201
|
Abstract
Some members of the tripartite motif (TRIM/RBCC) protein family are thought to be important regulators of carcinogenesis. This is not surprising as the TRIM proteins are involved in several biological processes, such as cell growth, development and cellular differentiation and alteration of these proteins can affect transcriptional regulation, cell proliferation and apoptosis. In particular, four TRIM family genes are frequently translocated to other genes, generating fusion proteins implicated in cancer initiation and progression. Among these the most famous is the promyelocytic leukaemia gene PML, which encodes the protein TRIM19. PML is involved in the t(15;17) translocation that specifically occurs in Acute Promyelocytic Leukaemia (APL), resulting in a PML-retinoic acid receptor-alpha (PML-RARalpha) fusion protein. Other members of the TRIM family are linked to cancer development without being involved in chromosomal re-arrangements, possibly through ubiquitination or loss of tumour suppression functions. This chapter discusses the biological functions of TRIM proteins in cancer.
Collapse
|
202
|
Martin CS, Moriyama A, Zon LI. Hematopoietic stem cells, hematopoiesis and disease: lessons from the zebrafish model. Genome Med 2011; 3:83. [PMID: 22206610 PMCID: PMC3334548 DOI: 10.1186/gm299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The zebrafish model is rapidly gaining prominence in the study of development, hematopoiesis, and disease. The zebrafish provides distinct advantages over other vertebrate models during early embryonic development by producing transparent, externally fertilized embryos. Embryonic zebrafish are easily visualized and manipulated through microinjection, chemical treatment, and mutagenesis. These procedures have contributed to large-scale chemical, suppressor, and genetic screens to identify hematopoietic gene mutations. Genomic conservation and local synteny between the human and zebrafish genomes make genome-scale and epigenetic analysis of these mutations (by microarray, chromatin immunoprecipitation sequencing, and RNA sequencing procedures) powerful methods for translational research and medical discovery. In addition, large-scale screening techniques have resulted in the identification of several small molecules capable of rescuing hematopoietic defects and inhibiting disease. Here, we discuss the contributions of the zebrafish model to the understanding of hematopoiesis, hematopoietic stem cell development, and disease-related discovery. We also highlight the recent discovery of small molecules with clinical promise, such as dimethyl prostaglandin E2, 3F8, and thiazole-carboxamide 10A.
Collapse
Affiliation(s)
- Corey S Martin
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
203
|
Adenovirus E4orf3 targets transcriptional intermediary factor 1γ for proteasome-dependent degradation during infection. J Virol 2011; 86:3167-79. [PMID: 22205733 DOI: 10.1128/jvi.06583-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ability of adenovirus early region proteins, E1B-55K and E4orf6, to usurp control of cellular ubiquitin ligases and target proteins for proteasome-dependent degradation during infection is well established. Here we show that the E4 gene product, E4orf3 can, independently of E1B-55K and E4orf6, target the transcriptional corepressor transcriptional intermediary factor 1γ (TIF1γ) for proteasome-mediated degradation during infection. Initial mass spectrometric studies identified TIF1 family members-TIF1α, TIF1β, and TIF1γ-as E1B-55K-binding proteins in both transformed and infected cells, but analyses revealed that, akin to TIF1α, TIF1γ is reorganized in an E4orf3-dependent manner to promyelocytic leukemia protein-containing nuclear tracks during infection. The use of a number of different adenovirus early region mutants identified the specific and sole requirement for E4orf3 in mediating TIF1γ degradation. Further analyses revealed that TIF1γ is targeted for degradation by a number of divergent human adenoviruses, suggesting that the ability of E4orf3 to regulate TIF1γ expression is evolutionarily conserved. We also determined that E4orf3 does not utilize the Cullin-based ubiquitin ligases, CRL2 and CRL5, or the TIF1α ubiquitin ligase in order to promote TIF1γ degradation. Further studies suggested that TIF1γ possesses antiviral activity and limits adenovirus early and late gene product expression during infection. Indeed, TIF1γ knockdown accelerates the adenovirus-mediated degradation of MRE11, while TIF1γ overexpression delays the adenovirus-mediated degradation of MRE11. Taken together, these studies have identified novel adenovirus targets and have established a new role for the E4orf3 protein during infection.
Collapse
|
204
|
Valluru M, Staton CA, Reed MWR, Brown NJ. Transforming Growth Factor-β and Endoglin Signaling Orchestrate Wound Healing. Front Physiol 2011; 2:89. [PMID: 22164144 PMCID: PMC3230065 DOI: 10.3389/fphys.2011.00089] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022] Open
Abstract
Physiological wound healing is a complex process requiring the temporal and spatial co-ordination of various signaling networks, biomechanical forces, and biochemical signaling pathways in both hypoxic and non-hypoxic conditions. Although a plethora of factors are required for successful physiological tissue repair, transforming growth factor beta (TGF-β) expression has been demonstrated throughout wound healing and shown to regulate many processes involved in tissue repair, including production of ECM, proteases, protease inhibitors, migration, chemotaxis, and proliferation of macrophages, fibroblasts of the granulation tissue, epithelial and capillary endothelial cells. TGF-β mediates these effects by stimulating signaling pathways through a receptor complex which contains Endoglin. Endoglin is expressed in a broad spectrum of proliferating and stem cells with elevated expression during hypoxia, and regulates important cellular functions such as proliferation and adhesion via Smad signaling. This review focuses on how the TGF-β family and Endoglin, regulate stem cell availability, and modulate cellular behavior within the wound microenvironment, includes current knowledge of the signaling pathways involved, and explores how this information may be applicable to inflammatory and/or angiogenic diseases such as fibrosis, rheumatoid arthritis and metastatic cancer.
Collapse
Affiliation(s)
- Manoj Valluru
- Department of Oncology, Microcirculation Research Group, Faculty of Medicine, Dentistry and Health, University of Sheffield Sheffield, UK
| | | | | | | |
Collapse
|
205
|
Vink EI, Yondola MA, Wu K, Hearing P. Adenovirus E4-ORF3-dependent relocalization of TIF1α and TIF1γ relies on access to the Coiled-Coil motif. Virology 2011; 422:317-25. [PMID: 22123502 DOI: 10.1016/j.virol.2011.10.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/19/2011] [Accepted: 10/10/2011] [Indexed: 10/14/2022]
Abstract
The adenovirus E4-ORF3 protein promotes viral replication by relocalizing cellular proteins into nuclear track structures, interfering with potential anti-viral activities. E4-ORF3 targets transcriptional intermediary factor 1 alpha (TIF1α), but not homologous TIF1β. Here, we introduce TIF1γ as a novel E4-ORF3-interacting partner. E4-ORF3 relocalizes endogenous TIF1γ in virus-infected cells in vivo and binds to TIF1γ in vitro. We used the homologous nature, yet differing binding capabilities, of these proteins to study how E4-ORF3 targets proteins for track localization. We mapped the ability of E4-ORF3 to interact with specific TIF1 subdomains, demonstrating that E4-ORF3 interacts with the Coiled-Coil domains of TIF1α, TIF1β, and TIF1γ, and that the C-terminal half of TIF1β interferes with this interaction. The results of E4-ORF3-directed TIF1 protein relocalization assays performed in vivo were verified using coimmunoprecipitation assays in vitro. These results suggest that E4-ORF3 targets proteins for relocalization through a loosely homologous sequence dependent on accessibility.
Collapse
Affiliation(s)
- Elizabeth I Vink
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
206
|
Abstract
Zebrafish studies in the past two decades have made major contributions to our understanding of hematopoiesis and its associated disorders. The zebrafish has proven to be a powerful organism for studies in this area owing to its amenability to large-scale genetic and chemical screening. In addition, the externally fertilized and transparent embryos allow convenient genetic manipulation and in vivo imaging of normal and aberrant hematopoiesis. This review discusses available methods for studying hematopoiesis in zebrafish, summarizes key recent advances in this area, and highlights the current and potential contributions of zebrafish to the discovery and development of drugs to treat human blood disorders.
Collapse
Affiliation(s)
- Lili Jing
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
207
|
Abstract
Transforming growth factor-β (TGF-β) family signaling regulates cell growth and differentiation of many different cell types and is widely involved in the regulation of homeostasis during both embryogenesis and adult life. Therefore, aberrant TGF-β family signal transduction is linked to congenital disorders, tumorigenicity, and fibrosis, which can be life-threatening. A specific receptor-ligand complex initiates transduction of TGF-β family signaling to the nucleus via intracellular signal molecules, mainly Smads, whereby a number of bioactivities such as wound healing, immunomodulation, apoptosis, and angiogenesis are controlled. To avoid an excess of TGF-β family signaling in cells, the duration and intensity of the TGF-β family signal appear to be subject to elaborate regulation. In this paper, we describe recent advances in the understanding of how TGF-β family signals are perturbed and terminated to maintain homeostasis in cells.
Collapse
Affiliation(s)
- Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | | |
Collapse
|
208
|
Jain S, Singhal S, Francis F, Hajdu C, Wang JH, Suriawinata A, Wang YQ, Zhang M, Weinshel EH, Francois F, Pei ZH, Lee P, Xu RL. Association of overexpression of TIF1γ with colorectal carcinogenesis and advanced colorectal adenocarcinoma. World J Gastroenterol 2011; 17:3994-4000. [PMID: 22046087 PMCID: PMC3199557 DOI: 10.3748/wjg.v17.i35.3994] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/11/2011] [Accepted: 01/18/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the expression and clinical significance of transcriptional intermediary factor 1 gamma (TIF1γ), Smad4 and transforming growth factor-beta (TGFβR) across a spectrum representing colorectal cancer (CRC) development.
METHODS: Tissue microarrays were prepared from archival paraffin embedded tissue, including 51 colorectal carcinomas, 25 tubular adenomas (TA) and 26 HPs, each with matched normal colonic epithelium. Immunohistochemistry was performed using antibodies against TIF1γ, Smad4 and TGFβRII. The levels of expression were scored semi-quantitatively (score 0-3 or loss and retention for Smad4).
RESULTS: Overexpression of TIF1γ was detected in 5/26 (19%) HP; however, it was seen in a significantly higher proportion of neoplasms, 15/25 (60%) TAs and 24/51 (47%) CRCs (P < 0.05). Normal colonic mucosa, HP, and TAs showed strong Smad4 expression, while its expression was absent in 22/51 (43%) CRCs. Overexpression of TGFβRII was more commonly seen in neoplasms, 13/25 (52%) TAs and 29/51 (57%) CRCs compared to 9/26 (35%) HP (P < 0.05). Furthermore, there was a correlation between TIF1γ overexpression and Smad4 loss in CRC (Kendall tau rank correlation value = 0.35, P < 0.05). The levels of TIF1γ overexpression were significantly higher in stage III than in stage I and II CRC (P < 0.05).
CONCLUSION: The findings suggest that over-expression of TIF1γ occurs in early stages of colorectal carcinogenesis, is inversely related with Smad4 loss, and may be a prognostic indicator for poor outcome.
Collapse
|
209
|
Abstract
Acetylation of lysine residues is a post-translational modification with broad relevance
to cellular signalling and disease biology. Enzymes that ‘write’
(histone acetyltransferases, HATs) and ‘erase’ (histone deacetylases,
HDACs) acetylation sites are an area of extensive research in current drug development,
but very few potent inhibitors that modulate the ‘reading process’
mediated by acetyl lysines have been described. The principal readers of
ɛ-N-acetyl lysine (Kac) marks are
bromodomains (BRDs), which are a diverse family of evolutionary conserved
protein-interaction modules. The conserved BRD fold contains a deep, largely hydrophobic
acetyl lysine binding site, which represents an attractive pocket for the development of
small, pharmaceutically active molecules. Proteins that contain BRDs have been implicated
in the development of a large variety of diseases. Recently, two highly potent and
selective inhibitors that target BRDs of the BET (bromodomains and extra-terminal) family
provided compelling data supporting targeting of these BRDs in inflammation and in an
aggressive type of squamous cell carcinoma. It is likely that BRDs will emerge alongside
HATs and HDACs as interesting targets for drug development for the large number of
diseases that are caused by aberrant acetylation of lysine residues.
Collapse
|
210
|
Sun J, He H, Xiong Y, Lu S, Shen J, Cheng A, Chang WC, Hou MF, Lancaster JM, Kim M, Yang S. Fascin protein is critical for transforming growth factor β protein-induced invasion and filopodia formation in spindle-shaped tumor cells. J Biol Chem 2011; 286:38865-75. [PMID: 21914811 DOI: 10.1074/jbc.m111.270413] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Fascin, an actin-bundling protein overexpressed in all carcinomas, has been associated with poor prognosis, shorter survival, and more metastatic diseases. It is believed that fascin facilitates tumor metastasis by promoting the formation of invasive membrane protrusions. However, the mechanisms by which fascin is overexpressed in tumors are not clear. TGFβ is a cytokine secreted by tumor and mesenchymal cells and promotes metastasis in many late stage tumors. The pro-metastasis mechanisms of TGFβ remain to be fully elucidated. Here we demonstrated that TGFβ induced fascin expression in spindle-shaped tumor cells through the canonical Smad-dependent pathway. Fascin was critical for TGFβ-promoted filopodia formation, migration, and invasion in spindle tumor cells. More importantly, fascin expression significantly correlates with TGFβ1 and TGFβ receptor I levels in a cohort of primary breast tumor samples. Our results indicate that elevated TGFβ level in the tumor microenvironment may be responsible for fascin overexpression in some of the metastatic tumors. Our data also suggest that fascin could play a central role in TGFβ-promoted tumor metastasis.
Collapse
Affiliation(s)
- Jianwei Sun
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Agricola E, Randall RA, Gaarenstroom T, Dupont S, Hill CS. Recruitment of TIF1γ to chromatin via its PHD finger-bromodomain activates its ubiquitin ligase and transcriptional repressor activities. Mol Cell 2011; 43:85-96. [PMID: 21726812 DOI: 10.1016/j.molcel.2011.05.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 03/05/2011] [Accepted: 05/02/2011] [Indexed: 02/05/2023]
Abstract
The interplay between sequence-specific DNA-binding transcription factors, histone-modifying enzymes, and chromatin-remodeling enzymes underpins transcriptional regulation. Although it is known how single domains of chromatin "readers" bind specific histone modifications, how combinations of histone marks are recognized and decoded is poorly understood. Moreover, the role of histone binding in regulating the enzymatic activity of chromatin readers is not known. Here we focus on the TGF-β superfamily transcriptional repressor TIF1γ/TRIM33/Ectodermin and demonstrate that its PHD finger-bromodomain constitutes a multivalent histone-binding module that specifically binds histone H3 tails unmethylated at K4 and R2 and acetylated at two key lysines. TIF1γ's ability to ubiquitinate its substrate Smad4 requires its PHD finger-bromodomain, as does its transcriptional repressor activity. Most importantly, TIF1γ's E3 ubiquitin ligase activity is induced by histone binding. We propose a model of TIF1γ activity in which it dictates the residence time of activated Smad complexes at promoters of TGF-β superfamily target genes.
Collapse
Affiliation(s)
- Eleonora Agricola
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | |
Collapse
|
212
|
Pang K, Ryan JF, Baxevanis AD, Martindale MQ. Evolution of the TGF-β signaling pathway and its potential role in the ctenophore, Mnemiopsis leidyi. PLoS One 2011; 6:e24152. [PMID: 21931657 PMCID: PMC3169577 DOI: 10.1371/journal.pone.0024152] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/31/2011] [Indexed: 11/18/2022] Open
Abstract
The TGF-β signaling pathway is a metazoan-specific intercellular signaling pathway known to be important in many developmental and cellular processes in a wide variety of animals. We investigated the complexity and possible functions of this pathway in a member of one of the earliest branching metazoan phyla, the ctenophore Mnemiopsis leidyi. A search of the recently sequenced Mnemiopsis genome revealed an inventory of genes encoding ligands and the rest of the components of the TGF-β superfamily signaling pathway. The Mnemiopsis genome contains nine TGF-β ligands, two TGF-β-like family members, two BMP-like family members, and five gene products that were unable to be classified with certainty. We also identified four TGF-β receptors: three Type I and a single Type II receptor. There are five genes encoding Smad proteins (Smad2, Smad4, Smad6, and two Smad1s). While we have identified many of the other components of this pathway, including Tolloid, SMURF, and Nomo, notably absent are SARA and all of the known antagonists belonging to the Chordin, Follistatin, Noggin, and CAN families. This pathway likely evolved early in metazoan evolution as nearly all components of this pathway have yet to be identified in any non-metazoan. The complement of TGF-β signaling pathway components of ctenophores is more similar to that of the sponge, Amphimedon, than to cnidarians, Trichoplax, or bilaterians. The mRNA expression patterns of key genes revealed by in situ hybridization suggests that TGF-β signaling is not involved in ctenophore early axis specification. Four ligands are expressed during gastrulation in ectodermal micromeres along all three body axes, suggesting a role in transducing earlier maternal signals. Later expression patterns and experiments with the TGF-β inhibitor SB432542 suggest roles in pharyngeal morphogenesis and comb row organization.
Collapse
Affiliation(s)
- Kevin Pang
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Joseph F. Ryan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andreas D. Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark Q. Martindale
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
213
|
Aucagne R, Droin N, Solary E, Bastie JN, Delva L. [TIF1γ: a tumor suppressor gene in chronic myelomonocytic leukemia]. Med Sci (Paris) 2011; 27:696-8. [PMID: 21880252 DOI: 10.1051/medsci/2011278006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
214
|
|
215
|
Vaccaro V, Melisi D, Bria E, Cuppone F, Ciuffreda L, Pino MS, Gelibter A, Tortora G, Cognetti F, Milella M. Emerging pathways and future targets for the molecular therapy of pancreatic cancer. Expert Opin Ther Targets 2011; 15:1183-96. [PMID: 21819318 DOI: 10.1517/14728222.2011.607438] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pancreatic cancer treatment remains a challenge for clinicians and researchers. Despite undisputable advances in the comprehension of the molecular mechanisms underlying cancer development and progression, early disease detection and clinical management of patients has made little, if any, progress in the past 20 years. Clinical development of targeted agents directed against validated pathways, such as the EGF/EGF receptor axis, the mutant KRAS protein, MMPs, and VEGF-mediated angiogenesis, alone or in combination with gemcitabine-based standard chemotherapy, has been disappointing. AREAS COVERED This review explores the preclinical rationale for clinical approaches aimed at targeting the TGF-β, IGF, Hedgehog, Notch and NF-κB signaling pathways, to develop innovative therapeutic strategies for pancreatic cancer. EXPERT OPINION Although some of the already clinically explored approaches (particularly EGFR and KRAS targeting) deserve further clinical consideration, by employing more innovative and creative clinical trial designs than the gemcitabine-targeted agent paradigm that has thus far invariably failed, the targeting of emerging and relatively unexplored signaling pathways holds great promise to increase our understanding of the complex molecular biology and to advance the clinical management of pancreatic cancer.
Collapse
Affiliation(s)
- Vanja Vaccaro
- Medical Oncology A, Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Adult hematopoiesis is regulated by TIF1γ, a repressor of TAL1 and PU.1 transcriptional activity. Cell Stem Cell 2011; 8:412-25. [PMID: 21474105 DOI: 10.1016/j.stem.2011.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 12/11/2010] [Accepted: 02/08/2011] [Indexed: 12/30/2022]
Abstract
Crosstalk between transcription factors and cytokines precisely regulates tissue homeostasis. Transcriptional intermediary factor 1γ (TIF1γ) regulates vertebrate hematopoietic development, can control transcription elongation, and is a component of the TGF-β signaling pathway. Here we show that deletion of TIF1γ in adult hematopoiesis is compatible with life and long-term maintenance of essential blood cell lineages. However, loss of TIF1γ results in deficient long-term hematopoietic stem cell (LT-HSC) transplantation activity, deficient short-term HSC (ST-HSC) bone marrow retention, and priming ST-HSCs to myelomonocytic lineage. These defects are hematopoietic cell-autonomous, and priming of TIF1γ-deficient ST-HSCs can be partially rescued by wild-type hematopoietic cells. TIF1γ can form complexes with TAL1 or PU.1-two essential DNA-binding proteins in hematopoiesis-occupy specific subsets of their DNA binding sites in vivo, and repress their transcriptional activity. These results suggest a regulation of adult hematopoiesis through TIF1γ-mediated transcriptional repression of TAL1 and PU.1 target genes.
Collapse
|
217
|
Abstract
Transforming growth factor-β (TGF-β) has been shown to play an essential role in establishing immunological tolerance, yet recent studies have revealed the pro-inflammatory roles of TGF-β in inflammatory responses. TGF-β induces Foxp3-positive regulatory T cells (iTregs), while in the presence of IL-6, it induces pathogenic IL-17 producing Th17 cells. TGF-β inhibits the proliferation of T cells as well as cytokine production via Foxp3-dependent and independent mechanisms. On the one hand, little is known about molecular mechanisms involved in immune suppression via TGF-β; however, recent studies suggest that Smad2 as well as Smad3 play essential roles in Foxp3 induction and cytokine suppression, whereas Th17 differentiation is promoted via the Smad-independent pathway. Mutual suppression of signaling between TGF-β and inflammatory cytokines has been shown to be necessary for the balance of immunity and tolerance.
Collapse
|
218
|
Hesling C, Fattet L, Teyre G, Jury D, Gonzalo P, Lopez J, Vanbelle C, Morel AP, Gillet G, Mikaelian I, Rimokh R. Antagonistic regulation of EMT by TIF1γ and Smad4 in mammary epithelial cells. EMBO Rep 2011; 12:665-72. [PMID: 21597466 DOI: 10.1038/embor.2011.78] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/01/2011] [Accepted: 04/08/2011] [Indexed: 12/13/2022] Open
Abstract
TGF-β is a potent inducer of epithelial-to-mesenchymal transition (EMT), a process involved in tumour invasion. TIF1γ participates in TGF-β signalling. To understand the role of TIF1γ in TGF-β signalling and its requirement for EMT, we analysed the TGF-β1 response of human mammary epithelial cell lines. A strong EMT increase was observed in TIF1γ-silenced cells after TGF-β1 treatment, whereas Smad4 inactivation completely blocked this process. Accordingly, the functions of several TIF1γ target genes can be linked to EMT, as shown by microarray analysis. As a negative regulator of Smad4, TIF1γ could be crucial for the regulation of TGF-β signalling. Furthermore, TIF1γ binds to and represses the plasminogen activator inhibitor 1 promoter, demonstrating a direct role of TIF1γ in TGF-β-dependent gene expression. This study shows the molecular relationship between TIF1γ and Smad4 in TGF-β signalling and EMT.
Collapse
Affiliation(s)
- Cédric Hesling
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; CNRS UMR5286, F-69000 Lyon, France; Centre Léon Bérard, F-69000 Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Mu Y, Gudey SK, Landström M. Non-Smad signaling pathways. Cell Tissue Res 2011; 347:11-20. [PMID: 21701805 DOI: 10.1007/s00441-011-1201-y] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/03/2011] [Indexed: 12/19/2022]
Abstract
Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.
Collapse
Affiliation(s)
- Yabing Mu
- Medical Biosciences, Umeå University, SE-901 85 Umeå, Sweden
| | | | | |
Collapse
|
220
|
Role of Smads in TGFβ signaling. Cell Tissue Res 2011; 347:21-36. [PMID: 21643690 DOI: 10.1007/s00441-011-1190-x] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/10/2011] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-β (TGFβ) is the prototype for a large family of pleiotropic factors that signal via heterotetrameric complexes of type I and type II serine/threonine kinase receptors. Important intracellular mediators of TGFβ signaling are members of the Smad family. Smad2 and 3 are activated by C-terminal receptor-mediated phosphorylation, whereafter they form complexes with Smad4 and are translocated to the nucleus where they, in cooperation with other transcription factors, co-activators and co-repressors, regulate the transcription of specific genes. Smads have key roles in exerting TGFβ-induced programs leading to cell growth arrest and epithelial-mesenchymal transition. The activity and stability of Smad molecules are carefully regulated by a plethora of post-translational modifications, including phosphorylation, ubiquitination, sumoylation, acetylation and poly(ADP)-ribosylation. The Smad function has been shown to be perturbed in certain diseases such as cancer.
Collapse
|
221
|
Aucagne R, Droin N, Paggetti J, Lagrange B, Largeot A, Hammann A, Bataille A, Martin L, Yan KP, Fenaux P, Losson R, Solary E, Bastie JN, Delva L. Transcription intermediary factor 1γ is a tumor suppressor in mouse and human chronic myelomonocytic leukemia. J Clin Invest 2011; 121:2361-70. [PMID: 21537084 PMCID: PMC3104753 DOI: 10.1172/jci45213] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 03/08/2011] [Indexed: 12/27/2022] Open
Abstract
Transcription intermediary factor 1γ (TIF1γ) was suggested to play a role in erythropoiesis. However, how TIF1γ regulates the development of different blood cell lineages and whether TIF1γ is involved in human hematological malignancies remain to be determined. Here we have shown that TIF1γ was a tumor suppressor in mouse and human chronic myelomonocytic leukemia (CMML). Loss of Tif1g in mouse HSCs favored the expansion of the granulo-monocytic progenitor compartment. Furthermore, Tif1g deletion induced the age-dependent appearance of a cell-autonomous myeloproliferative disorder in mice that recapitulated essential characteristics of human CMML. TIF1γ was almost undetectable in leukemic cells of 35% of CMML patients. This downregulation was related to the hypermethylation of CpG sequences and specific histone modifications in the gene promoter. A demethylating agent restored the normal epigenetic status of the TIF1G promoter in human cells, which correlated with a reestablishment of TIF1γ expression. Together, these results demonstrate that TIF1G is an epigenetically regulated tumor suppressor gene in hematopoietic cells and suggest that changes in TIF1γ expression may be a biomarker of response to demethylating agents in CMML.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Aging/genetics
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Base Sequence
- Cell Differentiation
- DNA Methylation
- Decitabine
- Female
- Gene Expression Regulation, Leukemic
- Genes, Tumor Suppressor
- Hematopoiesis/genetics
- Hematopoiesis/physiology
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/pathology
- Male
- Mice
- Mice, Knockout
- Middle Aged
- Molecular Sequence Data
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Promoter Regions, Genetic
- Receptor, Macrophage Colony-Stimulating Factor/biosynthesis
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Specific Pathogen-Free Organisms
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Romain Aucagne
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Nathalie Droin
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Jérôme Paggetti
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Brice Lagrange
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Anne Largeot
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Arlette Hammann
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Amandine Bataille
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Laurent Martin
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Kai-Ping Yan
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Pierre Fenaux
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Régine Losson
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Eric Solary
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Jean-Noël Bastie
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| | - Laurent Delva
- Inserm UMR 866, University of Burgundy, Dijon, France.
IFR “Santé-STIC,” University of Burgundy, Dijon, France.
Inserm UMR 1009, Integrated Research Cancer Institute Villejuif (IRCIV), Institut Gustave Roussy, Villejuif, France.
Flow Cytometry Facility,
Cellular Imagery Facility, and
Department of Pathology, University Hospital, Dijon, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Functional Genomics, CNRS UMR 7104, Inserm U964, Louis Pasteur University, Collège de France, Illkirch, France.
University Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) and University of Paris 13, Bobigny, France.
University Hospital, Clinical Hematology Department, Dijon, France
| |
Collapse
|
222
|
Blank U, Karlsson S. The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 2011; 25:1379-88. [PMID: 21566654 DOI: 10.1038/leu.2011.95] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) of adult individuals and function to produce and regenerate the entire blood and immune system over the course of an individual's lifetime. Historically, HSCs are among the most thoroughly characterized tissue-specific stem cells. Despite this, the regulation of fate options, such as self-renewal and differentiation, has remained elusive, partly because of the expansive plethora of factors and signaling cues that govern HSC behavior in vivo. In the BM, HSCs are housed in specialized niches that dovetail the behavior of HSCs with the need of the organism. The Smad-signaling pathway, which operates downstream of the transforming growth factor-β (TGF-β) superfamily of ligands, regulates a diverse set of biological processes, including proliferation, differentiation and apoptosis, in many different organ systems. Much of the function of Smad signaling in hematopoiesis has remained nebulous due to early embryonic lethality of most knockout mouse models. However, recently new data have been uncovered, suggesting that the Smad-signaling circuitry is intimately linked to HSC regulation. In this review, we bring the Smad-signaling pathway into focus, chronicling key concepts and recent advances with respect to TGF-β-superfamily signaling in normal and leukemic hematopoiesis.
Collapse
Affiliation(s)
- U Blank
- Division of Molecular Medicine and Gene Therapy, Laboratory Medicine, Lund Stem Cell Center, Lund University Hospital, Lund, Sweden.
| | | |
Collapse
|
223
|
Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc Natl Acad Sci U S A 2011; 108:8212-7. [PMID: 21531907 DOI: 10.1073/pnas.1101544108] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TRIM24 (TIF1α), TRIM28 (TIF1β), and TRIM33 (TIF1γ) are three related cofactors belonging to the tripartite motif superfamily that interact with distinct transcription factors. TRIM24 interacts with the liganded retinoic acid (RA) receptor to repress its transcriptional activity. Germ line inactivation of TRIM24 in mice deregulates RA-signaling in hepatocytes leading to the development of hepatocellular carcinoma (HCC). Here we show that TRIM24 can be purified as at least two macromolecular complexes comprising either TRIM33 or TRIM33 and TRIM28. Somatic hepatocyte-specific inactivation of TRIM24, TRIM28, or TRIM33 all promote HCC in a cell-autonomous manner in mice. Moreover, HCC formation upon TRIM24 inactivation is strongly potentiated by further loss of TRIM33. These results demonstrate that the TIF1-related subfamily of TRIM proteins interact both physically and functionally to modulate HCC formation in mice.
Collapse
|
224
|
van Dooren SHJ, van Venrooij WJ, Pruijn GJM. Myositis-specific autoantibodies: detection and clinical associations. AUTOIMMUNITY HIGHLIGHTS 2011; 2:5-20. [PMID: 26000115 PMCID: PMC4389074 DOI: 10.1007/s13317-011-0018-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/11/2011] [Indexed: 11/24/2022]
Abstract
In recent years, the detection and characterization of (novel) autoantibodies is becoming increasingly important for the early diagnosis of autoimmune diseases. The idiopathic inflammatory myopathies (IIM, also indicated with myositis) are a group of systemic autoimmune disorders that involve inflammation and weakness of skeletal muscles. One of the hallmarks is the infiltration of inflammatory cells in muscle tissues. A number of myositis-specific autoantibodies have been identified and these may be associated with distinct IIM subclasses and clinical symptoms. Here, we review all myositis-specific autoantibodies identified today as well as their target proteins, together with their clinical associations in IIM patients. Post-translational modifications that might be associated with the generation of autoantibodies and the development of the disease are discussed as well. In addition, we describe well established autoantibody detection techniques that are currently being used in diagnostic laboratories, as well as novel multiplexed methods. The latter techniques provide great opportunities for the simultaneous detection of distinct autoantibodies, but may also contribute to the identification of novel autoantibody profiles, which may have additional diagnostic and prognostic value. The ongoing characterization of novel autoantibody specificities emphasizes the complexity of processes involved in the development of such autoimmune diseases.
Collapse
Affiliation(s)
- Sander H J van Dooren
- 271 Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Walther J van Venrooij
- 271 Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ger J M Pruijn
- 271 Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
225
|
Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. [corrected]. Proc Natl Acad Sci U S A 2011; 108:4006-11. [PMID: 21330551 DOI: 10.1073/pnas.1019025108] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report that the dominant human missense mutations G303E and G296S in GATA4, a cardiac-specific transcription factor gene, cause atrioventricular septal defects and valve abnormalities by disrupting a signaling cascade involved in endocardial cushion development. These GATA4 missense mutations, but not a mutation causing secundum atrial septal defects (S52F), demonstrated impaired protein interactions with SMAD4, a transcription factor required for canonical bone morphogenetic protein/transforming growth factor-β (BMP/TGF-β) signaling. Gata4 and Smad4 genetically interact in vivo: atrioventricular septal defects result from endothelial-specific Gata4 and Smad4 compound haploinsufficiency. Endothelial-specific knockout of Smad4 caused an absence of valve-forming activity: Smad4-deficient endocardium was associated with acellular endocardial cushions, absent epithelial-to-mesenchymal transformation, reduced endocardial proliferation, and loss of Id2 expression in valve-forming regions. We show that Gata4 and Smad4 cooperatively activated the Id2 promoter, that human GATA4 mutations abrogated this activity, and that Id2 deficiency in mice could cause atrioventricular septal defects. We suggest that one determinant of the phenotypic spectrum caused by human GATA4 mutations is differential effects on GATA4/SMAD4 interactions required for endocardial cushion development.
Collapse
|
226
|
Zhou L, McMahon C, Bhagat T, Alencar C, Yu Y, Fazzari M, Sohal D, Heuck C, Gundabolu K, Ng C, Mo Y, Shen W, Wickrema A, Kong G, Friedman E, Sokol L, Mantzaris I, Mantzaris G, Pellagatti A, Boultwood J, Platanias LC, Steidl U, Yan L, Yingling JM, Lahn MM, List A, Bitzer M, Verma A. Reduced SMAD7 leads to overactivation of TGF-beta signaling in MDS that can be reversed by a specific inhibitor of TGF-beta receptor I kinase. Cancer Res 2011; 71:955-63. [PMID: 21189329 PMCID: PMC3032816 DOI: 10.1158/0008-5472.can-10-2933] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Even though myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis, the molecular alterations that lead to marrow failure have not been well elucidated. We have previously shown that the myelosuppressive TGF-β pathway is constitutively activated in MDS progenitors. Because there is conflicting data about upregulation of extracellular TGF-β levels in MDS, we wanted to determine the molecular basis of TGF-β pathway overactivation and consequent hematopoietic suppression in this disease. We observed that SMAD7, a negative regulator of TGF-β receptor I (TBRI) kinase, is markedly decreased in a large meta-analysis of gene expression studies from MDS marrow-derived CD34(+) cells. SMAD7 protein was also found to be significantly decreased in MDS marrow progenitors when examined immunohistochemically in a bone marrow tissue microarray. Reduced expression of SMAD7 in hematopoietic cells led to increased TGF-β-mediated gene transcription and enhanced sensitivity to TGF-β-mediated suppressive effects. The increased TGF-β signaling due to SMAD7 reduction could be effectively inhibited by a novel clinically relevant TBRI (ALK5 kinase) inhibitor, LY-2157299. LY-2157299 could inhibit TGF-β-mediated SMAD2 activation and hematopoietic suppression in primary hematopoietic stem cells. Furthermore, in vivo administration of LY-2157299 ameliorated anemia in a TGF-β overexpressing transgenic mouse model of bone marrow failure. Most importantly, treatment with LY-2157199 stimulated hematopoiesis from primary MDS bone marrow specimens. These studies demonstrate that reduction in SMAD7 is a novel molecular alteration in MDS that leads to ineffective hematopoiesis by activating of TGF-β signaling in hematopoietic cells. These studies also illustrate the therapeutic potential of TBRI inhibitors in MDS.
Collapse
Affiliation(s)
- Li Zhou
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Kemmerling B, Halter T, Mazzotta S, Mosher S, Nürnberger T. A genome-wide survey for Arabidopsis leucine-rich repeat receptor kinases implicated in plant immunity. FRONTIERS IN PLANT SCIENCE 2011; 2:88. [PMID: 22645555 PMCID: PMC3355784 DOI: 10.3389/fpls.2011.00088] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/07/2011] [Indexed: 05/02/2023]
Abstract
Receptor-like kinases (RLK) are among the largest gene families encoded by plant genomes. Common structural features of plant RLKs are an extracellular ligand binding domain, a membrane spanning domain, and an intracellular protein kinase domain. The largest subfamily of plant RLKs is characterized by extracellular leucine-rich repeat (LRR-RLK) structures that are known biochemical modules for mediating ligand binding and protein-protein interactions. In the frame of the Arabidopsis Functional Genomics Network initiative of the German Research Foundation (DFG) we have conducted a comprehensive survey for and functional characterization of LRR-RLKs potentially implicated in Arabidopsis thaliana immunity to microbial infection. Arabidopsis gene expression patterns suggested an important role of this class of proteins in biotic stress adaptation. Detailed biochemical and physiological characterization of the brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) revealed brassinolide-independent roles of this protein in plant immunity, in addition to its well-established function in plant development. The LRR-RLK BAK1 has further been shown to form heteromeric complexes with various other LRR-RLKs in a ligand-dependent manner, suggesting a role as adapter or co-receptor in plant receptor complexes. Here, we review the current status of BAK1 and BAK1-interacting LRR-RLKs in plant immunity.
Collapse
Affiliation(s)
- Birgit Kemmerling
- Zentrum für Molekularbiologie der Pflanzen-Pflanzenbiochemie, Eberhard-Karls-Universität TübingenTübingen, Germany
- *Correspondence: Birgit Kemmerling and Thorsten Nürnberger, Zentrum für Molekularbiologie der Pflanzen, Pflanzenbiochemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany. e-mail: ;
| | - Thierry Halter
- Zentrum für Molekularbiologie der Pflanzen-Pflanzenbiochemie, Eberhard-Karls-Universität TübingenTübingen, Germany
| | - Sara Mazzotta
- Zentrum für Molekularbiologie der Pflanzen-Pflanzenbiochemie, Eberhard-Karls-Universität TübingenTübingen, Germany
| | - Stephen Mosher
- Zentrum für Molekularbiologie der Pflanzen-Pflanzenbiochemie, Eberhard-Karls-Universität TübingenTübingen, Germany
| | - Thorsten Nürnberger
- Zentrum für Molekularbiologie der Pflanzen-Pflanzenbiochemie, Eberhard-Karls-Universität TübingenTübingen, Germany
- *Correspondence: Birgit Kemmerling and Thorsten Nürnberger, Zentrum für Molekularbiologie der Pflanzen, Pflanzenbiochemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany. e-mail: ;
| |
Collapse
|
228
|
Worthington JJ, Klementowicz JE, Travis MA. TGFβ: a sleeping giant awoken by integrins. Trends Biochem Sci 2011; 36:47-54. [PMID: 20870411 DOI: 10.1016/j.tibs.2010.08.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/23/2022]
Abstract
Transforming growth factor beta (TGFβ) controls numerous cellular responses, including proliferation, differentiation, apoptosis and migration. This cytokine is produced by many different cell types and has been implicated in the pathogenesis of many diseases, ranging from autoimmune disorders and infectious diseases to fibrosis and cancer. However, TGFβ is always produced as an inactive complex that must be activated to enable binding to its receptor and subsequent function. Recent evidence highlights a crucial role for members of the integrin receptor family in controlling the activation of TGFβ. These pathways are important in human health and disease, and new insights into the biochemical mechanisms that allow integrins to control TGFβ activation could prove useful in the design of therapeutics.
Collapse
Affiliation(s)
- John J Worthington
- Manchester Immunology Group and Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
229
|
Choi SC, Han JK. Negative Regulation of Activin Signal Transduction. VITAMINS & HORMONES 2011; 85:79-104. [DOI: 10.1016/b978-0-12-385961-7.00005-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
230
|
Meulmeester E, Ten Dijke P. The dynamic roles of TGF-β in cancer. J Pathol 2010; 223:205-18. [PMID: 20957627 DOI: 10.1002/path.2785] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 08/18/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
Abstract
The transforming growth factor-β (TGF-β) signalling pathway plays a critical and dual role in the progression of human cancer. During the early phase of tumour progression, TGF-β acts as a tumour suppressor, exemplified by deletions or mutations in the core components of the TGF-β signalling pathway. On the contrary, TGF-β also promotes processes that support tumour progression such as tumour cell invasion, dissemination, and immune evasion. Consequently, the functional outcome of the TGF-β response is strongly context-dependent including cell, tissue, and cancer type. In this review, we describe the molecular signalling pathways employed by TGF-β in cancer and how these, when perturbed, may lead to the development of cancer. Concomitantly with our increased appreciation of the molecular mechanisms that govern TGF-β signalling, the potential to therapeutically target specific oncogenic sub-arms of the TGF-β pathway increases. Indeed, clinical trials with systemic TGF-β signalling inhibitors for treatment of cancer patients have been initiated. However, considering the important role of TGF-β in cardiovascular and many other tissues, careful screening of patients is warranted to minimize unwanted on-target side effects.
Collapse
Affiliation(s)
- Erik Meulmeester
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
231
|
Cao Y, Szabolcs A, Dutta SK, Yaqoob U, Jagavelu K, Wang L, Leof EB, Urrutia RA, Shah VH, Mukhopadhyay D. Neuropilin-1 mediates divergent R-Smad signaling and the myofibroblast phenotype. J Biol Chem 2010; 285:31840-8. [PMID: 20675371 PMCID: PMC2951255 DOI: 10.1074/jbc.m110.151696] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/29/2010] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor-beta (TGF-β) superfamily is one of the most diversified cell signaling pathways and regulates many physiological and pathological processes. Recently, neuropilin-1 (NRP-1) was reported to bind and activate the latent form of TGF-β1 (LAP-TGF-β1). We investigated the role of NRP-1 on Smad signaling in stromal fibroblasts upon TGF-β stimulation. Elimination of NRP-1 in stromal fibroblast cell lines increases Smad1/5 phosphorylation and downstream responses as evidenced by up-regulation of inhibitor of differentiation (Id-1). Conversely, NRP-1 loss decreases Smad2/3 phosphorylation and its responses as shown by down-regulation of α-smooth muscle actin (α-SMA) and also cells exhibit more quiescent phenotypes and growth arrest. Moreover, we also observed that NRP-1 expression is increased during the culture activation of hepatic stellate cells (HSCs), a liver resident fibroblast. Taken together, our data suggest that NRP-1 functions as a key determinant of the diverse responses downstream of TGF-β1 that are mediated by distinct Smad proteins and promotes myofibroblast phenotype.
Collapse
Affiliation(s)
- Ying Cao
- From the Department of Biochemistry and Molecular Biology
| | | | | | | | | | - Ling Wang
- From the Department of Biochemistry and Molecular Biology
| | - Edward B. Leof
- Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | | | | | | |
Collapse
|
232
|
Morsut L, Yan KP, Enzo E, Aragona M, Soligo SM, Wendling O, Mark M, Khetchoumian K, Bressan G, Chambon P, Dupont S, Losson R, Piccolo S. Negative control of Smad activity by ectodermin/Tif1gamma patterns the mammalian embryo. Development 2010; 137:2571-8. [PMID: 20573697 DOI: 10.1242/dev.053801] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The definition of embryonic potency and induction of specific cell fates are intimately linked to the tight control over TGFbeta signaling. Although extracellular regulation of ligand availability has received considerable attention in recent years, surprisingly little is known about the intracellular factors that negatively control Smad activity in mammalian tissues. By means of genetic ablation, we show that the Smad4 inhibitor ectodermin (Ecto, also known as Trim33 or Tif1gamma) is required to limit Nodal responsiveness in vivo. New phenotypes, which are linked to excessive Nodal activity, emerge from such a modified landscape of Smad responsiveness in both embryonic and extra-embryonic territories. In extra-embryonic endoderm, Ecto is required to confine expression of Nodal antagonists to the anterior visceral endoderm. In trophoblast cells, Ecto precisely doses Nodal activity, balancing stem cell self-renewal and differentiation. Epiblast-specific Ecto deficiency shifts mesoderm fates towards node/organizer fates, revealing the requirement of Smad inhibition for the precise allocation of cells along the primitive streak. This study unveils that intracellular negative control of Smad function by ectodermin/Tif1gamma is a crucial element in the cellular response to TGFbeta signals in mammalian tissues.
Collapse
Affiliation(s)
- Leonardo Morsut
- Department of Medical Biotechnologies, Section of Histology and Embryology, University of Padua, viale Colombo 3, 35126 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Malhotra N, Robertson E, Kang J. SMAD2 is essential for TGF beta-mediated Th17 cell generation. J Biol Chem 2010; 285:29044-8. [PMID: 20656683 DOI: 10.1074/jbc.c110.156745] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TGFβ is the quintessential cytokine of T cell homeostasis. TGFβ signaling is required for the efficient differentiation and maintenance of CD4(+)FOXP3(+) T cells that inhibit immune responses. Conversely, in conjunction with the inflammatory cytokine IL-6, TGFβ promotes Th17 cell differentiation. The mechanism by which TGFβ signals synergize with IL-6 to generate inflammatory versus immunosuppressive T cell subsets is unclear. TGFβ signaling activates receptor SMADs, SMAD2 and SMAD3, which associate with a variety of nuclear factors to regulate gene transcription. Defining relative contributions of distinct SMAD molecules for CD4 T cell differentiation is critical for mapping the versatile intracellular TGFβ-signaling pathways that tailor TGFβ activities to the state of host interaction with pathogens. We show here that SMAD2 is essential for Th17 cell differentiation and that it acts in part by modulating the expression of IL-6R on T cells. Although mice lacking SMAD2 specifically in T cells do not develop spontaneous lymphoproliferative autoimmunity, Smad2-deficient T cells are impaired in their response to TGFβ in vitro and in vivo, and they are more pathogenic than controls when transferred into lymphopenic mice. These results demonstrate that SMAD2 is uniquely essential for TGFβ signaling in CD4(+) T effector cell differentiation.
Collapse
Affiliation(s)
- Nidhi Malhotra
- Department of Pathology, Graduate Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
234
|
Bai X, Kim J, Yang Z, Jurynec MJ, Akie TE, Lee J, LeBlanc J, Sessa A, Jiang H, DiBiase A, Zhou Y, Grunwald DJ, Lin S, Cantor AB, Orkin SH, Zon LI. TIF1gamma controls erythroid cell fate by regulating transcription elongation. Cell 2010; 142:133-43. [PMID: 20603019 PMCID: PMC3072682 DOI: 10.1016/j.cell.2010.05.028] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/23/2010] [Accepted: 04/14/2010] [Indexed: 11/21/2022]
Abstract
Recent genome-wide studies have demonstrated that pausing of RNA polymerase II (Pol II) occurred on many vertebrate genes. By genetic studies in the zebrafish tif1gamma mutant moonshine we found that loss of function of Pol II-associated factors PAF or DSIF rescued erythroid gene transcription in tif1gamma-deficient animals. Biochemical analysis established physical interactions among TIF1gamma, the blood-specific SCL transcription complex, and the positive elongation factors p-TEFb and FACT. Chromatin immunoprecipitation assays in human CD34(+) cells supported a TIF1gamma-dependent recruitment of positive elongation factors to erythroid genes to promote transcription elongation by counteracting Pol II pausing. Our study establishes a mechanism for regulating tissue cell fate and differentiation through transcription elongation.
Collapse
Affiliation(s)
- Xiaoying Bai
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonghwan Kim
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, The Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Zhongan Yang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Michael J. Jurynec
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas E. Akie
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Lee
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jocelyn LeBlanc
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Sessa
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Jiang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Anthony DiBiase
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yi Zhou
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - David J. Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Alan B. Cantor
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart H. Orkin
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, The Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Leonard I. Zon
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
235
|
Kaddatz K, Adhikary T, Finkernagel F, Meissner W, Müller-Brüsselbach S, Müller R. Transcriptional profiling identifies functional interactions of TGF β and PPAR β/δ signaling: synergistic induction of ANGPTL4 transcription. J Biol Chem 2010; 285:29469-79. [PMID: 20595396 DOI: 10.1074/jbc.m110.142018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) not only play a key role in regulating metabolic pathways but also modulate inflammatory processes, pointing to a functional interaction between PPAR and cytokine signaling pathways. In this study, we show by genome-wide transcriptional profiling that PPARβ/δ and transforming growth factor-β (TGFβ) pathways functionally interact in human myofibroblasts and that a subset of these genes is cooperatively activated by TGFβ and PPARβ/δ. Using the angiopoietin-like 4 (ANGPTL4) gene as a model, we demonstrate that two enhancer regions cooperate to mediate the observed synergistic response. A TGFβ-responsive enhancer located ∼8 kb upstream of the transcriptional start site is regulated by a mechanism involving SMAD3, ETS1, RUNX, and AP-1 transcription factors that interact with multiple contiguous binding sites. A second enhancer (PPAR-E) consisting of three juxtaposed PPAR response elements is located in the third intron ∼3.5 kb downstream of the transcriptional start site. The PPAR-E is strongly activated by all three PPAR subtypes, with a novel type of PPAR response element motif playing a central role. Although the PPAR-E is not regulated by TGFβ, it interacts with SMAD3, ETS1, RUNX2, and AP-1 in vivo, providing a possible mechanistic explanation for the observed synergism.
Collapse
Affiliation(s)
- Kerstin Kaddatz
- Institute of Molecular Biology and Tumor Research, Philipps-University, Emil-Mannkopff-Strasse 2, 35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
236
|
Takimoto T, Wakabayashi Y, Sekiya T, Inoue N, Morita R, Ichiyama K, Takahashi R, Asakawa M, Muto G, Mori T, Hasegawa E, Saika S, Shizuya S, Hara T, Nomura M, Yoshimura A. Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. THE JOURNAL OF IMMUNOLOGY 2010; 185:842-55. [PMID: 20548029 DOI: 10.4049/jimmunol.0904100] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although it has been well established that TGF-beta plays a pivotal role in immune regulation, the roles of its downstream transcription factors, Smad2 and Smad3, have not been fully clarified. Specifically, the function of Smad2 in the immune system has not been investigated because of the embryonic lethality of Smad2-deficient mice. In this study, we generated T cell-specific Smad2 conditional knockout (KO) mice and unexpectedly found that Smad2 and Smad3 were redundantly essential for TGF-beta-mediated induction of Foxp3-expressing regulatory T cells and suppression of IFN-gamma production in CD4(+) T cells. Consistent with these observations, Smad2/Smad3-double KO mice, but not single KO mice, developed fatal inflammatory diseases with higher IFN-gamma production and reduced Foxp3 expression in CD4(+) T cells at the periphery. Although it has been suggested that Foxp3 induction might underlie TGF-beta-mediated immunosuppression, TGF-beta still can suppress Th1 cell development in Foxp3-deficient T cells, suggesting that the Smad2/3 pathway inhibits Th1 cell development with Foxp3-independent mechanisms. We also found that Th17 cell development was reduced in Smad-deficient CD4(+) T cells because of higher production of Th17-inhibitory cytokines from these T cells. However, TGF-beta-mediated induction of RORgamma t, a master regulator of Th17 cell, was independent of both Smad2 and Smad3, suggesting that TGF-beta regulates Th17 development through Smad2/3-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Tomohito Takimoto
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjyuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Howard PW, Ransom DG, Maurer RA. Transcription intermediary factor 1gamma decreases protein expression of the transcriptional cofactor, LIM-domain-binding 1. Biochem Biophys Res Commun 2010; 396:674-8. [PMID: 20447379 PMCID: PMC2891435 DOI: 10.1016/j.bbrc.2010.04.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
Abstract
LIM-domain-binding 1 (LDB1) is a cofactor that participates in formation of regulatory complexes involving transcription factors containing LIM domains as well as other factors. We have examined the ability of transcriptional intermediary factor 1gamma (TIF1gamma) to decrease LDB1 expression. An expression vector for TIF1gamma was found to decrease expression of LDB1. A mutation which disrupts the ubiquitin ligase activity of TIF1gamma was found to block the ability of TIF1gamma to decrease LDB1 expression. Proteasome inhibitors were also able to block TIF1gamma effects on LDB1. Immunoprecipitation studies provided evidence that LDB1 interacts with TIF1gamma in intact cells. Knockdown of TIF1gamma in zebrafish embryos led to increased expression of LDB1 providing evidence for a physiological role of TIF1gamma in regulating LDB1 expression. Reporter gene assays demonstrated that TIF1gamma can alter the activity of LIM-homeodomain transcription factor-responsive promoters. These studies are consistent with a model in which TIF1gamma acts to ubiquitinate LDB1 leading to degradation of LDB1 and changes in transcription of LDB1-dependent promoters.
Collapse
Affiliation(s)
- Paul W. Howard
- Department of Cell and Developmental Biology Oregon Health & Science University, Portland, Oregon 97239
| | | | - Richard A. Maurer
- Department of Cell and Developmental Biology Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
238
|
Lan Y, Yang X. The role of Smad signaling in vascular and hematopoietic development revealed by studies using genetic mouse models. SCIENCE CHINA-LIFE SCIENCES 2010; 53:485-9. [DOI: 10.1007/s11427-010-0087-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/01/2009] [Indexed: 01/12/2023]
|
239
|
Yoshimura A, Wakabayashi Y, Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem 2010; 147:781-92. [PMID: 20410014 DOI: 10.1093/jb/mvq043] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) has been shown to play an essential role in the suppression of inflammation, yet recent studies have revealed the positive roles of TGF-beta in inflammatory responses. For example, TGF-beta induces Foxp3-positive regulatory T cells (iTregs) in the presence of interleukin-2 (IL-2), while in the presence of IL-6, it induces pathogenic IL-17 producing Th17 cells. TGF-beta inhibits the proliferation of immune cells as well as cytokine production via Foxp3-dependent and -independent mechanisms. Little is known about molecular mechanisms involved in immune suppression via TGF-beta; however, Smad2/3 have been shown to play essential roles in Foxp3 induction as well as in IL-2 and IFN-gamma suppression, whereas Th17 differentiation is promoted via the Smad-independent pathway. Interaction between TGF-beta and other cytokine signaling is important in establishing the balance of immunity and tolerance.
Collapse
Affiliation(s)
- Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
240
|
Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-β signaling at the bipotent erythro-megakaryocytic progenitor stage. Blood 2010; 115:2784-95. [DOI: 10.1182/blood-2009-09-241752] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Growth factor independence-1B (Gfi-1B) is a transcriptional repressor essential for erythropoiesis and megakaryopoiesis. Targeted gene disruption of GFI1B in mice leads to embryonic lethality resulting from failure to produce definitive erythrocytes, hindering the study of Gfi-1B function in adult hematopoiesis. We here show that, in humans, Gfi-1B controls the development of erythrocytes and megakaryocytes by regulating the proliferation and differentiation of bipotent erythro-megakaryocytic progenitors. We further identify in this cell population the type III transforming growth factor-β receptor gene, TGFBR3, as a direct target of Gfi-1B. Knockdown of Gfi-1B results in altered transforming growth factor-β (TGF-β) signaling as shown by the increase in Smad2 phosphorylation and its inability to associate to the transcription intermediary factor 1-γ (TIF1-γ). Because the Smad2/TIF1-γ complex is known to specifically regulate erythroid differentiation, we propose that, by repressing TGF-β type III receptor (TβRΙII) expression, Gfi-1B favors the Smad2/TIF1-γ interaction downstream of TGF-β signaling, allowing immature progenitors to differentiate toward the erythroid lineage.
Collapse
|
241
|
Martinez GJ, Zhang Z, Chung Y, Reynolds JM, Lin X, Jetten AM, Feng XH, Dong C. Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation. J Biol Chem 2010; 284:35283-6. [PMID: 19887374 DOI: 10.1074/jbc.c109.078238] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) is a crucial cytokine with pleiotropic functions on immune cells. In CD4(+) T cells, TGF-beta is required for induction of both regulatory T and Th17 cells. However, the molecular mechanism underlying this differential T cell fate decision remains unclear. In this study, we have evaluated the role of Smad3 in the development of Th17 and regulatory T cells. Smad3 was found to be dispensable for natural regulatory T cell function. However, induction of Foxp3 expression by TGF-beta in naive T cells was significantly reduced in the absence of this molecule. On the contrary, Smad3 deficiency led to enhanced Th17 differentiation in vitro and in vivo. Moreover, Smad3 was found to interact with retinoid acid receptor-related orphan receptor gammat (RORgammat) and decrease its transcriptional activity. These results demonstrate that Smad3 is differentially involved in the reciprocal regulatory and inflammatory T cell generation.
Collapse
Affiliation(s)
- Gustavo J Martinez
- Department of Immunology, M. D. Anderson Cancer Center, Houston, Texas 77054, USA
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem 2010; 147:35-51. [PMID: 19762341 DOI: 10.1093/jb/mvp148] [Citation(s) in RCA: 786] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) exhibit broad spectra of biological activities in various tissues, including bone, cartilage, blood vessels, heart, kidney, neurons, liver and lung. BMPs are members of the transforming growth factor-beta (TGF-beta) family that bind to type II and type I serine-threonine kinase receptors, and transduce signals through Smad and non-Smad signalling pathways. Recent findings have revealed that BMP signalling is finely tuned by various mechanisms in both positive and negative fashions. Perturbations of BMP signalling pathways are linked to a wide variety of clinical disorders, including vascular diseases, skeletal diseases and cancer. Administration of recombinant BMP ligands and increasing endogenous expression of BMPs provide therapeutic effects on some diseases. The recent development of BMP receptor inhibitors may also prove useful for some clinical diseases induced by hyperactivation of the BMP signalling pathways.
Collapse
Affiliation(s)
- Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
243
|
Alarcón C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, Sapkota G, Pan D, Massagué J. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 2009; 139:757-69. [PMID: 19914168 DOI: 10.1016/j.cell.2009.09.035] [Citation(s) in RCA: 610] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 07/02/2009] [Accepted: 09/23/2009] [Indexed: 12/15/2022]
Abstract
TGF-beta and BMP receptor kinases activate Smad transcription factors by C-terminal phosphorylation. We have identified a subsequent agonist-induced phosphorylation that plays a central dual role in Smad transcriptional activation and turnover. As receptor-activated Smads form transcriptional complexes, they are phosphorylated at an interdomain linker region by CDK8 and CDK9, which are components of transcriptional mediator and elongation complexes. These phosphorylations promote Smad transcriptional action, which in the case of Smad1 is mediated by the recruitment of YAP to the phosphorylated linker sites. An effector of the highly conserved Hippo organ size control pathway, YAP supports Smad1-dependent transcription and is required for BMP suppression of neural differentiation of mouse embryonic stem cells. The phosphorylated linker is ultimately recognized by specific ubiquitin ligases, leading to proteasome-mediated turnover of activated Smad proteins. Thus, nuclear CDK8/9 drive a cycle of Smad utilization and disposal that is an integral part of canonical BMP and TGF-beta pathways.
Collapse
Affiliation(s)
- Claudio Alarcón
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Wharton K, Derynck R. TGFbeta family signaling: novel insights in development and disease. Development 2009; 136:3691-7. [PMID: 19855012 DOI: 10.1242/dev.040584] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Advances in our understanding of the many levels of regulation of TGFbeta and BMP signaling were reported at the recent FASEB Summer Conference entitled ;The TGFbeta Superfamily: Development and Disease', which was held in Carefree, Arizona, USA, on the northern edge of the Sonoran Desert. This conference was the fifth meeting in a biannual FASEB conference series and, as with the previous meetings, brought together biochemists, geneticists, developmental and tissue biologists interested in the inter-workings of TGFbeta/BMP signaling pathways and in the consequences of these pathways going awry.
Collapse
Affiliation(s)
- Kristi Wharton
- Department of Molecular Biology, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
245
|
Fei T, Xia K, Li Z, Zhou B, Zhu S, Chen H, Zhang J, Chen Z, Xiao H, Han JDJ, Chen YG. Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination. Genome Res 2009; 20:36-44. [PMID: 19926752 DOI: 10.1101/gr.092114.109] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Embryonic stem (ES) cells are under precise control of both intrinsic self-renewal gene regulatory network and extrinsic growth factor-triggered signaling cascades. How external signaling pathways connect to core self-renewal transcriptional circuits is largely unknown. To probe this, we chose BMP signaling, which is previously recognized as a master control for both self-renewal and lineage commitment of murine ES cells. Here, we mapped target gene promoter occupancy of SMAD1/5 and SMAD4 on a genome-wide scale and found that they associate with a large group of developmental regulators that are enriched for H3K27 trimethylation and H3K4 trimethylation bivalent marks and are repressed in the self-renewing state, whereas they are rapidly induced upon differentiation. Smad knockdown experiments further indicate that SMAD-mediated BMP signaling is largely required for differentiation-related processes rather than directly influencing self-renewal. Among the SMAD-associated genes, we further identified Dpysl2 (previously known as Crmp2) and the H3K27 demethylase Kdm6b (previously known as Jmjd3) as BMP4-modulated early neural differentiation regulators. Combined with computational analysis, our results suggest that SMAD-mediated BMP signaling balances self-renewal versus differentiation by modulating a set of developmental regulators.
Collapse
Affiliation(s)
- Teng Fei
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Rajagopal R, Huang J, Dattilo LK, Kaartinen V, Mishina Y, Deng CX, Umans L, Zwijsen A, Roberts AB, Beebe DC. The type I BMP receptors, Bmpr1a and Acvr1, activate multiple signaling pathways to regulate lens formation. Dev Biol 2009; 335:305-16. [PMID: 19733164 PMCID: PMC2783396 DOI: 10.1016/j.ydbio.2009.08.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/18/2009] [Accepted: 08/25/2009] [Indexed: 12/14/2022]
Abstract
BMPs play multiple roles in development and BMP signaling is essential for lens formation. However, the mechanisms by which BMP receptors function in vertebrate development are incompletely understood. To determine the downstream effectors of BMP signaling and their functions in the ectoderm that will form the lens, we deleted the genes encoding the type I BMP receptors, Bmpr1a and Acvr1, and the canonical transducers of BMP signaling, Smad4, Smad1 and Smad5. Bmpr1a and Acvr1 regulated cell survival and proliferation, respectively. Absence of both receptors interfered with the expression of proteins involved in normal lens development and prevented lens formation, demonstrating that BMPs induce lens formation by acting directly on the prospective lens ectoderm. Remarkably, the canonical Smad signaling pathway was not needed for most of these processes. Lens formation, placode cell proliferation, the expression of FoxE3, a lens-specific transcription factor, and the lens protein, alphaA-crystallin were regulated by BMP receptors in a Smad-independent manner. Placode cell survival was promoted by R-Smad signaling, but in a manner that did not involve Smad4. Of the responses tested, only maintaining a high level of Sox2 protein, a transcription factor expressed early in placode formation, required the canonical Smad pathway. A key function of Smad-independent BMP receptor signaling may be reorganization of actin cytoskeleton to drive lens invagination.
Collapse
Affiliation(s)
- Ramya Rajagopal
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO, USA
| | - Jie Huang
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO, USA
| | - Lisa K. Dattilo
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO, USA
| | - Vesa Kaartinen
- Developmental Biology Program, Childrens Hospital Los Angeles, Departments of Pathology and Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Yuji Mishina
- Molecular Developmental Biology Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Chu-Xia Deng
- Genetics of Development and Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lieve Umans
- Laboratory of Molecular Biology (Celgen), Department for Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Laboratory of Molecular Biology (Celgen), Center for Human Genetics, K.U. Leuven, Leuven, Belgium
| | - An Zwijsen
- Laboratory of Molecular Biology (Celgen), Department for Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Laboratory of Molecular Biology (Celgen), Center for Human Genetics, K.U. Leuven, Leuven, Belgium
| | - Anita B. Roberts
- Laboratory of Cell Regulation and Carcinogenesis, NCI, NIH, Bethesda, MD, USA
| | - David C. Beebe
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
247
|
Gao S, Alarcón C, Sapkota G, Rahman S, Chen PY, Goerner N, Macias MJ, Erdjument-Bromage H, Tempst P, Massagué J. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell 2009; 36:457-68. [PMID: 19917253 PMCID: PMC2796330 DOI: 10.1016/j.molcel.2009.09.043] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 07/01/2009] [Accepted: 09/23/2009] [Indexed: 12/28/2022]
Abstract
TGF-beta induces phosphorylation of the transcription factors Smad2 and Smad3 at the C terminus as well as at an interdomain linker region. TGF-beta-induced linker phosphorylation marks the activated Smad proteins for proteasome-mediated destruction. Here, we identify Nedd4L as the ubiquitin ligase responsible for this step. Through its WW domain, Nedd4L specifically recognizes a TGF-beta-induced phosphoThr-ProTyr motif in the linker region, resulting in Smad2/3 polyubiquitination and degradation. Nedd4L is not interchangeable with Smurf1, a ubiquitin ligase that targets BMP-activated, linker-phosphorylated Smad1. Nedd4L limits the half-life of TGF-beta-activated Smads and restricts the amplitude and duration of TGF-beta gene responses, and in mouse embryonic stem cells, it limits the induction of mesoendodermal fates by Smad2/3-activating factors. Hierarchical regulation is provided by SGK1, which phosphorylates Nedd4L to prevent binding of Smad2/3. Previously identified as a regulator of renal sodium channels, Nedd4L is shown here to play a broader role as a general modulator of Smad turnover during TGF-beta signal transduction.
Collapse
Affiliation(s)
- Sheng Gao
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Claudio Alarcón
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Gopal Sapkota
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sadia Rahman
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Pan-Yu Chen
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nina Goerner
- Structural and Computational Biology Programme, Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | - Maria J. Macias
- Structural and Computational Biology Programme, Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | | | - Paul Tempst
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute
| |
Collapse
|
248
|
Söderberg SS, Karlsson G, Karlsson S. Complex and context dependent regulation of hematopoiesis by TGF-beta superfamily signaling. Ann N Y Acad Sci 2009; 1176:55-69. [PMID: 19796233 DOI: 10.1111/j.1749-6632.2009.04569.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The transforming growth factor (TGF)-beta superfamily of growth factors, including the TGF-betas, activins, and bone morphogenetic proteins (BMPs), provide cells with a broad spectrum of regulatory signals through the intracellular Smad pathway. Since loss-of-function studies of a majority of the TGF-beta superfamily members result in embryonic lethality, much of our current knowledge of the TGF-beta superfamily's role in hematopoiesis is generated from studies performed in vitro, or in very early stages of embryonic development. TGF-beta is well documented as a potent inhibitor of hematopoietic stem cell (HSC) proliferation in vitro, while its role in vivo is largely unknown. BMP signaling is crucial for the initiation of hematopoiesis in the developing embryo, although its role in adult hematopoiesis remains elusive. More recently we and others have used conditional knockout models to unravel the role of several components of TGF-beta family signaling in adult hematopoiesis. Here we review the currently known functions for the major factors of this signaling family in embryonic and adult hematopoietic regulation and discuss the context dependency and complexity that permeate this regulation.
Collapse
Affiliation(s)
- Sofie Singbrant Söderberg
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University Hospital, Lund, Sweden
| | | | | |
Collapse
|
249
|
Hematopoietic stem and progenitor cells: their mobilization and homing to bone marrow and peripheral tissue. Immunol Res 2009; 44:160-8. [PMID: 19340403 DOI: 10.1007/s12026-009-8109-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are a rare population of precursor cells that possess the capacity for self-renewal and multilineage differentiation. In the bone marrow (BM), HSPCs warrant blood cell homeostasis. In addition, they may also replenish tissue-resident myeloid cells and directly participate in innate immune responses once they home to peripheral tissues. In this review, we summarize recent data on the signaling molecules that modulate the mobilization of HSPCs from BM and their migration to peripheral tissues.
Collapse
|
250
|
Norian JM, Malik M, Parker CY, Joseph D, Leppert PC, Segars JH, Catherino WH. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci 2009; 16:1153-64. [PMID: 19700613 DOI: 10.1177/1933719109343310] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Uterine leiomyoma are common, benign tumors that are enriched in extracellular matrix. The tumors are characterized by a disoriented and loosely packed collagen fibril structure similar to other diseases with disrupted Transforming growth factor beta (TGF-beta) signaling. Here we characterized TGF-beta3 signaling and the expression patterns of the critical extracellular matrix component versican in leiomyoma and myometrial tissue and cell culture. We also demonstrate the regulation of the versican variants by TGF-beta3. Using leiomyoma and matched myometrium from 15 patients, messenger RNA (mRNA) from leiomyoma and myometrium was analyzed by semiquantitative real time reverse transcription-polymerase chain reaction (RT-PCR), while protein analysis was done by western blot. Transforming growth factor beta3 transcripts were increased 4-fold in leiomyoma versus matched myometrium. Phosphorylated-TGF-beta RII and phosphorylated-Smad 2/3 complex were greater in leiomyoma as documented by Western blot. The inhibitor Smad7 transcripts were decreased 0.44-fold. The glycosaminoglycan (GAG)-rich versican variants were elevated in leiomyoma versus myometrial tissue: specifically V0 (4.27 +/- 1.12) and V1 (2.01 +/- 0.27). Treatment of leiomyoma and myometrial cells with TGF-beta3 increased GAG-rich versican variant expression 7 to 12 fold. Neutralizing TGF-beta3 antibody decreased the expression of the GAG-rich versican variants 2 to 8 fold in leiomyoma cells. Taken together, the aberrant production of excessive and disorganized extracellular matrix that defines the leiomyoma phenotype involves the activation of the TGF-beta signaling pathway and excessive production of GAG-rich versican variants.
Collapse
Affiliation(s)
- John M Norian
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|