201
|
Piontkivska H, Chung JS, Ivanina AV, Sokolov EP, Techa S, Sokolova IM. Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 6:103-14. [PMID: 21106446 DOI: 10.1016/j.cbd.2010.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/25/2010] [Accepted: 10/25/2010] [Indexed: 01/09/2023]
Abstract
Oxygen homeostasis is crucial for development, survival and normal function of all metazoans. A family of transcription factors called hypoxia-inducible factors (HIF) is critical in mediating the adaptive responses to reduced oxygen availability. The HIF transcription factor consists of a constitutively expressed β subunit and an oxygen-dependent α subunit; the abundance of the latter determines the activity of HIF and is regulated by a family of O(2)- and Fe(2+)-dependent enzymes prolyl hydroxylases (PHDs). Currently very little is known about the function of this important pathway and the molecular structure of its key players in hypoxia-tolerant intertidal mollusks including oysters, which are among the animal champions of anoxic and hypoxic tolerance and thus can serve as excellent models to study the role of HIF cascade in adaptations to oxygen deficiency. We have isolated transcripts of two key components of the oxygen sensing pathway - the oxygen-regulated HIF-α subunit and PHD - from an intertidal mollusk, the eastern oyster Crassostrea virginica, and determined the transcriptional responses of these two genes to anoxia, hypoxia and cadmium (Cd) stress. HIF-α and PHD homologs from eastern oysters C. virginica show significant sequence similarity and share key functional domains with the earlier described isoforms from vertebrates and invertebrates. Phylogenetic analysis shows that genetic diversification of HIF and PHD isoforms occurred within the vertebrate lineage indicating functional diversification and specialization of the oxygen-sensing pathways in this group, which parallels situation observed for many other important genes. HIF-α and PHD homologs are broadly expressed at the mRNA level in different oyster tissues and show transcriptional responses to prolonged hypoxia in the gills consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. Similarity in amino acid sequence, domain structure and transcriptional responses between HIF-α and PHD homologs from oysters and other invertebrate and vertebrate species implies the highly conserved functions of these genes throughout the evolutionary history of animals, in accordance with their critical role in oxygen sensing and homeostasis.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences, Kent State University, OH 44242-0001, USA.
| | | | | | | | | | | |
Collapse
|
202
|
Zhdanov AV, Ogurtsov VI, Taylor CT, Papkovsky DB. Monitoring of cell oxygenation and responses to metabolic stimulation by intracellular oxygen sensing technique. Integr Biol (Camb) 2010; 2:443-51. [DOI: 10.1039/c0ib00021c] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alexander V. Zhdanov
- Biochemistry Department, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland. Fax: + 353-21-4901698; Tel: + 353-21-4901698
| | - Vladimir I. Ogurtsov
- Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland
| | - Cormac T. Taylor
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dmitri B. Papkovsky
- Biochemistry Department, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland. Fax: + 353-21-4901698; Tel: + 353-21-4901698
| |
Collapse
|
203
|
Qi J, Nakayama K, Cardiff RD, Borowsky AD, Kaul K, Williams R, Krajewski S, Mercola D, Carpenter PM, Bowtell D, Ronai ZA. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 2010; 18:23-38. [PMID: 20609350 PMCID: PMC2919332 DOI: 10.1016/j.ccr.2010.05.024] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 03/25/2010] [Accepted: 05/14/2010] [Indexed: 11/24/2022]
Abstract
Neuroendocrine (NE) phenotype, seen in >30% of prostate adenocarcinomas (PCa), and NE prostate tumors are implicated in aggressive prostate cancer. Formation of NE prostate tumors in the TRAMP mouse model was suppressed in mice lacking the ubiquitin ligase Siah2, which regulates HIF-1alpha availability. Cooperation between HIF-1alpha and FoxA2, a transcription factor expressed in NE tissue, promotes recruitment of p300 to transactivate select HIF-regulated genes, Hes6, Sox9, and Jmjd1a. These HIF-regulated genes are highly expressed in metastatic PCa and required for hypoxia-mediated NE phenotype, metastasis in PCa, and the formation of NE tumors. Tissue-specific expression of FoxA2 combined with Siah2-dependent HIF-1alpha availability enables a transcriptional program required for NE prostate tumor development and NE phenotype in PCa.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Hepatocyte Nuclear Factor 3-beta/genetics
- Hepatocyte Nuclear Factor 3-beta/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/secondary
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Lymphatic Metastasis
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neuroendocrine Tumors/genetics
- Neuroendocrine Tumors/metabolism
- Neuroendocrine Tumors/pathology
- Neurosecretory Systems/metabolism
- Neurosecretory Systems/pathology
- Phenotype
- Prostate/metabolism
- Prostate/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Signal Transduction
- Transcriptional Activation
- Ubiquitin-Protein Ligases/physiology
Collapse
Affiliation(s)
- Jianfei Qi
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Briva A, Lecuona E, Sznajder JI. [Permissive and non-permissive hypercapnia: mechanisms of action and consequences of high carbon dioxide levels]. Arch Bronconeumol 2010; 46:378-82. [PMID: 20303638 PMCID: PMC3858013 DOI: 10.1016/j.arbres.2010.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 01/11/2010] [Indexed: 01/11/2023]
Abstract
Acute lung injury is a disease with high incidence of mortality and its treatment is still controversial. Increasing the levels of CO2 beyond the physiological range has been proposed as a potential protective strategy for patients on mechanical ventilation, as it could moderate the inflammatory response. In this article we review the published evidence on the role of CO2 during acute lung injury. We conclude that although there are reports suggesting benefits from hypercapnia, more recent evidence suggests that hypercapnia could be deleterious, contributing to worsening of the lung injury.
Collapse
Affiliation(s)
- Arturo Briva
- Medicina Intensiva, Departamento de Fisiopatología, Hospital de Clínicas, Montevideo, Uruguay.
| | | | | |
Collapse
|
205
|
Abstract
Chronic liver inflammation after murine bile duct ligation could evolve according to three interrelated phenotypes, which would have different metabolic, functional and histologic characteristics. Liver injury secondary to extrahepatic cholestasis would induce an early ischemic-reperfusion phenotype with cholangiocyte depolarization, abnormal ion transport, hypometabolism with anaerobic glycolysis and hepatocytic apoptosis. This phenotype, in turn, could trigger the switch to a leukocytic phenotype by the cholangiocytes, with an intense anaplerotic activity, hypermetabolism, extracellular matrix degradation and moderated proliferation to create a pseudotissue with metabolic autonomy and paracrine functions. In the long-term cholestasis-drive tumorigenesis, the tumorous tissue would principally consist of cholangiocyte parenchyma, with an impressive biosynthetic activity through the tricarboxylic cell cycle. In terms of the tumorous stroma, made up by fibroplasia and angiogenesis, it would favor the tumor trophism. In conclusion, the great intensity and persistence in the expression of these phenotypes by the cholestatic cholangiocyte would favor chronic inflammatory tumorigenesis.
Collapse
|
206
|
Zhang N, Fu Z, Linke S, Chicher J, Gorman JJ, Visk D, Haddad GG, Poellinger L, Peet DJ, Powell F, Johnson RS. The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell Metab 2010; 11:364-78. [PMID: 20399150 PMCID: PMC2893150 DOI: 10.1016/j.cmet.2010.03.001] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/15/2010] [Accepted: 03/01/2010] [Indexed: 12/21/2022]
Abstract
Factor inhibiting HIF-1alpha (FIH) is an asparaginyl hydroxylase. Hydroxylation of HIF-alpha proteins by FIH blocks association of HIFs with the transcriptional coactivators CBP/p300, thus inhibiting transcriptional activation. We have created mice with a null mutation in the FIH gene and found that it has little or no discernable role in mice in altering classical aspects of HIF function, e.g., angiogenesis, erythropoiesis, or development. Rather, it is an essential regulator of metabolism: mice lacking FIH exhibit reduced body weight, elevated metabolic rate, hyperventilation, and improved glucose and lipid homeostasis and are resistant to high-fat-diet-induced weight gain and hepatic steatosis. Neuron-specific loss of FIH phenocopied some of the major metabolic phenotypes of the global null animals: those mice have reduced body weight, increased metabolic rate, and enhanced insulin sensitivity and are also protected against high-fat-diet-induced weight gain. These results demonstrate that FIH acts to a significant degree through the nervous system to regulate metabolism.
Collapse
Affiliation(s)
- Na Zhang
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhenxing Fu
- Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Sarah Linke
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Johana Chicher
- Protein Discovery Centre, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, QLD 4029, Australia
| | - Jeffrey J Gorman
- Protein Discovery Centre, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, QLD 4029, Australia
| | - DeeAnn Visk
- Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Gabriel G. Haddad
- Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | - Daniel J Peet
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Frank Powell
- Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Randall S. Johnson
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
207
|
Serra-Pérez A, Planas AM, Núñez-O'Mara A, Berra E, García-Villoria J, Ribes A, Santalucía T. Extended ischemia prevents HIF1alpha degradation at reoxygenation by impairing prolyl-hydroxylation: role of Krebs cycle metabolites. J Biol Chem 2010; 285:18217-24. [PMID: 20368331 DOI: 10.1074/jbc.m110.101048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor that activates the cellular response to hypoxia. The HIF1alpha subunit is constantly synthesized and degraded under normoxia, but degradation is rapidly inhibited when oxygen levels drop. Oxygen-dependent hydroxylation by prolyl-4-hydroxylases (PHD) mediates HIF1alpha proteasome degradation. Brain ischemia limits the availability not only of oxygen but also of glucose. We hypothesized that this circumstance could have a modulating effect on HIF. We assessed the separate involvement of oxygen and glucose in HIF1alpha regulation in differentiated neuroblastoma cells subjected to ischemia. We report higher transcriptional activity and HIF1alpha expression under oxygen deprivation in the presence of glucose (OD), than in its absence (oxygen and glucose deprivation, OGD). Unexpectedly, HIF1alpha was not degraded at reoxygenation after an episode of OGD. This was not due to impairment of proteasome function, but was associated with lower HIF1alpha hydroxylation. Krebs cycle metabolites fumarate and succinate are known inhibitors of PHD, while alpha-ketoglutarate is a co-substrate of the reaction. Lack of HIF1alpha degradation in the presence of oxygen was accompanied by a very low alpha-ketoglutarate/fumarate ratio. Furthermore, treatment with a fumarate analogue prevented HIF1alpha degradation under normoxia. In all, our data suggest that postischemic metabolic alterations in Krebs cycle metabolites impair HIF1alpha degradation in the presence of oxygen by decreasing its hydroxylation, and highlight the involvement of metabolic pathways in HIF1alpha regulation besides the well known effects of oxygen.
Collapse
Affiliation(s)
- Anna Serra-Pérez
- Department of Brain Ischemia and Neurodegeneration, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
208
|
Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010; 140:280-93. [PMID: 20141841 DOI: 10.1016/j.cell.2009.12.041] [Citation(s) in RCA: 788] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/27/2009] [Accepted: 12/21/2009] [Indexed: 12/15/2022]
Abstract
SIRT6 is a member of a highly conserved family of NAD(+)-dependent deacetylases with various roles in metabolism, stress resistance, and life span. SIRT6-deficient mice develop normally but succumb to a lethal hypoglycemia early in life; however, the mechanism underlying this hypoglycemia remained unclear. Here, we demonstrate that SIRT6 functions as a histone H3K9 deacetylase to control the expression of multiple glycolytic genes. Specifically, SIRT6 appears to function as a corepressor of the transcription factor Hif1alpha, a critical regulator of nutrient stress responses. Consistent with this notion, SIRT6-deficient cells exhibit increased Hif1alpha activity and show increased glucose uptake with upregulation of glycolysis and diminished mitochondrial respiration. Our studies uncover a role for the chromatin factor SIRT6 as a master regulator of glucose homeostasis and may provide the basis for novel therapeutic approaches against metabolic diseases, such as diabetes and obesity.
Collapse
Affiliation(s)
- Lei Zhong
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Fercher A, Ponomarev GV, Yashunski D, Papkovsky D. Evaluation of the derivates of phosphorescent Pt-coproporphyrin as intracellular oxygen-sensitive probes. Anal Bioanal Chem 2010; 396:1793-803. [DOI: 10.1007/s00216-009-3399-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/10/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
|
210
|
Quaegebeur A, Carmeliet P. Oxygen sensing: a common crossroad in cancer and neurodegeneration. Curr Top Microbiol Immunol 2010; 345:71-103. [PMID: 20582529 DOI: 10.1007/82_2010_83] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prolyl hydroxylase domain (PHD) proteins are cellular oxygen sensors that orchestrate an adaptive response to hypoxia and oxidative stress, executed by hypoxia-inducible factors (HIFs). By increasing oxygen supply, reducing oxygen consumption, and reprogramming metabolism, the PHD/HIF pathway confers tolerance towards hypoxic and oxidative stress. This review discusses the involvement of the PHD/HIF response in two, at first sight, entirely distinct pathologies with opposite outcome, i.e. cancer leading to cellular growth and neurodegeneration resulting in cell death. However, these disorders share common mechanisms of sensing oxygen and oxidative stress. We will focus on how PHD/HIF signaling is pathogenetically implicated in metabolic and vessel alterations in these diseases and how manipulation of this pathway might offer novel treatment opportunities.
Collapse
Affiliation(s)
- Annelies Quaegebeur
- Vesalius Research Center (VRC), VIB, K.U. Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium
| | | |
Collapse
|
211
|
Abstract
Many parameters reflecting mitochondrial function and metabolic status of the cell, including the mitochondrial membrane potential, reactive oxygen species, ATP, NADH, ion gradients, and ion fluxes (Ca(2+), H(+)), are amenable for analysis by live cell imaging and are widely used in many labs. However, one key metabolite - cellular oxygen - is currently not analyzed routinely. Here we present several imaging techniques that use the phosphorescent oxygen-sensitive probes loaded intracellularly and which allow real-time monitoring of O(2) in live respiring cells and metabolic responses to cell stimulation. The techniques include conventional wide-field fluorescence microscopy to monitor relative changes in cell respiration, microsecond FLIM format which provides quantitative readout of O(2) concentration within/near the cells, and live cell array devices for the monitoring of metabolic responses of individual suspension cells. Step by step procedures of typical experiments for each of these applications and troubleshooting guide are given.
Collapse
|
212
|
Abstract
Hypoxia has been recognized as one of the fundamentally important features of solid tumors and plays a critical role in various cellular and physiologic events, including cell proliferation, survival, angiogenesis, immunosurveillance, metabolism, as well as tumor invasion and metastasis. These responses to hypoxia are at least partially orchestrated by activation of the hypoxia-inducible factors (HIFs). HIF-1 is a key regulator of the response of mammalian cells to oxygen deprivation and plays critical roles in the adaptation of tumor cells to a hypoxic microenvironment. Hypoxia and overexpression of HIF-1 have been associated with radiation therapy and chemotherapy resistance, an increased risk of invasion and metastasis, and a poor clinical prognosis of solid tumors. The discovery of HIF-1 signaling has led to a rapidly increasing understanding of the complex mechanisms involved in tumor hypoxia and has helped greatly in screening novel anticancer agents. In this review, we will first introduce the cellular responses to hypoxia and HIF-1 signaling pathway in hypoxia, and then summarize the multifaceted role of hypoxia in the hallmarks of human cancers.
Collapse
Affiliation(s)
- Kai Ruan
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|
213
|
Konietzny R, König A, Wotzlaw C, Bernadini A, Berchner-Pfannschmidt U, Fandrey J. Molecular imaging: into in vivo interaction of HIF-1alpha and HIF-2alpha with ARNT. Ann N Y Acad Sci 2009; 1177:74-81. [PMID: 19845609 DOI: 10.1111/j.1749-6632.2009.05029.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fluorescence resonance energy transfer (FRET) combined with confocal laser microscopy is a powerful tool to analyze protein-protein interaction in vivo. We have applied this combination to study the assembly of the hypoxia-inducible factor (HIF) complex in living cells under hypoxic conditions. In hypoxia, the basic helix-loop-helix/Period/ARNT/Single-minded (PAS) proteins HIF-1alpha and HIF-2alpha accumulate and are translocated into the nucleus. Here, HIF-1alpha and HIF-2alpha dimerize with HIF-1beta, also known as aryl hydrocarbon receptor nuclear translocator (ARNT), to form HIF-1/HIF-2 complexes, which control the expression of specific target genes. Therefore, a new Java-based analyzing program was developed at our institute to calculate the nanometer distance between alpha and beta subunits of the transcriptionally active HIF-1/-2 complex bound to DNA. Fusion proteins of HIF subunits and variants of green fluorescent proteins (cyan and yellow fluorescent proteins) were expressed in living cells and protein-protein interactions were imaged in vivo by means of FRET.
Collapse
Affiliation(s)
- Rebecca Konietzny
- Institute for Physiology, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | |
Collapse
|
214
|
Sakamoto T, Seiki M. Mint3 enhances the activity of hypoxia-inducible factor-1 (HIF-1) in macrophages by suppressing the activity of factor inhibiting HIF-1. J Biol Chem 2009; 284:30350-9. [PMID: 19726677 DOI: 10.1074/jbc.m109.019216] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor regulating cellular responses to hypoxia and is composed of alpha and beta subunits. During normoxia, factor inhibiting HIF-1 (FIH-1) inhibits the activity of HIF-1 by preventing HIF-1alpha binding to p300/CBP via modification of the Asn(803) residue. However, it is not known whether FIH-1 activity can be regulated in an oxygen-independent manner. In this study, we survey possible binding proteins to FIH-1 and identify Mint3/APBA3, which has been reported to bind Alzheimer beta-amyloid precursor protein. Purified Mint3 binds FIH-1 and inhibits the ability of FIH-1 to modify HIF-1alpha in vitro. In a reporter assay, the activity of HIF-1alpha is suppressed because of endogenous FIH-1 in HEK293 cells, and expression of Mint3 antagonizes this suppression. Macrophages are known to depend on glycolysis for ATP production because of elevated HIF-1 activity. FIH-1 activity is suppressed in macrophages by Mint3 so as to maintain HIF-1 activity. FIH-1 forms a complex with Mint3, and these two factors co-localize within the perinuclear region. Knockdown of Mint3 expression in macrophages leads to redistribution of FIH-1 to the cytoplasm and decreases glycolysis and ATP production. Thus, Mint3 regulates the FIH-1-HIF-1 pathway, which controls ATP production in macrophages and therefore represents a potential new therapeutic target to regulate macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Takeharu Sakamoto
- Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan
| | | |
Collapse
|
215
|
Arias JI, Aller MA, Arias J. Surgical inflammation: a pathophysiological rainbow. J Transl Med 2009; 7:19. [PMID: 19309494 PMCID: PMC2667492 DOI: 10.1186/1479-5876-7-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/23/2009] [Indexed: 01/19/2023] Open
Abstract
Tetrapyrrole molecules are distributed in virtually all living organisms on Earth. In mammals, tetrapyrrole end products are closely linked to oxygen metabolism. Since increasingly complex trophic functional systems for using oxygen are considered in the post-traumatic inflammatory response, it can be suggested that tetrapyrrole molecules and, particularly their derived pigments, play a key role in modulating inflammation. In this way, the diverse colorfulness that the inflammatory response triggers during its evolution would reflect the major pathophysiological importance of these pigments in each one of its phases. Therefore, the need of exploiting this color resource could be considered for both the diagnosis and treatment of the inflammation.
Collapse
|