipid, lithocholic acid, and complexed with a natural polysaccharide, dermatan sulfate (DS), to mask extra cationic charges of the modified polymer. In vitro examination revealed that these modifications improved complex stability with plasmid DNA (pDNA) and transfection efficiency. This novel ternary polyplex (pDNA/3E/DS) was used to investigate if tumor-targeted radiotherapy led to enhanced accumulation and retention of gene therapy vectors in vivo in tumor-bearing mice. Imaging of biodistribution revealed that tumor irradiation led to increased accumulation and retention as well as decreased off-target tissue buildup of pDNA in not only pDNA/3E/DS, but also in associated PEI-based polyplexes and commercial DNA delivery vehicles. The DS-containing complexes developed in this study displayed the greatest increase in tumor-specific pDNA delivery. These findings demonstrate a step forward in nucleic acid vehicle design as well as a promising approach to overall cancer gene therapy through utilization of radiotherapy as a tool for enhanced delivery.
Collapse
Affiliation(s)
- Oliver K Appelbe
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, Chicago, IL, 60637, USA.,Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL, 60637, USA
| | - Bieong-Kil Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - Nick Rymut
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, Chicago, IL, 60637, USA.,Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL, 60637, USA
| | - Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA.,Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Stephen J Kron
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, Chicago, IL, 60637, USA. .,Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL, 60637, USA.
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
222
|
Kurrikoff K, Veiman KL, Künnapuu K, Peets EM, Lehto T, Pärnaste L, Arukuusk P, Langel Ü. Effective in vivo gene delivery with reduced toxicity, achieved by charge and fatty acid -modified cell penetrating peptide. Sci Rep 2017; 7:17056. [PMID: 29213085 PMCID: PMC5719086 DOI: 10.1038/s41598-017-17316-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/22/2017] [Indexed: 11/09/2022] Open
Abstract
Non-viral gene delivery systems have gained considerable attention as a promising alternative to viral delivery to treat diseases associated with aberrant gene expression. However, regardless of extensive research, only a little is known about the parameters that underline in vivo use of the nanoparticle-based delivery vectors. The modest efficacy and low safety of non-viral delivery are the two central issues that need to be addressed. We have previously characterized an efficient cell penetrating peptide, PF14, for in vivo applications. In the current work, we first develop an optimized formulation of PF14/pDNA nanocomplexes, which allows removal of the side-effects without compromising the bioefficacy in vivo. Secondly, based on the physicochemical complex formation studies and biological efficacy assessments, we develop a series of PF14 modifications with altered charge and fatty acid content. We show that with an optimal combination of overall charge and hydrophobicity in the peptide backbone, in vivo gene delivery can be augmented. Further combined with the safe formulation, systemic gene delivery lacking any side effects can be achieved.
Collapse
Affiliation(s)
- Kaido Kurrikoff
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia. .,Institute of Technology, University of Tartu, Tartu, 50411, Estonia.
| | - Kadi-Liis Veiman
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Kadri Künnapuu
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Elin Madli Peets
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Tõnis Lehto
- Department of Neurochemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691, Stockholm, Sweden
| | - Ly Pärnaste
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Piret Arukuusk
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Ülo Langel
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia.,Department of Neurochemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691, Stockholm, Sweden
| |
Collapse
|
223
|
Zhang Y, Yi M, Bao Y, Zhang S. Fabrication of micelles from poly(butylene succinate) and poly(2-methacryloyloxyethyl phosphorylcholine) copolymers as a potential drug carrier. POLYM INT 2017. [DOI: 10.1002/pi.5482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yucheng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an China
| | - Meijun Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an China
| | - Yi Bao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an China
| | - Shiping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an China
| |
Collapse
|
224
|
Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. PLoS One 2017; 12:e0187962. [PMID: 29182626 PMCID: PMC5705116 DOI: 10.1371/journal.pone.0187962] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/10/2017] [Indexed: 01/04/2023] Open
Abstract
Lipid nanoparticles (LNPs) or liposomes are the most widely used drug carriers for nanomedicines. The size of LNPs is one of the essential factors affecting drug delivery efficiency and therapeutic efficiency. Here, we demonstrated the effect of lipid concentration and mixing performance on the LNP size using microfluidic devices with the aim of understanding the LNP formation mechanism and controlling the LNP size precisely. We fabricated microfluidic devices with different depths, 11 μm and 31 μm, of their chaotic micromixer structures. According to the LNP formation behavior results, by using a low concentration of the lipid solution and the microfluidic device equipped with the 31 μm chaotic mixer structures, we were able to produce the smallest-sized LNPs yet with a narrow particle size distribution. We also evaluated the mixing rate of the microfluidic devices using a laser scanning confocal microscopy and we estimated the critical ethanol concentration for controlling the LNP size. The critical ethanol concentration range was estimated to be 60–80% ethanol. Ten nanometer-sized tuning of LNPs was achieved for the optimum residence time at the critical concentration using the microfluidic devices with chaotic mixer structures. The residence times at the critical concentration necessary to control the LNP size were 10, 15–25, and 50 ms time-scales for 30, 40, and 50 nm-sized LNPs, respectively. Finally, we proposed the LNP formation mechanism based on the determined LNP formation behavior and the critical ethanol concentration. The precise size-controlled LNPs produced by the microfluidic devices are expected to become carriers for next generation nanomedicines and they will lead to new and effective approaches for cancer treatment.
Collapse
|
225
|
Hatakeyama H, Wu SY, Lyons YA, Pradeep S, Wang W, Huang Q, Court KA, Liu T, Nie S, Rodriguez-Aguayo C, Shen F, Huang Y, Hisamatsu T, Mitamura T, Jennings N, Shim J, Dorniak PL, Mangala LS, Petrillo M, Petyuk VA, Schepmoes AA, Shukla AK, Torres-Lugo M, Lee JS, Rodland KD, Fagotti A, Lopez-Berestein G, Li C, Sood AK. Role of CTGF in Sensitivity to Hyperthermia in Ovarian and Uterine Cancers. Cell Rep 2017; 17:1621-1631. [PMID: 27806300 DOI: 10.1016/j.celrep.2016.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 09/11/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022] Open
Abstract
Even though hyperthermia is a promising treatment for cancer, the relationship between specific temperatures and clinical benefits and predictors of sensitivity of cancer to hyperthermia is poorly understood. Ovarian and uterine tumors have diverse hyperthermia sensitivities. Integrative analyses of the specific gene signatures and the differences in response to hyperthermia between hyperthermia-sensitive and -resistant cancer cells identified CTGF as a key regulator of sensitivity. CTGF silencing sensitized resistant cells to hyperthermia. CTGF small interfering RNA (siRNA) treatment also sensitized resistant cancers to localized hyperthermia induced by copper sulfide nanoparticles and near-infrared laser in orthotopic ovarian cancer models. CTGF silencing aggravated energy stress induced by hyperthermia and enhanced apoptosis of hyperthermia-resistant cancers.
Collapse
Affiliation(s)
- Hiroto Hatakeyama
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77030, USA
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77030, USA
| | - Yasmin A Lyons
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77030, USA
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77030, USA
| | - Wanqin Wang
- Department of Cancer Systems Imaging, MDACC, Houston, TX 77030, USA
| | - Qian Huang
- Department of Cancer Systems Imaging, MDACC, Houston, TX 77030, USA
| | - Karem A Court
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Mayaguez, PR 00681, Puerto Rico
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Song Nie
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Fangrong Shen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77030, USA
| | - Yan Huang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77030, USA
| | - Takeshi Hisamatsu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77030, USA
| | - Takashi Mitamura
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77030, USA; Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Nicholas Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77030, USA
| | - Jeajun Shim
- Department of Systems Biology, MDACC, Houston, TX 77030, USA
| | - Piotr L Dorniak
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77030, USA
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, MDACC, Houston, TX 77030, USA
| | - Marco Petrillo
- Department of Gynecologic Oncology, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Anil K Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Mayaguez, PR 00681, Puerto Rico
| | - Ju-Seog Lee
- Department of Systems Biology, MDACC, Houston, TX 77030, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Anna Fagotti
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, MDACC, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, MDACC, Houston, TX 77030, USA; Department of Cancer Biology, MDACC, Houston, TX 77030, USA
| | - Chun Li
- Department of Cancer Systems Imaging, MDACC, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, MDACC, Houston, TX 77030, USA; Department of Cancer Biology, MDACC, Houston, TX 77030, USA.
| |
Collapse
|
226
|
Delivery Pathway Regulation of 3',3″-Bis-Peptide-siRNA Conjugate via Nanocarrier Architecture Engineering. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:75-90. [PMID: 29499958 PMCID: PMC5726857 DOI: 10.1016/j.omtn.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/21/2023]
Abstract
Small interfering RNA (siRNA) has been continuously explored for clinical applications. However, neither nanocarriers nor conjugates have been able to remove the obstacles. In this study, we employed a combined nanochemistry strategy to optimize its delivery dilemma, where different interactions and assembly modes were cooperatively introduced into the forming process of siRNA/lipids nanoplexes. In the nanoplexes, the 3',3″-bis-peptide-siRNA conjugate (pp-siRNA) and gemini-like cationic lipids (CLDs) were employed as dual regulators to improve their bio-behavior. We demonstrated that the "cicada pupa"-shaped nanoplexes of MT-pp-siRNA/CLDs (MT represented the mixed two-phase method) exhibited more compact multi-sandwich structure (∼25 layers), controllable size (∼150 nm), and lower zeta potential (∼22 mV) than other comparable nanoplexes and presented an increased siRNA protection and stability. Significantly, the nanoplex was internalized into melanoma cells by almost caveolae-mediated endocytosis and macropinocytosis (∼99.46%), and later reduced/avoided lysosomal degradation. Finally, the nanoplex facilitated the silencing of mRNA of the mutant B-Raf protein (down by ∼60%). In addition, pp-siRNA had a high intracellular sustainability, a significantly prolonged circulating time, and accumulation in tumor tissues in vivo. Our results have demonstrated that the combined approach can improve the intracellular fate of siRNA, which opens up novel avenues for efficient siRNA delivery.
Collapse
|
227
|
Nishimura T, Yamada A, Umezaki K, Sawada SI, Mukai SA, Sasaki Y, Akiyoshi K. Self-Assembled Polypeptide Nanogels with Enzymatically Transformable Surface as a Small Interfering RNA Delivery Platform. Biomacromolecules 2017; 18:3913-3923. [PMID: 29059529 DOI: 10.1021/acs.biomac.7b00937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tomoki Nishimura
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| | - Akina Yamada
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kaori Umezaki
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| | - Shin-ichi Sawada
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| | - Sada-atsu Mukai
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| | - Yoshihiro Sasaki
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
228
|
Krhac Levacic A, Morys S, Wagner E. Solid-phase supported design of carriers for therapeutic nucleic acid delivery. Biosci Rep 2017; 37:BSR20160617. [PMID: 28963371 PMCID: PMC5662914 DOI: 10.1042/bsr20160617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid molecules are important therapeutic agents in the field of antisense oligonucleotide, RNA interference, and gene therapies. Since nucleic acids are not able to cross cell membranes and enter efficiently into cells on their own, the development of efficient, safe, and precise delivery systems is the crucial challenge for development of nucleic acid therapeutics. For the delivery of nucleic acids to their intracellular site of action, either the cytosol or the nucleus, several extracellular and intracellular barriers have to be overcome. Multifunctional carriers may handle the different special requirements of each barrier. The complexity of such macromolecules however poses a new hurdle in medical translation, which is the chemical production in reproducible and well-defined form. Solid-phase assisted synthesis (SPS) presents a solution for this challenge. The current review provides an overview on the design and SPS of precise sequence-defined synthetic carriers for nucleic acid cargos.
Collapse
Affiliation(s)
- Ana Krhac Levacic
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| |
Collapse
|
229
|
Huang Y, Gao Y, Chen T, Xu Y, Lu W, Yu J, Xiao Y, Liu S. Reduction-Triggered Release of CPT from Acid-Degradable Polymeric Prodrug Micelles Bearing Boronate Ester Bonds with Enhanced Cellular Uptake. ACS Biomater Sci Eng 2017; 3:3364-3375. [DOI: 10.1021/acsbiomaterials.7b00618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yushu Huang
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Ya Gao
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Tiandong Chen
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yanyun Xu
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Wei Lu
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Jiahui Yu
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yi Xiao
- Department
of Radiology and Nuclear Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Shiyuan Liu
- Department
of Radiology and Nuclear Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| |
Collapse
|
230
|
Park J, Pei Y, Hyun H, Castanares MA, Collins DS, Yeo Y. Small molecule delivery to solid tumors with chitosan-coated PLGA particles: A lesson learned from comparative imaging. J Control Release 2017; 268:407-415. [PMID: 29111150 DOI: 10.1016/j.jconrel.2017.10.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 01/14/2023]
Abstract
For polymeric nanoparticles (NPs) to deliver more drugs to tumors than free drug solution, it is critical that the NPs establish interactions with tumor cells and avoid removal from the tumors. Since traditional polyethylene glycol (PEG) surface layer interferes with the cell-NP interaction in tumors, we used a water-soluble and blood-compatible chitosan derivative called zwitterionic chitosan (ZWC) as an alternative surface coating for poly(lactic-co-glycolic acid) (PLGA) NPs. The ZWC-coated PLGA NPs showed pH-dependent surface charge profiles and differential cellular interactions according to the pH of the medium. The in vivo delivery of ZWC-coated NPs was evaluated in mice bearing LS174T-xenografts using magnetic resonance (MR) imaging and fluorescence whole body imaging, which respectively tracked iron oxide particles and indocyanine green (ICG) encapsulated in the NPs as tracers. MR imaging showed that ZWC-coated NPs were more persistent in tumors than PEG-coated NPs, in agreement with the in vitro results. However, the fluorescence imaging indicated that the increased NP retention in tumors by the ZWC coating did not significantly affect the ICG distribution in tumors due to the rapid release of the dye. This study shows that stable drug retention in NPs during circulation is a critical prerequisite to successful translation of the potential benefits of surface-engineered NPs.
Collapse
Affiliation(s)
- Jinho Park
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Yihua Pei
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Hyesun Hyun
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Mark A Castanares
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David S Collins
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
231
|
Multifunctional nanoparticles co-delivering EZH2 siRNA and etoposide for synergistic therapy of orthotopic non-small-cell lung tumor. J Control Release 2017; 268:198-211. [PMID: 29061511 DOI: 10.1016/j.jconrel.2017.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/17/2017] [Accepted: 10/14/2017] [Indexed: 12/29/2022]
Abstract
Malignant proliferation and metastasis in non-small cell lung carcinoma (NSCLC) are great challenges for effective clinical treatment through conventional chemotherapy. The combinational therapy strategy of RNA interfering (RNAi) technology and chemotherapeutic agents have been reported to be promising for effective cancer therapy. In this study, based on multifunctional nanoparticles (NPs), the simultaneous delivery of etoposide (ETP) and anti-Enhancer of Zeste Homologue 2 (EZH2) siRNA for the effective treatment of orthotopic lung tumor was achieved. The NPs exhibited pH/redox dual sensitivity verified by particle size changes, morphological changes, and in vitro release of drugs. Confocal microscopy analysis confirmed that the NPs exhibited endosomal escape property and on-demand intracellular drug release behavior, which can protect siRNA from degradation and facilitate the chemotherapeutic effect respectively. In vitro tumor cell motility study demonstrated that EZH2 siRNA loaded in NPs can decrease the migration and invasion capabilities of tumor cells by downregulating the expression of EZH2 mRNA and protein. In particular, an antiproliferation study revealed that the co-delivery of siRNA and ETP in the multifunctional NPs can induce a synergistic therapeutic effect on NSCLC. In vivo targeting evaluation showed that cRGDyC-PEG modification on NPs exhibited a low distribution in normal organs and an obvious accumulation in orthotopic lung tumor. Furthermore, targeted NPs co-delivering siRNA and ETP showed superior inhibition on tumor growth and metastasis and produced minimal systemic toxicity. These findings indicated that multifunctional NPs can be utilized as a co-delivery system, and that the combination of EZH2 siRNA and ETP can effectively treat NSCLC.
Collapse
|
232
|
Jiang Z, Chen Q, Yang X, Chen X, Li Z, Liu DE, Li W, Lei Y, Gao H. Polyplex Micelle with pH-Responsive PEG Detachment and Functional Tetraphenylene Incorporation to Promote Systemic Gene Expression. Bioconjug Chem 2017; 28:2849-2858. [DOI: 10.1021/acs.bioconjchem.7b00557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhu Jiang
- School
of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic
Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Qixian Chen
- School
of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China
| | - Xi Yang
- Department
of Neurosurgery, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | | | | | - De-E Liu
- School
of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic
Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wei Li
- School
of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic
Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yingjie Lei
- School
of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic
Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Hui Gao
- School
of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic
Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
233
|
Morys S, Urnauer S, Spitzweg C, Wagner E. EGFR Targeting and Shielding of pDNA Lipopolyplexes via Bivalent Attachment of a Sequence-Defined PEG Agent. Macromol Biosci 2017; 18. [PMID: 28877405 DOI: 10.1002/mabi.201700203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/18/2017] [Indexed: 12/20/2022]
Abstract
For successful nonviral gene delivery, cationic polymers are promising DNA carrier, which need to comprise several functionalities. The current work focuses on the postincorporation of epidermal growth factor receptor (EGFR) targeted PEGylation agents onto lipopolyplexes for pDNA delivery. T-shaped lipo-oligomers are previously found to be effective sequence-defined carriers for pDNA and siRNA. Here, the bis-oleoyl-oligoaminoethanamide 454 containing tyrosine trimer-cysteine ends is applied for complex formation with pDNA coding for luciferase or sodium iodide symporter (NIS). In a second step, the lipopolyplexes are modified via disulfide formation with sequence-defined monovalent or bivalent PEGylation agents containing one or two 3-nitro-2-pyridinesulfenyl (NPys)-activated cysteines, respectively. For targeting, the polyethylene glycol (PEG) agents comprise the EGFR targeting peptide GE11. In comparison of all transfection complexes, 454 lipopolyplexes modified with the bidentate PEG-GE11 agent show the best, EGFR-dependent uptake as well as luciferase and NIS gene expression into receptor-positive tumor cells.
Collapse
Affiliation(s)
- Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for Nanoscience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for Nanoscience (CeNS), LMU Munich, 81377, Munich, Germany
| |
Collapse
|
234
|
PEGylation of the GALA Peptide Enhances the Lung-Targeting Activity of Nanocarriers That Contain Encapsulated siRNA. J Pharm Sci 2017; 106:2420-2427. [DOI: 10.1016/j.xphs.2017.04.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022]
|
235
|
Guan Y, Lu H, Li W, Zheng Y, Jiang Z, Zou J, Gao H. Near-Infrared Triggered Upconversion Polymeric Nanoparticles Based on Aggregation-Induced Emission and Mitochondria Targeting for Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26731-26739. [PMID: 28745482 DOI: 10.1021/acsami.7b07768] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photodynamic therapy (PDT) is an auspicious strategy for cancer therapy by yielding reactive oxygen species (ROS) under light irradiation. Here, we have developed near-infrared (NIR) triggered polymer encapsulated upconversion nanoparticles (UCNPs) based on aggregation-induced emission (AIE) characteristics and mitochondria target ability for PDT. The coated AIE polymer as a photosensitizer can be photoactivated by the up-converted energy of UCNPs upon 980 nm laser irradiation, which could generate ROS efficiently in mitochondria and induce cell apoptosis. Moreover, a "sheddable" poly(ethylene glycol) (PEG) layer was easily conjugated at the surface of NPs. The pH-responsive PEG layer shields the surface positive charges and shows stronger protein-resistance ability. In the acidic tumor environment, PEGylated NPs lose the PEG layer and show the mitochondria-targeting ability by responding to tumor acidity. A cytotoxicity study indicated that these NPs have good biocompatibility in the dark but exert severe cytotoxicity to cancer cells, with only 10% cell viability, upon being irradiated with an NIR laser. The AIE nanoparticles are a good candidate for effective mitochondria targeting photosensitizer for PDT.
Collapse
Affiliation(s)
- Yue Guan
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| | - Hongguang Lu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| | - Wei Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| | - Yadan Zheng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| | - Zhu Jiang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| | - Jialing Zou
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| | - Hui Gao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| |
Collapse
|
236
|
Shaw SK, Liu W, Brennan SP, de Lourdes Betancourt-Mendiola M, Smith BD. Non-Covalent Assembly Method that Simultaneously Endows a Liposome Surface with Targeting Ligands, Protective PEG Chains, and Deep-Red Fluorescence Reporter Groups. Chemistry 2017; 23:12646-12654. [PMID: 28736857 DOI: 10.1002/chem.201702649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/28/2022]
Abstract
A new self-assembly method is used to rapidly functionalize the surface of liposomes without perturbing the membrane integrity or causing leakage of the aqueous contents. The key molecule is a cholesterol-squaraine-PEG conjugate with three important structural elements: a cholesterol membrane anchor, a fluorescent squaraine docking station that allows rapid and high-affinity macrocycle threading, and a long PEG-2000 chain to provide steric shielding of the decorated liposome. The two-step method involves spontaneous insertion of the conjugate into the outer leaflet of pre-formed liposomes followed by squaraine threading with a tetralactam macrocycle that has appended targeting ligands. A macrocycle with six carboxylates permitted immobilization of intact fluorescent liposomes on the surface of cationic polymer beads, whereas a macrocycle with six zinc(II)-dipicolylamine units enabled selective targeting of anionic membranes, including agglutination of bacteria in the presence of human cells.
Collapse
Affiliation(s)
- Scott K Shaw
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| | - Wenqi Liu
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| | - Seamus P Brennan
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| | | | - Bradley D Smith
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| |
Collapse
|
237
|
Chen J, Ding J, Wang Y, Cheng J, Ji S, Zhuang X, Chen X. Sequentially Responsive Shell-Stacked Nanoparticles for Deep Penetration into Solid Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701170. [PMID: 28632302 DOI: 10.1002/adma.201701170] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/27/2017] [Indexed: 05/20/2023]
Abstract
Nanomedicine to overcome both systemic and tumor tissue barriers ideally should have a transformable size and surface, maintaining a certain size and negative surface charge for prolonged circulation, while reducing to a smaller size and switching to a positive surface charge for efficient penetration to and retention in the interstitial space throughout the tumor tissue. However, the design of such size and charge dual-transformable nanomedicine is rarely reported. Here, the design of a shell-stacked nanoparticle (SNP) is reported, which can undergo remarkable size reduction from about 145 to 40 nm, and surface charge reversal from -7.4 to 8.2 mV at acidic tumor tissue, for enhanced tumor penetration and uptake by cells in deep tumor tissue. The disulfide-cross-linked core maintains the stability of the particle and prevents undesired premature drug release until the shedding of the shell, which accelerates the cleavage of more exposed disulfide bond sand intracellular drug release. SNP penetrates about 1 mm into xenografted A549 lung carcinoma, which is about four times penetration depth of the nontransformable one. The doxorubicin (DOX)-loaded SNP (SNP/DOX) shows significant antitumor efficacy and nearly eradicates the tumor, substantiating the importance of the design of size and charge dual-transformable nanomedicine.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yucai Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shengxiang Ji
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
238
|
Hashiba K, Sato Y, Harashima H. pH-labile PEGylation of siRNA-loaded lipid nanoparticle improves active targeting and gene silencing activity in hepatocytes. J Control Release 2017; 262:239-246. [PMID: 28774839 DOI: 10.1016/j.jconrel.2017.07.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/03/2017] [Accepted: 07/31/2017] [Indexed: 11/17/2022]
Abstract
Lipid nanoparticles (LNPs) are one of the promising technologies for the in vivo delivery of short interfering RNA (siRNA). Modifying LNPs with polyethyleneglycol (PEG) is widely used to inhibit non-specific interactions with serum components in the blood stream, and is a useful strategy for maximizing the efficiency of active targeting. However, it is a widely accepted fact that PEGylation of the LNP surface strongly inhibits fusion between LNPs and endosomal membranes, resulting in poor cytosolic siRNA delivery, a process that is referred to as the 'PEG-dilemma'. In the present study, in an attempt to overcome this problem, siRNA-loaded LNPs were modified with PEG through maleic anhydride, a pH-labile linkage. The in vitro, suppression of cationic charge, stealth function at physiological pH up to 1h and the rapid desorption of PEG and restoration of fusogenic activity under slightly acidic conditions (within only 2min) were achieved by PEG modification of the LNPs through maleic anhydride. In vivo, PEG modification through maleic anhydride resulted in a dramatic improvement in the targeting capability of the active targeting of ligand (N-acetyl-d-galactosamine)-modified LNPs to hepatocytes, with an approximately 14-fold increase in gene silencing activity in factor 7 model mice. Taken together, the maleic anhydride-mediated pH-labile PEGylation of the active targeting LNPs is a useful strategy for achieving the specific and efficient delivery of siRNAs in vivo.
Collapse
Affiliation(s)
- Kazuki Hashiba
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
239
|
Comparison of the pharmacological and biological properties of HPMA copolymer-pirarubicin conjugates: A single-chain copolymer conjugate and its biodegradable tandem-diblock copolymer conjugate. Eur J Pharm Sci 2017; 106:10-19. [DOI: 10.1016/j.ejps.2017.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 01/11/2023]
|
240
|
Li J, Zou S, Gao J, Liang J, Zhou H, Liang L, Wu W. Block copolymer conjugated Au-coated Fe 3O 4 nanoparticles as vectors for enhancing colloidal stability and cellular uptake. J Nanobiotechnology 2017; 15:56. [PMID: 28743275 PMCID: PMC5526242 DOI: 10.1186/s12951-017-0290-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Polymer surface-modified inorganic nanoparticles (NPs) provide a multifunctional platform for assisting gene delivery. Rational structure design for enhancing colloidal stability and cellular uptake is an important strategy in the development of safe and highly efficient gene vectors. RESULTS Heterogeneous Au-coated Fe3O4 (Fe3O4@Au) NPs capped by polyethylene glycol-b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG-b-PAMPImB-Fe3O4@Au) were prepared for DNA loading and magnetofection assays. The Au outer shell of the NPs is an effective platform for maintaining the superparamagnetism of Fe3O4 and for PEG-b-PAMPImB binding via Au-S covalent bonds. By forming an electrostatic complex with DNA at the inner PAMPImB shell, the magnetic nanoplexes offer steric protection from the outer corona PEG, thereby promoting high colloidal stability. Transfection efficiency assays in human esophageal cancer cells (EC109) show that the nanoplexes have high transfection efficiency at a short incubation time in the presence of an external magnetic field, due to increased cellular internalization via magnetic acceleration. Finally, after transfection with the magnetic nanoplexes EC109 cells acquire magnetic properties, thus allowing for selective separation of transfected cells. CONCLUSION Precisely engineered architectures based on neutral-cationic block copolymer-conjugated heterogeneous NPs provide a valuable strategy for improving the applicability and efficacy of synthesized vectors.
Collapse
Affiliation(s)
- Junbo Li
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Sheng Zou
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Jiayu Gao
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Ju Liang
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Huiyun Zhou
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Lijuan Liang
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Wenlan Wu
- School of Medicine, Henan University of Science & Technology, Luo Yang, 471023 China
| |
Collapse
|
241
|
Shim G, Miao W, Ko S, Park GT, Kim JY, Kim MG, Kim YB, Oh YK. Immune-camouflaged graphene oxide nanosheets for negative regulation of phagocytosis by macrophages. J Mater Chem B 2017; 5:6666-6675. [PMID: 32264429 DOI: 10.1039/c7tb00648a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Signal regulatory protein alpha (SIRPα) is highly expressed in macrophages of the reticuloendothelial system and in tumor-associated macrophages, whereas tumor cells express the surface membrane protein, CD47, which interacts with SIRPα to negatively regulate phagocytosis. In this study, we modified the surfaces of graphene oxide (GO) nanosheets with a CD47-like SIRPα-binding peptide (SP). The presence of SP on GO nanosheets reduced the macrophage uptake to a greater extent than the PEGylation of such nanosheets. This reduced uptake was found to be mediated by the activation of Src homology region 2 domain-containing phosphatase 1 (SHP-1) and the downstream inhibition of myosin assembly, which is necessary for phagosome formation. Unlike SP-coated GO nanosheets, PEGylated GO nanosheets did not affect myosin assembly or phagocytosis. After in vivo systemic administration, the clearance of SP-coated GO nanosheets was slower than that of PEGylated GO nanosheets, and this difference increased with repeated administration. Finally, SP-coated GO nanosheets showed a higher distribution to tumor tissues than PEGylated GO nanosheets or a physical mixture of SP and GO nanosheets. Our findings indicate that immune-camouflaged GO nanosheets with natural CD47-like SIRPα-binding molecules can reduce the nonspecific loss of such nanosheets through macrophage uptake, thereby enhancing their blood circulation and tumor delivery after multiple injections.
Collapse
Affiliation(s)
- G Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Gromadzki D, Tzankova V, Kondeva M, Gorinova C, Rychter P, Libera M, Momekov G, Marić M, Momekova D. Amphiphilic core-shell nanoparticles with dimer fatty acid-based aliphatic polyester core and zwitterionic poly(sulfobetaine) shell for controlled delivery of curcumin. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1278217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daniel Gromadzki
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria
| | - Magdalena Kondeva
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria
| | - Cvetelina Gorinova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria
| | - Piotr Rychter
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marcin Libera
- Department of Nanostructured Materials, Centre for Polymer and Carbon Materials of the Polish Academy of Sciences, Zabrze, Poland
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria
| | - Milan Marić
- Department of Chemical Engineering, McGill University, Montreal, Canada
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria
| |
Collapse
|
243
|
Li Y, Hu H, Zhou Q, Ao Y, Xiao C, Wan J, Wan Y, Xu H, Li Z, Yang X. α-Amylase- and Redox-Responsive Nanoparticles for Tumor-Targeted Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19215-19230. [PMID: 28513132 DOI: 10.1021/acsami.7b04066] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Paclitaxel (PTX) is an effective antineoplastic agent and shows potent antitumor activity against a wide spectrum of cancers. Yet, the wide clinical use of PTX is limited by its poor aqueous solubility and the side effects associated with its current therapeutic formulation. To tackle these obstacles, we report, for the first time, α-amylase- and redox-responsive nanoparticles based on hydroxyethyl starch (HES) for the tumor-targeted delivery of PTX. PTX is conjugated onto HES by a redox-sensitive disulfide bond to form HES-SS-PTX, which was confirmed by results from NMR, high-performance liquid chromatography-mass spectrometry, and Fourier transform infrared spectrometry. The HES-SS-PTX conjugates assemble into stable and monodispersed nanoparticles (NPs), as characterized with Dynamic light scattering, transmission electron microscopy, and atomic force microscopy. In blood, α-amylase will degrade the HES shell and thus decrease the size of the HES-SS-PTX NPs, facilitating NP extravasation and penetration into the tumor. A pharmacokinetic study demonstrated that the HES-SS-PTX NPs have a longer half-life than that of the commercial PTX formulation (Taxol). As a consequence, HES-SS-PTX NPs accumulate more in the tumor compared with the extent of Taxol, as shown in an in vivo imaging study. Under reductive conditions, the HES-SS-PTX NPs could disassemble quickly as evidenced by their triggered collapse, burst drug release, and enhanced cytotoxicity against 4T1 tumor cells in the presence of a reducing agent. Collectively, the HES-SS-PTX NPs show improved in vivo antitumor efficacy (63.6 vs 52.4%) and reduced toxicity in 4T1 tumor-bearing mice compared with those of Taxol. These results highlight the advantages of HES-based α-amylase- and redox-responsive NPs, showing their great clinical translation potential for cancer chemotherapy.
Collapse
Affiliation(s)
- Yihui Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Hang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Qing Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Yanxiao Ao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Huibi Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
- Wuhan Institute of Biotechnology , High Tech Road 666, East Lake High Tech Zone, Wuhan, 430040, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| |
Collapse
|
244
|
Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 2017; 115:115-154. [PMID: 28778715 DOI: 10.1016/j.addr.2017.07.021] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy represents a promising cancer treatment featuring high efficacy and limited side effects, but it is stymied by a lack of safe and efficient gene-delivery vectors. Cationic polymers and lipid-based nonviral gene vectors have many advantages and have been extensively explored for cancer gene delivery, but their low gene-expression efficiencies relative to viral vectors limit their clinical translations. Great efforts have thus been devoted to developing new carrier materials and fabricating functional vectors aimed at improving gene expression, but the overall efficiencies are still more or less at the same level. This review analyzes the cancer gene-delivery cascade and the barriers, the needed nanoproperties and the current strategies for overcoming these barriers, and outlines PEGylation, surface-charge, size, and stability dilemmas in vector nanoproperties to efficiently accomplish the cancer gene-delivery cascade. Stability, surface, and size transitions (3S Transitions) are proposed to resolve those dilemmas and strategies to realize these transitions are comprehensively summarized. The review concludes with a discussion of the future research directions to design high-performance nonviral gene vectors.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Yue Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Zhen Zhang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuefei Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Key Lab of Polymer Ecomaterials, Changchun, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
| |
Collapse
|
245
|
Liu Y, Xu CF, Iqbal S, Yang XZ, Wang J. Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Adv Drug Deliv Rev 2017; 115:98-114. [PMID: 28396204 DOI: 10.1016/j.addr.2017.03.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022]
Abstract
Cascades of systemic and intracellular obstacles, including low stability in blood, little tumor accumulation, weak tumor penetration, poor cellular uptake, inefficient endosomal escape and deficient disassembly in the cytoplasm, must be overcome in order to deliver nucleic acid drugs for cancer therapy. Nanocarriers that are sensitive to a variety of physiological stimuli, such as pH, redox status, and cell enzymes, are substantially changing the landscape of nucleic acid drug delivery by helping to overcome cascaded systemic and intracellular barriers. This review discusses nucleic acid-based therapeutics, systemic and intracellular barriers to efficient nucleic acid delivery, and nanocarriers responsive to extracellular and intracellular biological stimuli to overcome individual barriers. In particular, responsive nanocarriers for the cascaded delivery of nucleic acids in vivo are highlighted. Developing novel cascaded nanocarriers that transform their physicochemical properties in response to various stimuli in a timely and spatially controlled manner for nucleic acid drug delivery holds great potential for translating the promise of nucleic acid drugs and achieving clinically successful cancer therapy.
Collapse
|
246
|
Xu Y, Zhong X, Zhang X, Lv W, Yu J, Xiao Y, Liu S, Huang J. Preparation of intravenous injection nanoformulation via co-assemble between cholesterylated gemcitabine and cholesterylated mPEG: enhanced cellular uptake and intracellular drug controlled release. J Microencapsul 2017; 34:185-194. [PMID: 28378597 DOI: 10.1080/02652048.2017.1316323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The objective of this study was to prepare the CHS-mPEG/CHS-dFdC nanoformulation could be administrated through intravenous injection in nude mice. Particularly, CHS-mPEG was selected to co-assemble with CHS-dFdC to improve the prodrug concentration and enhance the stability of nanoformulation. The nanoformulation could be prepared by codissolution-coprecipitation. All of the nanoformulations kept stable in PBS at 4 °C or simulative human plasma at 37 °C. As molar ratios of CHS-mPEG1900/CHS-dFdC increased from 0.1/1 to 2/1, the weight concentration of CHS-dFdC increased from 2.5 to 15 mg/mL. It was found the optimal CHS-mPEG1900/CHS-dFdC nanoformulation displayed controlled drug release in simulative lysosome condition. The amount of released dFdC reached up to 90% within 10 h. It also exhibited enhanced cellular uptake ability, 7-folds higher than that of dFdC during 2.5 h incubation. And it showed superior cytotoxicity resulted from the enhanced cellular uptake ability on BxPC-3 cells.
Collapse
Affiliation(s)
- Yanyun Xu
- a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , PR China
| | - Xin Zhong
- a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , PR China
| | - Xiongwen Zhang
- a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , PR China
| | - Wei Lv
- a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , PR China
| | - Jiahui Yu
- a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , PR China
| | - Yi Xiao
- b Department of Radiology and Nuclear Medicine , Changzheng Hospital, The Second Millitary Medical University , Shanghai , PR China
| | - Shiyuan Liu
- b Department of Radiology and Nuclear Medicine , Changzheng Hospital, The Second Millitary Medical University , Shanghai , PR China
| | - Jin Huang
- c School of Chemistry and Chemical Engineering , Southwest University , Chongqing , PR China
| |
Collapse
|
247
|
Guo Z, Chen J, Lin L, Guan X, Sun P, Chen M, Tian H, Chen X. pH Triggered Size Increasing Gene Carrier for Efficient Tumor Accumulation and Excellent Antitumor Effect. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15297-15306. [PMID: 28425284 DOI: 10.1021/acsami.7b02734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High efficiency and serum resistant capacity are important for gene carrier in vivo usage. In this study, transfection efficiency and cell toxicity of polyethylenimine (PEI) (branched, Mw = 25K) was remarkably improved, when mixed with polyanion (polyethylene glycol-polyglutamic acid (PEG-PLG) or polyglutamic acid (PLG)). Different composite orders of PEI, polyanion, and gene, for example, PEI is first complexed with DNA, and then with polyanion, or PEI is first complexed with polyanion, and then with DNA, were studied. Results showed that only the polyanion/PEI complexes exhibited additional properties, such as decreased pH, resulting in increased particle size, as well as enhanced serum resistance capability and improved tumor accumulation. The prepared gene carrier showed excellent antitumor effect, with no damage on major organs, which is suitable for in vivo gene antitumor therapy.
Collapse
Affiliation(s)
- Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macao 999078, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Xiuwen Guan
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Pingjie Sun
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macao 999078, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| |
Collapse
|
248
|
Wang G, Gao X, Gu G, Shao Z, Li M, Wang P, Yang J, Cai X, Li Y. Polyethylene glycol-poly(ε-benzyloxycarbonyl-l-lysine)-conjugated VEGF siRNA for antiangiogenic gene therapy in hepatocellular carcinoma. Int J Nanomedicine 2017; 12:3591-3603. [PMID: 28533682 PMCID: PMC5431695 DOI: 10.2147/ijn.s131078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A polyethylene glycol-poly(ε-benzyloxycarbonyl-l-lysine) (PEG-SS-PLL) block copolymer based on a disulfide-linked, novel biodegradable catiomer bearing a PEG-sheddable shell was developed to avoid "PEG dilemma" in nanoparticle intracellular tracking of PEG-PLL where PEG was nondegradable. However, PEG-SS-PLL catiomers have not been used to deliver small interfering VEGF RNA (siVEGF) in antiangiogenesis gene therapy. In this study, we aimed to investigate whether this novel biodegradable catiomer can deliver siVEGF into cancer cells and at the same time have an antitumor effect in a xenograft mouse model. It was found that PEG-SS-PLL efficiently delivered siVEGF with negligible cytotoxicity, and significantly decreased the expression of VEGF at both the messenger-RNA and protein levels both in vitro and in vivo, and thus tumor growth was inhibited. Our findings demonstrated that PEG-SS-PLL/siVEGF could potentially be applied to antiangiogenesis gene therapy for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Gangmin Wang
- Department of Urology, Huashan Hospital, Fudan University
| | - XiaoLong Gao
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai
| | - GuoJun Gu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai
| | - ZhiHong Shao
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai
| | - MingHua Li
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai
| | - PeiJun Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai
| | - JianRong Yang
- Department of Hepatobiliary Surgery, Third People's Hospital of Guangxi Zhuang Autonomous Region, Nanning
| | - XiaoJun Cai
- Institute for Advanced Materials and Nano Biomedicine, School of Material Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - YongYong Li
- Institute for Advanced Materials and Nano Biomedicine, School of Material Science and Engineering, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
249
|
Zhu W, Liang S, Wang J, Yang Z, Zhang L, Yuan T, Xu Z, Xu H, Li P. Europium-phenolic network coated BaGdF 5 nanocomposites for tri-modal computed tomography/magnetic resonance/luminescence imaging. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:74. [PMID: 28361281 DOI: 10.1007/s10856-017-5888-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
Multifunctional nanocomposites based on BaGdF5 nanoparticles (NPs) and metal phenolic network (MPN) have been engineered as novel contrast agents for potential applications in X-ray computed tomography, magnetic resonance and luminescence imaging. The BaGdF5@MPN nanocomposites were synthesized at room temperature by coating BaGdF5 NPs with europium-phenolic network, which was obtained by the coordination of europium (III) with tannic acid (TA). The in vitro cytotoxicity assays against HepG2 cells revealed that the BaGdF5@MPN nanocomposites presented better cytocompatibility and lower cytotoxity than pure BaGdF5 NPs. In addition, vivid red and green luminescence can be observed by confocal laser scanning microscope (CLSM) from the BaGdF5@MPN nanocomposites laden HepG2 cells under the excitation of UV (390 nm) and visible light (440 nm), respectively. The longitudinal relaxivity value (r1) of the nanocomposites was 2.457 mM-1s-1. Moreover, the nanocomoposites exhibited X-ray computed tomography (CT) and T1-weighted magnetic resonance (MR) imaging capacities, and the intensities of the enhanced signals of in vitro CT and MR images were proportional to the concentrations of the nanocomposites. These results indicated that the as-prepared BaGdF5@MPN nanocomposites are promising contrast agents for CT/MR/luminescence imaging.
Collapse
Affiliation(s)
- Wei Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei, 430062, China
| | - Shuang Liang
- Department of Radiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhe Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei, 430062, China
| | - Li Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei, 430062, China
| | - Tianmeng Yuan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei, 430062, China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei, 430062, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
250
|
Li G, Song YZ, Huang ZJ, Chen K, Chen DW, Deng YH. Novel, nano-sized, liposome-encapsulated polyamidoamine dendrimer derivatives facilitate tumour targeting by overcoming the polyethylene glycol dilemma and integrin saturation obstacle. J Drug Target 2017; 25:734-746. [PMID: 28452577 DOI: 10.1080/1061186x.2017.1324860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drug delivery systems (DDSs) commonly employ arginine-glycine-aspartic acid (RGD) peptides with polyethylene glycol (PEG)-dependent enhanced permeability and retention (EPR) effect to optimise tumour-targeting. However, the PEG dilemma and integrin saturation obstacle are major challenges. To address these issues, we constructed a novel, nano-sized DDS by encapsulating doxorubicin (DOX)-loaded folic acid derivatives of polyamidoamine dendrimer (PAMAM G5.0) in cyclic RGD-tyrosine-lysine pentapeptide (c[RGDyK])-modified liposomes (RGD-SL[FND/DOX]), prepared using thin-film hydration, film-dispersion and hydration-sonication. The liposomes were PEGylated, sterically stabilised and pH-sensitive. In vitro, RGD-SL[FND/DOX] showed pH-sensitive holistic FND/DOX release, and pH-dependent uptake and cytotoxicity in human cancer KB cells. At pH 7.4, RGD-SL[FND/DOX] demonstrated greater cellular uptake and cytotoxicity than relevant control formulations (except FND/DOX) did, although this advantage disappeared at pH 6.5. In vivo, RGD-SL[FND/DOX] inhibited S180 sarcoma xenografted tumour growth in Kunming mice more effectively than FND/DOX did. These findings demonstrate the feasibility of constructing double-stage tumour-targeting nano-sized DDSs such as RGD-SL[FND/DOX]. c[RGDyK] and the EPR effect, facilitated by the particle size (about 110 nm) and PEGylation, helped to target the DDS to the tumour tissue, while the subsequent pH-dependent release of FND/DOX and folic acid-mediated endocytosis specifically targeted the tumour cells, thereby overcoming the PEG dilemma and integrin saturation obstacle.
Collapse
Affiliation(s)
- Gang Li
- a College of Pharmacy , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Yan-Zhi Song
- a College of Pharmacy , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Zhen-Jun Huang
- a College of Pharmacy , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Kang Chen
- a College of Pharmacy , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Da-Wei Chen
- a College of Pharmacy , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Yi-Hui Deng
- a College of Pharmacy , Shenyang Pharmaceutical University , Shenyang , PR China
| |
Collapse
|