201
|
Irimia JM, Meyer CM, Segvich DM, Surendran S, DePaoli-Roach AA, Morral N, Roach PJ. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice. J Biol Chem 2017; 292:10455-10464. [PMID: 28483921 DOI: 10.1074/jbc.m117.786525] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/06/2017] [Indexed: 01/16/2023] Open
Abstract
Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal.
Collapse
Affiliation(s)
- Jose M Irimia
- From the Departments of Biochemistry and Molecular Biology and
| | | | - Dyann M Segvich
- From the Departments of Biochemistry and Molecular Biology and
| | - Sneha Surendran
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | - Nuria Morral
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Peter J Roach
- From the Departments of Biochemistry and Molecular Biology and
| |
Collapse
|
202
|
Imbalanced Insulin Actions in Obesity and Type 2 Diabetes: Key Mouse Models of Insulin Signaling Pathway. Cell Metab 2017; 25:797-810. [PMID: 28380373 DOI: 10.1016/j.cmet.2017.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
Since the discovery of the tyrosine kinase activity of the insulin receptor (IR), researchers have been engaged in intensive efforts to resolve physiological functions of IR and its major downstream targets, insulin receptor substrate 1 (Irs1) and Irs2. Studies conducted using systemic and tissue-specific gene-knockout mice of IR, Irs1, and Irs2 have revealed the physiological roles of these molecules in each tissue and interactions among multiple tissues. In obesity and type 2 diabetes, selective downregulation of Irs2 and its downstream actions to cause reduced insulin actions was associated with increased insulin actions through Irs1 in variety tissues. Thus, we propose the novel concept of "organ- and pathway-specific imbalanced insulin action" in obesity and type 2 diabetes, which includes and extends "selective insulin resistance." This Review focuses on recent progress in understanding insulin signaling and insulin resistance using key mouse models for elucidating pathophysiology of human obesity and type 2 diabetes.
Collapse
|
203
|
Edgerton DS, Kraft G, Smith M, Farmer B, Williams PE, Coate KC, Printz RL, O'Brien RM, Cherrington AD. Insulin's direct hepatic effect explains the inhibition of glucose production caused by insulin secretion. JCI Insight 2017; 2:e91863. [PMID: 28352665 DOI: 10.1172/jci.insight.91863] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Insulin can inhibit hepatic glucose production (HGP) by acting directly on the liver as well as indirectly through effects on adipose tissue, pancreas, and brain. While insulin's indirect effects are indisputable, their physiologic role in the suppression of HGP seen in response to increased insulin secretion is not clear. Likewise, the mechanisms by which insulin suppresses lipolysis and pancreatic α cell secretion under physiologic circumstances are also debated. In this study, insulin was infused into the hepatic portal vein to mimic increased insulin secretion, and insulin's indirect liver effects were blocked either individually or collectively. During physiologic hyperinsulinemia, plasma free fatty acid (FFA) and glucagon levels were clamped at basal values and brain insulin action was blocked, but insulin's direct effects on the liver were left intact. Insulin was equally effective at suppressing HGP when its indirect effects were absent as when they were present. In addition, the inhibition of lipolysis, as well as glucagon and insulin secretion, did not require CNS insulin action or decreased plasma FFA. This indicates that the rapid suppression of HGP is attributable to insulin's direct effect on the liver and that its indirect effects are redundant in the context of a physiologic increase in insulin secretion.
Collapse
Affiliation(s)
- Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Phillip E Williams
- Division of Surgical Research, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Katie C Coate
- Samford University, Department of Nutrition and Dietetics, Birmingham, Alabama, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
204
|
Corbit KC, Camporez JPG, Tran JL, Wilson CG, Lowe DA, Nordstrom SM, Ganeshan K, Perry RJ, Shulman GI, Jurczak MJ, Weiss EJ. Adipocyte JAK2 mediates growth hormone-induced hepatic insulin resistance. JCI Insight 2017; 2:e91001. [PMID: 28194444 DOI: 10.1172/jci.insight.91001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
For nearly 100 years, growth hormone (GH) has been known to affect insulin sensitivity and risk of diabetes. However, the tissue governing the effects of GH signaling on insulin and glucose homeostasis remains unknown. Excess GH reduces fat mass and insulin sensitivity. Conversely, GH insensitivity (GHI) is associated with increased adiposity, augmented insulin sensitivity, and protection from diabetes. Here, we induce adipocyte-specific GHI through conditional deletion of Jak2 (JAK2A), an obligate transducer of GH signaling. Similar to whole-body GHI, JAK2A mice had increased adiposity and extreme insulin sensitivity. Loss of adipocyte Jak2 augmented hepatic insulin sensitivity and conferred resistance to diet-induced metabolic stress without overt changes in circulating fatty acids. While GH injections induced hepatic insulin resistance in control mice, the diabetogenic action was absent in JAK2A mice. Adipocyte GH signaling directly impinged on both adipose and hepatic insulin signal transduction. Collectively, our results show that adipose tissue governs the effects of GH on insulin and glucose homeostasis. Further, we show that JAK2 mediates liver insulin sensitivity via an extrahepatic, adipose tissue-dependent mechanism.
Collapse
Affiliation(s)
- Kevin C Corbit
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | | | - Jennifer L Tran
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Camella G Wilson
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Dylan A Lowe
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Sarah M Nordstrom
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Kirthana Ganeshan
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | | | - Gerald I Shulman
- Department of Internal Medicine.,Cellular and Molecular Physiology, and.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael J Jurczak
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ethan J Weiss
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| |
Collapse
|
205
|
Yang Z, Hou Y, Hao T, Rho HS, Wan J, Luan Y, Gao X, Yao J, Pan A, Xie Z, Qian J, Liao W, Zhu H, Zhou X. A Human Proteome Array Approach to Identifying Key Host Proteins Targeted by Toxoplasma Kinase ROP18. Mol Cell Proteomics 2017; 16:469-484. [PMID: 28087594 DOI: 10.1074/mcp.m116.063602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma kinase ROP18 is a key molecule responsible for the virulence of Toxoplasma gondii; however, the mechanisms by which ROP18 exerts parasite virulence via interaction with host proteins remain limited to a small number of identified substrates. To identify a broader array of ROP18 substrates, we successfully purified bioactive mature ROP18 and used it to probe a human proteome array. Sixty eight new putative host targets were identified. Functional annotation analysis suggested that these proteins have a variety of functions, including metabolic process, kinase activity and phosphorylation, cell growth, apoptosis and cell death, and immunity, indicating a pleiotropic role of ROP18 kinase. Among these proteins, four candidates, p53, p38, UBE2N, and Smad1, were further validated. We demonstrated that ROP18 targets p53, p38, UBE2N, and Smad1 for degradation. Importantly, we demonstrated that ROP18 phosphorylates Smad1 Ser-187 to trigger its proteasome-dependent degradation. Further functional characterization of the substrates of ROP18 may enhance understanding of the pathogenesis of Toxoplasma infection and provide new therapeutic targets. Similar strategies could be used to identify novel host targets for other microbial kinases functioning at the pathogen-host interface.
Collapse
Affiliation(s)
- Zhaoshou Yang
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongheng Hou
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Taofang Hao
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hee-Sool Rho
- the §Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jun Wan
- the ¶Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Yizhao Luan
- the ‖State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China.,the **School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Gao
- ‡‡The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; and
| | - Jianping Yao
- §§The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Aihua Pan
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhi Xie
- the ‖State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jiang Qian
- the ¶Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Wanqin Liao
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Heng Zhu
- the §Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Xingwang Zhou
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| |
Collapse
|
206
|
Heinrich G, Muturi HT, Rezaei K, Al-Share QY, DeAngelis AM, Bowman TA, Ghadieh HE, Ghanem SS, Zhang D, Garofalo RS, Yin L, Najjar SM. Reduced Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Level in Obesity. Front Endocrinol (Lausanne) 2017; 8:54. [PMID: 28396653 PMCID: PMC5366977 DOI: 10.3389/fendo.2017.00054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Impairment of insulin clearance is being increasingly recognized as a critical step in the development of insulin resistance and metabolic disease. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Null deletion or liver-specific inactivation of Ceacam1 in mice causes a defect in insulin clearance, insulin resistance, steatohepatitis, and visceral obesity. Immunohistological analysis revealed reduction of hepatic CEACAM1 in obese subjects with fatty liver disease. Thus, we aimed to determine whether this occurs at the hepatocyte level in response to systemic extrahepatic factors and whether this holds across species. Northern and Western blot analyses demonstrate that CEACAM1 mRNA and protein levels are reduced in liver tissues of obese individuals compared to their lean age-matched counterparts. Furthermore, Western analysis reveals a comparable reduction of CEACAM1 protein in primary hepatocytes derived from the same obese subjects. Similar to humans, Ceacam1 mRNA level, assessed by quantitative RT-PCR analysis, is significantly reduced in the livers of obese Zucker (fa/fa, ZDF) and Koletsky (f/f) rats relative to their age-matched lean counterparts. These studies demonstrate that the reduction of hepatic CEACAM1 in obesity occurs at the level of hepatocytes and identify the reduction of hepatic CEACAM1 as a common denominator of obesity across multiple species.
Collapse
Affiliation(s)
- Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Khadijeh Rezaei
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Anthony M. DeAngelis
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- *Correspondence: Sonia M. Najjar,
| |
Collapse
|
207
|
Chen W, Balland E, Cowley MA. Hypothalamic Insulin Resistance in Obesity: Effects on Glucose Homeostasis. Neuroendocrinology 2017; 104:364-381. [PMID: 28122381 DOI: 10.1159/000455865] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
The central link between obesity and type 2 diabetes is the development of insulin resistance. To date, it is still not clear whether hyperinsulinemia causes insulin resistance, which underlies the pathogenesis of obesity-associated type 2 diabetes, owing to the sophisticated regulatory mechanisms that exist in the periphery and in the brain. In recent years, accumulating evidence has demonstrated the existence of insulin resistance within the hypothalamus. In this review, we have integrated the recent discoveries surrounding both central and peripheral insulin resistance to provide a comprehensive overview of insulin resistance in obesity and the regulation of systemic glucose homeostasis. In particular, this review will discuss how hyperinsulinemia and hyperleptinemia in obesity impair insulin sensitivity in tissues such as the liver, skeletal muscle, adipose tissue, and the brain. In addition, this review highlights insulin transport into the brain, signaling pathways associated with hypothalamic insulin receptor expression in the regulation of hepatic glucose production, and finally the perturbation of systemic glucose homeostasis as a consequence of central insulin resistance. We also suggest future approaches to overcome both central and peripheral insulin resistance to treat obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Weiyi Chen
- Department of Physiology/Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
208
|
Heinrich G, Ghadieh HE, Ghanem SS, Muturi HT, Rezaei K, Al-Share QY, Bowman TA, Zhang D, Garofalo RS, Yin L, Najjar SM. Loss of Hepatic CEACAM1: A Unifying Mechanism Linking Insulin Resistance to Obesity and Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2017; 8:8. [PMID: 28184213 PMCID: PMC5266688 DOI: 10.3389/fendo.2017.00008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of human non-alcoholic fatty liver disease (NAFLD) remains unclear, in particular in the context of its relationship to insulin resistance and visceral obesity. Work on the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in mice has resolved some of the related questions. CEACAM1 promotes insulin clearance by enhancing the rate of uptake of the insulin-receptor complex. It also mediates a negative acute effect of insulin on fatty acid synthase activity. This positions CEACAM1 to coordinate the regulation of insulin and lipid metabolism. Fed a regular chow diet, global null mutation of Ceacam1 manifest hyperinsulinemia, insulin resistance, obesity, and steatohepatitis. They also develop spontaneous chicken-wire fibrosis, characteristic of non-alcoholic steatohepatitis. Reduction of hepatic CEACAM1 expression plays a significant role in the pathogenesis of diet-induced metabolic abnormalities, as bolstered by the protective effect of hepatic CEACAM1 gain-of-function against the metabolic response to dietary fat. Together, this emphasizes that loss of hepatic CEACAM1 links NAFLD to insulin resistance and obesity.
Collapse
Affiliation(s)
- Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Khadijeh Rezaei
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
- *Correspondence: Sonia M. Najjar,
| |
Collapse
|
209
|
Papazyan R, Sun Z, Kim YH, Titchenell PM, Hill DA, Lu W, Damle M, Wan M, Zhang Y, Briggs ER, Rabinowitz JD, Lazar MA. Physiological Suppression of Lipotoxic Liver Damage by Complementary Actions of HDAC3 and SCAP/SREBP. Cell Metab 2016; 24:863-874. [PMID: 27866836 PMCID: PMC5159233 DOI: 10.1016/j.cmet.2016.10.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/22/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022]
Abstract
Liver fat accumulation precedes non-alcoholic steatohepatitis, an increasing cause of end-stage liver disease. Histone deacetylase 3 (HDAC3) is required for hepatic triglyceride homeostasis, and sterol regulatory element binding protein (SREBP) regulates the lipogenic response to feeding, but the crosstalk between these pathways is unknown. Here we show that inactivation of SREBP by hepatic deletion of SREBP cleavage activating protein (SCAP) abrogates the increase in lipogenesis caused by loss of HDAC3, but fatty acid oxidation remains defective. This combination leads to accumulation of lipid intermediates and to an energy drain that collectively cause oxidative stress, inflammation, liver damage, and, ultimately, synthetic lethality. Remarkably, this phenotype is prevented by ectopic expression of nuclear SREBP1c, revealing a surprising benefit of de novo lipogenesis and triglyceride synthesis in preventing lipotoxicity. These results demonstrate that HDAC3 and SCAP control symbiotic pathways of liver lipid metabolism that are critical for suppression of lipotoxicity.
Collapse
Affiliation(s)
- Romeo Papazyan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Hoon Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Titchenell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Hill
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Manashree Damle
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Wan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuxiang Zhang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika R Briggs
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
210
|
Russo L, Ghadieh HE, Ghanem SS, Al-Share QY, Smiley ZN, Gatto-Weis C, Esakov EL, McInerney MF, Heinrich G, Tong X, Yin L, Najjar SM. Role for hepatic CEACAM1 in regulating fatty acid metabolism along the adipocyte-hepatocyte axis. J Lipid Res 2016; 57:2163-2175. [PMID: 27777319 DOI: 10.1194/jlr.m072066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/17/2016] [Indexed: 12/15/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance and mediating suppression of fatty acid synthase activity. Feeding C57BL/6J male mice with a high-fat (HF) diet for 3-4 weeks triggered a >60% decrease in hepatic CEACAM1 levels to subsequently impair insulin clearance and cause systemic insulin resistance and hepatic steatosis. This study aimed at investigating whether lipolysis drives reduction in hepatic CEACAM1 and whether this constitutes a key mechanism leading to diet-induced metabolic abnormalities. Blocking lipolysis with a daily intraperitoneal injection of nicotinic acid in the last two days of a 30-day HF feeding regimen demonstrated that white adipose tissue (WAT)-derived fatty acids repressed hepatic CEACAM1-dependent regulation of insulin and lipid metabolism in 3-month-old male C57BL/6J mice. Adenoviral-mediated CEACAM1 redelivery countered the adverse metabolic effect of the HF diet on insulin resistance, hepatic steatosis, visceral obesity, and energy expenditure. It also reversed the effect of HF diet on inflammation and fibrosis in WAT and liver. This assigns a causative role for lipolysis-driven decrease in hepatic CEACAM1 level and its regulation of insulin and lipid metabolism in sustaining systemic insulin resistance, hepatic steatosis, and other abnormalities associated with excessive energy supply.
Collapse
Affiliation(s)
- Lucia Russo
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Qusai Y Al-Share
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Zachary N Smiley
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Cara Gatto-Weis
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614
| | - Emily L Esakov
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Medicinal and Biological Chemistry at the College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Marcia F McInerney
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Medicinal and Biological Chemistry at the College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Garrett Heinrich
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614 .,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| |
Collapse
|
211
|
Scholz GH, Hanefeld M. Metabolic Vascular Syndrome: New Insights into a Multidimensional Network of Risk Factors and Diseases. Visc Med 2016; 32:319-326. [PMID: 27921043 DOI: 10.1159/000450866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Since 1981, we have used the term metabolic syndrome to describe an association of a dysregulation in lipid metabolism (high triglycerides, low high-density lipoprotein cholesterol, disturbed glucose homeostasis (enhanced fasting and/or prandial glucose), gout, and hypertension), with android obesity being based on a common soil (overnutrition, reduced physical activity, sociocultural factors, and genetic predisposition). We hypothesized that main traits of the syndrome occur early and are tightly connected with hyperinsulinemia/insulin resistance, procoagulation, and cardiovascular diseases. METHODS To establish a close link between the traits of the metabolic vascular syndrome, we focused our literature search on recent original work and comprehensive reviews dealing with the topics metabolic syndrome, visceral obesity, fatty liver, fat tissue inflammation, insulin resistance, atherogenic dyslipidemia, arterial hypertension, and type 2 diabetes mellitus. RESULTS Recent research supports the concept that the metabolic vascular syndrome is a multidimensional and interactive network of risk factors and diseases based on individual genetic susceptibility and epigenetic changes where metabolic dysregulation/metabolic inflexibility in different organs and vascular dysfunction are early interconnected. CONCLUSION The metabolic vascular syndrome is not only a risk factor constellation but rather a life-long abnormality of a closely connected interactive cluster of developing diseases which escalate each other and should continuously attract the attention of every clinician.
Collapse
Affiliation(s)
- Gerhard H Scholz
- Department of Endocrinology, Diabetology, Cardiology and General Medicine, St. Elisabeth-Krankenhaus Leipzig, Leipzig, Germany; Leipziger Institut für Präventivmedizin GmbH, Leipzig, Germany
| | - Markolf Hanefeld
- GWT-TUD GmbH, Dresden Technical University, Dresden, Germany; Medical Clinic III, University Hospital Carl Gustav Carus, Dresden, Dresden, Germany
| |
Collapse
|
212
|
Kim MS, Krawczyk SA, Doridot L, Fowler AJ, Wang JX, Trauger SA, Noh HL, Kang HJ, Meissen JK, Blatnik M, Kim JK, Lai M, Herman MA. ChREBP regulates fructose-induced glucose production independently of insulin signaling. J Clin Invest 2016; 126:4372-4386. [PMID: 27669460 DOI: 10.1172/jci81993] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/18/2016] [Indexed: 12/15/2022] Open
Abstract
Obese, insulin-resistant states are characterized by a paradoxical pathogenic condition in which the liver appears to be selectively insulin resistant. Specifically, insulin fails to suppress glucose production, yet successfully stimulates de novo lipogenesis. The mechanisms underlying this dysregulation remain controversial. Here, we hypothesized that carbohydrate-responsive element-binding protein (ChREBP), a transcriptional activator of glycolytic and lipogenic genes, plays a central role in this paradox. Administration of fructose increased hepatic hexose-phosphate levels, activated ChREBP, and caused glucose intolerance, hyperinsulinemia, hypertriglyceridemia, and hepatic steatosis in mice. Activation of ChREBP was required for the increased expression of glycolytic and lipogenic genes as well as glucose-6-phosphatase (G6pc) that was associated with the effects of fructose administration. We found that fructose-induced G6PC activity is a major determinant of hepatic glucose production and reduces hepatic glucose-6-phosphate levels to complete a homeostatic loop. Moreover, fructose activated ChREBP and induced G6pc in the absence of Foxo1a, indicating that carbohydrate-induced activation of ChREBP and G6PC dominates over the suppressive effects of insulin to enhance glucose production. This ChREBP/G6PC signaling axis is conserved in humans. Together, these findings support a carbohydrate-mediated, ChREBP-driven mechanism that contributes to hepatic insulin resistance.
Collapse
|