201
|
MicroRNA delivery for regenerative medicine. Adv Drug Deliv Rev 2015; 88:108-22. [PMID: 26024978 DOI: 10.1016/j.addr.2015.05.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/13/2015] [Accepted: 05/21/2015] [Indexed: 12/26/2022]
Abstract
MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development.
Collapse
|
202
|
Zhang YJ, Xu F, Zhang YJ, Li HB, Han JC, Li L. miR-206 inhibits non small cell lung cancer cell proliferation and invasion by targeting SOX9. Int J Clin Exp Med 2015; 8:9107-9113. [PMID: 26309565 PMCID: PMC4538070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been suggested to play an essential role in tumorigenesis. miR-206 functions as a tumor suppressor in several cancers. However, its role in non small cell lung cancer (NSCLC) remains unclear. METHODS Expression levels of miR-206 in NSCLC tissues and cell lines were determined by quantitative real-time PCR (qRT-PCR). Then, we investigated the role of miR-206 on NSCLC cell proliferation, migration and invasion. Furthermore, luciferase reporter assay was performed to confirm the target gene of miR-206 and the results were validated in NSCLC cells. RESULTS In the present study, our results showed that miR-206 was decreased in NSCLC tissues compared with adjacent non-tumor tissues. Forced overexpression of miR-206 significantly inhibited cell proliferation, migration and invasion of NSCLC cells. SOX9 was found to be a target of miR-206. Furthermore, down-regulation of SOX9 by shRNA performed similar effects with overexpression of miR-206. CONCLUSIONS Our study suggested that miR-206 acts as tumor suppressor in NSCLC partially via targeting SOX9.
Collapse
Affiliation(s)
- Ya-Jun Zhang
- Department of Respiration Medicine, Huaihe Hospital of Henan University Kaifeng 475000, Henan Province, China
| | - Feng Xu
- Department of Respiration Medicine, Huaihe Hospital of Henan University Kaifeng 475000, Henan Province, China
| | - Yi-Jie Zhang
- Department of Respiration Medicine, Huaihe Hospital of Henan University Kaifeng 475000, Henan Province, China
| | - Hong-Bing Li
- Department of Respiration Medicine, Huaihe Hospital of Henan University Kaifeng 475000, Henan Province, China
| | - Ji-Chang Han
- Department of Respiration Medicine, Huaihe Hospital of Henan University Kaifeng 475000, Henan Province, China
| | - Lei Li
- Department of Respiration Medicine, Huaihe Hospital of Henan University Kaifeng 475000, Henan Province, China
| |
Collapse
|
203
|
Kruppel-like factor 4 signals through microRNA-206 to promote tumor initiation and cell survival. Oncogenesis 2015; 4:e155. [PMID: 26053033 PMCID: PMC4753526 DOI: 10.1038/oncsis.2015.8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/25/2015] [Accepted: 03/11/2015] [Indexed: 12/19/2022] Open
Abstract
Tumor cell heterogeneity poses a major hurdle in the treatment of cancer. Mammary cancer stem-like cells (MaCSCs), or tumor-initiating cells, are highly tumorigenic sub-populations that have the potential to self-renew and to differentiate. These cells are clinically important, as they display therapeutic resistance and may contribute to treatment failure and recurrence, but the signaling axes relevant to the tumorigenic phenotype are poorly defined. The zinc-finger transcription factor Kruppel-like factor 4 (KLF4) is a pluripotency mediator that is enriched in MaCSCs. KLF4 promotes RAS-extracellular signal-regulated kinase pathway activity and tumor cell survival in triple-negative breast cancer (TNBC) cells. In this study, we found that both KLF4 and a downstream effector, microRNA-206 (miR-206), are selectively enriched in the MaCSC fractions of cultured human TNBC cell lines, as well as in the aldehyde dehydrogenase-high MaCSC sub-population of cells derived from xenografted human mammary carcinomas. The suppression of endogenous KLF4 or miR-206 activities abrogated cell survival and in vivo tumor initiation, despite having only subtle effects on MaCSC abundance. Using a combinatorial approach that included in silico as well as loss- and gain-of-function in vitro assays, we identified miR-206-mediated repression of the pro-apoptotic molecules programmed cell death 4 (PDCD4) and connexin 43 (CX43/GJA1). Depletion of either of these two miR-206-regulated transcripts promoted resistance to anoikis, a prominent feature of CSCs, but did not consistently alter MaCSC abundance. Consistent with increased levels of miR-206 in MaCSCs, the expression of both PDCD4 and CX43 was suppressed in these cells relative to control cells. These results identify miR-206 as an effector of KLF4-mediated prosurvival signaling in MaCSCs through repression of PDCD4 and CX43. Consequently, our study suggests that a pluripotency factor exerts prosurvival signaling in MaCSCs, and that antagonism of KLF4-miR-206 signaling may selectively target the MaCSC niche in TNBC.
Collapse
|
204
|
Valsecchi V, Boido M, De Amicis E, Piras A, Vercelli A. Expression of Muscle-Specific MiRNA 206 in the Progression of Disease in a Murine SMA Model. PLoS One 2015; 10:e0128560. [PMID: 26030275 PMCID: PMC4450876 DOI: 10.1371/journal.pone.0128560] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disease, the most common in infancy, and the third one among young people under 18 years. The major pathological landmark of SMA is a selective degeneration of lower motor neurons, resulting in progressive skeletal muscle denervation, atrophy, and paralysis. Recently, it has been shown that specific or general changes in the activity of ribonucleoprotein containing micro RNAs (miRNAs) play a role in the development of SMA. Additionally miRNA-206 has been shown to be required for efficient regeneration of neuromuscular synapses after acute nerve injury in an ALS mouse model. Therefore, we correlated the morphology and the architecture of the neuromuscular junctions (NMJs) of quadriceps, a muscle affected in the early stage of the disease, with the expression levels of miRNA-206 in a mouse model of intermediate SMA (SMAII), one of the most frequently used experimental model. Our results showed a decrease in the percentage of type II fibers, an increase in atrophic muscle fibers and a remarkable accumulation of neurofilament (NF) in the pre-synaptic terminal of the NMJs in the quadriceps of SMAII mice. Furthermore, molecular investigation showed a direct link between miRNA-206-HDAC4-FGFBP1, and in particular, a strong up-regulation of this pathway in the late phase of the disease. We propose that miRNA-206 is activated as survival endogenous mechanism, although not sufficient to rescue the integrity of motor neurons. We speculate that early modulation of miRNA-206 expression might delay SMA neurodegenerative pathway and that miRNA-206 could be an innovative, still relatively unexplored, therapeutic target for SMA.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Elena De Amicis
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Piras
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
205
|
Nariyama M, Mori M, Shimazaki E, Ando H, Ohnuki Y, Abo T, Yamane A, Asada Y. Functions of miR-1 and miR-133a during the postnatal development of masseter and gastrocnemius muscles. Mol Cell Biochem 2015; 407:17-27. [PMID: 25981536 DOI: 10.1007/s11010-015-2450-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
The present study investigated the function of miR-1 and miR-133a during the postnatal development of mouse skeletal muscles. The amounts of miR-1 and miR-133a were measured in mouse masseter and gastrocnemius muscles between 1 and 12 weeks after birth with real-time polymerase chain reaction and those of HDACs, MEF2, MyoD family, MCK, SRF, and Cyclin D1 were measured at 2 and 12 weeks with Western blotting. In both the masseter and gastrocnemius muscles, the amount of miR-1 increased between 1 and 12 weeks, whereas the amount of HADC4 decreased between 2 and 12 weeks. In the masseter muscle, those of MEF2, MyoD, Myogenin, and MCK increased between 2 and 12 weeks, whereas, in the gastrocnemius muscle, only those of MRF4 and MCK increased. The extent of these changes in the masseter muscle was greater than that in the gastrocnemius muscle. The amounts of miR-133a, SRF, and Cyclin D1 did not change significantly in the masseter muscle between 1 and 12 weeks after birth. By contrast, in the gastrocnemius muscle, the amounts of miR-133a and Cyclin D1 increased, whereas that of SRF decreased. Our findings suggest that the regulatory pathway of miR-1 via HDAC4 and MEF2 plays a more prominent role during postnatal development in the masseter muscle than in the gastrocnemius muscle, whereas that of miR-133a via SRF plays a more prominent role in the gastrocnemius muscle than in the masseter muscle.
Collapse
Affiliation(s)
- Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Bai L, Liang R, Yang Y, Hou X, Wang Z, Zhu S, Wang C, Tang Z, Li K. MicroRNA-21 Regulates PI3K/Akt/mTOR Signaling by Targeting TGFβI during Skeletal Muscle Development in Pigs. PLoS One 2015; 10:e0119396. [PMID: 25950587 PMCID: PMC4423774 DOI: 10.1371/journal.pone.0119396] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/12/2015] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs), which are short (22–24 base pairs), non-coding RNAs, play critical roles in myogenesis. Using Solexa deep sequencing, we detected the expression levels of 229 and 209 miRNAs in swine skeletal muscle at 90 days post-coitus (E90) and 100 days postnatal (D100), respectively. A total of 138 miRNAs were up-regulated on E90, and 31 were up-regulated on D100. Of these, 9 miRNAs were selected for the validation of the small RNA libraries by quantitative RT-PCR (RT-qPCR). We found that miRNA-21 was down-regulated by 17-fold on D100 (P<0.001). Bioinformatics analysis suggested that the transforming growth factor beta-induced (TGFβI) gene was a potential target of miRNA-21. Both dual luciferase reporter assays and western blotting demonstrated that the TGFβI gene was regulated by miRNA-21. Co-expression analysis revealed that the mRNA expression levels of miRNA-21 and TGFβI were negatively correlated (r = -0.421, P = 0.026) in skeletal muscle during the 28 developmental stages. Our results revealed that more miRNAs are expressed in prenatal than in postnatal skeletal muscle. The miRNA-21 is a novel myogenic miRNA that is involved in skeletal muscle development and regulates PI3K/Akt/mTOR signaling by targeting the TGFβI gene.
Collapse
Affiliation(s)
- Lijing Bai
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ruyi Liang
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Yang
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhua Hou
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zishuai Wang
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shiyun Zhu
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chuduan Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Agricultural Animal Genetics and Breeding, Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Zhonglin Tang
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- * E-mail: ,
| | - Kui Li
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
207
|
Panwalkar P, Moiyadi A, Goel A, Shetty P, Goel N, Sridhar E, Shirsat N. MiR-206, a Cerebellum Enriched miRNA Is Downregulated in All Medulloblastoma Subgroups and Its Overexpression Is Necessary for Growth Inhibition of Medulloblastoma Cells. J Mol Neurosci 2015; 56:673-80. [PMID: 25859932 DOI: 10.1007/s12031-015-0548-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/19/2015] [Indexed: 02/03/2023]
Abstract
Medulloblastoma is the most common and a highly malignant pediatric brain tumor located in the cerebellar region of the brain. Medulloblastomas have recently been shown to consist of four distinct molecular subgroups, viz., WNT, SHH, group 3, and group 4. MiR-206, a miRNA first identified as a myomiR due to its enriched expression in skeletal muscle was found to be expressed specifically in the cerebellum, the site of medulloblastoma occurrence. MiR-206 expression was found to be downregulated in medulloblastomas belonging to all the four molecular subgroups as well as in established medulloblastoma cell lines. Further, the expression of murine homolog of miR-206 was also found to be downregulated in SHH subgroup medulloblastomas from the Smo (+/+) transgenic mice and the Ptch1 (+/-) knockout mice. MiR-206 downregulation in all the four medulloblastoma subgroups suggests tumor-suppressive role for miR-206 in medulloblastoma pathogenesis. The effect of miR-206 expression was analyzed in three established medulloblastoma cell lines, viz., Daoy, D425, and D283 belonging to distinct molecular subgroups. Restoration of miR-206 expression to the levels comparable to those in the normal cerebellum, however, was found to be insufficient to inhibit the growth of established medulloblastoma cell lines. OTX2, an oncogenic miR-206 target, overexpressed in all non-SHH medulloblastomas, is known to inhibit myogenic differentiation of medulloblastoma cells. Overexpression of miR-206 was necessary to downregulate OTX2 expression and inhibit growth of medulloblastoma cell lines.
Collapse
Affiliation(s)
- Pooja Panwalkar
- Shirsat Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | | | | | | | | | | | | |
Collapse
|
208
|
Nachtigall PG, Dias MC, Carvalho RF, Martins C, Pinhal D. MicroRNA-499 expression distinctively correlates to target genes sox6 and rod1 profiles to resolve the skeletal muscle phenotype in Nile tilapia. PLoS One 2015; 10:e0119804. [PMID: 25793727 PMCID: PMC4368118 DOI: 10.1371/journal.pone.0119804] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/02/2015] [Indexed: 11/22/2022] Open
Abstract
A class of small non-coding RNAs, the microRNAs (miRNAs), has been shown to be essential for the regulation of specific cell pathways, including skeletal muscle development, maintenance and homeostasis in vertebrates. However, the relative contribution of miRNAs for determining the red and white muscle cell phenotypes is far from being fully comprehended. To better characterize the role of miRNA in skeletal muscle cell biology, we investigated muscle-specific miRNA (myomiR) signatures in Nile tilapia fish. Quantitative (RT-qPCR) and spatial (FISH) expression analyses revealed a highly differential expression (forty-four-fold) of miR-499 in red skeletal muscle compared to white skeletal muscle, whereas the remaining known myomiRs were equally expressed in both muscle cell types. Detailed examination of the miR-499 targets through bioinformatics led us to the sox6 and rod1 genes, which had low expression in red muscle cells according to RT-qPCR, FISH, and protein immunofluorescence profiling experiments. Interestingly, we verified that the high expression of miR-499 perfectly correlates with a low expression of sox6 and rod1 target genes, as verified by a distinctive predominance of mRNA destabilization and protein translational decay to these genes, respectively. Through a genome-wide comparative analysis of SOX6 and ROD1 protein domains and through an in silico gene regulatory network, we also demonstrate that both proteins are essentially similar in vertebrate genomes, suggesting their gene regulatory network may also be widely conserved. Overall, our data shed light on the potential regulation of targets by miR-499 associated with the slow-twitch muscle fiber type phenotype. Additionally the results provide novel insights into the evolutionary dynamics of miRNA and target genes enrolled in a putative constrained molecular pathway in the skeletal muscle cells of vertebrates.
Collapse
Affiliation(s)
- Pedro G. Nachtigall
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-970, Brazil
| | - Marcos C. Dias
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-970, Brazil
- Health Sciences Institute, Federal University of Mato Grosso (UFMT), Sinop, Mato Grosso, 78550-000, Brazil
| | - Robson F. Carvalho
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-970, Brazil
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-970, Brazil
| | - Danillo Pinhal
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-970, Brazil
| |
Collapse
|
209
|
Dusl M, Senderek J, Muller JS, Vogel JG, Pertl A, Stucka R, Lochmuller H, David R, Abicht A. A 3'-UTR mutation creates a microRNA target site in the GFPT1 gene of patients with congenital myasthenic syndrome. Hum Mol Genet 2015; 24:3418-26. [DOI: 10.1093/hmg/ddv090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/08/2015] [Indexed: 01/07/2023] Open
|
210
|
Yang Y, Sun W, Wang R, Lei C, Zhou R, Tang Z, Li K. Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs. BMC Mol Biol 2015; 16:4. [PMID: 25888412 PMCID: PMC4359577 DOI: 10.1186/s12867-015-0035-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background The Wnt signaling pathway is involved in the control of cell proliferation and differentiation during skeletal muscle development. Secreted frizzled-related proteins (SFRPs), such as SFRP1, function as inhibitors of Wnt signaling. MicroRNA-1/206(miRNA-1/206) is specifically expressed in skeletal muscle and play a critical role in myogenesis. The miRNA-mRNA profiles and bioinformatics study suggested that the SFRP1 gene was potentially regulated by miRNA-1/206 during porcine skeletal muscle development. Methods To understand the function of SFRP1 and miRNA-1/206 in swine myogenesis, we first predicted the targets of miRNA-1/206 with the TargetScan and PicTar programs, and analyzed the molecular characterization of the porcine SFRP1 gene. We performed a temporal-spatial expression analysis of SFRP1 mRNA and miRNA-206 in Tongcheng pigs (a Chinese indigenous breed) by quantitative real-time polymerase chain reaction, and conducted the co-expression analyses of SFRP1 and miRNA-1/206. Subsequently, the interaction between SFRP1 and miRNA-1/206 was validated via dual luciferase and Western blot assays. Results The bioinformatics analysis predicted SFRP1 to be a target of miRNA-1/206. The expression level of the SFRP1 was highly varied across numerous pig tissues and it was down-regulated during porcine skeletal muscle development. The expression level of the SFRP1 was significantly higher in the embryonic skeletal compared with postnatal skeletal muscle, whereas miR-206 showed the inverse pattern of expression. A significant negative correlation was observed between the expression of miR-1/206 and SFRP1 during porcine skeletal muscle development (p <0.05). Dual luciferase assay and Western-blot results demonstrated that SFRP1 was a target of miR-1/206 in porcine iliac endothelial cells. Conclusions Our results indicate that the SFRP1 gene is regulated by miR-1/206 and potentially affects skeletal muscle development. These findings increase understanding of the biological functions and the regulation of the SFRP1 gene in mammals.
Collapse
Affiliation(s)
- Yalan Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R. China.
| | - Wei Sun
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China. .,College of Animal Science and Technology, Northwest A & F University, No. 22 Xinong Road, 712100, Yangling, Shanxi, P.R. China.
| | - Ruiqi Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China.
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A & F University, No. 22 Xinong Road, 712100, Yangling, Shanxi, P.R. China.
| | - Rong Zhou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China.
| | - Zhonglin Tang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R. China.
| | - Kui Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R. China.
| |
Collapse
|
211
|
Abstract
Embryonal rhabdomyosarcoma is one of the major defined histologic variants of rhabdomyosarcoma that is mainly reported in children. The histologic appearance of this neoplastic entity recapitulates normal myogenesis. The tumor cells variably exhibit the different cellular phases of myogenesis ranging from undifferentiated mesenchymal cells to elongated myoblasts, multinucleated myotubes and differentiated muscle fibers. The carefully orchestrated embryonic signaling pathways that are involved in myogenesis, conceivably also result in the genesis of rhabdomyosarcoma; albeit as a corollary to an imbalance. We have attempted to review the pathogenesis of embryonal rhabdomyosarcoma in an endeavor to understand better, how closely it is linked to normal myogenesis in terms of its molecular dynamics and histologic presentation.
Collapse
|
212
|
Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:309-16. [DOI: 10.1016/j.bbagrm.2015.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/17/2014] [Accepted: 01/10/2015] [Indexed: 12/13/2022]
|
213
|
Sun J, Sonstegard TS, Li C, Huang Y, Li Z, Lan X, Zhang C, Lei C, Zhao X, Chen H. Altered microRNA expression in bovine skeletal muscle with age. Anim Genet 2015; 46:227-38. [PMID: 25703017 DOI: 10.1111/age.12272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 01/19/2023]
Abstract
Age-dependent decline in skeletal muscle function leads to several inherited and acquired muscular disorders in elderly individuals. The levels of microRNAs (miRNAs) could be altered during muscle maintenance and repair. We therefore performed a comprehensive investigation for miRNAs from five different periods of bovine skeletal muscle development using next-generation small RNA sequencing. In total, 511 miRNAs, including one putatively novel miRNA, were identified. Thirty-six miRNAs were differentially expressed between prenatal and postnatal stages of muscle development including several myomiRs (miR-1, miR-206 and let-7 families). Compared with miRNA expression between different muscle tissues, 14 miRNAs were up-regulated and 22 miRNAs were down-regulated in the muscle of postnatal stage. In addition, a novel miRNA was predicted and submitted to the miRBase database as bta-mir-10020. A dual luciferase reporter assay was used to demonstrate that bta-mir-10020 directly targeted the 3'-UTR of the bovine ANGPT1 gene. The overexpression of bta-mir-10020 significantly decreased the DsRed fluorescence in the wild-type expression cassette compared to the mutant type. Using three computational approaches - miranda, pita and rnahybrid - these differentially expressed miRNAs were also predicted to target 3609 bovine genes. Disease and biological function analyses and the KEGG pathway analysis revealed that these targets were statistically enriched in functionality for muscle growth and disease. Our miRNA expression analysis findings from different states of muscle development and aging significantly expand the repertoire of bovine miRNAs now shown to be expressed in muscle and could contribute to further studies on growth and developmental disorders in this tissue type.
Collapse
Affiliation(s)
- J Sun
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Animal Genomics & Improvement Laboratory, USDA-ARS, BARC-East, Beltsville, MD, 20705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Ma G, Wang Y, Li Y, Cui L, Zhao Y, Zhao B, Li K. MiR-206, a key modulator of skeletal muscle development and disease. Int J Biol Sci 2015; 11:345-52. [PMID: 25678853 PMCID: PMC4323374 DOI: 10.7150/ijbs.10921] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/01/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) have recently emerged as fundamental post-transcriptional regulators inhibit gene expression linked to various biological processes. MiR-206 is one of the most studied and best characterized miRNA to date, which specifically expressed in skeletal muscle. In this review, we summarized the results of studies of miR-206 with emphasis on its function in skeletal muscle development. Importantly, dysregulation of miR-206 has been linked to many disorders in skeletal muscle such as Duchenne muscular dystrophy (DMD) and amyotrophic lateral sclerosis (ALS), and circulating miR-206 has highlighted its potential as a diagnose biomarker. In addition, a mutation in the 3' untranslated region (3'-UTR) of the myostatin gene in the Texel sheep creating a target site for the miR-206 and miR-1 leads to inhibition of myostatin expression, which likely to cause the muscular hypertrophy phenotype of this breed of sheep. Therefore, miR-206 may become novel target for ameliorating skeletal muscle-related disorders and optimization of muscle quantity of domestic animals.
Collapse
Affiliation(s)
- Guoda Ma
- 1. Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China; ; 2. Institute of Neurology, Guangdong Medical College, Zhanjiang 524001, China
| | - Yajun Wang
- 3. Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - You Li
- 1. Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Lili Cui
- 1. Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Yujuan Zhao
- 4. Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Bin Zhao
- 2. Institute of Neurology, Guangdong Medical College, Zhanjiang 524001, China
| | - Keshen Li
- 1. Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| |
Collapse
|
215
|
Zhang T, Birbrair A, Wang ZM, Messi ML, Marsh AP, Leng I, Nicklas BJ, Delbono O. Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. Exp Gerontol 2015; 62:7-13. [PMID: 25560803 PMCID: PMC4314447 DOI: 10.1016/j.exger.2014.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 11/26/2022]
Abstract
Regular exercise, particularly resistance training (RT), is the only therapy known to consistently improve muscle strength and quality (force per unit of mass) in older persons, but there is considerable variability in responsiveness to training. Identifying sensitive diagnostic biomarkers of responsiveness to RT may inform the design of a more efficient exercise regimen to improve muscle strength in older adults. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. We quantified six muscle specific miRNAs (miR-1, -133a, -133b, -206, -208b and -499) in both muscle tissue and blood plasma, and their relationship with knee extensor strength in seven older (age=70.5 ± 2.5 years) adults before and after 5 months of RT. MiRNAs differentially responded to RT; muscle miR-133b decreased, while all plasma miRNAs tended to increase. Percent changes in knee extensor strength with RT showed strong positive correlations with percent changes in muscle miR-133a, -133b, and -206 and with percent changes in plasma and plasma/muscle miR-499 ratio. Baseline level of plasma or plasma/muscle miR-499 ratio further predicts muscle response to RT, while changes in muscle miR-133a, -133b, and -206 may correlate with muscle TNNT1 gene alternative splicing in response to RT. Our results indicate that RT alters muscle specific miRNAs in muscle and plasma, and that these changes account for some of the variation in strength responses to RT in older adults.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States; J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Alexander Birbrair
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - María L Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Anthony P Marsh
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109, United States
| | - Iris Leng
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Barbara J Nicklas
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States; J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States; J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
216
|
Ju H, Yang Y, Sheng A, Jiang X. Role of microRNAs in skeletal muscle development and rhabdomyosarcoma (review). Mol Med Rep 2015; 11:4019-24. [PMID: 25633282 DOI: 10.3892/mmr.2015.3275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 01/15/2015] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle accounts for ~40% of total body mass. The principle functions of skeletal muscle include supporting the body structure, controlling motor movements and storing energy. Rhabdomyosarcoma (RMS) is a skeletal muscle‑derived soft tissue tumor widely occurring in the pediatric population. In previous years, microRNAs (miRNAs) have been demonstrated to be important in skeletal muscle development, function and the pathogenesis of various diseases, including RMS. The present review provided an overview of current knowledge on the muscle‑specific and ubiquitously‑expressed miRNAs involved in skeletal muscle differentiation and their dysregulation in RMS. Additionally, the potential use and challenges of miRNAs as therapeutic targets in this soft‑tissue sarcoma were examined and the future prospects for miRNAs in muscle biology and muscle disorders were discussed.
Collapse
Affiliation(s)
- Huiming Ju
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuefei Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Anzhi Sheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xing Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
217
|
Wang XW, Xi XQ, Wu J, Wan YY, Hui HX, Cao XF. MicroRNA-206 attenuates tumor proliferation and migration involving the downregulation of NOTCH3 in colorectal cancer. Oncol Rep 2015; 33:1402-10. [PMID: 25607234 DOI: 10.3892/or.2015.3731] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/19/2014] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is the most common cancer diagnosed worldwide, and the development of metastases is a major cause of mortality. Accumulating evidence suggests that microRNAs are important in carcinogenesis by affecting the expression of genes that regulate cancer progression. A number of studies have shown that miR-206 is frequently downregulated in many human malignancies, including CRC, and is associated with a more malignant phenotype. Previous studies involving HeLa and C2C12 cells have validated the inhibitory mechanism of miR-206 via NOTCH3 targeting. However, whether or not the interplay between miR-206 and NOTCH3 also occurs in CRC is unknown. Therefore, we investigated the tumor suppressive and metastatic effects of miR-206 and its target, NOTCH3, in CRC. Based on the inverse association between the expression of miR-206 and NOTCH3 in CRC tissues, miR-206 mimics were transiently transfected into the SW480 (and its metastatic strain) and SW620 colon cancer cell lines. Upregulation of miR-206 inhibited cancer cell prolife-ration and migration, blocked the cell cycle, and activated apoptosis. The tumor suppressive capacity of miR-206 had a similar effect on CRC cells, although with a different metastatic potential, and may be explained by direct NOTCH3 signaling inhibition and indirect cross-talk with other signaling pathways involving CDH2 and MMP-9. These results support miR-206 as a tumor suppressor in CRC and suggest a potential therapeutic target for clinical intervention.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xue-Qin Xi
- Department of Clinical Laboratory, Huai'an Hospital Affiliated to Xuzhou Medical College, Huai'an, Jiangsu 223002, P.R. China
| | - Jian Wu
- Department of Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yi-Yuan Wan
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hong-Xia Hui
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiu-Feng Cao
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
218
|
Aoi W. Frontier impact of microRNAs in skeletal muscle research: a future perspective. Front Physiol 2015; 5:495. [PMID: 25601837 PMCID: PMC4283715 DOI: 10.3389/fphys.2014.00495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/01/2014] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that can regulate the expression of mRNAs and proteins by degrading mRNA molecules or by inhibiting their translation. It has been predicted that miRNAs regulate approximately 60% of protein-coding genes that could be involved in a wide range of biological processes. Research over the last 5 years suggests that miRNAs play important roles in skeletal muscle function and several miRNAs have been identified as modulators of myogenesis, muscle mass, and nutrient metabolism in physiological and pathological states. In addition, some miRNAs can be incorporated into intracellular vesicles, released into the circulation, transported to other cells, and possibly function in other organs in an endocrine manner. This phenomenon might explain the interactions between skeletal muscles and other organs. Thus, far, several muscle-secreted miRNAs have been identified and their involvement in muscle biology has been debated. Based on the recent understanding, this perspective article describes the potential valuable role of miRNAs in skeletal muscle function, delineates its limitations, and outlines its future perspectives.
Collapse
Affiliation(s)
- Wataru Aoi
- Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Kyoto, Japan
| |
Collapse
|
219
|
Kirby TJ, Chaillou T, McCarthy JJ. The role of microRNAs in skeletal muscle health and disease. Front Biosci (Landmark Ed) 2015; 20:37-77. [PMID: 25553440 DOI: 10.2741/4298] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last decade non-coding RNAs have emerged as importance regulators of gene expression. In particular, microRNAs are a class of small RNAs of ∼ 22 nucleotides that repress gene expression through a post-transcriptional mechanism. MicroRNAs have been shown to be involved in a broader range of biological processes, both physiological and pathological, including myogenesis, adaptation to exercise and various myopathies. The purpose of this review is to provide a comprehensive summary of what is currently known about the role of microRNAs in skeletal muscle health and disease.
Collapse
Affiliation(s)
- Tyler J Kirby
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Thomas Chaillou
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
220
|
The Emerging Role of MitomiRs in the Pathophysiology of Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 888:123-54. [DOI: 10.1007/978-3-319-22671-2_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
221
|
Kamal MA, Mushtaq G, Greig NH. Current Update on Synopsis of miRNA Dysregulation in Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2015; 14:492-501. [PMID: 25714967 PMCID: PMC5878050 DOI: 10.2174/1871527314666150225143637] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
Aberrant expression of microRNAs (miRNAs) has been implicated in various neurological disorders (NDs) of the central nervous system such as Alzheimer disease, Parkinson's disease, Huntington disease, amyotrophic lateral sclerosis, schizophrenia and autism. If dysregulated miRNAs are identified in patients suffering from NDs, this may serve as a biomarker for the earlier diagnosis and monitoring of disease progression. Identifying the role of miRNAs in normal cellular processes and understanding how dysregulated miRNA expression is responsible for their neurological effects is also critical in the development of new therapeutic strategies for NDs. miRNAs hold great promise from a therapeutic point of view especially if it can be proved that a single miRNA has the ability to influence several target genes, making it possible for the researchers to potentially modify a whole disease phenotype by modulating a single miRNA molecule. Hence, better understanding of the mechanisms by which miRNA play a role in the pathogenesis of NDs may provide novel targets to scientists and researchers for innovative therapies.
Collapse
Affiliation(s)
- Mohammad A. Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Gohar Mushtaq
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
222
|
McNiece I. The Role of Microenvironment Stromal Cells in Regenerative Medicine. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
223
|
Alexander MS, Kunkel LM. Skeletal Muscle MicroRNAs: Their Diagnostic and Therapeutic Potential in Human Muscle Diseases. J Neuromuscul Dis 2015; 2:1-11. [PMID: 27547731 PMCID: PMC4988517 DOI: 10.3233/jnd-140058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small 21-24 nucleotide RNAs that are capable of regulating multiple signaling pathways across multiple tissues. MicroRNAs are dynamically regulated and change in expression levels during periods of early development, tissue regeneration, cancer, and various other disease states. Recently, microRNAs have been isolated from whole serum and muscle biopsies to identify unique diagnostic signatures for specific neuromuscular disease states. Functional studies of microRNAs in cell lines and animal models of neuromuscular diseases have elucidated their importance in contributing to neuromuscular disease progression and pathologies. The ability of microRNAs to alter the expression of an entire signaling pathway opens up their unique ability to be used as potential therapeutic entry points for the treatment of disease. Here, we will review the recent findings of key microRNAs and their dysregulation in various neuromuscular diseases. Additionally, we will highlight the current strategies being used to regulate the expression of key microRNAs as they have become important players in the clinical treatment of some of the neuromuscular diseases.
Collapse
Affiliation(s)
- Matthew S Alexander
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics and Genetics at Harvard Medical School, Boston, MA, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics and Genetics at Harvard Medical School, Boston, MA, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA, USA; The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
224
|
Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep 2014; 4:6614. [PMID: 25310989 PMCID: PMC4196107 DOI: 10.1038/srep06614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/23/2014] [Indexed: 12/13/2022] Open
Abstract
Cellular cardiomyoplasty has emerged as a novel therapy to restore contractile function of injured failing myocardium. Human multipotent muscle derived stem cells (MDSC) can be a potential abundant, autologous cell source for cardiac repair. However, robust conditions for cardiomyocyte (CM) differentiation are not well established for this cell type. We have developed a new method for CM differentiation from human MDSC that combines 3-dimensional artificial muscle tissue (AMT) culture with temporally controlled biophysical cell aggregation and delivery of 4 soluble factors (microRNA-206 inhibitor, IWR-1, Lithium Chloride, and BMP-4) (4F-AG-AMT). The 4F-AG-AMT displayed cardiac-like response to β-adrenergic stimulation and contractile properties. 4F-AG-AMT expressed major cardiac (NKX2-5, GATA4, TBX5, MEF2C) transcription factors and structural proteins. They also express cardiac gap-junction protein, connexin-43, similar to CMs and synchronized spontaneous calcium transients. These results highlight the importance of temporal control of biophysical and soluble factors for CM differentiation from MDSCs.
Collapse
Affiliation(s)
- Jason Tchao
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lu Han
- Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bo Lin
- Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lei Yang
- Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimimasa Tobita
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
225
|
Colangelo V, François S, Soldà G, Picco R, Roma F, Ginelli E, Meneveri R. Next-generation sequencing analysis of miRNA expression in control and FSHD myogenesis. PLoS One 2014; 9:e108411. [PMID: 25285664 PMCID: PMC4186784 DOI: 10.1371/journal.pone.0108411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence has demonstrated that miRNA sequences can regulate skeletal myogenesis by controlling the process of myoblast proliferation and differentiation. However, at present a deep analysis of miRNA expression in control and FSHD myoblasts during differentiation has not yet been derived. To close this gap, we used a next-generation sequencing (NGS) approach applied to in vitro myogenesis. Furthermore, to minimize sample genetic heterogeneity and muscle-type specific patterns of gene expression, miRNA profiling from NGS data was filtered with FC≥4 (log2FC≥2) and p-value<0.05, and its validation was derived by qRT-PCR on myoblasts from seven muscle districts. In particular, control myogenesis showed the modulation of 38 miRNAs, the majority of which (34 out 38) were up-regulated, including myomiRs (miR-1, -133a, -133b and -206). Approximately one third of the modulated miRNAs were not previously reported to be involved in muscle differentiation, and interestingly some of these (i.e. miR-874, -1290, -95 and -146a) were previously shown to regulate cell proliferation and differentiation. FSHD myogenesis evidenced a reduced number of modulated miRNAs than healthy muscle cells. The two processes shared nine miRNAs, including myomiRs, although with FC values lower in FSHD than in control cells. In addition, FSHD cells showed the modulation of six miRNAs (miR-1268, -1268b, -1908, 4258, -4508- and -4516) not evidenced in control cells and that therefore could be considered FSHD-specific, likewise three novel miRNAs that seem to be specifically expressed in FSHD myotubes. These data further clarify the impact of miRNA regulation during control myogenesis and strongly suggest that a complex dysregulation of miRNA expression characterizes FSHD, impairing two important features of myogenesis: cell cycle and muscle development. The derived miRNA profiling could represent a novel molecular signature for FSHD that includes diagnostic biomarkers and possibly therapeutic targets.
Collapse
Affiliation(s)
- Veronica Colangelo
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Stéphanie François
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Giulia Soldà
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Picco
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Francesca Roma
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Enrico Ginelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Meneveri
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
- * E-mail:
| |
Collapse
|
226
|
Neves VJD, Fernandes T, Roque FR, Soci UPR, Melo SFS, de Oliveira EM. Exercise training in hypertension: Role of microRNAs. World J Cardiol 2014; 6:713-727. [PMID: 25228951 PMCID: PMC4163701 DOI: 10.4330/wjc.v6.i8.713] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/25/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Hypertension is a complex disease that constitutes an important public health problem and demands many studies in order to understand the molecular mechanisms involving his pathophysiology. Therefore, an increasing number of studies have been conducted and new therapies are continually being discovered. In this context, exercise training has emerged as an important non-pharmacological therapy to treat hypertensive patients, minimizing the side effects of pharmacological therapies and frequently contributing to allow pharmacotherapy to be suspended. Several mechanisms have been associated with the pathogenesis of hypertension, such as hyperactivity of the sympathetic nervous system and renin-angiotensin aldosterone system, impaired endothelial nitric oxide production, increased oxygen-reactive species, vascular thickening and stiffening, cardiac hypertrophy, impaired angiogenesis, and sometimes genetic predisposition. With the advent of microRNAs (miRNAs), new insights have been added to the perspectives for the treatment of this disease, and exercise training has been shown to be able to modulate the miRNAs associated with it. Elucidation of the relationship between exercise training and miRNAs in the pathogenesis of hypertension is fundamental in order to understand how exercise modulates the cardiovascular system at genetic level. This can be promising even for the development of new drugs. This article is a review of how exercise training acts on hypertension by means of specific miRNAs in the heart, vascular system, and skeletal muscle.
Collapse
Affiliation(s)
- Vander José das Neves
- Vander José das Neves, Tiago Fernandes, Fernanda Roberta Roque, Ursula Paula Renó Soci, Stéphano Freitas Soares Melo, Edilamar Menezes de Oliveira, Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Tiago Fernandes
- Vander José das Neves, Tiago Fernandes, Fernanda Roberta Roque, Ursula Paula Renó Soci, Stéphano Freitas Soares Melo, Edilamar Menezes de Oliveira, Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Fernanda Roberta Roque
- Vander José das Neves, Tiago Fernandes, Fernanda Roberta Roque, Ursula Paula Renó Soci, Stéphano Freitas Soares Melo, Edilamar Menezes de Oliveira, Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Ursula Paula Renó Soci
- Vander José das Neves, Tiago Fernandes, Fernanda Roberta Roque, Ursula Paula Renó Soci, Stéphano Freitas Soares Melo, Edilamar Menezes de Oliveira, Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Stéphano Freitas Soares Melo
- Vander José das Neves, Tiago Fernandes, Fernanda Roberta Roque, Ursula Paula Renó Soci, Stéphano Freitas Soares Melo, Edilamar Menezes de Oliveira, Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Edilamar Menezes de Oliveira
- Vander José das Neves, Tiago Fernandes, Fernanda Roberta Roque, Ursula Paula Renó Soci, Stéphano Freitas Soares Melo, Edilamar Menezes de Oliveira, Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| |
Collapse
|
227
|
NF-κB (p65) negatively regulates myocardin-induced cardiomyocyte hypertrophy through multiple mechanisms. Cell Signal 2014; 26:2738-48. [PMID: 25152367 DOI: 10.1016/j.cellsig.2014.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023]
Abstract
Myocardin is well known to play a key role in the development of cardiomyocyte hypertrophy. But the exact molecular mechanism regulating myocardin stability and transactivity to affect cardiomyocyte hypertrophy has not been studied clearly. We now report that NF-κB (p65) can inhibit myocardin-induced cardiomyocyte hypertrophy. Then we explore the molecular mechanism of this response. First, we show that p65 can functionally repress myocardin transcriptional activity and also reduce the protein expression of myocardin. Second, the function of myocardin can be regulated by epigenetic modifications. Myocardin sumoylation is known to transactivate cardiac genes, but whether p65 can inhibit SUMO modification of myocardin is still not clear. Our data show that p65 weakens myocardin transcriptional activity through attenuating SUMO modification of myocardin by SUMO1/PIAS1, thereby impairing myocardin-mediated cardiomyocyte hypertrophy. Furthermore, the expression of myocardin can be regulated by several microRNAs, which play important roles in the development and function of the heart and muscle. We next investigated potential role of miR-1 in cardiac hypotrophy. Our results show that p65 can upregulate the level of miR-1 and miR-1 can decrease protein expression of myocardin in cardiac myocytes. Notably, miR-1 expression is also controlled by myocardin, leading to a feedback loop. These data thus provide important and novel insights into the function that p65 inhibits myocardin-mediated cardiomyocyte hypertrophy by downregulating the expression and SUMO modification of myocardin and enhancing the expression of miR-1.
Collapse
|
228
|
Goljanek-Whysall K, Mok GF, Fahad Alrefaei A, Kennerley N, Wheeler GN, Münsterberg A. myomiR-dependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis. Development 2014; 141:3378-87. [PMID: 25078649 PMCID: PMC4199139 DOI: 10.1242/dev.108787] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Myogenesis involves the stable commitment of progenitor cells followed by the execution of myogenic differentiation, processes that are coordinated by myogenic regulatory factors, microRNAs and BAF chromatin remodeling complexes. BAF60a, BAF60b and BAF60c are structural subunits of the BAF complex that bind to the core ATPase Brg1 to provide functional specificity. BAF60c is essential for myogenesis; however, the mechanisms regulating the subunit composition of BAF/Brg1 complexes, in particular the incorporation of different BAF60 variants, are not understood. Here we reveal their dynamic expression during embryo myogenesis and uncover the concerted negative regulation of BAF60a and BAF60b by the muscle-specific microRNAs (myomiRs) miR-133 and miR-1/206 during somite differentiation. MicroRNA inhibition in chick embryos leads to increased BAF60a or BAF60b levels, a concomitant switch in BAF/Brg1 subunit composition and delayed myogenesis. The phenotypes are mimicked by sustained BAF60a or BAF60b expression and are rescued by morpholino knockdown of BAF60a or BAF60b. This suggests that myomiRs contribute to select BAF60c for incorporation into the Brg1 complex by specifically targeting the alternative variants BAF60a and BAF60b during embryo myogenesis, and reveals that interactions between tissue-specific non-coding RNAs and chromatin remodeling factors confer robustness to mesodermal lineage determination.
Collapse
Affiliation(s)
| | - Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | - Niki Kennerley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
229
|
Dimauro I, Grasso L, Fittipaldi S, Fantini C, Mercatelli N, Racca S, Geuna S, Di Gianfrancesco A, Caporossi D, Pigozzi F, Borrione P. Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. PLoS One 2014; 9:e102993. [PMID: 25054279 PMCID: PMC4108405 DOI: 10.1371/journal.pone.0102993] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/24/2014] [Indexed: 12/27/2022] Open
Abstract
Platelet-rich plasma (PRP) has received increasing interest in applied medicine, being widely used in clinical practice with the aim of stimulating tissue healing. Despite the reported clinical success, there is still a lack of knowledge when considering the biological mechanisms at the base of the activity of PRP during the process of muscle healing. The aim of the present study was to verify whether the local delivery of PRP modulates specific molecular events involved in the early stages of the muscle regeneration process. The right flexor sublimis muscle of anesthetized Wistar rats was mechanically injured and either treated with PRP or received no treatment. At day 2 and 5 after surgery, the animals were sacrificed and the muscle samples evaluated at molecular levels. PRP treatment increased significantly the mRNA level of the pro-inflammatory cytokines IL-1β, and TGF-β1. This phenomenon induced an increased expression at mRNA and/or protein levels of several myogenic regulatory factors such as MyoD1, Myf5 and Pax7, as well as the muscular isoform of insulin-like growth factor1 (IGF-1Eb). No effect was detected with respect to VEGF-A expression. In addition, PRP application modulated the expression of miR-133a together with its known target serum response factor (SRF); increased the phosphorylation of αB-cristallin, with a significant improvement in several apoptotic parameters (NF-κB-p65 and caspase 3), indexes of augmented cell survival. The results of the present study indicates that the effect of PRP in skeletal muscle injury repair is due both to the modulation of the molecular mediators of the inflammatory and myogenic pathways, and to the control of secondary pathways such as those regulated by myomiRNAs and heat shock proteins, which contribute to proper and effective tissue regeneration.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Loredana Grasso
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Simona Fittipaldi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Cristina Fantini
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Silvia Racca
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Di Gianfrancesco
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- * E-mail:
| | - Fabio Pigozzi
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Paolo Borrione
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
230
|
Sun J, Zhang B, Lan X, Zhang C, Lei C, Chen H. Comparative transcriptome analysis reveals significant differences in MicroRNA expression and their target genes between adipose and muscular tissues in cattle. PLoS One 2014; 9:e102142. [PMID: 25006962 PMCID: PMC4090223 DOI: 10.1371/journal.pone.0102142] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022] Open
Abstract
The posttranscriptional gene regulation mediated by microRNAs (miRNAs) plays an important role in various species. However, to date limited miRNAs have been reported between fat and muscle tissues in beef cattle. In this paper, 412 known and 22 novel miRNAs in backfat as well as 334 known and 10 novel miRNAs in longissimus thoracis were identified in the Chinese Qinchuan beef cattle. Bta-miR-199a-3p, -154c, -320a and -432 were expressed at higher levels in backfat tissue, while bta-miR-1, -133a, -206, and -378 were also significantly enriched in muscle tissue. Functional analysis revealed that fat-enriched miRNAs targeted PRKAA1/2, PPARA and PPARG genes to modulate lipid and fatty acid metabolism, and muscle-enriched miRNAs targeted CSRP3 gene to present function involved in skeletal and muscular system development. The results obtained may help in the design of new selection strategies to improve beef quality.
Collapse
Affiliation(s)
- Jiajie Sun
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Bowen Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
231
|
Liu W, Xu C, Wan H, Liu C, Wen C, Lu H, Wan F. MicroRNA-206 overexpression promotes apoptosis, induces cell cycle arrest and inhibits the migration of human hepatocellular carcinoma HepG2 cells. Int J Mol Med 2014; 34:420-8. [PMID: 24919811 PMCID: PMC4094593 DOI: 10.3892/ijmm.2014.1800] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-206 (miR-206) is known to regulate cell proliferation and migration and is involved in various types of cancer. However, the role of miR-206 in human hepatocellular carcinoma (HHC) has not been previously reported. In the present study, the expression of Notch3 in HCC and adjacent non-neoplastic tissue was immunohistochemically assessed on formalin-fixed, paraffin-embedded sections. miR-206 mimics were transiently transfected into HepG2 cells using Lipofectamine™ 2000. Subsequently, we evaluated the role of miR-206 in cell proliferation, apoptosis, cell cycle arrest and migration by MTS assay, Hoechst 33342 staining, Annexin V-FITC/PI assay, flow cytometry and wound healing assay. Using quantitative reverse transcription polymerase chain reaction (qRT‑PCR) and western blot analysis, we detected the expression of Notch3, Bax, Bcl-2, Hes1, p57 and matrix metalloproteinase (MMP)-9 at the mRNA and protein level, respectively. In addition, we measured the expression of miR-206 at the mRNA level and that of caspase-3 at the protein level. After miR-206 was upregulated in HepG2 cells, Notch3, Hes1, Bcl-2 and MMP-9 were downregulated both at the mRNA and protein level, whereas p57 and Bax were upregulated. Cleaved caspase-3 protein expression was also markedly increased. Cell proliferation was significantly attenuated and apoptosis was markedly increased. Furthermore, miR-206 overexpression induced cell cycle arrest and inhibited the migration of HepG2 cells. Taken together, our results uggest that miR-206 is a potential regulator of apoptosis, the cell cycle and migration in HepG2 cells and that it has the potential for use in the targeted therapy of HCC and is a novel tumor suppressor.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chuanming Xu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huifang Wan
- Medical Experiment Education Department of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chunju Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Jiangxi College of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Can Wen
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongfei Lu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fusheng Wan
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
232
|
Smirnova L, Block K, Sittka A, Oelgeschläger M, Seiler AEM, Luch A. MicroRNA profiling as tool for in vitro developmental neurotoxicity testing: the case of sodium valproate. PLoS One 2014; 9:e98892. [PMID: 24896083 PMCID: PMC4045889 DOI: 10.1371/journal.pone.0098892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/08/2014] [Indexed: 01/10/2023] Open
Abstract
Studying chemical disturbances during neural differentiation of murine embryonic stem cells (mESCs) has been established as an alternative in vitro testing approach for the identification of developmental neurotoxicants. miRNAs represent a class of small non-coding RNA molecules involved in the regulation of neural development and ESC differentiation and specification. Thus, neural differentiation of mESCs in vitro allows investigating the role of miRNAs in chemical-mediated developmental toxicity. We analyzed changes in miRNome and transcriptome during neural differentiation of mESCs exposed to the developmental neurotoxicant sodium valproate (VPA). A total of 110 miRNAs and 377 mRNAs were identified differently expressed in neurally differentiating mESCs upon VPA treatment. Based on miRNA profiling we observed that VPA shifts the lineage specification from neural to myogenic differentiation (upregulation of muscle-abundant miRNAs, mir-206, mir-133a and mir-10a, and downregulation of neural-specific mir-124a, mir-128 and mir-137). These findings were confirmed on the mRNA level and via immunochemistry. Particularly, the expression of myogenic regulatory factors (MRFs) as well as muscle-specific genes (Actc1, calponin, myosin light chain, asporin, decorin) were found elevated, while genes involved in neurogenesis (e.g. Otx1, 2, and Zic3, 4, 5) were repressed. These results were specific for valproate treatment and―based on the following two observations―most likely due to the inhibition of histone deacetylase (HDAC) activity: (i) we did not observe any induction of muscle-specific miRNAs in neurally differentiating mESCs exposed to the unrelated developmental neurotoxicant sodium arsenite; and (ii) the expression of muscle-abundant mir-206 and mir-10a was similarly increased in cells exposed to the structurally different HDAC inhibitor trichostatin A (TSA). Based on our results we conclude that miRNA expression profiling is a suitable molecular endpoint for developmental neurotoxicity. The observed lineage shift into myogenesis, where miRNAs may play an important role, could be one of the developmental neurotoxic mechanisms of VPA.
Collapse
Affiliation(s)
- Lena Smirnova
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
- * E-mail:
| | - Katharina Block
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | - Andreas Luch
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
233
|
Soares RJ, Cagnin S, Chemello F, Silvestrin M, Musaro A, De Pitta C, Lanfranchi G, Sandri M. Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions. J Biol Chem 2014; 289:21909-25. [PMID: 24891504 PMCID: PMC4139209 DOI: 10.1074/jbc.m114.561845] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Loss of muscle proteins and the consequent weakness has important clinical consequences in diseases such as cancer, diabetes, chronic heart failure, and in aging. In fact, excessive proteolysis causes cachexia, accelerates disease progression, and worsens life expectancy. Muscle atrophy involves a common pattern of transcriptional changes in a small subset of genes named atrophy-related genes or atrogenes. Whether microRNAs play a role in the atrophy program and muscle loss is debated. To understand the involvement of miRNAs in atrophy we performed miRNA expression profiling of mouse muscles under wasting conditions such as fasting, denervation, diabetes, and cancer cachexia. We found that the miRNA signature is peculiar of each catabolic condition. We then focused on denervation and we revealed that changes in transcripts and microRNAs expression did not occur simultaneously but were shifted. Indeed, whereas transcriptional control of the atrophy-related genes peaks at 3 days, changes of miRNA expression maximized at 7 days after denervation. Among the different miRNAs, microRNA-206 and -21 were the most induced in denervated muscles. We characterized their pattern of expression and defined their role in muscle homeostasis. Indeed, in vivo gain and loss of function experiments revealed that miRNA-206 and miRNA-21 were sufficient and required for atrophy program. In silico and in vivo approaches identified transcription factor YY1 and the translational initiator factor eIF4E3 as downstream targets of these miRNAs. Thus miRNAs are important for fine-tuning the atrophy program and their modulation can be a novel potential therapeutic approach to counteract muscle loss and weakness in catabolic conditions.
Collapse
Affiliation(s)
- Ricardo José Soares
- From the Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy, the Ph.D. Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Stefano Cagnin
- the Department of Biology and CRIBI Biotechnology Centre, University of Padova, 35121 Padova, Italy
| | - Francesco Chemello
- the Department of Biology and CRIBI Biotechnology Centre, University of Padova, 35121 Padova, Italy
| | - Matteo Silvestrin
- the Department of Biology and CRIBI Biotechnology Centre, University of Padova, 35121 Padova, Italy
| | - Antonio Musaro
- the DAHFMO-Unit of Histology and Medical Embryology, Sapienza University, 00161 Roma, Italy, and
| | - Cristiano De Pitta
- the Department of Biology and CRIBI Biotechnology Centre, University of Padova, 35121 Padova, Italy,
| | - Gerolamo Lanfranchi
- the Department of Biology and CRIBI Biotechnology Centre, University of Padova, 35121 Padova, Italy,
| | - Marco Sandri
- From the Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy, the Department of Biomedical Sciences and the Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 35121 Padova, Italy, the Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| |
Collapse
|
234
|
Hudson MB, Rahnert JA, Zheng B, Woodworth-Hobbs ME, Franch HA, Price SR. miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle. Am J Physiol Cell Physiol 2014; 307:C314-9. [PMID: 24871856 DOI: 10.1152/ajpcell.00395.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle atrophy occurs in response to a variety of conditions including chronic kidney disease, diabetes, cancer, and elevated glucocorticoids. MicroRNAs (miR) may play a role in the wasting process. Activation of the forkhead box O3 (FoxO3) transcription factor causes skeletal muscle atrophy in patients, animals, and cultured cells by increasing the expression of components of the ubiquitin-proteasome and autophagy-lysosome proteolytic systems. To identify microRNAs that potentially modulate the atrophy process, an in silico target analysis was performed and miR-182 was predicted to target FoxO3 mRNA. Using a combination of immunoblot analysis, quantitative real-time RT-PCR, and FoxO3 3'-UTR luciferase reporter genes, miR-182 was confirmed to regulate FoxO3 expression in C2C12 myotubes. Transfection of miR-182 into muscle cells decreased FoxO3 mRNA 30% and FoxO3 protein 67% (P < 0.05) and also prevented a glucocorticoid-induced upregulation of multiple FoxO3 gene targets including MAFbx/atrogin-1, autophagy-related protein 12 (ATG12), cathepsin L, and microtubule-associated protein light chain 3 (LC3). Treatment of C2C12 myotubes with dexamethasone (Dex) (1 μM, 6 h) to induce muscle atrophy decreased miR-182 expression by 63% (P < 0.05). Similarly, miR-182 was decreased 44% (P < 0.05) in the gastrocnemius muscle of rats injected with streptozotocin to induce diabetes compared with controls. Finally, miR-182 was present in exosomes isolated from the media of C2C12 myotubes and Dex increased its abundance. These data identify miR-182 as an important regulator of FoxO3 expression that participates in the control of atrophy-inducing genes during catabolic diseases.
Collapse
Affiliation(s)
- Matthew B Hudson
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;
| | - Jill A Rahnert
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
| | - Bin Zheng
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
| | - Myra E Woodworth-Hobbs
- Nutrition and Health Sciences Ph.D. Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia
| | - Harold A Franch
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
| | - S Russ Price
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia; Biomedical Laboratory Research and Development Service, Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
235
|
Tang Z, Liang R, Zhao S, Wang R, Huang R, Li K. CNN3 is regulated by microRNA-1 during muscle development in pigs. Int J Biol Sci 2014; 10:377-85. [PMID: 24719555 PMCID: PMC3979990 DOI: 10.7150/ijbs.8015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/01/2014] [Indexed: 12/17/2022] Open
Abstract
The calponin 3 (CNN3) gene has important functions involved in skeletal muscle development. MicroRNAs (miRNAs) play critical role in myogenesis by influencing the mRNA stability or protein translation of target gene. Based on paired microRNA and mRNA profiling in the prenatal skeletal muscle of pigs, our previous study suggested that CNN3 was differentially expressed and a potential target for miR-1. To further understand the biological function and regulation mechanism of CNN3, we performed co-expression analysis of CNN3 and miR-1 in developmental skeletal muscle tissues (16 stages) from Tongcheng (a Chinese domestic breed, obese-type) and Landrace (a Western, lean-type) pigs, respectively. Subsequently, dual luciferase and western blot assays were carried out. During skeletal muscle development, we observe a significantly negative expression correlation between the miR-1 and CNN3 at mRNA level. Our dual luciferase and western blot results suggested that the CNN3 gene was regulated by miR-1. We identified four single nucleotide polymorphisms (SNPs) contained within the CNN3 gene. Association analysis indicated that these CNN3 SNPs are significantly associated with birth weight (BW) and the 21-day weaning weight of the piglets examined. These facts indicate that CNN3 is a candidate gene associated with growth traits and regulated by miR-1 during skeletal muscle development in pigs.
Collapse
Affiliation(s)
- Zhonglin Tang
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Ruyi Liang
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- 2. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R.China
| | - Shuanping Zhao
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Ruiqi Wang
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Ruihua Huang
- 2. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R.China
| | - Kui Li
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| |
Collapse
|
236
|
O'Brien JH, Hernandez-Lagunas L, Artinger KB, Ford HL. MicroRNA-30a regulates zebrafish myogenesis through targeting the transcription factor Six1. J Cell Sci 2014; 127:2291-301. [PMID: 24634509 DOI: 10.1242/jcs.143677] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Precise spatiotemporal regulation of the SIX1 homeoprotein is required to coordinate vital tissue development, including myogenesis. Whereas SIX1 is downregulated in most tissues following embryogenesis, it is re-expressed in numerous cancers, including tumors derived from muscle progenitors. Despite crucial roles in development and disease, the upstream regulation of SIX1 expression has remained elusive. Here, we identify the first direct mechanism for Six1 regulation in embryogenesis, through microRNA30a (miR30a)-mediated repression. In zebrafish somites, we show that miR30a and six1a and six1b (hereafter six1a/b) are expressed in an inverse temporal pattern. Overexpression of miR30a leads to a reduction in six1a/b levels, and results in increased apoptosis and altered somite morphology, which phenocopies six1a/b knockdown. Conversely, miR30a inhibition leads to increased Six1 expression and abnormal somite morphology, revealing a role for endogenous miR30a as a muscle-specific miRNA (myomiR). Importantly, restoration of six1a in miR30a-overexpressing embryos restores proper myogenesis. These data demonstrate a new role for miR30a at a key node in the myogenic regulatory gene network through controlling Six1 expression.
Collapse
Affiliation(s)
- Jenean H O'Brien
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laura Hernandez-Lagunas
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Heide L Ford
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
237
|
Toivonen JM, Manzano R, Oliván S, Zaragoza P, García-Redondo A, Osta R. MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One 2014; 9:e89065. [PMID: 24586506 PMCID: PMC3930686 DOI: 10.1371/journal.pone.0089065] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/13/2014] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal motor neuron disease that progressively debilitates neuronal cells that control voluntary muscle activity. Biomarkers are urgently needed to facilitate ALS diagnosis and prognosis, and as indicators of therapeutic response in clinical trials. microRNAs (miRNAs), small posttranscriptional modifiers of gene expression, are frequently altered in disease conditions. Besides their important regulatory role in variety of biological processes, miRNAs can also be released into the circulation by pathologically affected tissues and display remarkable stability in body fluids. In a mouse model of ALS that expresses mutated human superoxide dismutase 1 (SOD1-G93A) skeletal muscle is one of the tissues affected early by mutant SOD1 toxicity. To find biomarkers for ALS, we studied miRNA alterations from skeletal muscle and plasma of SOD1-G93A mice, and subsequently tested the levels of the affected miRNAs in the serum from human ALS patients. Fast-twitch and slow-twitch muscles from symptomatic SOD1-G93A mice (age 90 days) and their control littermates were first studied using miRNA microarrays and then evaluated with quantitative PCR from five age groups from neonatal to the terminal disease stage (10–120 days). Among those miRNA changed in various age/gender/muscle groups (miR-206, -1, -133a, -133b, -145, -21, -24), miR-206 was the only one consistently altered during the course of the disease pathology. In both sexes, mature miR-206 was increased in fast-twitch muscles preferably affected in the SOD1-G93A model, with highest expression towards the most severely affected animals. Importantly, miR-206 was also increased in the circulation of symptomatic animals and in a group of 12 definite ALS patients tested. We conclude that miR-206 is elevated in the circulation of symptomatic SOD1-G93A mice and possibly in human ALS patients. Although larger scale studies on ALS patients are warranted, miR-206 is a promising candidate biomarker for this motor neuron disease.
Collapse
Affiliation(s)
- Janne M Toivonen
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Departamento de Anatomía, Embriología y Genética Animal, Universidad de Zaragoza, Zaragoza, Spain
| | - Raquel Manzano
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Departamento de Anatomía, Embriología y Genética Animal, Universidad de Zaragoza, Zaragoza, Spain
| | - Sara Oliván
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Departamento de Anatomía, Embriología y Genética Animal, Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Departamento de Anatomía, Embriología y Genética Animal, Universidad de Zaragoza, Zaragoza, Spain
| | - Alberto García-Redondo
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Rosario Osta
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Departamento de Anatomía, Embriología y Genética Animal, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
238
|
Aoi W, Sakuma K. Does regulation of skeletal muscle function involve circulating microRNAs? Front Physiol 2014; 5:39. [PMID: 24596559 PMCID: PMC3925823 DOI: 10.3389/fphys.2014.00039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/20/2014] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation. Recently, growing evidence has shown that miRNAs are taken in by intracellular exosomes, secreted into circulation, and taken up by other cells. Circulating levels of several miRNAs are changed in diseases such as cancer, diabetes, and cardiovascular diseases; therefore, they are suggested to regulate functions of the recipient cells by modulating protein expression. Circulating miRNAs (c-miRNAs) may also modulate skeletal muscle function in physiological and pathological conditions. It has been suggested that acute and chronic exercise transiently or adaptively changes the level of c-miRNAs, thus post-transcriptionally regulating proteins associated with energy metabolism, myogenesis, and angiogenesis. Circulating levels of several miRNAs that are enriched in muscle are altered in muscle disorders and may be involved in their development and progression. In addition, such c-miRNAs may be useful as biomarkers to determine various interactions between tissues and also to reflect athletic performance, physical fatigue, incidence risk, and development of diseases.
Collapse
Affiliation(s)
- Wataru Aoi
- Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Kyoto, Japan
| | - Kunihiro Sakuma
- Health Science Center, Toyohashi University of Technology Toyohashi, Japan
| |
Collapse
|
239
|
Gu L, Xu T, Huang W, Xie M, Sun S, Hou S. Identification and profiling of microRNAs in the embryonic breast muscle of pekin duck. PLoS One 2014; 9:e86150. [PMID: 24465928 PMCID: PMC3900480 DOI: 10.1371/journal.pone.0086150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/05/2013] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by fully or partially binding to complementary sequences and play important roles in skeletal muscle development. However, the roles of miRNAs in embryonic breast muscle of duck are unclear. In this study, we analyzed the miRNAs profiling in embryonic breast muscle of Pekin duck at E13 (the 13(th) day of hatching), E19, and E27 by high-throughput sequencing. A total of 382 miRNAs including 359 preciously identified miRNAs 23 novel miRNA candidates were obtained. The nucleotide bias analysis of identified miRNAs showed that the miRNAs in Pekin duck was high conserved. The expression of identified miRNAs were significantly different between E13 and E19 as well as between E27 and E19. Fifteen identified miRNAs validated using stem-loop qRT-PCR can be divided into three groups: those with peak expression at E19, those with minimal expression at E19, and those with continuous increase from E11 to E27. Considering that E19 is the fastest growth stage of embryonic Pekin duck breast muscle, these three groups of miRNAs might be the potential promoters, the potential inhibitors, and the potential sustainer for breast muscle growth. Among the 23 novel miRNAs, novel-miRNA-8 and novel-miRNA-14 had maximal expression at some stages. The stem-loop qRT-PCR analysis of the two novel miRNAs and their two targets (MAP2K1 and PPARα) showed that the expression of novel-mir-8 and PPARα reached the lowest points at E19, while that of novel-mir-14 and MAP2K1 peaked at E19, suggesting novel-miRNA-8 and novel-miRNA-14 may be a potential inhibitor and a potential promoter for embryonic breast muscle development of duck. In summary, these results not only provided an overall insight into the miRNAs landscape in embryonic breast muscle of duck, but also a basis for the further investigation of the miRNAs roles in duck skeletal muscle development.
Collapse
Affiliation(s)
- Lihong Gu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Tieshan Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Wei Huang
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Ming Xie
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Shiduo Sun
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Shuisheng Hou
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| |
Collapse
|
240
|
Novák J, Kružliak P, Bienertová-Vašků J, Slabý O, Novák M. MicroRNA-206: a promising theranostic marker. Am J Cancer Res 2014; 4:119-33. [PMID: 24465270 PMCID: PMC3900797 DOI: 10.7150/thno.7552] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/14/2013] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that negatively regulate gene expression by binding to the 3` untranslated regions (3`UTR) of their target mRNAs. MiRs were shown to play pivotal roles in tissue development and function and are also involved in the pathogenesis of various diseases including cancer. MicroRNA-206, which belongs to the group of so-called "myomiRs", is one of the most studied miRs thus far. In addition to being involved in skeletal muscle development and pathology, it has also been established that it is involved in the pathogenesis of numerous diseases including heart failure, chronic obstructive pulmonary disease, Alzheimer's disease and various types of cancers. The aim of this review is to provide a complex overview of microRNA-206, including regulating its expression, a brief description of its known functions in skeletal muscle and a complex overview of its roles in the biology and pathology of other tissues, emphasizing its significant diagnostic and therapeutic potential.
Collapse
|
241
|
Amirouche A, Tadesse H, Miura P, Bélanger G, Lunde JA, Côté J, Jasmin BJ. Converging pathways involving microRNA-206 and the RNA-binding protein KSRP control post-transcriptionally utrophin A expression in skeletal muscle. Nucleic Acids Res 2013; 42:3982-97. [PMID: 24371285 PMCID: PMC3973319 DOI: 10.1093/nar/gkt1350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Several reports have previously highlighted the potential role of miR-206 in the post-transcriptional downregulation of utrophin A in cultured cells. Along those lines, we recently identified K-homology splicing regulator protein (KSRP) as an important negative regulator in the post-transcriptional control of utrophin A in skeletal muscle. We sought to determine whether these two pathways act together to downregulate utrophin A expression in skeletal muscle. Surprisingly, we discovered that miR-206 overexpression in cultured cells and dystrophic muscle fibers causes upregulation of endogenous utrophin A levels. We further show that this upregulation of utrophin A results from the binding of miR-206 to conserved sites located in the 3′-UTR (untranslated region) of KSRP, thus causing the subsequent inhibition of KSRP expression. This miR-206-mediated decrease in KSRP levels leads, in turn, to an increase in the expression of utrophin A due to a reduction in the activity of this destabilizing RNA-binding protein. Our work shows that miR-206 can oscillate between direct repression of utrophin A expression via its 3′-UTR and activation of its expression through decreased availability of KSRP and interactions with AU-rich elements located within the 3′-UTR of utrophin A. Our study thus reveals that two apparent negative post-transcriptional pathways can act distinctively as molecular switches causing repression or activation of utrophin A expression.
Collapse
Affiliation(s)
- Adel Amirouche
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
242
|
Hassan N, Tchao J, Tobita K. Concise review: skeletal muscle stem cells and cardiac lineage: potential for heart repair. Stem Cells Transl Med 2013; 3:183-93. [PMID: 24371329 DOI: 10.5966/sctm.2013-0122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Valuable and ample resources have been spent over the last two decades in pursuit of interventional strategies to treat the unmet demand of heart failure patients to restore myocardial structure and function. At present, it is clear that full restoration of myocardial structure and function is outside our reach from both clinical and basic research studies, but it may be achievable with a combination of ongoing research, creativity, and perseverance. Since the 1990s, skeletal myoblasts have been extensively investigated for cardiac cell therapy of congestive heart failure. Whereas the Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial revealed that transplanted skeletal myoblasts did not integrate into the host myocardium and also did not transdifferentiate into cardiomyocytes despite some beneficial effects on recipient myocardial function, recent studies suggest that skeletal muscle-derived stem cells have the ability to adopt a cardiomyocyte phenotype in vitro and in vivo. This brief review endeavors to summarize the importance of skeletal muscle stem cells and how they can play a key role to surpass current results in the future and enhance the efficacious implementation of regenerative cell therapy for heart failure.
Collapse
Affiliation(s)
- Narmeen Hassan
- Department of Developmental Biology, Department of Bioengineering, and McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
243
|
Yan X, Zhu MJ, Dodson MV, Du M. Developmental programming of fetal skeletal muscle and adipose tissue development. J Genomics 2013; 1:29-38. [PMID: 25031653 PMCID: PMC4091428 DOI: 10.7150/jgen.3930] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
All important developmental milestones are accomplished during the fetal stage, and nutrient fluctuation during this stage produces lasting effects on offspring health, so called fetal programming or developmental programming. The fetal stage is critical for skeletal muscle development, as well as adipose and connective tissue development. Maternal under-nutrition at this stage affects the proliferation of myogenic precursor cells and reduces the number of muscle fibers formed. Maternal over-nutrition results in impaired myogenesis and elevated adipogenesis. Because myocytes, adipocytes and fibrocytes are all derived from mesenchymal stem cells, molecular events which regulate the commitment of stem cells to different lineages directly impact fetal muscle and adipose tissue development. Recent studies indicate that microRNA is intensively involved in myogenic and adipogenic differentiation from mesenchymal stem cells, and epigenetic changes such as DNA methylation are expected to alter cell lineage commitment during fetal muscle and adipose tissue development.
Collapse
Affiliation(s)
- Xu Yan
- 1. Department of Animal Sciences, University of Wyoming, Laramie, WY 82071
| | - Mei-Jun Zhu
- 1. Department of Animal Sciences, University of Wyoming, Laramie, WY 82071
| | - Michael V Dodson
- 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164
| | - Min Du
- 1. Department of Animal Sciences, University of Wyoming, Laramie, WY 82071 ; 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164
| |
Collapse
|
244
|
Novák J, Vinklárek J, Bienertová-Vašků J, Slabý O. MicroRNAs involved in skeletal muscle development and their roles in rhabdomyosarcoma pathogenesis. Pediatr Blood Cancer 2013; 60:1739-46. [PMID: 23813576 DOI: 10.1002/pbc.24664] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/30/2013] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRs) are small non-coding RNAs known to fulfill various functions in tissue development, function, and pathogenesis of various diseases, including cancer. Rhabdomyosarcoma (RMS) represents the most common soft tissue tumor in the pediatric population. miRs have been shown to play important roles in RMS pathogenesis and some of the studies suggest their potential as diagnostic, prognostic, and even therapeutic tools facilitating better management of this disease. This review summarizes current information about the role of miRs in the development of normal skeletal muscle and their deregulation in RMS.
Collapse
Affiliation(s)
- Jan Novák
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic; Faculty of Medicine, Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| | | | | | | |
Collapse
|
245
|
Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ. Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front Cell Neurosci 2013; 7:178. [PMID: 24133413 PMCID: PMC3794211 DOI: 10.3389/fncel.2013.00178] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 09/21/2013] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small, abundant RNA molecules that constitute part of the cell's non-coding RNA “dark matter.” In recent years, the discovery of miRNAs has revolutionised the traditional view of gene expression and our understanding of miRNA biogenesis and function has expanded. Altered expression of miRNAs is increasingly recognized as a feature of many disease states, including neurodegeneration. Here, we review the emerging role for miRNA dysfunction in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS) and Huntington's disease pathogenesis. We emphasize the complex nature of gene regulatory networks and the need for systematic studies, with larger sample cohorts than have so far been reported, to reveal the most important miRNA regulators in disease. Finally, miRNA diversity and their potential to target multiple pathways, offers novel clinical applications for miRNAs as biomarkers and therapeutic agents in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emily F Goodall
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield Sheffield, UK
| | | | | | | | | |
Collapse
|
246
|
Alteri A, De Vito F, Messina G, Pompili M, Calconi A, Visca P, Mottolese M, Presutti C, Grossi M. Cyclin D1 is a major target of miR-206 in cell differentiation and transformation. Cell Cycle 2013; 12:3781-90. [PMID: 24107628 DOI: 10.4161/cc.26674] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
miR-206, a member of the so-called myomiR family, is largely acknowledged as a specific, positive regulator of skeletal muscle differentiation. A growing body of evidence also suggests a tumor suppressor function for miR-206, as it is frequently downregulated in various types of cancers. In this study, we show that miR-206 directly targets cyclin D1 and contributes to the regulation of CCND1 gene expression in both myogenic and non-muscle, transformed cells. We demonstrate that miR-206, either exogenous or endogenous, reduces cyclin D1 levels and proliferation rate in C2C12 cells without promoting differentiation, and that miR-206 knockdown in terminally differentiated C2C12 cells leads to cyclin D1 accumulation in myotubes, indicating that miR-206 might be involved in the maintenance of the post-mitotic state. Targeting of cyclin D1 might also account, at least in part, for the tumor-suppressor activity suggested for miR-206 in previous studies. Accordingly, the analysis of neoplastic and matched normal lung tissues reveals that miR-206 downregulation in lung tumors correlates, in most cases, with higher cyclin D1 levels. Moreover, gain-of-function experiments with cancer-derived cell lines and with in vitro transformed cells indicate that miR-206-mediated cyclin D1 repression is directly coupled to growth inhibition. Altogether, our data highlight a novel activity for miR-206 in skeletal muscle differentiation and identify cyclin D1 as a major target that further strengthens the tumor suppressor function proposed for miR-206.
Collapse
Affiliation(s)
- Alessandra Alteri
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; Sapienza-Università di Roma; Roma, Italy
| | - Francesca De Vito
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; Sapienza-Università di Roma; Roma, Italy
| | | | - Monica Pompili
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; Sapienza-Università di Roma; Roma, Italy
| | - Attilio Calconi
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; Sapienza-Università di Roma; Roma, Italy
| | - Paolo Visca
- Anatomia Patologica; Istituto Nazionale Tumori Regina Elena; Roma, Italy
| | - Marcella Mottolese
- Anatomia Patologica; Istituto Nazionale Tumori Regina Elena; Roma, Italy
| | - Carlo Presutti
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; Sapienza-Università di Roma; Roma, Italy
| | - Milena Grossi
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; Sapienza-Università di Roma; Roma, Italy
| |
Collapse
|
247
|
Mu Y, Zhou H, Li W, Hu L, Zhang Y. Evaluation of RNA quality in fixed and unembedded mouse embryos by different methods. Exp Mol Pathol 2013; 95:206-12. [DOI: 10.1016/j.yexmp.2013.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 11/30/2022]
|
248
|
Kirby TJ, McCarthy JJ. MicroRNAs in skeletal muscle biology and exercise adaptation. Free Radic Biol Med 2013; 64:95-105. [PMID: 23872025 PMCID: PMC4867469 DOI: 10.1016/j.freeradbiomed.2013.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important players in the regulation of gene expression, being involved in most biological processes examined to date. The proposal that miRNAs are primarily involved in the stress response of the cell makes miRNAs ideally suited to mediate the response of skeletal muscle to changes in contractile activity. Although the field is still in its infancy, the studies presented in this review highlight the promise that miRNAs will have an important role in mediating the response and adaptation of skeletal muscle to various modes of exercise. The roles of miRNAs in satellite cell biology, muscle regeneration, and various myopathies are also discussed.
Collapse
Affiliation(s)
- Tyler J. Kirby
- Department of Physiology, University of Kentucky Lexington, KY 40516-0298
| | - John J. McCarthy
- Department of Physiology, University of Kentucky Lexington, KY 40516-0298
- Center for Muscle Biology, University of Kentucky Lexington, KY 40516-0298
| |
Collapse
|
249
|
Affiliation(s)
- Louise R Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
250
|
Abstract
MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that regulate the expression of target genes in eukaryotic cells and have been extensively studied in the past decade. However, recent evidence suggests that miRNAs have additional, important roles and functions other than post-transcriptional regulation through binding at the 3' untranslated regions of their target genes. This review describes newly discovered information about the biogenesis and functions of miRNAs as well as presents different points of view about the miRNA system. Our increasing knowledge of the exceptional stories of miRNAs will offer new insights into these powerful gene regulators from virus and bacteria to animals.
Collapse
Affiliation(s)
- Heon-Jin Lee
- Department of Oral Microbiology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu 700-412, South Korea.
| |
Collapse
|