201
|
Liao N, Zhang Z, Liu X, Wang J, Hu R, Xiao L, Yang Y, Lai Y, Zhu H, Li L, Liu S, Wang H, Hu T. A chromosomal microarray analysis-based laboratory algorithm for the detection of genetic etiology of early pregnancy loss. Front Genet 2023; 14:1203891. [PMID: 37470043 PMCID: PMC10352453 DOI: 10.3389/fgene.2023.1203891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Background: Chromosomal abnormalities are a major cause of early pregnancy loss. However, models synthesizing existing genetic technologies to improve pregnancy outcomes are lacking. We aim to provide an integrated laboratory algorithm for the genetic etiology of couples who experienced pregnancy loss. Methods: Over a 6-year period, 3,634 products of conception (POCs) following early pregnancy loss were collected. The clinical outcomes from a laboratory algorithm based on single nucleotide polymorphism (SNP) array, fluorescence in situ hybridization (FISH), and parental chromosomal karyotyping assays were comprehensively evaluated. Results: In total, 3,445 of 3,634 (94.8%) POCs had no maternal-cell contamination. Of those POCs, the detection rate of abnormal results was 65.2% (2,247/3,445), of which 91.2% (2,050/2,247) had numerical chromosomal abnormalities, 2.7% (60/2,247) had copy-number variations (CNVs) ≥10 Mb, 2.7% (61/2,247) had CNVs of terminal deletion and duplication, 2.8% (62/2,247) had CNVs <10 Mb, and 0.6% (14/2,247) had uniparental disomy. Furthermore, FISH confirmed 7 of the 60 POCs with mosaic aneuploids below 30% based on the SNP array results as tetraploid. Of the 52 POCs with CNVs of terminal deletion and duplication, 29 couples had balanced rearrangements based on chromosomal karyotyping. Conclusion: The integrated SNP array-based algorithm combined with optional FISH and parental chromosomal karyotyping is an effective laboratory testing strategy, providing a comprehensive and reliable genetic investigation for the etiology of miscarriage, regardless of the number of miscarriages and the method of conception.
Collapse
Affiliation(s)
- Na Liao
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhu Zhang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xijing Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jiamin Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Rui Hu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Like Xiao
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yunyuan Yang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yi Lai
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hongmei Zhu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Lingping Li
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - He Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ting Hu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
202
|
Abstract
The rural areas have been at the receiving end amidst mental health disparity across the USA. There is a serious and concerning divide among ones with autism spectrum disorders (ASDs) living in underserved areas as compared to urban residents. With the higher than ever prevalence of ASD as per the recent reports of the Centers for Disease Control and Prevention; there is a need for a closer look at the prevailing issues. The trends are reflecting marked underdiagnosis, late diagnosis, lack of evidence-based diagnostic measures and interventions. These factors interplay in worsening the mental health crisis and there is an urgent need for corrective measures to address these highly modifiable problems.
Collapse
Affiliation(s)
| | - Nihit Gupta
- Reynolds Memorial Hospital, West Virginia University, Glen Dale, WV, USA
| | | |
Collapse
|
203
|
Gerik-Celebi HB, Aydin H, Bolat H, Unsel-Bolat G. Clinical and Genetic Characteristics of Patients with Unexplained Intellectual Disability/Developmental Delay without Epilepsy. Mol Syndromol 2023; 14:208-218. [PMID: 37323201 PMCID: PMC10267527 DOI: 10.1159/000529018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Global developmental delay (DD), intellectual disability (ID), and autism spectrum disorder (ASD) are mainly evaluated under the neurodevelopmental disorder framework. In this study, we aimed to determine the genetic diagnosis yield using step-by-step genetic analysis in 38 patients with unexplained ID/DD and/or ASD. Methods In 38 cases (27 male, 11 female) with unexplained ID/DD and/or ASD, chromosomal microarray (CMA) analysis, clinical exome sequencing (CES), and whole-exome sequencing (WES) analysis were applied, respectively. Results We found a diagnostic rate of only CMA analysis as 21% (8/38) presenting 8 pathogenic and likely pathogenic CNVs. The rate of patients diagnosed with CES/WES methods was 32.2% (10/31). When all pathogenic and likely pathogenic variants were evaluated, the diagnosis rate was 44.7% (17/38). A dual diagnosis was obtained in a case with 16p11.2 microduplication and de novo SNV. We identified eight novel variants: TUBA1A (c.787C>G), TMEM63A (c.334-2A>G), YY1AP1 (c.2051_2052del), ABCA13 (c.12064C>T), ABCA13 (c.13187G>A), USP9X (c.1189T>C), ANKRD17 (c.328_330dup), and GRIA4 (c.17G>A). Conclusion We present diagnostic rates of a complementary approach to genetic analysis (CMA, CES, and WES). The combined use of genetic analysis methods in unexplained ID/DD and/or ASD cases has contributed significantly to diagnosis rates. Also, we present detailed clinical characteristics to improve genotype-phenotype correlation in the literature for rare and novel variants.
Collapse
Affiliation(s)
| | - Hilal Aydin
- Department of Pediatrics, Division of Child Neurology, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Hilmi Bolat
- Department of Medical Genetics, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Gul Unsel-Bolat
- Department of Child and Adolescent Psychiatry, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| |
Collapse
|
204
|
Sack LM, Mertens L, Murphy E, Hutchinson L, Giersch ABS, Mason-Suares H. Leveraging Unique Chromosomal Microarray Probes to Accurately Detect Copy Number at the Highly Homologous 15q15.3 Deafness-Infertility Syndrome Locus. Clin Chem 2023; 69:583-594. [PMID: 37022747 DOI: 10.1093/clinchem/hvad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/27/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Biallelic deletions at 15q15.3, including STRC and CATSPER2, cause autosomal recessive deafness-infertility syndrome (DIS), while biallelic deletions of STRC alone cause nonsyndromic hearing loss. These deletions are among the leading genetic causes of mild-moderate hearing loss, but their detection using chromosomal microarray (CMA) is impeded by a tandem duplication containing highly homologous pseudogenes. We sought to assess copy number variant (CNV) detection in this region by a commonly-employed CMA platform. METHODS Twenty-two specimens with known 15q15.3 CNVs, determined by droplet digital PCR (ddPCR), were analyzed by CMA. To investigate the impact of pseudogene homology on CMA performance, a probe-level analysis of homology was performed, and log2 ratios of unique and pseudogene-homologous probes compared. RESULTS Assessment of 15q15.3 CNVs by CMA compared to ddPCR revealed 40.9% concordance, with frequent mis-assignment of zygosity by the CMA automated calling software. Probe-level analysis of pseudogene homology suggested that probes with high homology contributed to this discordance, with significant differences in log2 ratios between unique and pseudogene-homologous CMA probes. Two clusters containing several unique probes could reliably detect CNVs involving STRC and CATSPER2, despite the noise of surrounding probes, discriminating between homozygous vs heterozygous losses and complex rearrangements. CNV detection by these probe clusters showed 100% concordance with ddPCR. CONCLUSIONS Manual analysis of clusters containing unique CMA probes without significant pseudogene homology improves CNV detection and zygosity assignment in the highly homologous DIS region. Incorporation of this method into CMA analysis and reporting processes can improve DIS diagnosis and carrier detection.
Collapse
Affiliation(s)
- Laura M Sack
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Laboratory for Molecular Medicine, Mass General Brigham, Cambridge, MA, USA
| | - Lauren Mertens
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Elissa Murphy
- Laboratory for Molecular Medicine, Mass General Brigham, Cambridge, MA, USA
| | - Laura Hutchinson
- Laboratory for Molecular Medicine, Mass General Brigham, Cambridge, MA, USA
| | - Anne B S Giersch
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Heather Mason-Suares
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Laboratory for Molecular Medicine, Mass General Brigham, Cambridge, MA, USA
| |
Collapse
|
205
|
Ravel JM, Renaud M, Muller J, Becker A, Renard É, Remen T, Lefort G, Dexheimer M, Jonveaux P, Leheup B, Bonnet C, Lambert L. Clinical utility of periodic reinterpretation of CNVs of uncertain significance: an 8-year retrospective study. Genome Med 2023; 15:39. [PMID: 37221613 DOI: 10.1186/s13073-023-01191-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Array-CGH is the first-tier genetic test both in pre- and postnatal developmental disorders worldwide. Variants of uncertain significance (VUS) represent around 10~15% of reported copy number variants (CNVs). Even though VUS reanalysis has become usual in practice, no long-term study regarding CNV reinterpretation has been reported. METHODS This retrospective study examined 1641 CGH arrays performed over 8 years (2010-2017) to demonstrate the contribution of periodically re-analyzing CNVs of uncertain significance. CNVs were classified using AnnotSV on the one hand and manually curated on the other hand. The classification was based on the 2020 American College of Medical Genetics (ACMG) criteria. RESULTS Of the 1641 array-CGH analyzed, 259 (15.7%) showed at least one CNV initially reported as of uncertain significance. After reinterpretation, 106 of the 259 patients (40.9%) changed categories, and 12 of 259 (4.6%) had a VUS reclassified to likely pathogenic or pathogenic. Six were predisposing factors for neurodevelopmental disorder/autism spectrum disorder (ASD). CNV type (gain or loss) does not seem to impact the reclassification rate, unlike the length of the CNV: 75% of CNVs downgraded to benign or likely benign are less than 500 kb in size. CONCLUSIONS This study's high rate of reinterpretation suggests that CNV interpretation has rapidly evolved since 2010, thanks to the continuous enrichment of available databases. The reinterpreted CNV explained the phenotype for ten patients, leading to optimal genetic counseling. These findings suggest that CNVs should be reinterpreted at least every 2 years.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Service de génétique médicale, CHRU de Nancy, Nancy, France
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
- Université de Lorraine, NGERE, F-54000Nancy, Inserm, France
| | - Mathilde Renaud
- Service de génétique médicale, CHRU de Nancy, Nancy, France
- Université de Lorraine, NGERE, F-54000Nancy, Inserm, France
| | - Jean Muller
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg Faculté de Médecine de Strasbourg, 67000, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Aurélie Becker
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Émeline Renard
- Department of pediatrics, Regional University Hospital of Nancy, Allée du Morvan, 54511, Vandoeuvre-Lès-Nancy, France
| | | | | | | | | | - Bruno Leheup
- Service de génétique médicale, CHRU de Nancy, Nancy, France
- Université de Lorraine, NGERE, F-54000Nancy, Inserm, France
| | - Céline Bonnet
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France.
- Université de Lorraine, NGERE, F-54000Nancy, Inserm, France.
| | - Laëtitia Lambert
- Service de génétique médicale, CHRU de Nancy, Nancy, France.
- Université de Lorraine, NGERE, F-54000Nancy, Inserm, France.
| |
Collapse
|
206
|
Donnelly N, Cunningham A, Salas SM, Bracher-Smith M, Chawner S, Stochl J, Ford T, Raymond FL, Escott-Price V, van den Bree MBM. Identifying the neurodevelopmental and psychiatric signatures of genomic disorders associated with intellectual disability: a machine learning approach. Mol Autism 2023; 14:19. [PMID: 37221545 PMCID: PMC10207854 DOI: 10.1186/s13229-023-00549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/16/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Genomic conditions can be associated with developmental delay, intellectual disability, autism spectrum disorder, and physical and mental health symptoms. They are individually rare and highly variable in presentation, which limits the use of standard clinical guidelines for diagnosis and treatment. A simple screening tool to identify young people with genomic conditions associated with neurodevelopmental disorders (ND-GCs) who could benefit from further support would be of considerable value. We used machine learning approaches to address this question. METHOD A total of 493 individuals were included: 389 with a ND-GC, mean age = 9.01, 66% male) and 104 siblings without known genomic conditions (controls, mean age = 10.23, 53% male). Primary carers completed assessments of behavioural, neurodevelopmental and psychiatric symptoms and physical health and development. Machine learning techniques (penalised logistic regression, random forests, support vector machines and artificial neural networks) were used to develop classifiers of ND-GC status and identified limited sets of variables that gave the best classification performance. Exploratory graph analysis was used to understand associations within the final variable set. RESULTS All machine learning methods identified variable sets giving high classification accuracy (AUROC between 0.883 and 0.915). We identified a subset of 30 variables best discriminating between individuals with ND-GCs and controls which formed 5 dimensions: conduct, separation anxiety, situational anxiety, communication and motor development. LIMITATIONS This study used cross-sectional data from a cohort study which was imbalanced with respect to ND-GC status. Our model requires validation in independent datasets and with longitudinal follow-up data for validation before clinical application. CONCLUSIONS In this study, we developed models that identified a compact set of psychiatric and physical health measures that differentiate individuals with a ND-GC from controls and highlight higher-order structure within these measures. This work is a step towards developing a screening instrument to identify young people with ND-GCs who might benefit from further specialist assessment.
Collapse
Affiliation(s)
- Nicholas Donnelly
- Centre for Academic Mental Health, Population Health Sciences, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Adam Cunningham
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Sergio Marco Salas
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Matthew Bracher-Smith
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Samuel Chawner
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Jan Stochl
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Kinanthropology, Charles University, Prague, Czechia
| | - Tamsin Ford
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - F Lucy Raymond
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Valentina Escott-Price
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Marianne B M van den Bree
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
207
|
Yu L, Ding H, Liu M, Liu L, Zhang Q, Lu J, Guo F, Zhang Y. A novel 1p13.2 deletion associates with neurodevelopmental disorders in a three-generation pedigree. BMC Med Genomics 2023; 16:114. [PMID: 37221554 DOI: 10.1186/s12920-023-01534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND A multitude of studies have highlighted that copy number variants (CNVs) are associated with neurodevelopmental disorders (NDDs) characterized by a wide range of clinical characteristics. Benefiting from CNV calling from WES data, WES has emerged as a more powerful and cost-effective molecular diagnostic tool, which has been widely used for the diagnosis of genetic diseases, especially NDDs. To our knowledge, isolated deletions on chromosome 1p13.2 are rare. To date, only a few patients were reported with 1p13.2 deletions and most of them were sporadic. Besides, the correlation between 1p13.2 deletions and NDDs remained unclear. CASE PRESENTATION Here, we first reported five members in a three-generation Chinese family who presented with NDDs and carried a novel 1.41 Mb heterozygous 1p13.2 deletion with precise breakpoints. The diagnostic deletion contained 12 protein-coding genes and was observed to segregate with NDDs among the members of our reported family. Whether those genes contribute to the patient's phenotypes is still inconclusive. CONCLUSIONS We hypothesized that the NDD phenotype of our patients was caused by the diagnostic 1p13.2 deletion. However, further in-depth functional experiments are still needed to establish a 1p13.2 deletion-NDDs relationship. Our study might supplement the spectrum of 1p13.2 deletion-NDDs.
Collapse
Affiliation(s)
- Lihua Yu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Hongke Ding
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Min Liu
- Prenatal diagnostic center, Huizhou No2 Maternal and Children's Healthcare Hospital, Huizhou, China
| | - Ling Liu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Qi Zhang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Jian Lu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Fangfang Guo
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Yan Zhang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
208
|
Zhou M, Zhang YM, Li T. Knowledge, attitudes and experiences of genetic testing for autism spectrum disorders among caregivers, patients, and health providers: A systematic review. World J Psychiatry 2023; 13:247-261. [PMID: 37303934 PMCID: PMC10251355 DOI: 10.5498/wjp.v13.i5.247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Several genetic testing techniques have been recommended as a first-tier diagnostic tool in clinical practice for diagnosing autism spectrum disorder (ASD). However, the actual usage rate varies dramatically. This is due to various reasons, including knowledge and attitudes of caregivers, patients, and health providers toward genetic testing. Several studies have therefore been conducted worldwide to investigate the knowledge, experiences, and attitudes toward genetic testing among caregivers of children with ASD, adolescent and adult ASD patients, and health providers who provide medical services for them. However, no systematic review has been done.
AIM To systematically review research on knowledge, experiences, and attitudes towards genetic testing among caregivers of children with ASD, adolescent and adult ASD patients, and health providers.
METHODS We followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines and searched the literature in three English language databases (PubMed, Web of Science, and PsychInfo) and two Chinese databases (CNKI and Wanfang). Searched literature was screened independently by two reviewers and discussed when inconsistency existed. Information on characteristics of the study, characteristics of participants, and main findings regarding knowledge, experience, and attitudes of caregivers of children with ASD, adolescent and adult ASD patients, and health providers concerning ASD genetic testing were extracted from included papers into a charting form for analysis.
RESULTS We included 30 studies published between 2012 and 2022 and conducted in 9 countries. Most of the studies (n = 29) investigated caregivers of children with ASD, one study also included adolescent and adult patients, and two covered health providers. Most (51.0%-100%) of the caregivers/patients knew there was a genetic cause for ASD and 17.0% to 78.1% were aware of ASD genetic testing. However, they lacked full understanding of genetic testing. They acquired relevant and necessary information from physicians, the internet, ASD organizations, and other caregivers. Between 9.1% to 72.7% of caregivers in different studies were referred for genetic testing, and between 17.4% to 61.7% actually obtained genetic testing. Most caregivers agreed there are potential benefits following genetic testing, including benefits for children, families, and others. However, two studies compared perceived pre-test and post-test benefits with conflicting findings. Caregivers concerns included high costs, unhelpful results, negative influences (e.g., causing family conflicts, causing stress/risk/pain to children etc.) prevented some caregivers from using genetic testing. Nevertheless, 46.7% to 95.0% caregivers without previous genetic testing experience intended to obtain it in the future, and 50.5% to 59.6% of parents previously obtaining genetic testing would recommend it to other parents. In a single study of child and adolescent psychiatrists, 54.9% of respondents had ordered ASD genetic testing for their patients in the prior 12 mo, which was associated with greater knowledge of genetic testing.
CONCLUSION Most caregivers are willing to learn about and use genetic testing. However, the review showed their current knowledge is limited and usage rates varied widely in different studies.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang Province, China
| | - Ya-Min Zhang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang Province, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 310013, Zhejiang Province, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310013, Zhejiang Province, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang Province, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 310013, Zhejiang Province, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310013, Zhejiang Province, China
| |
Collapse
|
209
|
Vara A, Smith JL, Hashmi SS, Wagner VF, Gunther K, Rodriguez-Buritica DF. Frequency of Sex Chromosome Involvement in a Large Cohort of Subjects with Two Copy Number Variants. Cytogenet Genome Res 2023; 162:599-608. [PMID: 37231787 DOI: 10.1159/000531096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Copy number variants (CNVs) are a common finding in the clinical setting and contribute to both genetic variation and disease. Studies have described the accumulation of multiple CNVs as a disease-modifying mechanism. While it has been described how additional CNVs may play a role in phenotype, in which ways and to what extent sex chromosomes are involved in dual CNV scenario has not been fully defined. To describe the distribution of CNVs, a secondary data analysis using the DECIPHER database on 2,273 de-identified individuals with two CNVs was performed. CNVs were designated larger and secondary based on size and characteristics. We found that the X chromosome was observed to be the most common chromosome involved in secondary CNVs. Further analysis showed CNVs on the sex chromosome have significant differences compared to autosomes when comparing median size (p = 0.013), pathogenicity groups (p < 0.001), and variant classification (p = 0.001). Lastly, we identified chromosome combinations for larger and secondary CNVs and observed the plurality of secondary CNVs fell in the same chromosome as the larger. The observations of this study provide additional information on sex chromosome CNV involvement in a variety of indications.
Collapse
Affiliation(s)
- Autumn Vara
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Janice L Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - S Shahrukh Hashmi
- Division of Medical Genetic, Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Victoria F Wagner
- Division of Medical Genetic, Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
- Clinical Operations, Color Health Inc., Burlingame, California, USA
| | - Kathryn Gunther
- Division of Medical Genetic, Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - David F Rodriguez-Buritica
- Division of Medical Genetic, Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| |
Collapse
|
210
|
Baine-Savanhu F, Macaulay S, Louw N, Bollweg A, Flynn K, Molatoli M, Nevondwe P, Seymour H, Carstens N, Krause A, Lombard Z. Identifying the genetic causes of developmental disorders and intellectual disability in Africa: a systematic literature review. Front Genet 2023; 14:1137922. [PMID: 37234869 PMCID: PMC10208355 DOI: 10.3389/fgene.2023.1137922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Objective: Genetic variants cause a significant portion of developmental disorders and intellectual disabilities (DD/ID), but clinical and genetic heterogeneity makes identification challenging. Compounding the issue is a lack of ethnic diversity in studies into the genetic aetiology of DD/ID, with a dearth of data from Africa. This systematic review aimed to comprehensively describe the current knowledge from the African continent on this topic. Method: Applicable literature published up until July 2021 was retrieved from PubMed, Scopus and Web of Science databases, following PRISMA guidelines, focusing on original research reports on DD/ID where African patients were the focus of the study. The quality of the dataset was assessed using appraisal tools from the Joanna Briggs Institute, whereafter metadata was extracted for analysis. Results: A total of 3,803 publications were extracted and screened. After duplicate removal, title, abstract and full paper screening, 287 publications were deemed appropriate for inclusion. Of the papers analysed, a large disparity was seen between work emanating from North Africa compared to sub-Saharan Africa, with North Africa dominating the publications. Representation of African scientists on publications was poorly balanced, with most research being led by international researchers. There are very few systematic cohort studies, particularly using newer technologies, such as chromosomal microarray and next-generation sequencing. Most of the reports on new technology data were generated outside Africa. Conclusion: This review highlights how the molecular epidemiology of DD/ID in Africa is hampered by significant knowledge gaps. Efforts are needed to produce systematically obtained high quality data that can be used to inform appropriate strategies to implement genomic medicine for DD/ID on the African continent, and to successfully bridge healthcare inequalities.
Collapse
Affiliation(s)
- Fiona Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shelley Macaulay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadja Louw
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alanna Bollweg
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kaitlyn Flynn
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mhlekazi Molatoli
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patracia Nevondwe
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather Seymour
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadia Carstens
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Genomics Platform, South African Medical Research Council, Cape Town, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
211
|
McFadden JR, Chaudhari AS, Stevanovic M, Tsongalis GJ, Hughes EG, Sriharan A. Gain of CCND1 May Occur Too Infrequently in Cutaneous Melanoma, and Too Late in Melanomagenesis, to Be Diagnostically Useful: Genomic Analysis of 88 Cases. Am J Dermatopathol 2023; 45:311-319. [PMID: 36939129 PMCID: PMC10916931 DOI: 10.1097/dad.0000000000002420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
ABSTRACT Genomic analysis is an important tool in the diagnosis of histologically ambiguous melanocytic neoplasms. Melanomas, in contrast to nevi, are characterized by the presence of multiple copy number alterations. One such alteration is gain of the proto-oncogene CCND1 at 11q13. In melanoma, gain of CCND1 has been reported in approximately one-fifth of cases. Exact frequencies of CCND1 gain vary by melanoma subtype, ranging from 15.8% for lentigo maligna to 25.1% for acral melanoma. We present a cohort of 72 cutaneous melanomas from 2017-2022 in which only 6 (8.3%) showed evidence of CCND1 gain by chromosomal microarray. This CCND1 upregulation frequency falls well below those previously published and is significantly lower than estimated in the literature ( P < 0.05). In addition, all 6 melanomas with CCND1 gain had copy number alterations at other loci (most commonly CDKN2A loss, followed by RREB1 gain), and 5 were either thick or metastatic lesions. This suggests that CCND1 gene amplification may be a later event in melanomagenesis, long after a lesion would be borderline or equivocal by histology. Data from fluorescence in situ hybridization, performed on 16 additional cutaneous melanomas, further corroborate our findings. CCND1 gain may not be a common alteration in melanoma and likely occurs too late in melanomagenesis to be diagnostically useful. We present the largest chromosomal microarray analysis of CCND1 upregulation frequencies in cutaneous melanoma, conjecture 3 hypotheses to explain our novel observation, and discuss implications for the inclusion or exclusion of CCND1 probes in future melanoma gene panels.
Collapse
Affiliation(s)
- Jason R. McFadden
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | | | - Mirjana Stevanovic
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Gregory J. Tsongalis
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Edward G. Hughes
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Aravindhan Sriharan
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
212
|
Thomas CP, Daloul R, Lentine KL, Gohh R, Anand PM, Rasouly HM, Sharfuddin AA, Schlondorff JS, Rodig NM, Freese ME, Garg N, Lee BK, Caliskan Y. Genetic evaluation of living kidney donor candidates: A review and recommendations for best practices. Am J Transplant 2023; 23:597-607. [PMID: 36868514 DOI: 10.1016/j.ajt.2023.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
The growing accessibility and falling costs of genetic sequencing techniques has expanded the utilization of genetic testing in clinical practice. For living kidney donation, genetic evaluation has been increasingly used to identify genetic kidney disease in potential candidates, especially in those of younger ages. However, genetic testing on asymptomatic living kidney donors remains fraught with many challenges and uncertainties. Not all transplant practitioners are aware of the limitations of genetic testing, are comfortable with selecting testing methods, comprehending test results, or providing counsel, and many do not have access to a renal genetic counselor or a clinical geneticist. Although genetic testing can be a valuable tool in living kidney donor evaluation, its overall benefit in donor evaluation has not been demonstrated and it can also lead to confusion, inappropriate donor exclusion, or misleading reassurance. Until more published data become available, this practice resource should provide guidance for centers and transplant practitioners on the responsible use of genetic testing in the evaluation of living kidney donor candidates.
Collapse
Affiliation(s)
- Christie P Thomas
- Department of of Internal Medicine and Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA; VA Medical Center, Iowa City, Iowa, USA.
| | - Reem Daloul
- Division of Nephrology, Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | - Krista L Lentine
- Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Reginald Gohh
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Prince M Anand
- Mid-Carolinas Transplant Center, Medical University of South Carolina, Lancaster, South Carolina, USA
| | - Hila Milo Rasouly
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University, New York City, New York, USA
| | - Asif A Sharfuddin
- Division of Nephrology and Transplant, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Johannes S Schlondorff
- Department of Internal Medicine, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Nancy M Rodig
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret E Freese
- Department of of Internal Medicine and Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Neetika Garg
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Brian K Lee
- Kidney/Pancreas Transplant Center, Dell Seton Medical Center, University of Texas at Austin, Austin, Texas, USA
| | - Yasar Caliskan
- Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, Missouri, USA
| |
Collapse
|
213
|
Durbin MD, Helvaty LR, Li M, Border W, Fitzgerald-Butt S, Garg V, Geddes GC, Helm BM, Lalani SR, McBride KL, McEntire A, Mitchell DK, Murali CN, Wechsler SB, Landis BJ, Ware SM. A multicenter cross-sectional study in infants with congenital heart defects demonstrates high diagnostic yield of genetic testing but variable evaluation practices. GENETICS IN MEDICINE OPEN 2023; 1:100814. [PMID: 39669248 PMCID: PMC11613605 DOI: 10.1016/j.gimo.2023.100814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 12/14/2024]
Abstract
Purpose For patients with congenital heart disease (CHD), the most common birth defect, genetic evaluation is not universally accepted, and current practices are anecdotal. Here, we analyzed genetic evaluation practices across centers, determined diagnostic yield of testing, and identified phenotypic features associated with abnormal results. Methods This is a multicenter cross-sectional study of 5 large children's hospitals, including 2899 children ≤14 months undergoing surgical repair for CHD from 2013 to 2016, followed by multivariate logistics regression analysis. Results Genetic testing occurred in 1607 of 2899 patients (55%). Testing rates differed highly between institutions (42%-78%, P < .001). Choice of testing modality also differed across institutions (ie, chromosomal microarray, 26%-67%, P < .001). Genetic testing was abnormal in 702 of 1607 patients (44%), and no major phenotypic feature drove diagnostic yield. Only 849 patients were seen by geneticists (29%), ranging across centers (15%-52%, P < .001). Geneticist consultation associated with increased genetic testing yield (odds ratio: 5.7, 95% CI 4.33-7.58, P < .001). Conclusion Genetics evaluation in CHD is diagnostically important but underused and highly variable, with high diagnostic rates across patient types, including in infants with presumed isolated CHD. These findings support recommendations for comprehensive testing and standardization of care.
Collapse
Affiliation(s)
| | | | - Ming Li
- Indiana University School of Medicine, Indianapolis, IN
| | | | | | - Vidu Garg
- Center for Cardiovascular Research and Heart Center and Division of Genetic and Genomic Medicine at Nationwide Children’s Hospital, and Department of Pediatrics, Ohio State University, Columbus, OH
| | | | | | | | - Kim L. McBride
- Center for Cardiovascular Research and Heart Center and Division of Genetic and Genomic Medicine at Nationwide Children’s Hospital, and Department of Pediatrics, Ohio State University, Columbus, OH
| | | | | | | | | | | | | |
Collapse
|
214
|
Baalmann N, Spielmann M, Gillessen-Kaesbach G, Hanker B, Schmidt J, Lill CM, Hellenbroich Y, Greiten B, Lohmann K, Trinh J, Hüning I. Phenotypic specificity in patients with neurodevelopmental delay does not correlate with diagnostic yield of trio-exome sequencing. Eur J Med Genet 2023; 66:104774. [PMID: 37120078 DOI: 10.1016/j.ejmg.2023.104774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
In this study, we aimed to examine the diagnostic yield achieved by applying a trio approach in exome sequencing (ES) and the interdependency between the clinical specificity in families with neurodevelopmental delay. Thirty-seven families were recruited and trio-ES as well as three criteria for estimating the clinical phenotypic specificity were suggested and applied to the underaged children. All our patients showed neurodevelopmental delay and most of them a large spectrum of congenital anomalies. Applying the pathogenicity guidelines of the American College of Medical Genetics (ACMG), likely pathogenic (29.7%) and pathogenic variants (8.1%) were found in 40,5% of our index patients. Additionally, we found four variants of uncertain significance (VUS; according to ACMG) and two genes of interest (GOI; going beyond ACMG classification) (GLRA4, NRXN2). Spastic Paraplegia 4 (SPG4) caused by a formerly known SPAST variant was diagnosed in a patient with a complex phenotype, in whom a second genetic disorder may be present. A potential pathogenic variant linked to severe intellectual disability in GLRA4 requires further investigation. No interdependency between the diagnostic yield and the clinical specificity of the phenotypes could be observed. In consequence, trio-ES should be used early in the diagnostic process, independently from the specificity of the patient.
Collapse
Affiliation(s)
- Nadja Baalmann
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| | - Malte Spielmann
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| | | | - Britta Hanker
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| | - Julia Schmidt
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany; Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
| | - Christina M Lill
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Germany; Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK.
| | | | - Bianca Greiten
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| | - Irina Hüning
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
215
|
Wiener EK, Buchanan J, Krause A, Lombard Z. Retrospective file review shows limited genetic services fails most patients - an argument for the implementation of exome sequencing as a first-tier test in resource-constraint settings. Orphanet J Rare Dis 2023; 18:81. [PMID: 37046271 PMCID: PMC10091645 DOI: 10.1186/s13023-023-02642-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/12/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Exome sequencing is recommended as a first-line investigation for patients with a developmental delay or intellectual disability. This approach has not been implemented in most resource-constraint settings, including Africa, due to the high cost of implementation. Instead, patients have limited access to services and testing options. Here, we evaluate the effectiveness of a limited genetic testing strategy and contrast the findings to a conceivable outcome if exome sequencing were available instead. RESULTS A retrospective audit of 934 patient files presenting to a medical genetics clinic in South Africa showed that 83% of patients presented with developmental delay as a clinical feature. Patients could be divided into three groups, representing distinct diagnostic pathways. Patient Group A (18%; mean test cost $131) were confirmed with aneuploidies, following a simple, inexpensive test. Patient Group B (25%; mean test cost $140) presented with clinically recognizable conditions but only 39% received a genetic diagnostic confirmation due to limited testing options. Patient Group C - the largest group (57%; mean test cost $337) - presented with heterogenous conditions and DD, and 92% remained undiagnosed after limited available testing was performed. CONCLUSIONS Patients with DD are the largest group of patients seen in medical genetics clinics in South Africa. When clinical features are not distinct, limited testing options drastically restricts diagnostic yield. A cost- and time analysis shows most patients would benefit from first-line exome sequencing, reducing their individual diagnostic odysseys.
Collapse
Affiliation(s)
- Emma K Wiener
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James Buchanan
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
216
|
George S, Dagar V, Chakrabarty BK, Nagaraja N. Unravelling the Impact of an Additional Sex Chromosome in an Adult Female. J Hum Reprod Sci 2023; 16:166-169. [PMID: 37547091 PMCID: PMC10404010 DOI: 10.4103/jhrs.jhrs_49_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 08/08/2023] Open
Abstract
Women with Triple X syndrome (TXS) appear to be at increased risk for decreased ovarian reserve; however, available data are limited. We present an asyndromic adult female with features of recurrent pregnancy loss and decreased ovarian reserve detected with mosaic Triple X syndrome (TXS). The patient was initially evaluated by a low-cost peripheral blood (PB) conventional karyotyping using standard cytogenetic protocols. Interphase fluorescence in situ hybridisation was performed to confirm the diagnosis. Chromosomal microarray, which is a more expensive test, substantiated the presence of additional X chromosomes but failed to detect the presence of low level of mosaicism. Our case study emphasised the recommendation of performing a strategy-based cost-effective cytogenetic evaluation of all cases of decreased ovarian reserve or low anti-Müllerian hormone levels in a resource-constrained setting. It also highlighted the need for additional research to understand the natural history of ovarian function in TXS affected women throughout their lifespans.
Collapse
Affiliation(s)
- Sigin George
- Department of Pathology, AFMC, Pune, Maharashtra, India
| | - Vikas Dagar
- Department of Pathology, AFMC, Pune, Maharashtra, India
| | | | - N. Nagaraja
- Department of Gynae & Obs, CH(SC), Pune, Maharashtra, India
| |
Collapse
|
217
|
Soliani L, Alcalá San Martín A, Balsells S, Hernando‐Davalillo C, Ortigoza‐Escobar JD. Chromosome Microarray Analysis for the Investigation of Deletions in Pediatric Movement Disorders: A Systematic Review of the Literature. Mov Disord Clin Pract 2023; 10:547-557. [PMID: 37070051 PMCID: PMC10105116 DOI: 10.1002/mdc3.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
Background Chromosome microarray analysis (CMA) can detect copy number variants (CNV) beyond the resolution of standard G-banded karyotyping. De novo or inherited microdeletions may cause autosomal dominant movement disorders. Objectives The purpose of this study was to analyze the clinical characteristics, associated features, and genetic information of children with deletions in known genes that cause movement disorders and to make recommendations regarding the diagnostic application of CMA. Methods Clinical cases published in English were identified in scientific databases (PubMed, ClinVar, and DECIPHER) from January 1998 to July 2019 following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Cases with deletions or microdeletions greater than 300 kb were selected. Information collected included age, sex, movement disorders, associated features, and the size and location of the deletion. Duplications or microduplications were not included. Results A total of 18.097 records were reviewed, and 171 individuals were identified. Ataxia (30.4%), stereotypies (23.9%), and dystonia (21%) were the most common movement disorders. A total of 16% of the patients demonstrated more than one movement disorder. The most common associated features were intellectual disability or developmental delay (78.9%) and facial dysmorphism (57.8%). The majority (77.7%) of microdeletions were smaller than 5 Mb. We find no correlation between movement disorders, their associated features, and the size of microdeletions. Conclusions Our results support the use of CMA as an investigational test in children with movement disorders. As the majority of identified articles were case reports and small case series (low quality), future efforts should focus on larger prospective studies to examine the causation of microdeletions in pediatric movement disorders.
Collapse
Affiliation(s)
- Luca Soliani
- IRCCS Istituto delle Scienze Neurologiche di Bologna UOC Neuropsichiatria dell'età PediatricaBolognaItaly
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC) Università di BolognaBolognaItaly
| | - Adrián Alcalá San Martín
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare DiseasesHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Sol Balsells
- Department of StatisticsInstitut de Recerca Sant Joan de DéuBarcelonaSpain
| | - Cristina Hernando‐Davalillo
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare DiseasesHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Juan Darío Ortigoza‐Escobar
- U‐703 Centre for Biomedical Research on Rare Diseases (CIBER‐ER)Instituto de Salud Carlos IIIBarcelonaSpain
- Movement Disorders Unit, Pediatric Neurology Department, Institut de RecercaHospital Sant Joan de Déu BarcelonaBarcelonaSpain
- European Reference Network for Rare Neurological Diseases (ERN‐RND)BarcelonaSpain
| |
Collapse
|
218
|
Karim S, Hussein IR, Schulten HJ, Alsaedi S, Mirza Z, Al-Qahtani M, Chaudhary A. Identification of Extremely Rare Pathogenic CNVs by Array CGH in Saudi Children with Developmental Delay, Congenital Malformations, and Intellectual Disability. CHILDREN 2023; 10:children10040662. [PMID: 37189911 DOI: 10.3390/children10040662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Chromosomal imbalance is implicated in developmental delay (DD), congenital malformations (CM), and intellectual disability (ID), and, thus, precise identification of copy number variations (CNVs) is essential. We therefore aimed to investigate the genetic heterogeneity in Saudi children with DD/CM/ID. High-resolution array comparative genomic hybridization (array CGH) was used to detect disease-associated CNVs in 63 patients. Quantitative PCR was done to confirm the detected CNVs. Giemsa banding-based karyotyping was also performed. Array CGH identified chromosomal abnormalities in 24 patients; distinct pathogenic and/or variants of uncertain significance CNVs were found in 19 patients, and aneuploidy was found in 5 patients including 47,XXY (n = 2), 45,X (n = 2) and a patient with trisomy 18 who carried a balanced Robertsonian translocation. CNVs including 9p24p13, 16p13p11, 18p11 had gains/duplications and CNVs, including 3p23p14, 10q26, 11p15, 11q24q25, 13q21.1q32.1, 16p13.3p11.2, and 20q11.1q13.2, had losses/deletions only, while CNVs including 8q24, 11q12, 15q25q26, 16q21q23, and 22q11q13 were found with both gains or losses in different individuals. In contrast, standard karyotyping detected chromosomal abnormalities in ten patients. The diagnosis rate of array CGH (28%, 18/63 patients) was around two-fold higher than that of conventional karyotyping (15.87%, 10/63 patients). We herein report, for the first time, the extremely rare pathogenic CNVs in Saudi children with DD/CM/ID. The reported prevalence of CNVs in Saudi Arabia adds value to clinical cytogenetics.
Collapse
|
219
|
Sandoval-Talamantes AK, Mori MÁ, Santos-Simarro F, García-Miñaur S, Mansilla E, Tenorio JA, Peña C, Adan C, Fernández-Elvira M, Rueda I, Lapunzina P, Nevado J. Chromosomal Microarray in Patients with Non-Syndromic Autism Spectrum Disorders in the Clinical Routine of a Tertiary Hospital. Genes (Basel) 2023; 14:genes14040820. [PMID: 37107578 PMCID: PMC10137620 DOI: 10.3390/genes14040820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Autism spectrum disorders (ASD) comprise a group of neurodevelopmental disorders (NDD) characterized by deficits in communication and social interaction, as well as repetitive and restrictive behaviors, etc. The genetic implications of ASD have been widely documented, and numerous genes have been associated with it. The use of chromosomal microarray analysis (CMA) has proven to be a rapid and effective method for detecting both small and large deletions and duplications associated with ASD. In this article, we present the implementation of CMA as a first-tier test in our clinical laboratory for patients with primary ASD over a prospective period of four years. The cohort was composed of 212 individuals over 3 years of age, who met DSM-5 diagnostic criteria for ASD. The use of a customized array-CGH (comparative genomic hybridization) design (KaryoArray®) found 99 individuals (45.20%) with copy number variants (CNVs); 34 of them carried deletions (34.34%) and 65 duplications (65.65%). A total of 28 of 212 patients had pathogenic or likely pathogenic CNVs, representing approximately 13% of the cohort. In turn, 28 out of 212 (approximately 12%) had variants of uncertain clinical significance (VUS). Our findings involve clinically significant CNVs, known to cause ASD (syndromic and non-syndromic), and other CNVs previously related to other comorbidities such as epilepsy or intellectual disability (ID). Lastly, we observed new rearrangements that will enhance the information available and the collection of genes associated with this disorder. Our data also highlight that CMA could be very useful in diagnosing patients with essential/primary autism, and demonstrate the existence of substantial genetic and clinical heterogeneity in non-syndromic ASD individuals, underscoring the continued challenge for genetic laboratories in terms of its molecular diagnosis.
Collapse
|
220
|
Alvarez-Mora MI, Rodríguez-Revenga L, Jodar M, Potrony M, Sanchez A, Badenas C, Oriola J, Villanueva-Cañas JL, Muñoz E, Valldeoriola F, Cámara A, Compta Y, Carreño M, Martí MJ, Sánchez-Valle R, Madrigal I. Implementation of Exome Sequencing in Clinical Practice for Neurological Disorders. Genes (Basel) 2023; 14:genes14040813. [PMID: 37107571 PMCID: PMC10137364 DOI: 10.3390/genes14040813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Neurological disorders (ND) are diseases that affect the brain and the central and autonomic nervous systems, such as neurodevelopmental disorders, cerebellar ataxias, Parkinson’s disease, or epilepsies. Nowadays, recommendations of the American College of Medical Genetics and Genomics strongly recommend applying next generation sequencing (NGS) as a first-line test in patients with these disorders. Whole exome sequencing (WES) is widely regarded as the current technology of choice for diagnosing monogenic ND. The introduction of NGS allows for rapid and inexpensive large-scale genomic analysis and has led to enormous progress in deciphering monogenic forms of various genetic diseases. The simultaneous analysis of several potentially mutated genes improves the diagnostic process, making it faster and more efficient. The main aim of this report is to discuss the impact and advantages of the implementation of WES into the clinical diagnosis and management of ND. Therefore, we have performed a retrospective evaluation of WES application in 209 cases referred to the Department of Biochemistry and Molecular Genetics of the Hospital Clinic of Barcelona for WES sequencing derived from neurologists or clinical geneticists. In addition, we have further discussed some important facts regarding classification criteria for pathogenicity of rare variants, variants of unknown significance, deleterious variants, different clinical phenotypes, or frequency of actionable secondary findings. Different studies have shown that WES implementation establish diagnostic rate around 32% in ND and the continuous molecular diagnosis is essential to solve the remaining cases.
Collapse
|
221
|
Adiyapatham S, Murugesan A. Novel mutation causing Zellweger syndrome. BMJ Case Rep 2023; 16:e252014. [PMID: 36931687 PMCID: PMC10030475 DOI: 10.1136/bcr-2022-252014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Genetic conditions have varied presentations, and one of them is the association with multiple malformation syndrome (MMS), which has a high mortality rate in the immediate postnatal period. Here, we describe a neonate born with multiple anomalies-wide anterior and posterior fontanelle, metopic suture, flat nasal bridge, hypertelorism, low set dysplastic ears, corneal cloudiness, micrognathia, webbed neck, simian crease, undescended testis, hypospadias, congenital talipes equinovarus, hypoplastic inferior cerebellar vermis, poor reflexes, hypotonia and ventricular septal defect. There was a history of sibling death with similar malformations, pointing towards a genetic aetiology. Clinical exome sequencing yielded the diagnosis of Zellweger syndrome with a rare mutation in PEX-19 gene. Inherited metabolic syndromes frequently masquerade as malformations, but family history of an affected sibling and clinical suspicion aided diagnosis of the infant.
Collapse
Affiliation(s)
- Sasidharan Adiyapatham
- Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, Puducherry, India
| | | |
Collapse
|
222
|
López-López D, Roldán G, Fernández-Rueda JL, Bostelmann G, Carmona R, Aquino V, Perez-Florido J, Ortuño F, Pita G, Núñez-Torres R, González-Neira A, Peña-Chilet M, Dopazo J. A crowdsourcing database for the copy-number variation of the Spanish population. Hum Genomics 2023; 17:20. [PMID: 36894999 PMCID: PMC9997023 DOI: 10.1186/s40246-023-00466-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Despite being a very common type of genetic variation, the distribution of copy-number variations (CNVs) in the population is still poorly understood. The knowledge of the genetic variability, especially at the level of the local population, is a critical factor for distinguishing pathogenic from non-pathogenic variation in the discovery of new disease variants. RESULTS Here, we present the SPAnish Copy Number Alterations Collaborative Server (SPACNACS), which currently contains copy number variation profiles obtained from more than 400 genomes and exomes of unrelated Spanish individuals. By means of a collaborative crowdsourcing effort whole genome and whole exome sequencing data, produced by local genomic projects and for other purposes, is continuously collected. Once checked both, the Spanish ancestry and the lack of kinship with other individuals in the SPACNACS, the CNVs are inferred for these sequences and they are used to populate the database. A web interface allows querying the database with different filters that include ICD10 upper categories. This allows discarding samples from the disease under study and obtaining pseudo-control CNV profiles from the local population. We also show here additional studies on the local impact of CNVs in some phenotypes and on pharmacogenomic variants. SPACNACS can be accessed at: http://csvs.clinbioinfosspa.es/spacnacs/ . CONCLUSION SPACNACS facilitates disease gene discovery by providing detailed information of the local variability of the population and exemplifies how to reuse genomic data produced for other purposes to build a local reference database.
Collapse
Affiliation(s)
- Daniel López-López
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Seville, Spain.,Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Gema Roldán
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Seville, Spain
| | - Jose L Fernández-Rueda
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Seville, Spain
| | - Gerrit Bostelmann
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Seville, Spain
| | - Rosario Carmona
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Seville, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Virginia Aquino
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Seville, Spain
| | - Javier Perez-Florido
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Seville, Spain.,Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Francisco Ortuño
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Seville, Spain.,Department of Computer Architecture and Computer Technology, University of Granada, 18071, Granada, Spain
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Rocío Núñez-Torres
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | | | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Seville, Spain.,Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Joaquin Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Seville, Spain. .,Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain. .,FPS/ELIXIR-ES, Andalusian Public Foundation Progress and Health-FPS, 41013, Seville, Spain.
| |
Collapse
|
223
|
Akter H, Rahman MM, Sarker S, Basiruzzaman M, Islam MM, Rahaman MA, Rahaman MA, Eshaque TB, Dity NJ, Sarker S, Amin MR, Hossain MM, Lopa M, Jahan N, Hossain S, Islam A, Mondol A, Faruk MO, Saha N, Kundu GK, Kanta SI, Kazal RK, Fatema K, Rahman MA, Hasan M, Hossain Mollah MA, Hosen MI, Karuvantevida N, Begum G, Zehra B, Nassir N, Nabi AHMN, Uddin KMF, Uddin M. Construction of copy number variation landscape and characterization of associated genes in a Bangladeshi cohort of neurodevelopmental disorders. Front Genet 2023; 14:955631. [PMID: 36959829 PMCID: PMC10028086 DOI: 10.3389/fgene.2023.955631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Copy number variations (CNVs) play a critical role in the pathogenesis of neurodevelopmental disorders (NDD) among children. In this study, we aim to identify clinically relevant CNVs, genes and their phenotypic characteristics in an ethnically underrepresented homogenous population of Bangladesh. Methods: We have conducted chromosomal microarray analysis (CMA) for 212 NDD patients with male to female ratio of 2.2:1.0 to identify rare CNVs. To identify candidate genes within the rare CNVs, gene constraint metrics [i.e., "Critical-Exon Genes (CEGs)"] were applied to the population data. Autism Diagnostic Observation Schedule-Second Edition (ADOS-2) was followed in a subset of 95 NDD patients to assess the severity of autism and all statistical tests were performed using the R package. Results: Of all the samples assayed, 12.26% (26/212) and 57.08% (121/212) patients carried pathogenic and variant of uncertain significance (VOUS) CNVs, respectively. While 2.83% (6/212) patients' pathogenic CNVs were found to be located in the subtelomeric regions. Further burden test identified females are significant carriers of pathogenic CNVs compared to males (OR = 4.2; p = 0.0007). We have observed an increased number of Loss of heterozygosity (LOH) within cases with 23.85% (26/109) consanguineous parents. Our analyses on imprinting genes show, 36 LOH variants disrupting 69 unique imprinted genes and classified these variants as VOUS. ADOS-2 subset shows severe social communication deficit (p = 0.014) and overall ASD symptoms severity (p = 0.026) among the patients carrying duplication CNV compared to the CNV negative group. Candidate gene analysis identified 153 unique CEGs in pathogenic CNVs and 31 in VOUS. Of the unique genes, 18 genes were found to be in smaller (<1 MB) focal CNVs in our NDD cohort and we identified PSMC3 gene as a strong candidate gene for Autism Spectrum Disorder (ASD). Moreover, we hypothesized that KMT2B gene duplication might be associated with intellectual disability. Conclusion: Our results show the utility of CMA for precise genetic diagnosis and its integration into the diagnosis, therapy and management of NDD patients.
Collapse
Affiliation(s)
- Hosneara Akter
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Mizanur Rahman
- Department of Paediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shaoli Sarker
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Paediatric Neuroscience, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Mohammed Basiruzzaman
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Neurology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh
| | - Md. Mazharul Islam
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Neurology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh
| | - Md. Atikur Rahaman
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
| | | | | | - Nushrat Jahan Dity
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Shouvik Sarker
- Institute of Plant Genetics, Department of Plant Biotechnology, Leibniz University Hannover, Hanover, Germany
| | - Md. Robed Amin
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Mohammad Monir Hossain
- Department of Paediatric Neurology, National Institute of Neuroscience and Hospital, Dhaka, Bangladesh
| | - Maksuda Lopa
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Nargis Jahan
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Shafaat Hossain
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Amirul Islam
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Cellular Intelligence Lab, GenomeArc Inc, Toronto, ON, Canada
| | | | - Md Omar Faruk
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Narayan Saha
- Department of Paediatric Neurology, National Institute of Neuroscience and Hospital, Dhaka, Bangladesh
| | - Gopen kumar Kundu
- Department of Child Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shayla Imam Kanta
- Department of Paediatric Neuroscience, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Rezaul Karim Kazal
- Department of Obstetrics and Gynaecology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Kanij Fatema
- Department of Paediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md. Ashrafur Rahman
- Department of Pharmaceutical Sciences, Wilkes University, Pennsylvania, PA, United States
| | - Maruf Hasan
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | | | - Md. Ismail Hosen
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ghausia Begum
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Binte Zehra
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nasna Nassir
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - A. H. M. Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - K. M. Furkan Uddin
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Biochemistry, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Cellular Intelligence (Ci) Lab, GenomeArc Inc, Toronto, ON, Canada
| |
Collapse
|
224
|
Papadopoulou E, Pepe G, Konitsiotis S, Chondrogiorgi M, Grigoriadis N, Kimiskidis VK, Tsivgoulis G, Mitsikostas DD, Chroni E, Domouzoglou E, Tsaousis G, Nasioulas G. The evolution of comprehensive genetic analysis in neurology: Implications for precision medicine. J Neurol Sci 2023; 447:120609. [PMID: 36905813 DOI: 10.1016/j.jns.2023.120609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Technological advancements have facilitated the availability of reliable and thorough genetic analysis in many medical fields, including neurology. In this review, we focus on the importance of selecting the appropriate genetic test to aid in the accurate identification of disease utilizing currently employed technologies for analyzing monogenic neurological disorders. Moreover, the applicability of comprehensive analysis via NGS for various genetically heterogeneous neurological disorders is reviewed, revealing its efficiency in clarifying a frequently cloudy diagnostic picture and delivering a conclusive and solid diagnosis that is essential for the proper management of the patient. The feasibility and effectiveness of medical genetics in neurology require interdisciplinary cooperation among several medical specialties and geneticists, to select and perform the most relevant test according to each patient's medical history, using the most appropriate technological tools. The prerequisites for a comprehensive genetic analysis are discussed, highlighting the utility of appropriate gene selection, variant annotation, and classification. Moreover, genetic counseling and interdisciplinary collaboration could improve diagnostic yield further. Additionally, a sub-analysis is conducted on the 1,502,769 variation records with submitted interpretations in the Clinical Variation (ClinVar) database, with a focus on neurology-related genes, to clarify the value of suitable variant categorization. Finally, we review the current applications of genetic analysis in the diagnosis and personalized management of neurological patients and the advances in the research and scientific knowledge of hereditary neurological disorders that are evolving the utility of genetic analysis towards the individualization of the treatment strategy.
Collapse
Affiliation(s)
| | - Georgia Pepe
- GeneKor Medical SA, Spaton 52, Gerakas 15344, Greece
| | - Spiridon Konitsiotis
- Department of Neurology, University of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | - Maria Chondrogiorgi
- Department of Neurology, University of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, "AHEPA" University Hospital, Aristotle University of Thessaloniki, St. Kiriakidis 1, Thessaloniki 54636, Greece
| | - Vasilios K Kimiskidis
- First Department of Neurology, "AHEPA" University hospital, Aristotle University of Thessaloniki, St. Kiriakidis 1, Thessaloniki 54636, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, "Attikon" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimos D Mitsikostas
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Rio-Patras, Greece
| | - Eleni Domouzoglou
- Department of Pediatrics, University Hospital of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | | | | |
Collapse
|
225
|
Genome-Wide Sequencing Modalities for Children with Unexplained Global Developmental Delay and Intellectual Disabilities—A Narrative Review. CHILDREN 2023; 10:children10030501. [PMID: 36980059 PMCID: PMC10047410 DOI: 10.3390/children10030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Unexplained global developmental delay (GDD) and intellectual disabilities (ID) together affect nearly 2% of the pediatric population. Establishing an etiologic diagnosis is crucial for disease management, prognostic evaluation, and provision of physical and psychological support for both the patient and the family. Advancements in genome sequencing have allowed rapid accumulation of gene–disorder associations and have accelerated the search for an etiologic diagnosis for unexplained GDD/ID. We reviewed recent studies that utilized genome-wide analysis technologies, and we discussed their diagnostic yield, strengths, and limitations. Overall, exome sequencing (ES) and genome sequencing (GS) outperformed chromosomal microarrays and targeted panel sequencing. GS provides coverage for both ES and chromosomal microarray regions, providing the maximal diagnostic potential, and the cost of ES and reanalysis of ES-negative results is currently still lower than that of GS alone. Therefore, singleton or trio ES is the more cost-effective option for the initial investigation of individuals with GDD/ID in clinical practice compared to a staged approach or GS alone. Based on these updated evidence, we proposed an evaluation algorithm with ES as the first-tier evaluation for unexplained GDD/ID.
Collapse
|
226
|
Streff H, Uhles CL, Fisher H, Franciskovich R, Littlejohn RO, Gerard A, Hudnall J, Smith HS. Access to clinically indicated genetic tests for pediatric patients with Medicaid: Evidence from outpatient genetics clinics in Texas. Genet Med 2023; 25:100350. [PMID: 36547467 DOI: 10.1016/j.gim.2022.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Little is known about how Medicaid coverage policies affect access to genetic tests for pediatric patients. Building upon and extending a previous analysis of prior authorization requests (PARs), we describe expected coverage of genetic tests submitted to Texas Medicaid and the PAR and diagnostic outcomes of those tests. METHODS We retrospectively reviewed genetic tests ordered at 3 pediatric outpatient genetics clinics in Texas. We compared Current Procedural Terminology (CPT) codes with the Texas Medicaid fee-for-service schedule (FFSS) to determine whether tests were expected to be covered by Medicaid. We assessed completion and diagnostic yield of commonly ordered tests. RESULTS Among the 3388 total tests submitted to Texas Medicaid, 68.9% (n = 2336) used at least 1 CPT code that was not on the FFSS and 80.7% (n = 2735) received a favorable PAR outcome. Of the tests with a CPT code not on the FFSS, 60.0% (n = 1400) received a favorable PAR outcome and were completed and 20.5% (n = 287) were diagnostic. The diagnostic yield of all tests with a favorable PAR outcome that were completed was 18.7% (n = 380/2029). CONCLUSION Most PARs submitted to Texas Medicaid used a CPT code for which reimbursement from Texas Medicaid was not guaranteed. The frequency with which clinically indicated genetic tests were not listed on the Texas Medicaid FFSS suggests misalignment between genetic testing needs and coverage policies. Our findings can inform updates to Medicaid policies to reduce coverage uncertainty and expand access to genetic tests with high diagnostic utility.
Collapse
Affiliation(s)
- Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.
| | - Crescenda L Uhles
- Department of Genetics and Metabolism, Children's Medical Center, Dallas, TX
| | - Heather Fisher
- Department of Genetics and Metabolism, Children's Medical Center, Dallas, TX
| | - Rachel Franciskovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Julianna Hudnall
- Department of Genetics and Metabolism, Children's Medical Center, Dallas, TX
| | - Hadley Stevens Smith
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| |
Collapse
|
227
|
Brownstein CA, Douard E, Haynes RL, Koh HY, Haghighi A, Keywan C, Martin B, Alexandrescu S, Haas EA, Vargas SO, Wojcik MH, Jacquemont S, Poduri AH, Goldstein RD, Holm IA. Copy Number Variation and Structural Genomic Findings in 116 Cases of Sudden Unexplained Death between 1 and 28 Months of Age. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200012. [PMID: 36910592 PMCID: PMC10000288 DOI: 10.1002/ggn2.202200012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/31/2022] [Indexed: 11/09/2022]
Abstract
In sudden unexplained death in pediatrics (SUDP) the cause of death is unknown despite an autopsy and investigation. The role of copy number variations (CNVs) in SUDP has not been well-studied. Chromosomal microarray (CMA) data are generated for 116 SUDP cases with age at death between 1 and 28 months. CNVs are classified using the American College of Medical Genetics and Genomics guidelines and CNVs in our cohort are compared to an autism spectrum disorder (ASD) cohort, and to a control cohort. Pathogenic CNVs are identified in 5 of 116 cases (4.3%). Variants of uncertain significance (VUS) favoring pathogenic CNVs are identified in 9 cases (7.8%). Several CNVs are associated with neurodevelopmental phenotypes including seizures, ASD, developmental delay, and schizophrenia. The structural variant 47,XXY is identified in two cases (2/69 boys, 2.9%) not previously diagnosed with Klinefelter syndrome. Pathogenicity scores for deletions are significantly elevated in the SUDP cohort versus controls (p = 0.007) and are not significantly different from the ASD cohort. The finding of pathogenic or VUS favoring pathogenic CNVs, or structural variants, in 12.1% of cases, combined with the observation of higher pathogenicity scores for deletions in SUDP versus controls, suggests that CMA should be included in the genetic evaluation of SUDP.
Collapse
|
228
|
Rather RA, Saha SC. Reappraisal of evolving methods in non-invasive prenatal screening: Discovery, biology and clinical utility. Heliyon 2023; 9:e13923. [PMID: 36879971 PMCID: PMC9984859 DOI: 10.1016/j.heliyon.2023.e13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Non-invasive prenatal screening (NIPS) offers an opportunity to screen or determine features associated with the fetus. Earlier, prenatal testing was done with cytogenetic procedures like karyotyping or fluorescence in-situ hybridization, which necessitated invasive methods such as fetal blood sampling, chorionic villus sampling or amniocentesis. Over the last two decades, there has been a paradigm shift away from invasive prenatal diagnostic methods to non-invasive ones. NIPS tests heavily rely on cell-free fetal DNA (cffDNA). This DNA is released into the maternal circulation by placenta. Like cffDNA, fetal cells such as nucleated red blood cells, placental trophoblasts, leukocytes, and exosomes or fetal RNA circulating in maternal plasma, have enormous potential in non-invasive prenatal testing, but their use is still limited due to a number of limitations. Non-invasive approaches currently use circulating fetal DNA to assess the fetal genetic milieu. Methods with an acceptable detection rate and specificity such as sequencing, methylation, or PCR, have recently gained popularity in NIPS. Now that NIPS has established clinical significance in prenatal screening and diagnosis, it is critical to gain insights into and comprehend the genesis of NIPS de novo. The current review reappraises the development and emergence of non-invasive prenatal screen/test approaches, as well as their clinical application, with a focus, on the scope, benefits, and limitations.
Collapse
Affiliation(s)
- Riyaz Ahmad Rather
- Department of Biotechnology, College of Natural and Computational Science, Wachemo University, Ethiopia
| | - Subhas Chandra Saha
- Department of Obstetrics and Gynecology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
229
|
Iqbal MA, Broeckel U, Levy B, Skinner S, Sahajpal NS, Rodriguez V, Stence A, Awayda K, Scharer G, Skinner C, Stevenson R, Bossler A, Nagy PL, Kolhe R. Multisite Assessment of Optical Genome Mapping for Analysis of Structural Variants in Constitutional Postnatal Cases. J Mol Diagn 2023; 25:175-188. [PMID: 36828597 PMCID: PMC10851778 DOI: 10.1016/j.jmoldx.2022.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 02/24/2023] Open
Abstract
This study compares optical genome mapping (OGM) performed at multiple sites with current standard-of-care (SOC) methods used in clinical cytogenetics. This study included 50 negative controls and 359 samples from individuals (patients) with suspected genetic conditions referred for cytogenetic testing. OGM was performed using the Saphyr system and Bionano Access software version 1.7. Structural variants, including copy number variants, aneuploidy, and regions of homozygosity, were detected and classified according to American College of Medical Genetics and Genomics guidelines. Repeated expansions in FMR1 and contractions in facioscapulohumeral dystrophy 1 were also analyzed. OGM results were compared with SOC for technical concordance, clinical classification concordance, intrasite and intersite reproducibility, and ability to provide additional, clinically relevant information. Across five testing sites, 98.8% (404/409) of samples yielded successful OGM data for analysis and interpretation. Overall, technical concordance for OGM to detect previously reported SOC results was 99.5% (399/401). The blinded analysis and variant classification agreement between SOC and OGM was 97.6% (364/373). Replicate analysis of 130 structural variations was 100% concordant. On the basis of this demonstration of the analytic validity and clinical utility of OGM by this multisite assessment, the authors recommend this technology as an alternative to existing SOC tests for rapid detection and diagnosis in postnatal constitutional disorders.
Collapse
Affiliation(s)
- M Anwar Iqbal
- DNA Microarray CGH Laboratory, Department of Pathology, University of Rochester Medical Center, Rochester, New York
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brynn Levy
- Columbia University Medical Center, New York, New York
| | | | - Nikhil S Sahajpal
- Greenwood Genetic Center, Greenwood, South Carolina; Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | | | - Aaron Stence
- Department of Pathology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Kamel Awayda
- DNA Microarray CGH Laboratory, Department of Pathology, University of Rochester Medical Center, Rochester, New York
| | - Gunter Scharer
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | | | | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
230
|
Brady L, Ballantyne M, Duck J, Fisker T, Kleefman R, Li C, Nfonsam L, Schultz LA, Tarnopolsky M, McCready E. Further characterization of the 9q31 microdeletion phenotype; delineation of a common region of overlap containing ZNF462. Mol Genet Genomic Med 2023; 11:e2116. [PMID: 36461789 PMCID: PMC10009906 DOI: 10.1002/mgg3.2116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Loss of function variants and whole gene deletions of ZNF462 has been associated with a novel phenotype of developmental delay/intellectual disability and distinctive facial features. Over two dozen cases have been reported to date and the condition is now known as Weiss-Kruszka syndrome (OMIM# 618619). There are several older reports in the literature and DECIPER detailing individuals with interstitial deletions of 9q31 involving the ZNF462 gene. Many of the characteristic facial features described in these microdeletion cases are similar to those who have been diagnosed with Weiss-Kruszka syndrome. METHODS We describe three additional patients with overlapping 9q31 deletions and compare the phenotypes of the microdeletion cases reported in the literature to Weiss-Kruszka syndrome. RESULTS Phenotypic overlap was observed between patients with 9q31 deletions and Weiss-Kruszka syndrome. Several additional features were noted in 9q31 deletion patients, including hearing loss, small head circumference, palate abnormalities and short stature. CONCLUSIONS The common region of overlap of microdeletion cases implicates ZNF462 as the main driver of the recognizable 9q31 microdeletion phenotype. The observation of additional features in patients with 9q31 microdeletions that are not reported in Weiss-Kruszka syndrome further suggests that other genes from the 9q31 region likely act synergistically with ZNF462 to affect phenotypic expression.
Collapse
Affiliation(s)
- Lauren Brady
- Hamilton Health Sciences Centre, Hamilton, Ontario, Canada.,Division of Neuromuscular & Neurometabolic Disorders, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mark Ballantyne
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - John Duck
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Thomas Fisker
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Ryan Kleefman
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Chumei Li
- Hamilton Health Sciences Centre, Hamilton, Ontario, Canada.,Division of Genetics, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Landry Nfonsam
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lee-Anne Schultz
- Hamilton Health Sciences Centre, Hamilton, Ontario, Canada.,Division of Genetics, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mark Tarnopolsky
- Hamilton Health Sciences Centre, Hamilton, Ontario, Canada.,Division of Neuromuscular & Neurometabolic Disorders, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Elizabeth McCready
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
231
|
Hu C, Wang Y, Li C, Mei L, Zhou B, Li D, Li H, Xu Q, Xu X. Targeted sequencing and clinical strategies in children with autism spectrum disorder: A cohort study. Front Genet 2023; 14:1083779. [PMID: 37007974 PMCID: PMC10064793 DOI: 10.3389/fgene.2023.1083779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/05/2023] [Indexed: 03/19/2023] Open
Abstract
Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with genetic and clinical heterogeneity. Owing to the advancement of sequencing technologies, an increasing number of ASD-related genes have been reported. We designed a targeted sequencing panel (TSP) for ASD based on next-generation sequencing (NGS) to provide clinical strategies for genetic testing of ASD and its subgroups.Methods: TSP comprised 568 ASD-related genes and analyzed both single nucleotide variations (SNVs) and copy number variations (CNVs). The Autism Diagnostic Observation Schedule (ADOS) and the Griffiths Mental Development Scales (GMDS) were performed with the consent of ASD parents. Additional medical information of the selected cases was recorded.Results: A total of 160 ASD children were enrolled in the cohort (male to female ratio 3.6:1). The total detection yield was 51.3% for TSP (82/160), among which SNVs and CNVs accounted for 45.6% (73/160) and 8.1% (13/160), respectively, with 4 children having both SNVs and CNV variants (2.5%). The detection rate of disease-associated variants in females (71.4%) was significantly higher than that in males (45.6%, p = 0.007). Pathogenic and likely pathogenic variants were detected in 16.9% (27/160) of the cases. SHANK3, KMT2A, and DLGAP2 were the most frequent variants among these patients. Eleven children had de novo SNVs, 2 of whom had de novo ASXL3 variants with mild global developmental delay (DD) and minor dysmorphic facial features besides autistic symptoms. Seventy-one children completed both ADOS and GMDS, of whom 51 had DD/intellectual disability (ID). In this subgroup of ASD children with DD/ID, we found that children with genetic abnormalities had lower language competence than those without positive genetic findings (p = 0.028). There was no correlation between the severity of ASD and positive genetic findings.Conclusion: Our study revealed the potential of TSP, with lower cost and more efficient genetic diagnosis. We recommended that ASD children with DD or ID, especially those with lower language competence, undergo genetic testing. More precise clinical phenotypes may help in the decision-making of patients with genetic testing.
Collapse
Affiliation(s)
- Chunchun Hu
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Chunyang Li
- Department of Child Health Care, Xi’an Children’s Hospital, Xi’an, China
| | - Lianni Mei
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Bingrui Zhou
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Dongyun Li
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Huiping Li
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Qiong Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiu Xu, ; Qiong Xu,
| | - Xiu Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiu Xu, ; Qiong Xu,
| |
Collapse
|
232
|
Carter MT, Srour M, Au PYB, Buhas D, Dyack S, Eaton A, Inbar-Feigenberg M, Howley H, Kawamura A, Lewis SME, McCready E, Nelson TN, Vallance H. Genetic and metabolic investigations for neurodevelopmental disorders: position statement of the Canadian College of Medical Geneticists (CCMG). J Med Genet 2023; 60:523-532. [PMID: 36822643 DOI: 10.1136/jmg-2022-108962] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE AND SCOPE The aim of this position statement is to provide recommendations for clinicians regarding the use of genetic and metabolic investigations for patients with neurodevelopmental disorders (NDDs), specifically, patients with global developmental delay (GDD), intellectual disability (ID) and/or autism spectrum disorder (ASD). This document also provides guidance for primary care and non-genetics specialists caring for these patients while awaiting consultation with a clinical geneticist or metabolic specialist. METHODS OF STATEMENT DEVELOPMENT A multidisciplinary group reviewed existing literature and guidelines on the use of genetic and metabolic investigations for the diagnosis of NDDs and synthesised the evidence to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and to the Canadian Pediatric Society (Mental Health and Developmental Disabilities Committee); following incorporation of feedback, it was approved by the CCMG Board of Directors on 1 September 2022. RESULTS AND CONCLUSIONS Chromosomal microarray is recommended as a first-tier test for patients with GDD, ID or ASD. Fragile X testing should also be done as a first-tier test when there are suggestive clinical features or family history. Metabolic investigations should be done if there are clinical features suggestive of an inherited metabolic disease, while the patient awaits consultation with a metabolic physician. Exome sequencing or a comprehensive gene panel is recommended as a second-tier test for patients with GDD or ID. Genetic testing is not recommended for patients with NDDs in the absence of GDD, ID or ASD, unless accompanied by clinical features suggestive of a syndromic aetiology or inherited metabolic disease.
Collapse
Affiliation(s)
| | - Myriam Srour
- Division of Neurology, McGill University Health Centre, Montreal, Québec, Canada
- Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Ping-Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sarah Dyack
- Division of Medical Genetics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Alison Eaton
- Department of Medical Genetics, Stollery Children's Hospital, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Heather Howley
- Office of Research Services, CHEO Research Institute, Ottawa, Ontario, Canada
| | - Anne Kawamura
- Division of Developmental Pediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Mental Health and Developmental Disability Committee, Canadian Pediatric Society, Ottawa, ON, Canada
- Canadian Paediatric Society, Toronto, Ontario, Canada
| | - Suzanne M E Lewis
- Department of Medical Genetics, BC Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, McMaster University, Hamilton, ON, Canada, Hamilton, Ontario, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - Tanya N Nelson
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hilary Vallance
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
233
|
Evaluation of Individuals with Non-Syndromic Global Developmental Delay and Intellectual Disability. CHILDREN 2023; 10:children10030414. [PMID: 36979972 PMCID: PMC10047567 DOI: 10.3390/children10030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Global Developmental Delay (GDD) and Intellectual Disability (ID) are two of the most common presentations encountered by physicians taking care of children. GDD/ID is classified into non-syndromic GDD/ID, where GDD/ID is the sole evident clinical feature, or syndromic GDD/ID, where there are additional clinical features or co-morbidities present. Careful evaluation of children with GDD and ID, starting with detailed history followed by a thorough examination, remain the cornerstone for etiologic diagnosis. However, when initial history and examination fail to identify a probable underlying etiology, further genetic testing is warranted. In recent years, genetic testing has been shown to be the single most important diagnostic modality for clinicians evaluating children with non-syndromic GDD/ID. In this review, we discuss different genetic testing currently available, review common underlying copy-number variants and molecular pathways, explore the recent evidence and recommendations for genetic evaluation and discuss an approach to the diagnosis and management of children with non-syndromic GDD and ID.
Collapse
|
234
|
Wang H, Wang LS, Schellenberg G, Lee WP. The role of structural variations in Alzheimer's disease and other neurodegenerative diseases. Front Aging Neurosci 2023; 14:1073905. [PMID: 36846102 PMCID: PMC9944073 DOI: 10.3389/fnagi.2022.1073905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/31/2022] [Indexed: 02/10/2023] Open
Abstract
Dozens of single nucleotide polymorphisms (SNPs) related to Alzheimer's disease (AD) have been discovered by large scale genome-wide association studies (GWASs). However, only a small portion of the genetic component of AD can be explained by SNPs observed from GWAS. Structural variation (SV) can be a major contributor to the missing heritability of AD; while SV in AD remains largely unexplored as the accurate detection of SVs from the widely used array-based and short-read technology are still far from perfect. Here, we briefly summarized the strengths and weaknesses of available SV detection methods. We reviewed the current landscape of SV analysis in AD and SVs that have been found associated with AD. Particularly, the importance of currently less explored SVs, including insertions, inversions, short tandem repeats, and transposable elements in neurodegenerative diseases were highlighted.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
235
|
Lu S, Kakongoma N, Hu WS, Zhang YZ, Yang NN, Zhang W, Mao AF, Liang Y, Zhang ZF. Detection rates of abnormalities in over 10,000 amniotic fluid samples at a single laboratory. BMC Pregnancy Childbirth 2023; 23:102. [PMID: 36755227 PMCID: PMC9906931 DOI: 10.1186/s12884-023-05428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND A growing number of cytogenetic techniques have been used for prenatal diagnosis. This study aimed to demonstrate the usefulness of karyotyping, BACs-on-Beads (BoBs) assay and single nucleotide polymorphism (SNP) array in prenatal diagnosis during the second trimester based on our laboratory experience. METHODS A total of 10,580 pregnant women with a variety of indications for amniocentesis were enrolled in this retrospective study between January 2015 and December 2020, of whom amniotic fluid samples were analysed in 10,320 women. The main technical indicators of participants in the three different technologies were summarized, and cases of chromosome abnormalities were further evaluated. RESULTS The overall abnormality detection rate of karyotyping among all the amniotic fluid samples was 15.4%, and trisomy 21 was the most common abnormality (20.9%). The total abnormality detection rate of the BoBs assay was 5.6%, and the diagnosis rate of microdeletion/microduplication syndromes that were not identified by karyotyping was 0.2%. The detection results of the BoBs assay were 100.0% concordant with karyotyping analysis in common aneuploidies. Seventy (87.5%) cases of structural abnormalities were missed by BoBs assay. The total abnormality detection rate of the SNP array was 21.6%. The detection results of common aneuploidies were exactly the same between SNP array and karyotyping. Overall, 60.1% of structural abnormalities were missed by SNP array. The further detection rate of pathogenic significant copy number variations (CNVs) by SNP was 1.4%. CONCLUSIONS Karyotyping analysis combined with BoBs assay or SNP array for prenatal diagnosis could provide quick and accurate results. Combined use of the technologies, especially with SNP array, improved the diagnostic yield and interpretation of the results, which contributes to genetic counselling. BoBs assay or SNP array could be a useful supplement to karyotyping.
Collapse
Affiliation(s)
- Sha Lu
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou, Zhejiang People’s Republic of China ,grid.508049.00000 0004 4911 1465Prenatal Screening and Prenatal Diagnosis Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), No. 369 Kunpeng Rd., Hangzhou, Zhejiang 310008 People’s Republic of China
| | - Nisile Kakongoma
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou, Zhejiang People’s Republic of China
| | - Wen-sheng Hu
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou, Zhejiang People’s Republic of China ,grid.508049.00000 0004 4911 1465Prenatal Screening and Prenatal Diagnosis Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), No. 369 Kunpeng Rd., Hangzhou, Zhejiang 310008 People’s Republic of China
| | - Yan-zhen Zhang
- grid.508049.00000 0004 4911 1465Prenatal Screening and Prenatal Diagnosis Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), No. 369 Kunpeng Rd., Hangzhou, Zhejiang 310008 People’s Republic of China
| | - Nan-nan Yang
- grid.508049.00000 0004 4911 1465Prenatal Screening and Prenatal Diagnosis Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), No. 369 Kunpeng Rd., Hangzhou, Zhejiang 310008 People’s Republic of China
| | - Wen Zhang
- grid.508049.00000 0004 4911 1465Prenatal Screening and Prenatal Diagnosis Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), No. 369 Kunpeng Rd., Hangzhou, Zhejiang 310008 People’s Republic of China
| | - Ai-fen Mao
- grid.508049.00000 0004 4911 1465Prenatal Screening and Prenatal Diagnosis Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), No. 369 Kunpeng Rd., Hangzhou, Zhejiang 310008 People’s Republic of China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Zhi-fen Zhang
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou, Zhejiang People’s Republic of China ,grid.508049.00000 0004 4911 1465Prenatal Screening and Prenatal Diagnosis Center, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), No. 369 Kunpeng Rd., Hangzhou, Zhejiang 310008 People’s Republic of China
| |
Collapse
|
236
|
Lü Y, Jiang Y, Zhou X, Hao N, Lü G, Guo X, Guo R, Liu W, Xu C, Chang J, Li M, Zhang H, Zhou J, Zhang W(V, Qi Q. Evaluation and Analysis of Absence of Homozygosity (AOH) Using Chromosome Analysis by Medium Coverage Whole Genome Sequencing (CMA-seq) in Prenatal Diagnosis. Diagnostics (Basel) 2023; 13:diagnostics13030560. [PMID: 36766665 PMCID: PMC9914714 DOI: 10.3390/diagnostics13030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Absence of homozygosity (AOH) is a genetic characteristic known to cause human diseases mainly through autosomal recessive or imprinting mechanisms. The importance and necessity of accurate AOH detection has become more clinically significant in recent years. However, it remains a challenging task for sequencing-based methods thus far. METHODS In this study, we developed and optimized a new bioinformatic algorithm based on the assessment of minimum sequencing coverage, optimal bin size, the Z-score threshold of four types of allele count and the frequency for accurate genotyping using 28 AOH negative samples, and redefined the AOH detection cutoff value. We showed the performance of chromosome analysis by five-fold coverage whole genome sequencing (CMA-seq) for AOH identification in 27 typical prenatal/postnatal AOH positive samples, which were previously confirmed by chromosomal microarray analysis with single nucleotide polymorphism array (CMA/SNP array). RESULTS The blinded study indicated that for all three forms of AOH, including whole genomic AOH, single chromosomal AOH and segmental AOH, and all kinds of sample types, including chorionic villus sampling, amniotic fluid, cord blood, peripheral blood and abortive tissue, CMA-seq showed equivalent detection power to that of routine CMA/SNP arrays (750K). The subtle difference between the two methods is that CMA-seq is prone to detect small inconsecutive AOHs, while CMA/SNP array reports it as a whole. CONCLUSION Based on our newly developed bioinformatic algorithm, it is feasible to detect clinically significant AOH using CMA-seq in prenatal diagnosis.
Collapse
Affiliation(s)
- Yan Lü
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yulin Jiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiya Zhou
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Na Hao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guizhen Lü
- AmCare Genomics Lab, Guangzhou 510335, China
| | | | - Ruidong Guo
- AmCare Genomics Lab, Guangzhou 510335, China
| | - Wenjie Liu
- AmCare Genomics Lab, Guangzhou 510335, China
| | - Chenlu Xu
- AmCare Genomics Lab, Guangzhou 510335, China
| | - Jiazhen Chang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengmeng Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hanzhe Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | - Qingwei Qi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
- Correspondence: ; Tel.: +86-1851-066-6066
| |
Collapse
|
237
|
Annunziata S, Bulgheroni S, D'Arrigo S, Esposito S, Taddei M, Saletti V, Alfei E, Sciacca FL, Rizzo A, Pantaleoni C, Riva D. CGH Findings in Children with Complex and Essential Autistic Spectrum Disorder. J Autism Dev Disord 2023; 53:615-623. [PMID: 33394245 DOI: 10.1007/s10803-020-04833-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 11/28/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with a strong genetic basis. We accurately assessed 209 ASD subjects, categorized in complex (47) and essential (162), and performed array comparative genomic hybridization to identify pathogenic and recurrent Copy Number Variants (CNVs). We found 117 CNVs in 75 patients, 11 classified as pathogenic. The complex ASD subjects have higher frequency of pathogenic CNVs with a diagnostic yield of 12.8%. Familiality, cognitive and verbal abilities, severity of autistic symptoms, neuroimaging and neurophysiological findings are not related to genetic data. This study identifies loci of interest for ASD and highlights the importance of a careful phenotypic characterization, as complex ASD is related to higher rate of pathogenic CNVs.
Collapse
Affiliation(s)
- Silvia Annunziata
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.,Child Neurology and Psychiatry Unit, Brain and Behavioral Sciences Department, University of Pavia, 27100, Pavia, Italy
| | - Sara Bulgheroni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Stefano D'Arrigo
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Silvia Esposito
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.
| | - Matilde Taddei
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Enrico Alfei
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.,Pediatric Neurology Unit, "Vittore Buzzi" Children's Hospital ASST Fatebenefratelli-Sacco, 20100, Milan, Italy
| | - Francesca Luisa Sciacca
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Ambra Rizzo
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Chiara Pantaleoni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Daria Riva
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| |
Collapse
|
238
|
Mustillo PJ, Sullivan KE, Chinn IK, Notarangelo LD, Haddad E, Davies EG, de la Morena MT, Hartog N, Yu JE, Hernandez-Trujillo VP, Ip W, Franco J, Gambineri E, Hickey SE, Varga E, Markert ML. Clinical Practice Guidelines for the Immunological Management of Chromosome 22q11.2 Deletion Syndrome and Other Defects in Thymic Development. J Clin Immunol 2023; 43:247-270. [PMID: 36648576 PMCID: PMC9892161 DOI: 10.1007/s10875-022-01418-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/04/2022] [Indexed: 01/18/2023]
Abstract
Current practices vary widely regarding the immunological work-up and management of patients affected with defects in thymic development (DTD), which include chromosome 22q11.2 microdeletion syndrome (22q11.2del) and other causes of DiGeorge syndrome (DGS) and coloboma, heart defect, atresia choanae, retardation of growth and development, genital hypoplasia, ear anomalies/deafness (CHARGE) syndrome. Practice variations affect the initial and subsequent assessment of immune function, the terminology used to describe the condition and immune status, the accepted criteria for recommending live vaccines, and how often follow-up is needed based on the degree of immune compromise. The lack of consensus and widely varying practices highlight the need to establish updated immunological clinical practice guidelines. These guideline recommendations provide a comprehensive review for immunologists and other clinicians who manage immune aspects of this group of disorders.
Collapse
Affiliation(s)
- Peter J Mustillo
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ivan K Chinn
- Division of Immunology, Allergy, and Retrovirology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Infectious Diseases and Immunology, CHU Sainte-Justine, University of Montreal, Montreal, QC, H3T 1C5, Canada
| | - E Graham Davies
- Department of Immunology, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, WC1N 3HJ, UK
| | - Maria Teresa de la Morena
- Division of Immunology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, 98105, USA
| | - Nicholas Hartog
- Spectrum Health Helen DeVos Children's Hospital Department of Allergy and Immunology, Michigan State University College of Human Medicine, East Lansing, USA
| | - Joyce E Yu
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Winnie Ip
- Department of Immunology, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, WC1N 3JH, UK
| | - Jose Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Eleonora Gambineri
- Department of "NEUROFARBA", Section of Child's Health, University of Florence, Florence, Italy
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Scott E Hickey
- Division of Genetic & Genomic Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Elizabeth Varga
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - M Louise Markert
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
239
|
Gupta N. Deciphering Intellectual Disability. Indian J Pediatr 2023; 90:160-167. [PMID: 36441387 DOI: 10.1007/s12098-022-04345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) is a common cause of referral to the pediatricians, geneticists, and pediatric neurologists. A thorough clinical evaluation and a stepwise investigative approach using a combination of traditional genetic techniques and appropriate latest genomic technologies can help in arriving at a diagnosis. In the current "omics" era, adopting a multiomics approach would further assist in solving the undiagnosed cases with intellectual disability.
Collapse
Affiliation(s)
- Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, Old OT Block, New Delhi, 110029, India.
| |
Collapse
|
240
|
Mishra R, Kapoor S. Genetic Counselling for Global Developmental Delay/Intellectual Disability (GDD/ID) — Changing Landscapes and Persisting Challenges. Indian Pediatr 2023. [DOI: 10.1007/s13312-023-2813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
241
|
Fujimoto M, Nakamura Y, Iwaki T, Sato E, Ieda D, Hattori A, Shiraki A, Mizuno S, Saitoh S. Angelman syndrome with mosaic paternal uniparental disomy suggestive of mitotic nondisjunction. J Hum Genet 2023; 68:87-90. [PMID: 36224263 DOI: 10.1038/s10038-022-01088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 01/27/2023]
Abstract
Angelman syndrome (AS) is caused by the functional absence of the maternal ubiquitin-protein ligase E3A (UBE3A) gene. Approximately 5% of AS is caused by paternal uniparental disomy of chromosome 15 (UPD(15)pat), most of which is considered to result from monosomy rescue. However, little attention has focused on how UPD(15)pat occurs. We suggest the mitotic nondisjunction mechanism as a cause of UPD(15)pat in a six-year-old patient presenting with distinctive characteristics in line with AS. DNA methylation screening of 15q11-q13 showed a paternal band and a faint maternal band, suggestive of mosaic status. By trio-based microsatellite analysis, we confirmed a large proportion of UPD(15)pat cells and a small proportion of cells of biparental origin. Single nucleotide polymorphism (SNP) microarray revealed isodisomy of the entire chromosome 15. These results suggest that the UPD(15)pat of the patient resulted from mitotic nondisjunction, which may also be the cause of other cases of AS with UPD(15)pat.
Collapse
Affiliation(s)
- Masanori Fujimoto
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuji Nakamura
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshihiko Iwaki
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Emi Sato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Daisuke Ieda
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Anna Shiraki
- Department of Child Neurology, Toyota Municipal Child Development Center Nozomi Clinic, Toyota, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Aichi, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
242
|
Kariminejad A, Ghaderi-Sohi S, Gholami S, Najafi K, Kariminejad R, Hennekam RCM. 5p13 microduplication in a malformed fetus and his unaffected father. Am J Med Genet A 2023; 191:370-377. [PMID: 36322476 DOI: 10.1002/ajmg.a.63030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/09/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
The 5p13 microduplication syndrome is a contiguous gene syndrome characterized by developmental delay intellectual disability, hypotonia, unusual facies with marked variability, mild limb anomalies, and in some cases brain malformations. The duplication ranges in size from 0.25 to 1.08 Mb and encompasses five genes (NIPBL, SLC1A3, CPLANE1, NUP155, and WDR70), of which NIPBL has been suggested to be the main dose sensitive gene. All patients with duplication of the complete NIPBL gene reported thus far have been de novo. Here, we report a 25-week-old male fetus with hypertelorism, wide and depressed nasal bridge, depressed nasal tip, low-set ears, clenched hands, flexion contracture of elbows, knees, and left wrist, and bilateral clubfeet, bowing and shortening of long bones and brain malformation of dorsal part of callosal body. The fetus had a 667 kb gain at 5p13.2 encompassing SLC1A3, NIPBL and exons 22-52 of CPLANE1. The microduplication was inherited from the healthy father, in whom no indication for mosaicism was detected. The family demonstrates that incomplete penetrance of 5p13 microduplication syndrome may occur which is important in genetic counseling of families with this entity.
Collapse
Affiliation(s)
| | | | - Soheila Gholami
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Kimia Najafi
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | | | - Raoul C M Hennekam
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
243
|
Ajami N, Kerachian MA, Toosi MB, Ashrafzadeh F, Hosseini S, Robinson PN, Abbaszadegan M. Inherited deletion of 9p22.3-p24.3 and duplication of 18p11.31-p11.32 associated with neurodevelopmental delay: Phenotypic matching of involved genes. J Cell Mol Med 2023; 27:496-505. [PMID: 36691971 PMCID: PMC9930415 DOI: 10.1111/jcmm.17662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023] Open
Abstract
We describe a 3.5-year-old Iranian female child and her affected 10-month-old brother with a maternally inherited derivative chromosome 9 [der(9)]. The postnatally detected rearrangement was finely characterized by aCGH analysis, which revealed a 15.056 Mb deletion of 9p22.3-p24.3p22.3 encompassing 14 OMIM morbid genes such as DOCK8, KANK1, DMRT1 and SMARCA2, and a gain of 3.309 Mb on 18p11.31-p11.32 encompassing USP14, THOC1, COLEC12, SMCHD1 and LPIN2. We aligned the genes affected by detected CNVs to clinical and functional phenotypic features using PhenogramViz. In this regard, the patient's phenotype and CNVs data were entered into PhenogramViz. For the 9p deletion CNV, 53 affected genes were identified and 17 of them were matched to 24 HPO terms describing the patient's phenotypes. Also, for CNV of 18p duplication, 22 affected genes were identified and six of them were matched to 13 phenotypes. Moreover, we used DECIPHER for in-depth characterization of involved genes in detected CNVs and also comparison of patient phenotypes with 9p and 18p genomic imbalances. Based on our filtration strategy, in the 9p22.3-p24.3 region, approximately 80 pathogenic/likely pathogenic/uncertain overlapping CNVs were in DECIPHER. The size of these CNVs ranged from 12.01 kb to 18.45 Mb and 52 CNVs were smaller than 1 Mb in size affecting 10 OMIM morbid genes. The 18p11.31-p11.32 region overlapped 19 CNVs in the DECIPHER database with the size ranging from 23.42 kb to 1.82 Mb. These CNVs affect eight haploinsufficient genes.
Collapse
Affiliation(s)
- Naser Ajami
- Department of Medical Genetics and Molecular Medicine, Faculty of MedicineMashhad University of Medical SciencesMashhadIran,Medical Genetics Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mohammad Amin Kerachian
- Department of Medical Genetics and Molecular Medicine, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mehran Beiraghi Toosi
- Department of Pediatric Neurology, School of MedicineMashhad University of Medical SciencesMashhadIran,Neuroscience Research CenterMashhad University of Medical SciencesMashhadIran
| | - Farah Ashrafzadeh
- Department of Pediatric Neurology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | | | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, Faculty of MedicineMashhad University of Medical SciencesMashhadIran,Immunology Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
244
|
Wang Y, Liu C, Deng J, Xu Q, Lin J, Li H, Hu M, Hu C, Li Q, Xu X. Behavioral and Sensory Deficits Associated with Dysfunction of GABAergic System in a Novel shank2-Deficient Zebrafish Model. Int J Mol Sci 2023; 24:2208. [PMID: 36768529 PMCID: PMC9916955 DOI: 10.3390/ijms24032208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Hyper-reactivity to sensory inputs is a common and debilitating symptom of autism spectrum disorder (ASD), but the underlying neural abnormalities remain unclear. Two of three patients in our clinical cohort screen harboring de novo SHANK2 mutations also exhibited high sensitivity to visual, auditory, and tactile stimuli, so we examined whether shank2 deficiencies contribute to sensory abnormalities and other ASD-like phenotypes by generating a stable shank2b-deficient zebrafish model (shank2b-/-). The adult shank2b-/- zebrafish demonstrated reduced social preference and kin preference as well as enhanced behavioral stereotypy, while larvae exhibited hyper-sensitivity to auditory noise and abnormal hyperactivity during dark-to-light transitions. This model thus recapitulated the core developmental and behavioral phenotypes of many previous genetic ASD models. Expression levels of γ-aminobutyric acid (GABA) receptor subunit mRNAs and proteins were also reduced in shank2b-/- zebrafish, and these animals exhibited greater sensitivity to drug-induced seizures. Our results suggest that GABAergic dysfunction is a major contributor to the sensory hyper-reactivity in ASD, and they underscore the need for interventions that target sensory-processing disruptions during early neural development to prevent disease progression.
Collapse
Affiliation(s)
- Yi Wang
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Chunxue Liu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Jingxin Deng
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Qiong Xu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Jia Lin
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children’s Hopstial of Fudan University, National Children’s Medical Center, 399 Wangyuan Road, Shanghai 201102, China
| | - Huiping Li
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Meixin Hu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Chunchun Hu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Qiang Li
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children’s Hopstial of Fudan University, National Children’s Medical Center, 399 Wangyuan Road, Shanghai 201102, China
| | - Xiu Xu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| |
Collapse
|
245
|
Nair A, Greeny A, Rajendran R, Abdelgawad MA, Ghoneim MM, Raghavan RP, Sudevan ST, Mathew B, Kim H. KIF1A-Associated Neurological Disorder: An Overview of a Rare Mutational Disease. Pharmaceuticals (Basel) 2023; 16:147. [PMID: 37259299 PMCID: PMC9962247 DOI: 10.3390/ph16020147] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 10/03/2023] Open
Abstract
KIF1A-associated neurological diseases (KANDs) are a group of inherited conditions caused by changes in the microtubule (MT) motor protein KIF1A as a result of KIF1A gene mutations. Anterograde transport of membrane organelles is facilitated by the kinesin family protein encoded by the MT-based motor gene KIF1A. Variations in the KIF1A gene, which primarily affect the motor domain, disrupt its ability to transport synaptic vesicles containing synaptophysin and synaptotagmin leading to various neurological pathologies such as hereditary sensory neuropathy, autosomal dominant and recessive forms of spastic paraplegia, and different neurological conditions. These mutations are frequently misdiagnosed because they result from spontaneous, non-inherited genomic alterations. Whole-exome sequencing (WES), a cutting-edge method, assists neurologists in diagnosing the illness and in planning and choosing the best course of action. These conditions are simple to be identified in pediatric and have a life expectancy of 5-7 years. There is presently no permanent treatment for these illnesses, and researchers have not yet discovered a medicine to treat them. Scientists have more hope in gene therapy since it can be used to cure diseases brought on by mutations. In this review article, we discussed some of the experimental gene therapy methods, including gene replacement, gene knockdown, symptomatic gene therapy, and cell suicide gene therapy. It also covered its clinical symptoms, pathogenesis, current diagnostics, therapy, and research advances currently occurring in the field of KAND-related disorders. This review also explained the impact that gene therapy can be designed in this direction and afford the remarkable benefits to the patients and society.
Collapse
Affiliation(s)
- Ayushi Nair
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Alosh Greeny
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Roshni Pushpa Raghavan
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
246
|
Innoceta AM, Olivucci G, Parmeggiani G, Scarano E, Pragliola A, Graziano C. Chromosomal Microarray Analysis Identifies a Novel SALL1 Deletion, Supporting the Association of Haploinsufficiency with a Mild Phenotype of Townes-Brocks Syndrome. Genes (Basel) 2023; 14:258. [PMID: 36833185 PMCID: PMC9956891 DOI: 10.3390/genes14020258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
SALL1 heterozygous pathogenic variants cause Townes-Brocks syndrome (TBS), a condition with variable clinical presentation. The main features are a stenotic or imperforate anus, dysplastic ears, and thumb malformations, and other common concerns are hearing impairments, foot malformations, and renal and heart defects. Most of the pathogenic SALL1 variants are nonsense and frameshift, likely escaping nonsense-mediated mRNA decay and causing disease via a dominant-negative mechanism. Haploinsufficiency may result in mild phenotypes, but only four families with distinct SALL1 deletions have been reported to date, with a few more being of larger size and also affecting neighboring genes. We report on a family with autosomal dominant hearing impairment and mild anal and skeletal anomalies, in whom a novel 350 kb SALL1 deletion, spanning exon 1 and the upstream region, was identified by array comparative genomic hybridization. We review the clinical findings of known individuals with SALL1 deletions and point out that the overall phenotype is milder, especially when compared with individuals who carry the recurrent p.Arg276Ter mutation, but with a possible higher risk of developmental delay. Chromosomal microarray analysis is still a valuable tool in the identification of atypical/mild TBS cases, which are likely underestimated.
Collapse
Affiliation(s)
| | - Giulia Olivucci
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Emanuela Scarano
- Rare Diseases Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | | |
Collapse
|
247
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Genomics Research to Elucidate the Genetics of Rare Diseases (GREGoR) Consortium, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O’Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: what's next in diagnostic testing for Mendelian conditions. ARXIV 2023:arXiv:2301.07363v1. [PMID: 36713248 PMCID: PMC9882576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order and emerging technologies, such as optical genome mapping and long-read DNA or RNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to a consortium such as GREGoR, which is focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H. Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M. Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
| | - Michael H. Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010 USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
| | - Philip M. Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Emily E. Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Emmanuèle C. Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
- Center for Genetics Medicine Research, Children’s National Research and Innovation Campus, Washington, DC, USA
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle WA 98195 USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | | | - Lea M. Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Stephen B. Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
| | - Jessica X. Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
| | - Matthew T. Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Seth I. Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children’s National Hospital, Washington, DC 20010 USA
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005 USA
| | - Danny E. Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
248
|
Genetic Influences on Fetal Alcohol Spectrum Disorder. Genes (Basel) 2023; 14:genes14010195. [PMID: 36672936 PMCID: PMC9859092 DOI: 10.3390/genes14010195] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) encompasses the range of deleterious outcomes of prenatal alcohol exposure (PAE) in the affected offspring, including developmental delay, intellectual disability, attention deficits, and conduct disorders. Several factors contribute to the risk for and severity of FASD, including the timing, dose, and duration of PAE and maternal factors such as age and nutrition. Although poorly understood, genetic factors also contribute to the expression of FASD, with studies in both humans and animal models revealing genetic influences on susceptibility. In this article, we review the literature related to the genetics of FASD in humans, including twin studies, candidate gene studies in different populations, and genetic testing identifying copy number variants. Overall, these studies suggest different genetic factors, both in the mother and in the offspring, influence the phenotypic outcomes of PAE. While further work is needed, understanding how genetic factors influence FASD will provide insight into the mechanisms contributing to alcohol teratogenicity and FASD risk and ultimately may lead to means for early detection and intervention.
Collapse
|
249
|
Zhuang J, Xie M, Yao J, Fu W, Zeng S, Jiang Y, Wang Y, Xie Y, Wang G, Chen C. A de novo PAK1 likely pathogenic variant and a de novo terminal 1q microdeletion in a Chinese girl with global developmental delay, severe intellectual disability, and seizures. BMC Med Genomics 2023; 16:3. [PMID: 36624491 PMCID: PMC9830755 DOI: 10.1186/s12920-023-01433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Pathogenic PAK1 variants were described to be causative of neurodevelopmental disorder with macrocephaly, seizures, and speech delay. Herein, we present a de novo PAK1 variant combine with a de novo terminal 1q microdeletion in a Chinese pediatric patient, aiming to provide more insights into the underlying genotype-phenotype relationship. METHODS Enrolled in this study was a 6-year-old girl with clinical features of global developmental delay, severe intellectual disability, speech delay, and seizures from Quanzhou region of China. Karyotype and chromosomal microarray analysis (CMA) were performed to detect chromosome abnormalities in this family. Whole exome sequencing (WES) was performed to investigate additional genetic variants in this family. RESULTS No chromosomal abnormalities were elicited from the entire family by karyotype analysis. Further familial CMA results revealed that the patient had a de novo 2.7-Mb microdeletion (arr[GRCh37] 1q44(246,454,321_249,224,684) × 1]) in 1q44 region, which contains 14 OMIM genes, but did not overlap the reported smallest region of overlap (SRO) responsible for the clinical features in 1q43q44 deletion syndrome. In addition, WES result demonstrated a de novo NM_002576: c.251C > G (p.T84R) variant in PAK1 gene in the patient, which was interpreted as a likely pathogenic variant. CONCLUSION In this study, we identify a novel PAK1 variant associated with a terminal 1q microdeletion in a patient with neurodevelopmental disorder. In addition, we believe that the main clinical features may ascribe to the pathogenic variant in PAK1 gene in the patient.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 People’s Republic of China
| | - Meihua Xie
- Prenatal Diagnosis Center, Yueyang Central Hospital, Yueyang, 414000 People’s Republic of China
| | - Jianfeng Yao
- Department of Women Healthcare, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 People’s Republic of China
| | - Wanyu Fu
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 People’s Republic of China
| | - Shuhong Zeng
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 People’s Republic of China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 People’s Republic of China
| | - Yuanbai Wang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 People’s Republic of China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guanghzou, 510150, People's Republic of China. .,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China.
| | - Gaoxiong Wang
- Quanzhou Women's and Children's Hospital, Quanzhou, 362000, People's Republic of China.
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, People's Republic of China.
| |
Collapse
|
250
|
Johansson M, Karltorp E, Asp F, Berninger E. A Prospective Study of Genetic Variants in Infants with Congenital Unilateral Sensorineural Hearing Loss. J Clin Med 2023; 12:jcm12020495. [PMID: 36675424 PMCID: PMC9860725 DOI: 10.3390/jcm12020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Children with unilateral sensorineural hearing loss (uSNHL) have a high risk of speech-language delays and academic difficulties. Still, challenges remain in the diagnosis of uSNHL. With a prospective cross-sectional design, 20 infants were consecutively recruited from a universal newborn hearing screening program and invited to genetic testing. Eighteen of the subjects agreed to genetic testing, 15 subjects with OtoSCOPE® v.9 screening 224 genes, and four subjects underwent targeted testing, screening for chromosomal abnormalities or 105-137 gene mutations. The genetic results were described together with the 20 infants' previously published auditory profiles and imaging results. Genetic causes for the uSNHL were found in 28% of subjects (5/18) including CHARGE syndrome (CHD7), autosomal recessive non-syndromic hearing loss (GJB2), Townes-Brocks syndrome (SALL1), Pendred Syndrome (SLC26A4) and Chromosome 8P inverted duplication and deletion syndrome. In subjects with comorbidities (malformation of fingers, anus, brain, and heart), 100% were diagnosed with a genetic cause for uSNHL (3/3 subjects), while 13% (2/15 subjects) were diagnosed without comorbidities observed at birth (p = 0.002). Genetic testing for congenital uSNHL is currently efficient for alleged syndromes, whereas genetic variants for non-syndromic congenital uSNHL need further research.
Collapse
Affiliation(s)
- Marlin Johansson
- Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
- Department of Audiology and Neurotology, Karolinska University Hospital, 141 86 Stockholm, Sweden
- Correspondence: ; Tel.: +46-709101804
| | - Eva Karltorp
- Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
- Department of Hearing Implants, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Filip Asp
- Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
- Department of Hearing Implants, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Erik Berninger
- Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
- Department of Audiology and Neurotology, Karolinska University Hospital, 141 86 Stockholm, Sweden
| |
Collapse
|