201
|
Guo Y, Jin X, Xia Z, Chen C, Cui W, Zhu B. A small NGS–SNP panel of ancestry inference designed to distinguish African, European, East, and South Asian populations. Electrophoresis 2020; 41:649-656. [DOI: 10.1002/elps.201900231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Yu‐Xin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center Xi'an P. R. China
| | - Xiao‐Ye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center Xi'an P. R. China
| | - Zhi‐Yu Xia
- Department of EpidemiologyUniversity of Washington Seattle WA USA
| | - Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center Xi'an P. R. China
| | - Wei Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center Xi'an P. R. China
| | - Bo‐Feng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center Xi'an P. R. China
- Department of Forensic GeneticsSchool of Forensic Medicine, Southern Medical University Guangzhou P. R. China
| |
Collapse
|
202
|
Vandenberg O, Durand G, Hallin M, Diefenbach A, Gant V, Murray P, Kozlakidis Z, van Belkum A. Consolidation of Clinical Microbiology Laboratories and Introduction of Transformative Technologies. Clin Microbiol Rev 2020; 33:e00057-19. [PMID: 32102900 PMCID: PMC7048017 DOI: 10.1128/cmr.00057-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clinical microbiology is experiencing revolutionary advances in the deployment of molecular, genome sequencing-based, and mass spectrometry-driven detection, identification, and characterization assays. Laboratory automation and the linkage of information systems for big(ger) data management, including artificial intelligence (AI) approaches, also are being introduced. The initial optimism associated with these developments has now entered a more reality-driven phase of reflection on the significant challenges, complexities, and health care benefits posed by these innovations. With this in mind, the ongoing process of clinical laboratory consolidation, covering large geographical regions, represents an opportunity for the efficient and cost-effective introduction of new laboratory technologies and improvements in translational research and development. This will further define and generate the mandatory infrastructure used in validation and implementation of newer high-throughput diagnostic approaches. Effective, structured access to large numbers of well-documented biobanked biological materials from networked laboratories will release countless opportunities for clinical and scientific infectious disease research and will generate positive health care impacts. We describe why consolidation of clinical microbiology laboratories will generate quality benefits for many, if not most, aspects of the services separate institutions already provided individually. We also define the important role of innovative and large-scale diagnostic platforms. Such platforms lend themselves particularly well to computational (AI)-driven genomics and bioinformatics applications. These and other diagnostic innovations will allow for better infectious disease detection, surveillance, and prevention with novel translational research and optimized (diagnostic) product and service development opportunities as key results.
Collapse
Affiliation(s)
- Olivier Vandenberg
- Innovation and Business Development Unit, LHUB-ULB, Groupement Hospitalier Universitaire de Bruxelles (GHUB), Université Libre de Bruxelles, Brussels, Belgium
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Géraldine Durand
- bioMérieux, Microbiology Research and Development, La Balme Les Grottes, France
| | - Marie Hallin
- Department of Microbiology, LHUB-ULB, Groupement Hospitalier Universitaire de Bruxelles (GHUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Andreas Diefenbach
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Labor Berlin, Charité-Vivantes GmbH, Berlin, Germany
| | - Vanya Gant
- Department of Clinical Microbiology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Patrick Murray
- BD Life Sciences Integrated Diagnostic Solutions, Scientific Affairs, Sparks, Maryland, USA
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Alex van Belkum
- bioMérieux, Open Innovation and Partnerships, La Balme Les Grottes, France
| |
Collapse
|
203
|
Microbial Community Distribution and Core Microbiome in Successive Wound Grades of Individuals with Diabetic Foot Ulcers. Appl Environ Microbiol 2020; 86:AEM.02608-19. [PMID: 31924616 DOI: 10.1128/aem.02608-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/04/2020] [Indexed: 01/13/2023] Open
Abstract
Diabetic foot ulcer (DFU) is a major complication of diabetes with high morbidity and mortality rates. The pathogenesis of DFUs is governed by a complex milieu of environmental and host factors. The empirical treatment is initially based on wound severity since culturing and profiling the antibiotic sensitivity of wound-associated microbes is time-consuming. Hence, a thorough and rapid analysis of the microbial landscape is a major requirement toward devising evidence-based interventions. Toward this, 122 wound (100 diabetic and 22 nondiabetic) samples were sampled for their bacterial community structure using both culture-based and next-generation 16S rRNA-based metagenomics approach. Both the approaches showed that the Gram-negative microbes were more abundant in the wound microbiome. The core microbiome consisted of bacterial genera, including Alcaligenes, Pseudomonas, Burkholderia, and Corynebacterium in decreasing order of average relative abundance. Despite the heterogenous nature and extensive sharing of microbes, an inherent community structure was apparent, as revealed by a cluster analysis based on Euclidean distances. Facultative anaerobes (26.5%) were predominant in Wagner grade 5, while strict anaerobes were abundant in Wagner grade 1 (26%). A nonmetric dimensional scaling analysis could not clearly discriminate samples based on HbA1c levels. Sequencing approach revealed the presence of major culturable species even in samples with no bacterial growth in culture-based approach. Our study indicates that (i) the composition of core microbial community varies with wound severity, (ii) polymicrobial species distribution is individual specific, and (iii) antibiotic susceptibility varies with individuals. Our study suggests the need to evolve better-personalized care for better wound management therapies.IMPORTANCE Chronic nonhealing diabetic foot ulcers (DFUs) are a serious complication of diabetes and are further exacerbated by bacterial colonization. The microbial burden in the wound of each individual displays diverse morphological and physiological characteristics with unique patterns of host-pathogen interactions, antibiotic resistance, and virulence. Treatment involves empirical decisions until definitive results on the causative wound pathogens and their antibiotic susceptibility profiles are available. Hence, there is a need for rapid and accurate detection of these polymicrobial communities for effective wound management. Deciphering microbial communities will aid clinicians to tailor their treatment specifically to the microbes prevalent in the DFU at the time of assessment. This may reduce DFUs associated morbidity and mortality while impeding the rise of multidrug-resistant microbes.
Collapse
|
204
|
Ou YJ, Ren QQ, Fang ST, Wu JG, Jiang YX, Chen YR, Zhong Y, Wang DD, Zhang GX. Complete Genome Insights into Lactococcus petauri CF11 Isolated from a Healthy Human Gut Using Second- and Third-Generation Sequencing. Front Genet 2020; 11:119. [PMID: 32174973 PMCID: PMC7054480 DOI: 10.3389/fgene.2020.00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/31/2020] [Indexed: 12/31/2022] Open
Abstract
Lactococcus petauri CF11 was originally isolated from the gut of healthy humans. To determine the underlying molecular and genetic mechanisms of the probiotic potential of CF11, we performed complete genome sequencing, annotation, and comparative genome analysis. The complete genome of L. petauri CF11 comprised of 1,997,720 bp, with a DNA G+C content of 38.21 mol% containing 1982 protein coding genes and 16 rRNA operons. We found that 1206 genes (56.05%) were assigned a putative function using the gene ontology (GO) resource. The gene products of CF11 were primarily concentrated in molecular function and biological processes, such as catalysis, binding, metabolism, and cellular processes. Furthermore, 1,365 (68.87%) genes were assigned an illative function using COGs. CF11 proteins were associated with carbohydrate transport and metabolism, and amino acid transport and metabolism. This indicates that CF11 bacteria can perform active energy exchange. We classified 1,111 (56.05%) genes into six KEGG functional categories; fructose-bisphosphate aldolase and the phosphoenol pyruvate:phosphotransferase system (PTS), which are necessary in producing short-chain fatty acids (SCFAs), were excited in the carbohydrate metabolic pathway. This suggests that L. petauri CF11 produces SCFAs via glycolysis. The genomic island revealed that some regions contain fragments of antibiotic resistance and bacteriostatic genes. In addition, ANI analysis showed that L. petauri CF11 had the closest relationship with L. petauri 159469T, with an average nucleotide consistency of 98.03%. Taken together, the present study offers further insights into the functional and potential role of L. petauri CF11 in health care.
Collapse
Affiliation(s)
- Yun-Jing Ou
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiao-Qiao Ren
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shu-Ting Fang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ji-Guo Wu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yun-Xia Jiang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi-Ran Chen
- Department of Water Hygiene, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yi Zhong
- Department of Water Hygiene, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - De-Dong Wang
- Department of Water Hygiene, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Guo-Xia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
205
|
Kubota KA, Wolfgang WJ, Baker DJ, Boxrud D, Turner L, Trees E, Carleton HA, Gerner-Smidt P. PulseNet and the Changing Paradigm of Laboratory-Based Surveillance for Foodborne Diseases. Public Health Rep 2020; 134:22S-28S. [PMID: 31682558 PMCID: PMC6832030 DOI: 10.1177/0033354919881650] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PulseNet, the National Molecular Subtyping Network for Foodborne Disease Surveillance, was established in 1996 through a collaboration with the Centers for Disease Control and Prevention; the US Department of Agriculture, Food Safety and Inspection Service; the US Food and Drug Administration; 4 state public health laboratories; and the Association of Public Health Laboratories. The network has since expanded to include 83 state, local, and food regulatory public health laboratories. In 2016, PulseNet was estimated to be helping prevent an estimated 270 000 foodborne illnesses annually. PulseNet is undergoing a transformation toward whole-genome sequencing (WGS), which provides better discriminatory power and precision than pulsed-field gel electrophoresis (PFGE). WGS improves the detection of outbreak clusters and could replace many traditional reference identification and characterization methods. This article highlights the contributions made by public health laboratories in transforming PulseNet's surveillance and describes how the transformation is changing local and national surveillance practices. Our data show that WGS is better at identifying clusters than PFGE, especially for clonal organisms such as Salmonella Enteritidis. The need to develop prioritization schemes for cluster follow-up and additional resources for both public health laboratory and epidemiology departments will be critical as PulseNet implements WGS for foodborne disease surveillance in the United States.
Collapse
Affiliation(s)
- Kristy A Kubota
- Association of Public Health Laboratories, Food Safety Program, Silver Spring, MD, USA
| | - William J Wolfgang
- New York State Department of Health, Bacteriology Laboratory, Albany, NY, USA
- Department of Biomedical Sciences, University of Albany, Rensselaer, NY, USA
| | - Deborah J Baker
- New York State Department of Health, Bacteriology Laboratory, Albany, NY, USA
| | - David Boxrud
- Public Health Laboratory Division, Minnesota Department of Health, St. Paul, MN, USA
| | - Lauren Turner
- Virginia Department of General Services, Division of Consolidated Laboratory Services, Richmond, VA, USA
| | - Eija Trees
- Association of Public Health Laboratories, Food Safety Program, Silver Spring, MD, USA
| | - Heather A Carleton
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Peter Gerner-Smidt
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
206
|
Palacios J, de la Hoya M, Bellosillo B, de Juan I, Matías-Guiu X, Lázaro C, Palanca S, Osorio A, Rojo F, Rosa-Rosa JM, Cigudosa JC. Mutational Screening of BRCA1/2 Genes as a Predictive Factor for Therapeutic Response in Epithelial Ovarian Cancer: A Consensus Guide from the Spanish Society of Pathology (SEAP-IAP) and the Spanish Society of Human Genetics (AEGH). Virchows Arch 2020; 476:195-207. [PMID: 31797087 PMCID: PMC7028830 DOI: 10.1007/s00428-019-02709-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/11/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Germline/somatic BRCA-mutated ovarian carcinomas (OC) are associated to have better response with platinum-based chemotherapy and long-term prognosis than non-BRCA-associated OCs. In addition, these mutations are predictive factors to response to Poly(ADP-ribose) polymerase (PARP) inhibitors. Different positioning papers have addressed the clinical recommendations for BRCA testing in OC. This consensus guide represents a collection of technical recommendations to address the detection of BRCA1/2 mutations in the molecular diagnostic testing strategy for OC. Under the coordination of Spanish Society of Pathology (SEAP-IAP) and the Spanish Society of Human Genetics (AEGH), these recommendations have been developed by pathologists and geneticists taking into account previously published recommendations and their experience in the molecular characterization of these genes. Since the implementation of BRCA testing as a predictive factor can initiate the workflow by testing germline mutations in the blood or by testing both germline and somatic mutations in tumor tissue, distinctive features of both strategies are discussed. Additionally, the recommendations included in this paper provide some references, quality parameters, and genomic tools aimed to standardize and facilitate the clinical genomic diagnosis of OC.
Collapse
Affiliation(s)
- J Palacios
- Servicio de Anatomía Patológica, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria, 28034, Madrid, Spain.
- Universidad de Alcalá, 28801, Alcalá de Henares, Spain.
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - M de la Hoya
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - B Bellosillo
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Laboratorio de Diagnóstico Molecular, Servicio de Patología, Hospital del Mar, 08003, Barcelona, Spain
| | - I de Juan
- Unidad de Biología Molecular, Servicio de Análisis Clínicos, Hospital Universitario y Politécnico La Fe, 46026, Valencia, Spain
| | - X Matías-Guiu
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Servicio de Anatomía Patológica, Hospital Universitario de Bellvitge, 08908, L'Hospitalet, Spain
| | - C Lázaro
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Unidad de Diagnóstico Molecular, Institut Català d'Oncologia, (ICO-IDIBELL-ONCOBELL), 08908, L'Hospitalet, Spain
| | - S Palanca
- Unidad de Biología Molecular, Servicio de Análisis Clínicos, Hospital Universitario y Politécnico La Fe, 46026, Valencia, Spain
| | - A Osorio
- Human Cancer Genetics Programme, Spanish National Cancer Centre (CNIO), 28029, Madrid, Spain
- CIBER-ER, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - F Rojo
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departamento de Patología, Fundación Jímenez-Díaz, 28040, Madrid, Spain
| | - J M Rosa-Rosa
- Instituto Ramón y Cajal de Investigación Sanitaria, 28034, Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - J C Cigudosa
- NIMGenetics, Parque Científico de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
207
|
Santos A, van Aerle R, Barrientos L, Martinez-Urtaza J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput Struct Biotechnol J 2020; 18:296-305. [PMID: 32071706 PMCID: PMC7013242 DOI: 10.1016/j.csbj.2020.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Assessment of bacterial diversity through sequencing of 16S ribosomal RNA (16S rRNA) genes has been an approach widely used in environmental microbiology, particularly since the advent of high-throughput sequencing technologies. An additional innovation introduced by these technologies was the need of developing new strategies to manage and investigate the massive amount of sequencing data generated. This situation stimulated the rapid expansion of the field of bioinformatics with the release of new tools to be applied to the downstream analysis and interpretation of sequencing data mainly generated using Illumina technology. In recent years, a third generation of sequencing technologies has been developed and have been applied in parallel and complementarily to the former sequencing strategies. In particular, Oxford Nanopore Technologies (ONT) introduced nanopore sequencing which has become very popular among molecular ecologists. Nanopore technology offers a low price, portability and fast sequencing throughput. This powerful technology has been recently tested for 16S rRNA analyses showing promising results. However, compared with previous technologies, there is a scarcity of bioinformatic tools and protocols designed specifically for the analysis of Nanopore 16S sequences. Due its notable characteristics, researchers have recently started performing assessments regarding the suitability MinION on 16S rRNA sequencing studies, and have obtained remarkable results. Here we present a review of the state-of-the-art of MinION technology applied to microbiome studies, the current possible application and main challenges for its use on 16S rRNA metabarcoding.
Collapse
Affiliation(s)
- Andres Santos
- Applied and Molecular Biology Laboratory, Centre of Excellence in Translational Medicine, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Leticia Barrientos
- Applied and Molecular Biology Laboratory, Centre of Excellence in Translational Medicine, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
208
|
Ung L, Bispo PJM, Doan T, Van Gelder RN, Gilmore MS, Lietman T, Margolis TP, Zegans ME, Lee CS, Chodosh J. Clinical metagenomics for infectious corneal ulcers: Rags to riches? Ocul Surf 2020; 18:1-12. [PMID: 31669750 PMCID: PMC9837861 DOI: 10.1016/j.jtos.2019.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 01/17/2023]
Abstract
The emergence of clinical metagenomics as an unbiased, hypothesis-free approach to diagnostic testing is set to fundamentally alter the way infectious diseases are detected. Long envisioned as the solution to the limitations of culture-based conventional microbiology, next generation sequencing methods will soon mature, and our attention will inevitably turn to how they can be applied to areas of medicine which need it most urgently. In ophthalmology, the demand for this technology is particularly pressing for the care of infectious corneal ulcers, where current diagnostic tests may fail to identify a causative organism in over half of cases. However, the optimism found in the budding discourse surrounding clinical metagenomics belies the reality that clinicians and scientists will soon be inundated by oppressive volumes of sequencing data, much of which will be foreign and unfamiliar. Therefore, our success in translating clinical metagenomics is likely to hinge on how we make sense of these data, and understanding its implications for the interpretation and implementation of sequencing into routine clinical care. In this consortium-led review, we provide an outline of these data-related issues and how they may be used to inform technical workflows, with the hope that we may edge closer to realizing the potential of clinical metagenomics for this important unmet need.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute and Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Paulo J M Bispo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute and Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Thuy Doan
- Francis I. Proctor Foundation, Department of Ophthalmology, University of California, San Francisco, CA, USA
| | | | - Michael S Gilmore
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute and Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Thomas Lietman
- Francis I. Proctor Foundation, Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Todd P Margolis
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in Saint Louis, Saint Louis, USA
| | - Michael E Zegans
- Department of Surgery (Ophthalmology), and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, USA
| | - Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute and Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
209
|
Masys AJ, Izurieta R, Reina Ortiz M. Food Security: Microbiological and Chemical Risks. ADVANCED SCIENCES AND TECHNOLOGIES FOR SECURITY APPLICATIONS 2020. [PMCID: PMC7123629 DOI: 10.1007/978-3-030-23491-1_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Food Security within a health security context relates to systems dealing with the prevention and control of not only acute but also sporadic and chronic foodborne diseases. The description of food security and safety systems in this chapter will hence include oversight of both microbiological and chemical hazards, which both can cause acute as well as chronic disease events. The Chapter includes a description of existing national and international surveillance systems for foodborne diseases and regulatory systems enabling risk mitigation action for both chemical and microbiological hazards, with specific inclusion of the concerning increase in antimicrobial resistance (AMR) of foodborne microorganisms also related to the animal production systems. The Chapter also includes descriptions of methodology for the quantitative assessment of sustainability of food production systems.
Collapse
Affiliation(s)
- Anthony J. Masys
- College of Public Health, University of South Florida, Tampa, FL USA
| | - Ricardo Izurieta
- College of Public Health, University of South Florida, Tampa, FL USA
| | | |
Collapse
|
210
|
Armstrong GL, MacCannell DR, Taylor J, Carleton HA, Neuhaus EB, Bradbury RS, Posey JE, Gwinn M. Pathogen Genomics in Public Health. N Engl J Med 2019; 381:2569-2580. [PMID: 31881145 PMCID: PMC7008580 DOI: 10.1056/nejmsr1813907] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rapid advances in DNA sequencing technology ("next-generation sequencing") have inspired optimism about the potential of human genomics for "precision medicine." Meanwhile, pathogen genomics is already delivering "precision public health" through more effective investigations of outbreaks of foodborne illnesses, better-targeted tuberculosis control, and more timely and granular influenza surveillance to inform the selection of vaccine strains. In this article, we describe how public health agencies have been adopting pathogen genomics to improve their effectiveness in almost all domains of infectious disease. This momentum is likely to continue, given the ongoing development in sequencing and sequencing-related technologies.
Collapse
Affiliation(s)
- Gregory L Armstrong
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Duncan R MacCannell
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Jill Taylor
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Heather A Carleton
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Elizabeth B Neuhaus
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Richard S Bradbury
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - James E Posey
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Marta Gwinn
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| |
Collapse
|
211
|
Yu H, Zhang P, Chen YR, Wang YJ, Lin XY, Li XY, Chen G. Temporal Changes of Spinal Transcriptomic Profiles in Mice With Spinal Nerve Ligation. Front Neurosci 2019; 13:1357. [PMID: 31920516 PMCID: PMC6928122 DOI: 10.3389/fnins.2019.01357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain (NP) is an intractable disease accompanying with allodynia, hyperalgesia and spontaneous pain. Accumulating evidence suggested that large volume of neurotransmitters, genes, and signaling pathways were implicated with the initiation and development of NP, while the underlying mechanism still remained poorly understood. Therefore, it was extremely important to further elucidate the potential regulatory networks for developing appropriate treatment options. Here, the RNA-Seq high-throughput sequencing was employed to determine the genes expression change in mice undergoing spinal nerve ligation (SNL). Meanwhile, the differentially expressed genes (DEGs) were analyzed by using integrated Differential Expression and Pathway analysis (iDEP) tools and String database. Then, quantitative real-time PCR (qRT-PCR) was employed to detect the expression of hub gens. The results showed that the DEGs mainly comprised 1712 upregulated and 1515 downregulated genes at 7 days, and consisted of 243 upregulated and 357 downregulated genes at 28 days after surgery, respectively. Additionally, 133 genes and two pathways including retrograde endocannabinoid signaling and cardiac muscle contraction collectively participated in biological reactions of 7th and 28th day after operation. Moreover, the results showed that the mRNA and protein expression of Ccl5, Cacna2d1, Cacna2d2, Cacnb2, Gabrb3, GluA1, and GluA2 were significantly upregulated in SNL-7/28d group than that of in Sham-7/28d group (SNL-7d vs. Sham-7d; SNL-28d vs. Sham-28d; P < 0.05). And the level of Glra2, Glra4, Glra3, Grik1, Grik2, NR1, NR2A, and NR2B was obviously increased in SNL-7d group compared to Sham-7d group (P < 0.05), but which was no statistical difference between SNL-28d group and Sham-28d group. Therefore, these results provided new perspectives and strategies for deeply illuminating the underlying mechanism, and identifying the key elements for treating NP.
Collapse
Affiliation(s)
- Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ye-Ru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yong-Jie Wang
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xian-Yi Lin
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiang-Yao Li
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
212
|
Fürst D, Tsamadou C, Neuchel C, Schrezenmeier H, Mytilineos J, Weinstock C. Next-Generation Sequencing Technologies in Blood Group Typing. Transfus Med Hemother 2019; 47:4-13. [PMID: 32110189 DOI: 10.1159/000504765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
Sequencing of the human genome has led to the definition of the genes for most of the relevant blood group systems, and the polymorphisms responsible for most of the clinically relevant blood group antigens are characterized. Molecular blood group typing is used in situations where erythrocytes are not available or where serological testing was inconclusive or not possible due to the lack of antisera. Also, molecular testing may be more cost-effective in certain situations. Molecular typing approaches are mostly based on either PCR with specific primers, DNA hybridization, or DNA sequencing. Particularly the transition of sequencing techniques from Sanger-based sequencing to next-generation sequencing (NGS) technologies has led to exciting new possibilities in blood group genotyping. We describe briefly the currently available NGS platforms and their specifications, depict the genetic background of blood group polymorphisms, and discuss applications for NGS approaches in immunohematology. As an example, we delineate a protocol for large-scale donor blood group screening established and in use at our institution. Furthermore, we discuss technical challenges and limitations as well as the prospect for future developments, including long-read sequencing technologies.
Collapse
Affiliation(s)
- Daniel Fürst
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg/Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg/Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christine Neuchel
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg/Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg/Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg/Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christof Weinstock
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg/Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
213
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jenkins C, Malorny B, Ribeiro Duarte AS, Torpdahl M, da Silva Felício MT, Guerra B, Rossi M, Herman L. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J 2019; 17:e05898. [PMID: 32626197 PMCID: PMC7008917 DOI: 10.2903/j.efsa.2019.5898] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This Opinion considers the application of whole genome sequencing (WGS) and metagenomics for outbreak investigation, source attribution and risk assessment of food‐borne pathogens. WGS offers the highest level of bacterial strain discrimination for food‐borne outbreak investigation and source‐attribution as well as potential for more precise hazard identification, thereby facilitating more targeted risk assessment and risk management. WGS improves linking of sporadic cases associated with different food products and geographical regions to a point source outbreak and can facilitate epidemiological investigations, allowing also the use of previously sequenced genomes. Source attribution may be favoured by improved identification of transmission pathways, through the integration of spatial‐temporal factors and the detection of multidirectional transmission and pathogen–host interactions. Metagenomics has potential, especially in relation to the detection and characterisation of non‐culturable, difficult‐to‐culture or slow‐growing microorganisms, for tracking of hazard‐related genetic determinants and the dynamic evaluation of the composition and functionality of complex microbial communities. A SWOT analysis is provided on the use of WGS and metagenomics for Salmonella and Shigatoxin‐producing Escherichia coli (STEC) serotyping and the identification of antimicrobial resistance determinants in bacteria. Close agreement between phenotypic and WGS‐based genotyping data has been observed. WGS provides additional information on the nature and localisation of antimicrobial resistance determinants and on their dissemination potential by horizontal gene transfer, as well as on genes relating to virulence and biological fitness. Interoperable data will play a major role in the future use of WGS and metagenomic data. Capacity building based on harmonised, quality controlled operational systems within European laboratories and worldwide is essential for the investigation of cross‐border outbreaks and for the development of international standardised risk assessments of food‐borne microorganisms.
Collapse
|
214
|
Chan AWY, Naphtali J, Schellhorn HE. High-throughput DNA sequencing technologies for water and wastewater analysis. Sci Prog 2019; 102:351-376. [PMID: 31818206 PMCID: PMC10424514 DOI: 10.1177/0036850419881855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conventional microbiological water monitoring uses culture-dependent techniques to screen indicator microbial species such as Escherichia coli and fecal coliforms. With high-throughput, second-generation sequencing technologies becoming less expensive, water quality monitoring programs can now leverage the massively parallel nature of second-generation sequencing technologies for batch sample processing to simultaneously obtain compositional and functional information of culturable and as yet uncultured microbial organisms. This review provides an introduction to the technical capabilities and considerations necessary for the use of second-generation sequencing technologies, specifically 16S rDNA amplicon and whole-metagenome sequencing, to investigate the composition and functional potential of microbiomes found in water and wastewater systems.
Collapse
Affiliation(s)
| | - James Naphtali
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
215
|
Linking De Novo Assembly Results with Long DNA Reads Using the dnaasm-link Application. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7847064. [PMID: 31111066 PMCID: PMC6487145 DOI: 10.1155/2019/7847064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Currently, third-generation sequencing techniques, which make it possible to obtain much longer DNA reads compared to the next-generation sequencing technologies, are becoming more and more popular. There are many possibilities for combining data from next-generation and third-generation sequencing. Herein, we present a new application called dnaasm-link for linking contigs, the result of de novo assembly of second-generation sequencing data, with long DNA reads. Our tool includes an integrated module to fill gaps with a suitable fragment of an appropriate long DNA read, which improves the consistency of the resulting DNA sequences. This feature is very important, in particular for complex DNA regions. Our implementation is found to outperform other state-of-the-art tools in terms of speed and memory requirements, which may enable its usage for organisms with a large genome, something which is not possible in existing applications. The presented application has many advantages: (i) it significantly optimizes memory and reduces computation time; (ii) it fills gaps with an appropriate fragment of a specified long DNA read; (iii) it reduces the number of spanned and unspanned gaps in existing genome drafts. The application is freely available to all users under GNU Library or Lesser General Public License version 3.0 (LGPLv3). The demo application, Docker image, and source code can be downloaded from project homepage.
Collapse
|
216
|
New insights on Pseudoalteromonas haloplanktis TAC125 genome organization and benchmarks of genome assembly applications using next and third generation sequencing technologies. Sci Rep 2019; 9:16444. [PMID: 31712730 PMCID: PMC6848147 DOI: 10.1038/s41598-019-52832-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudoalteromonas haloplanktis TAC125 is among the most commonly studied bacteria adapted to cold environments. Aside from its ecological relevance, P. haloplanktis has a potential use for biotechnological applications. Due to its importance, we decided to take advantage of next generation sequencing (Illumina) and third generation sequencing (PacBio and Oxford Nanopore) technologies to resequence its genome. The availability of a reference genome, obtained using whole genome shotgun sequencing, allowed us to study and compare the results obtained by the different technologies and draw useful conclusions for future de novo genome assembly projects. We found that assembly polishing using Illumina reads is needed to achieve a consensus accuracy over 99.9% when using Oxford Nanopore sequencing, but not in PacBio sequencing. However, the dependency of consensus accuracy on coverage is lower in Oxford Nanopore than in PacBio, suggesting that a cost-effective solution might be the use of low coverage Oxford Nanopore sequencing together with Illumina reads. Despite the differences in consensus accuracy, all sequencing technologies revealed the presence of a large plasmid, pMEGA, which was undiscovered until now. Among the most interesting features of pMEGA is the presence of a putative error-prone polymerase regulated through the SOS response. Aside from the characterization of the newly discovered plasmid, we confirmed the sequence of the small plasmid pMtBL and uncovered the presence of a potential partitioning system. Crucially, this study shows that the combination of next and third generation sequencing technologies give us an unprecedented opportunity to characterize our bacterial model organisms at a very detailed level.
Collapse
|
217
|
Pasquali F, Do Valle I, Palma F, Remondini D, Manfreda G, Castellani G, Hendriksen RS, De Cesare A. Application of different DNA extraction procedures, library preparation protocols and sequencing platforms: impact on sequencing results. Heliyon 2019; 5:e02745. [PMID: 31720479 PMCID: PMC6838873 DOI: 10.1016/j.heliyon.2019.e02745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/01/2019] [Accepted: 10/25/2019] [Indexed: 01/22/2023] Open
Abstract
In this study three DNA extraction procedures, two library preparation protocols and two sequencing platforms were applied to analyse six bacterial cultures and their corresponding DNA obtained as part of a proficiency test. The impact of each variable on sequencing results was assessed using the following parameters: reads quality, assembly and alignment statistics; number of single nucleotide polymorphisms (SNPs), detected applying assembly- and alignment-based strategies; antimicrobial resistance genes (ARGs), identified on de novo assemblies of all sequenced genomes. The investigated nucleic acid extraction procedures, library preparation kits and sequencing platforms do not significantly affect de novo assembly statistics and number of SNPs and ARGs. The only exception was observed for two duplicates, which were associated to one PCR-based library preparation kit. Results from this comparative study can support researchers in the choice toward the available pre-sequencing and sequencing options, and might suggest further comparisons to be performed.
Collapse
Affiliation(s)
- F Pasquali
- Department of Food and Agricultural Sciences, Alma Mater Studiorum-University of Bologna, via del Florio 2, Ozzano dell'Emilia, 40064 Italy
| | - I Do Valle
- Department of Physics, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115-5000, USA
| | - F Palma
- Department of Food and Agricultural Sciences, Alma Mater Studiorum-University of Bologna, via del Florio 2, Ozzano dell'Emilia, 40064 Italy
| | - D Remondini
- Department of Physics and Astronomy, Alma Mater Studiorum-University of Bologna, viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - G Manfreda
- Department of Food and Agricultural Sciences, Alma Mater Studiorum-University of Bologna, via del Florio 2, Ozzano dell'Emilia, 40064 Italy
| | - G Castellani
- Department of Physics and Astronomy, Alma Mater Studiorum-University of Bologna, viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - R S Hendriksen
- Technical University of Denmark, Kemitorvet, Kgs. Lyngby, 2800, Denmark
| | - A De Cesare
- Department of Food and Agricultural Sciences, Alma Mater Studiorum-University of Bologna, via del Florio 2, Ozzano dell'Emilia, 40064 Italy
| |
Collapse
|
218
|
Abbasi I, Nasereddin A, Warburg A. Development of a next generation DNA sequencing-based multi detection assay for detecting and identifying Leishmania parasites, blood sources, plant meals and intestinal microbiome in phlebotomine sand flies. Acta Trop 2019; 199:105101. [PMID: 31361989 DOI: 10.1016/j.actatropica.2019.105101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a disease caused by Leishmania parasites transmitted by phlebotomine sand flies (Diptera: Psychodidae). Human infections with different Leishmania species cause characteristic clinical manifestations; cutaneous or visceral leishmaniasis. Here we describe the development and application of a Miseq Next GenerationSequencing (NGS)-based Multi Detection Assay (MDA) designed to characterize metagenomics parameters pertinent to the sand fly vectors which may affect their vectorial capacity for Leishmania. For this purpose, we developed a MDA by which, DNA fragments were amplified through polymerase chain reactions (PCR) and then sequenced by MiSeq/NGS. PCR amplification was achieved using some published and some new primers designed specifically for identifying Leishmania spp. (ITS1), sand fly spp. (cytochrome oxidase I), vertebrate blood (Cytochrome b), plant DNA ribulose-1,5-bisphosphate carboxylase large subunit gene (rbcL), and prokaryotic micobiome (16 s rRNA). This MDA/NGS analysis was performed on two species of wild-caught sand flies that transmit different Leishmania spp. in two ecologically distinct, but geographically neighboring locations. The results were analyzed to identify, quantitate and correlate the measured parameters in order to assess their putative importance in the transmission dynamics of leishmaniasis.
Collapse
Affiliation(s)
- Ibrahim Abbasi
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada (IMRIC), The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| | - Abdelmajeed Nasereddin
- The Genomics Applications Laboratory, The Core Research Facility, The Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Alon Warburg
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada (IMRIC), The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| |
Collapse
|
219
|
Rhee C, Kharod GA, Schaad N, Furukawa NW, Vora NM, Blaney DD, Crump JA, Clarke KR. Global knowledge gaps in acute febrile illness etiologic investigations: A scoping review. PLoS Negl Trop Dis 2019; 13:e0007792. [PMID: 31730635 PMCID: PMC6881070 DOI: 10.1371/journal.pntd.0007792] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/27/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute febrile illness (AFI), a common reason for people seeking medical care globally, represents a spectrum of infectious disease etiologies with important variations geographically and by population. There is no standardized approach to conducting AFI etiologic investigations, limiting interpretation of data in a global context. We conducted a scoping review to characterize current AFI research methodologies, identify global research gaps, and provide methodological research standardization recommendations. METHODOLOGY/FINDINGS Using pre-defined terms, we searched Medline, Embase, and Global Health, for publications from January 1, 2005-December 31, 2017. Publications cited in previously published systematic reviews and an online study repository of non-malarial febrile illness etiologies were also included. We screened abstracts for publications reporting on human infectious disease, aimed at determining AFI etiology using laboratory diagnostics. One-hundred ninety publications underwent full-text review, using a standardized tool to collect data on study characteristics, methodology, and laboratory diagnostics. AFI case definitions between publications varied: use of self-reported fever as part of case definitions (28%, 53/190), fever cut-off value (38·0°C most commonly used: 45%, 85/190), and fever measurement site (axillary most commonly used: 19%, 36/190). Eighty-nine publications (47%) did not include exclusion criteria, and inclusion criteria in 13% (24/190) of publications did not include age group. No publications included study settings in Southern Africa, Micronesia & Polynesia, or Central Asia. We summarized standardized reporting practices, specific to AFI etiologic investigations that would increase inter-study comparability. CONCLUSIONS Wider implementation of standardized AFI reporting methods, with multi-pathogen disease detection, could improve comparability of study findings, knowledge of the range of AFI etiologies, and their contributions to the global AFI burden. These steps can guide resource allocation, strengthen outbreak detection and response, target prevention efforts, and improve clinical care, especially in resource-limited settings where disease control often relies on empiric treatment. PROSPERO: CRD42016035666.
Collapse
Affiliation(s)
- Chulwoo Rhee
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Grishma A. Kharod
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nicolas Schaad
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nathan W. Furukawa
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Neil M. Vora
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David D. Blaney
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John A. Crump
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, United States of America
- Centre for International Health, University of Otago, New Zealand
| | - Kevin R. Clarke
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
220
|
Tedersoo L, Anslan S. Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:659-668. [PMID: 31219680 DOI: 10.1111/1758-2229.12776] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/14/2019] [Indexed: 05/03/2023]
Abstract
Development of high-throughput sequencing techniques has greatly benefited our understanding about microbial ecology, yet the methods producing short reads suffer from species-level resolution and uncertainty of identification. Here, we optimize Pacific Biosciences-based metabarcoding protocols covering the internal transcribed spacer (ITS region) and partial small subunit of the rRNA gene for species-level identification of all eukaryotes, with a specific focus on Fungi (including Glomeromycota) and Stramenopila (particularly Oomycota). Based on tests on composite soil samples and mock communities, we propose best suitable degenerate primers, ITS9munngs + ITS4ngsUni for eukaryotes and selected groups therein and discuss the pros and cons of long read-based identification of eukaryotes.
Collapse
Affiliation(s)
- Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Sten Anslan
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstrasse 4, 38106, Braunschweig, Germany
| |
Collapse
|
221
|
Rice A, Del Rio Hernandez A. The Mutational Landscape of Pancreatic and Liver Cancers, as Represented by Circulating Tumor DNA. Front Oncol 2019; 9:952. [PMID: 31608239 PMCID: PMC6769086 DOI: 10.3389/fonc.2019.00952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The mutational landscapes of pancreatic and liver cancers share many common genetic alterations which drive cancer progression. However, these mutations do not occur in all cases of these diseases, and this tumoral heterogeneity impedes diagnosis, prognosis, and therapeutic development. One minimally invasive method for the evaluation of tumor mutations is the analysis of circulating tumor DNA (ctDNA), released through apoptosis, necrosis, and active secretion by tumor cells into various body fluids. By observing mutations in those genes which promote transformation by controlling the cell cycle and oncogenic signaling pathways, a representation of the mutational profile of the tumor is revealed. The analysis of ctDNA is a promising technique for investigating these two gastrointestinal cancers, as many studies have reported on the accuracy of ctDNA assessment for diagnosis and prognosis using a variety of techniques.
Collapse
Affiliation(s)
- Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Armando Del Rio Hernandez
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
222
|
Gargis AS, Cherney B, Conley AB, McLaughlin HP, Sue D. Rapid Detection of Genetic Engineering, Structural Variation, and Antimicrobial Resistance Markers in Bacterial Biothreat Pathogens by Nanopore Sequencing. Sci Rep 2019; 9:13501. [PMID: 31534162 PMCID: PMC6751186 DOI: 10.1038/s41598-019-49700-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023] Open
Abstract
Widespread release of Bacillus anthracis (anthrax) or Yersinia pestis (plague) would prompt a public health emergency. During an exposure event, high-quality whole genome sequencing (WGS) can identify genetic engineering, including the introduction of antimicrobial resistance (AMR) genes. Here, we developed rapid WGS laboratory and bioinformatics workflows using a long-read nanopore sequencer (MinION) for Y. pestis (6.5 h) and B. anthracis (8.5 h) and sequenced strains with different AMR profiles. Both salt-precipitation and silica-membrane extracted DNA were suitable for MinION WGS using both rapid and field library preparation methods. In replicate experiments, nanopore quality metrics were defined for genome assembly and mutation analysis. AMR markers were correctly detected and >99% coverage of chromosomes and plasmids was achieved using 100,000 raw sequencing reads. While chromosomes and large and small plasmids were accurately assembled, including novel multimeric forms of the Y. pestis virulence plasmid, pPCP1, MinION reads were error-prone, particularly in homopolymer regions. MinION sequencing holds promise as a practical, front-line strategy for on-site pathogen characterization to speed the public health response during a biothreat emergency.
Collapse
Affiliation(s)
- Amy S Gargis
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | - Blake Cherney
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andrew B Conley
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, USA
| | - Heather P McLaughlin
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Sue
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
223
|
Nomoto Y, Kubota Y, Ohnishi Y, Kasahara K, Tomita A, Oshime T, Yamashita H, Fahmi M, Ito M. Gene Cascade Finder: A tool for identification of gene cascades and its application in Caenorhabditis elegans. PLoS One 2019; 14:e0215187. [PMID: 31504044 PMCID: PMC6736238 DOI: 10.1371/journal.pone.0215187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/06/2019] [Indexed: 11/24/2022] Open
Abstract
Obtaining a comprehensive understanding of the gene regulatory networks, or gene cascades, involved in cell fate determination and cell lineage segregation in Caenorhabditis elegans is a long-standing challenge. Although RNA-sequencing (RNA-Seq) is a promising technique to resolve these questions, the bioinformatics tools to identify associated gene cascades from RNA-Seq data remain inadequate. To overcome these limitations, we developed Gene Cascade Finder (GCF) as a novel tool for building gene cascades by comparison of mutant and wild-type RNA-Seq data along with integrated information of protein-protein interactions, expression timing, and domains. Application of GCF to RNA-Seq data confirmed that SPN-4 and MEX-3 regulate the canonical Wnt pathway during embryonic development. Moreover, lin-35, hsp-3, and gpa-12 were found to be involved in MEX-1-dependent neurogenesis, and MEX-3 was found to control the gene cascade promoting neurogenesis through lin-35 and apl-1. Thus, GCF could be a useful tool for building gene cascades from RNA-Seq data.
Collapse
Affiliation(s)
- Yusuke Nomoto
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yukihiro Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yuto Ohnishi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kota Kasahara
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Aimi Tomita
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takehiro Oshime
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hiroki Yamashita
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Muhamad Fahmi
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masahiro Ito
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail:
| |
Collapse
|
224
|
The importance of integrating genetic strain information for managing cases of Shiga toxin-producing E. coli infection. Epidemiol Infect 2019; 147:e264. [PMID: 31496452 PMCID: PMC6805796 DOI: 10.1017/s0950268819001602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
225
|
Yu X, Jiang W, Shi Y, Ye H, Lin J. Applications of sequencing technology in clinical microbial infection. J Cell Mol Med 2019; 23:7143-7150. [PMID: 31475453 PMCID: PMC6815769 DOI: 10.1111/jcmm.14624] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022] Open
Abstract
Infectious diseases are a type of disease caused by pathogenic microorganisms. Although the discovery of antibiotics changed the treatment of infectious diseases and reduced the mortality of bacterial infections, resistant bacterial strains have emerged. Anti‐infective therapy based on aetiological evidence is the gold standard for clinical treatment, but the time lag and low positive culture rate of traditional methods of pathogen diagnosis leads to relative difficulty in obtaining the evidence of pathogens. Compared with traditional methods of pathogenic diagnosis, next‐generation and third‐generation sequencing technologies have many advantages in the detection of pathogenic microorganisms. In this review, we mainly introduce recent progress in research on pathogenic diagnostic technology and the applications of sequencing technology in the diagnosis of pathogenic microorganisms. This review provides new insights into the application of sequencing technology in the clinical diagnosis of microorganisms.
Collapse
Affiliation(s)
- Xiaoling Yu
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Wenqian Jiang
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Shi
- Institute of Apply Genomics, Fuzhou University, Fuzhou, China
| | - Hanhui Ye
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Lin
- Institute of Apply Genomics, Fuzhou University, Fuzhou, China.,School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
226
|
Grädel C, Terrazos Miani MA, Barbani MT, Leib SL, Suter-Riniker F, Ramette A. Rapid and Cost-Efficient Enterovirus Genotyping from Clinical Samples Using Flongle Flow Cells. Genes (Basel) 2019; 10:genes10090659. [PMID: 31470607 PMCID: PMC6770998 DOI: 10.3390/genes10090659] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023] Open
Abstract
Enteroviruses affect millions of people worldwide and are of significant clinical importance. The standard method for enterovirus identification and genotyping still relies on Sanger sequencing of short diagnostic amplicons. In this study, we assessed the feasibility of nanopore sequencing using the new flow cell “Flongle” for fast, cost-effective, and accurate genotyping of human enteroviruses from clinical samples. PCR amplification of partial VP1 gene was performed from multiple patient samples, which were multiplexed together after barcoding PCR and sequenced multiple times on Flongle flow cells. The nanopore consensus sequences obtained from mapping reads to a reference database were compared to their Sanger sequence counterparts. Using clinical specimens sampled over different years, we were able to correctly identify enterovirus species and genotypes for all tested samples, even when doubling the number of barcoded samples on one flow cell. Average sequence identity across sequencing runs was >99.7%. Phylogenetic analysis showed that the consensus sequences achieved with Flongle delivered accurate genotyping. We conclude that the new Flongle-based assay with its fast turnover time, low cost investment, and low cost per sample represents an accurate, reproducible, and cost-effective platform for enterovirus identification and genotyping.
Collapse
Affiliation(s)
- Carole Grädel
- Institute for Infectious Diseases, University of Bern, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | | | - Maria Teresa Barbani
- Institute for Infectious Diseases, University of Bern, CH-3012 Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, CH-3012 Bern, Switzerland
| | | | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
227
|
Seth-Smith HMB, Bonfiglio F, Cuénod A, Reist J, Egli A, Wüthrich D. Evaluation of Rapid Library Preparation Protocols for Whole Genome Sequencing Based Outbreak Investigation. Front Public Health 2019; 7:241. [PMID: 31508405 PMCID: PMC6719548 DOI: 10.3389/fpubh.2019.00241] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
Whole genome sequencing (WGS) has become the new gold standard for bacterial outbreak investigation, due to the high resolution available for typing. While sequencing is currently predominantly performed on Illumina devices, the preceding library preparation can be performed using various protocols. Enzymatic fragmentation library preparation protocols are fast, have minimal hands-on time, and work with small quantities of DNA. The aim of our study was to compare three library preparation protocols for molecular typing: Nextera XT (Illumina); Nextera Flex (Illumina); and QIAseq FX (Qiagen). We selected 12 ATCC strains from human Gram-positive and Gram-negative pathogens with %G+C-content ranging from 27% (Fusobacterium nucleatum) to 73% (Micrococcus luteus), each having a high quality complete genome assembly available, to allow in-depth analysis of the resulting Illumina sequence data quality. Additionally, we selected isolates from previously analyzed cases of vancomycin-resistant Enterococcus faecium (VRE) (n = 7) and a local outbreak of Klebsiella aerogenes (n = 5). The number of protocol steps and time required were compared, in order to test the suitability for routine laboratory work. Data analyses were performed with standard tools commonly used in outbreak situations: Ridom SeqSphere+ for cgMLST; CLC genomics workbench for SNP analysis; and open source programs. Nextera Flex and QIAseq FX were found to be less sensitive than Nextera XT to variable %G+C-content, resulting in an almost uniform distribution of read-depth. Therefore, low coverage regions are reduced to a minimum resulting in a more complete representation of the genome. Thus, with these two protocols, more alleles were detected in the cgMLST analysis, producing a higher resolution of closely related isolates. Furthermore, they result in a more complete representation of accessory genes. In particular, the high data quality and relative simplicity of the workflow of Nextera Flex stood out in this comparison. This thorough comparison within an ISO/IEC 17025 accredited environment will be of interest to those aiming to optimize their clinical microbiological genome sequencing.
Collapse
Affiliation(s)
- Helena M B Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,DBM Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Ferdinando Bonfiglio
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Personalized Health Basel, University of Basel, Basel, Switzerland
| | - Aline Cuénod
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Josiane Reist
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel Wüthrich
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,DBM Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
228
|
Van Goethem N, Descamps T, Devleesschauwer B, Roosens NHC, Boon NAM, Van Oyen H, Robert A. Status and potential of bacterial genomics for public health practice: a scoping review. Implement Sci 2019; 14:79. [PMID: 31409417 PMCID: PMC6692930 DOI: 10.1186/s13012-019-0930-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/26/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is increasingly being translated into routine public health practice, affecting the surveillance and control of many pathogens. The purpose of this scoping review is to identify and characterize the recent literature concerning the application of bacterial pathogen genomics for public health practice and to assess the added value, challenges, and needs related to its implementation from an epidemiologist's perspective. METHODS In this scoping review, a systematic PubMed search with forward and backward snowballing was performed to identify manuscripts in English published between January 2015 and September 2018. Included studies had to describe the application of NGS on bacterial isolates within a public health setting. The studied pathogen, year of publication, country, number of isolates, sampling fraction, setting, public health application, study aim, level of implementation, time orientation of the NGS analyses, and key findings were extracted from each study. Due to a large heterogeneity of settings, applications, pathogens, and study measurements, a descriptive narrative synthesis of the eligible studies was performed. RESULTS Out of the 275 included articles, 164 were outbreak investigations, 70 focused on strategy-oriented surveillance, and 41 on control-oriented surveillance. Main applications included the use of whole-genome sequencing (WGS) data for (1) source tracing, (2) early outbreak detection, (3) unraveling transmission dynamics, (4) monitoring drug resistance, (5) detecting cross-border transmission events, (6) identifying the emergence of strains with enhanced virulence or zoonotic potential, and (7) assessing the impact of prevention and control programs. The superior resolution over conventional typing methods to infer transmission routes was reported as an added value, as well as the ability to simultaneously characterize the resistome and virulome of the studied pathogen. However, the full potential of pathogen genomics can only be reached through its integration with high-quality contextual data. CONCLUSIONS For several pathogens, it is time for a shift from proof-of-concept studies to routine use of WGS during outbreak investigations and surveillance activities. However, some implementation challenges from the epidemiologist's perspective remain, such as data integration, quality of contextual data, sampling strategies, and meaningful interpretations. Interdisciplinary, inter-sectoral, and international collaborations are key for an appropriate genomics-informed surveillance.
Collapse
Affiliation(s)
- Nina Van Goethem
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Epidemiology and Biostatistics, Institut de recherche expérimentale et clinique, Faculty of Public Health, Université catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Woluwe-Saint-Lambert, Belgium
| | - Tine Descamps
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Brecht Devleesschauwer
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Nele A. M. Boon
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Herman Van Oyen
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Public Health and Primary Care, Faculty of Medicine, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Annie Robert
- Department of Epidemiology and Biostatistics, Institut de recherche expérimentale et clinique, Faculty of Public Health, Université catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Woluwe-Saint-Lambert, Belgium
| |
Collapse
|
229
|
Guo W, Gao B, Li L, Gai W, Yang J, Zhang Y, Wang L. A community-acquired lung abscess attributable to odontogenic flora. Infect Drug Resist 2019; 12:2467-2470. [PMID: 31496760 PMCID: PMC6690595 DOI: 10.2147/idr.s218921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/16/2019] [Indexed: 11/24/2022] Open
Abstract
A lung abscess is an infectious pulmonary disease characterized by pus-filled cavity formation and often an air-fluid level. In this article, we described an indolent community-acquired lung abscess suspected as a tumor previously. A 56-year-old male presented with cough and expectoration for 2 months and hemoptysis for 2 weeks. His physical examinations, whole blood count and C-reactive protein level were normal. The chest computed tomography (CT) scan showed a 40×38×39 mm high-density mass in the right upper pulmonary lobe, with irregular borders. The pathology of a CT-guided percutaneous needle aspiration biopsy showed numerous inflammatory cells and bacteria infiltration without tumor lesions. Bacteriological detection of lung tissue revealed the cause was odontogenic flora. A next-generation sequencing demonstrated the etiologic correlation between lung abscess and periodontitis. After a 2-month pathogen-directed oral antibiotics therapy combined with chlorhexidine gargle oral care, this patient showed a remarkable improvement. Periodontitis can be a cause of a lung abscess, which would be taken into account in the treatment regimes preventing infectious recurrence.
Collapse
Affiliation(s)
- Wenjia Guo
- Department of Pulmonary and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Bo Gao
- Department of Pulmonary and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Li Li
- Department of Pulmonary and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Wei Gai
- National Engineering Research Center for Beijing Biochip Technology, Beijing, People's Republic of China
| | - Jianghui Yang
- Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yan Zhang
- National Engineering Research Center for Beijing Biochip Technology, Beijing, People's Republic of China
| | - Lijun Wang
- Clinical Research Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
230
|
Gołębiewski M, Tretyn A. Generating amplicon reads for microbial community assessment with next‐generation sequencing. J Appl Microbiol 2019; 128:330-354. [DOI: 10.1111/jam.14380] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- M. Gołębiewski
- Plant Physiology and Biotechnology Nicolaus Copernicus University Toruń Poland
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University Toruń Poland
| | - A. Tretyn
- Plant Physiology and Biotechnology Nicolaus Copernicus University Toruń Poland
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University Toruń Poland
| |
Collapse
|
231
|
Idelevich EA, Reischl U, Becker K. New Microbiological Techniques in the Diagnosis of Bloodstream Infections. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:822-832. [PMID: 30678752 DOI: 10.3238/arztebl.2018.0822] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/04/2017] [Accepted: 10/12/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND When a bloodstream infection is suspected, the preliminary and definitive results of culture-based microbiological testing arrive too late to have any influence on the initial choice of empirical antibiotic treatment. METHODS This review is based on pertinent publications retrieved by a selective search of the literature and on the authors' clinical and scientific experience. RESULTS A number of technical advances now enable more rapid microbiological diagnosis of bloodstream infections. DNA- based techniques for the direct detection of pathogenic organisms in whole blood have not yet become established in routine use because of various limitations. On the other hand, matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become available for routine use in clinical laboratories and has markedly shortened the time to diagnosis after blood samples that have been cultured in automated blood-culture systems turn positive. Further developments of this technique now enable it to be used directly for blood cultures that have been flagged positive, as well as for subcultures that have been incubated for only a short time on a solid nutrient medium. The microbial biomass of the subculture can also be used in parallel for more rapid susceptibility testing with conventional methods, or, in future, with MALDI-TOF MS. CONCLUSION The potential of all of these new techniques will only be realizable in practice if they are optimally embedded in the diagnostic process and if sufficient attention is paid to pre-analytical issues, particularly storage and transport times.
Collapse
|
232
|
Strobl C, Churchill Cihlar J, Lagacé R, Wootton S, Roth C, Huber N, Schnaller L, Zimmermann B, Huber G, Lay Hong S, Moura-Neto R, Silva R, Alshamali F, Souto L, Anslinger K, Egyed B, Jankova-Ajanovska R, Casas-Vargas A, Usaquén W, Silva D, Barletta-Carrillo C, Tineo DH, Vullo C, Würzner R, Xavier C, Gusmão L, Niederstätter H, Bodner M, Budowle B, Parson W. Evaluation of mitogenome sequence concordance, heteroplasmy detection, and haplogrouping in a worldwide lineage study using the Precision ID mtDNA Whole Genome Panel. Forensic Sci Int Genet 2019; 42:244-251. [PMID: 31382159 DOI: 10.1016/j.fsigen.2019.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 12/24/2022]
Abstract
The emergence of Massively Parallel Sequencing technologies enabled the analysis of full mitochondrial (mt)DNA sequences from forensically relevant samples that have, so far, only been typed in the control region or its hypervariable segments. In this study, we evaluated the performance of a commercially available multiplex-PCR-based assay, the Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific), for the amplification and sequencing of the entire mitochondrial genome (mitogenome) from even degraded forensic specimens. For this purpose, more than 500 samples from 24 different populations were selected to cover the vast majority of established superhaplogroups. These are known to harbor different signature sequence motifs corresponding to their phylogenetic background that could have an effect on primer binding and, thus, could limit a broad application of this molecular genetic tool. The selected samples derived from various forensically relevant tissue sources and were DNA extracted using different methods. We evaluated sequence concordance and heteroplasmy detection and compared the findings to conventional Sanger sequencing as well as an orthogonal MPS platform. We discuss advantages and limitations of this approach with respect to forensic genetic workflow and analytical requirements.
Collapse
Affiliation(s)
- Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Robert Lagacé
- Human Identification Group, ThermoFisher Scientific, San Francisco, CA, USA
| | - Sharon Wootton
- Human Identification Group, ThermoFisher Scientific, San Francisco, CA, USA
| | - Chantal Roth
- Human Identification Group, ThermoFisher Scientific, San Francisco, CA, USA
| | - Nicole Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Schnaller
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Zimmermann
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Seah Lay Hong
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Rodrigo Moura-Neto
- Laboratório de Biologia Molecular Forense, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rosane Silva
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Farida Alshamali
- Dubai Police, Gen. Dept. Forensic Science & Criminology, Dubai, United Arab Emirates
| | - Luis Souto
- Laboratorio de Genética Aplicada, Departamento de Biologia, Universidade de Aveiro, Portugal
| | | | - Balazs Egyed
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Renata Jankova-Ajanovska
- Institute of Forensic Medicine, Criminalistic and Medical Deontology, Medical Faculty, University "St. Cyril and Methodius", Skopje, Macedonia
| | - Andrea Casas-Vargas
- Group of Population Genetics and Identification, Genetics Institute, National University of Colombia, Bogotá, Colombia
| | - Wiliam Usaquén
- Group of Population Genetics and Identification, Genetics Institute, National University of Colombia, Bogotá, Colombia
| | - Dayse Silva
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | - Dean Herman Tineo
- Universidad Nacional Mayor de San Marcos, Instituto de Medicina Legal del Perú, Lima, Peru
| | - Carlos Vullo
- DNA Forensic Laboratory, Argentinean Forensic Anthropology team (EAAF), Córdoba, Argentina
| | - Reinhard Würzner
- Division of Hygiene & Med. Microbiology, Medical University of Innsbruck, Austria
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Harald Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, TX, USA
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
233
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
234
|
Aigle A, Prosser JI, Gubry-Rangin C. The application of high-throughput sequencing technology to analysis of amoA phylogeny and environmental niche specialisation of terrestrial bacterial ammonia-oxidisers. ENVIRONMENTAL MICROBIOME 2019; 14:3. [PMID: 33902715 PMCID: PMC7989807 DOI: 10.1186/s40793-019-0342-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Characterisation of microbial communities increasingly involves use of high throughput sequencing methods (e.g. MiSeq Illumina) that amplify relatively short sequences of 16S rRNA or functional genes, the latter including ammonia monooxygenase subunit A (amoA), a key functional gene for ammonia oxidising bacteria (AOB) and archaea (AOA). The availability of these techniques, in combination with developments in phylogenetic methodology, provides the potential for better analysis of microbial niche specialisation. This study aimed to develop an approach for sequencing of bacterial and archaeal amoA genes amplified from soil using bioinformatics pipelines developed for general analysis of functional genes and employed sequence data to reassess phylogeny and niche specialisation in terrestrial bacterial ammonia oxidisers. RESULTS amoA richness and community composition differed with bioinformatics approaches used but analysis of MiSeq sequences was reliable for both archaeal and bacterial amoA genes and was used for subsequent assessment of potential niche specialisation of soil bacteria ammonia oxidisers. Prior to ecological analysis, phylogenetic analysis of Nitrosospira, which dominates soil AOB, was revisited using a phylogenetic analysis of 16S rRNA and amoA genes in available AOB genomes. This analysis supported congruence between phylogenies of the two genes and increased previous phylogenetic resolution, providing support for additional gene clusters of potential ecological significance. Analysis of environmental sequences using these new sequencing, bioinformatics and phylogenetic approaches demonstrated, for the first time, similar niche specialisation in AOB to that in AOA, indicating pH as a key ecological factor controlling the composition of soil ammonia oxidiser communities. CONCLUSIONS This study presents the first bioinformatics pipeline for optimal analysis of Illumina MiSeq sequencing of a functional gene and is adaptable to any amplicon size (even genes larger than 500 bp). The pipeline was used to provide an up-to-date phylogenetic analysis of terrestrial betaproteobacterial amoA genes and to demonstrate the importance of soil pH for their niche specialisation and is broadly applicable to other ecosystems and diverse microbiomes.
Collapse
Affiliation(s)
- Axel Aigle
- School of Biological Sciences, Cruickshank Building, University of Aberdeen, St. Machar Drive, Aberdeen, AB24 3UU UK
| | - James I. Prosser
- School of Biological Sciences, Cruickshank Building, University of Aberdeen, St. Machar Drive, Aberdeen, AB24 3UU UK
| | - Cécile Gubry-Rangin
- School of Biological Sciences, Cruickshank Building, University of Aberdeen, St. Machar Drive, Aberdeen, AB24 3UU UK
| |
Collapse
|
235
|
Botelho J, Grosso F, Peixe L. WITHDRAWN: Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 2019. [DOI: 10.1016/j.drup.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
236
|
Besser JM, Carleton HA, Trees E, Stroika SG, Hise K, Wise M, Gerner-Smidt P. Interpretation of Whole-Genome Sequencing for Enteric Disease Surveillance and Outbreak Investigation. Foodborne Pathog Dis 2019; 16:504-512. [PMID: 31246502 PMCID: PMC6653782 DOI: 10.1089/fpd.2019.2650] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The routine use of whole-genome sequencing (WGS) as part of enteric disease surveillance is substantially enhancing our ability to detect and investigate outbreaks and to monitor disease trends. At the same time, it is revealing as never before the vast complexity of microbial and human interactions that contribute to outbreak ecology. Since WGS analysis is primarily used to characterize and compare microbial genomes with the goal of addressing epidemiological questions, it must be interpreted in an epidemiological context. In this article, we identify common challenges and pitfalls encountered when interpreting sequence data in an enteric disease surveillance and investigation context, and explain how to address them.
Collapse
Affiliation(s)
- John M Besser
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia
| | - Heather A Carleton
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia
| | - Eija Trees
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia
| | - Steven G Stroika
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia
| | - Kelley Hise
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia
| | - Matthew Wise
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia
| | - Peter Gerner-Smidt
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia
| |
Collapse
|
237
|
Gerner-Smidt P, Besser J, Concepción-Acevedo J, Folster JP, Huffman J, Joseph LA, Kucerova Z, Nichols MC, Schwensohn CA, Tolar B. Whole Genome Sequencing: Bridging One-Health Surveillance of Foodborne Diseases. Front Public Health 2019; 7:172. [PMID: 31316960 PMCID: PMC6610495 DOI: 10.3389/fpubh.2019.00172] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/10/2019] [Indexed: 11/13/2022] Open
Abstract
Infections caused by pathogens commonly acquired from consumption of food are not always transmitted by that route. They may also be transmitted through contact to animals, other humans or the environment. Additionally, many outbreaks are associated with food contaminated from these non-food sources. For this reason, such presumed foodborne outbreaks are best investigated through a One Health approach working across human, animal and environmental sectors and disciplines. Outbreak strains or clones that have propagated and continue to evolve in non-human sources and environments often show more sequence variation than observed in typical monoclonal point-source outbreaks. This represents a challenge when using whole genome sequencing (WGS), the new gold standard for molecular surveillance of foodborne pathogens, for outbreak detection and investigation. In this review, using recent examples from outbreaks investigated in the United States (US) some aspects of One Health approaches that have been used successfully to solve such outbreaks are presented. These include using different combinations of flexible WGS based case definition, efficient epidemiological follow-up, traceback, surveillance, and testing of potential food and environmental sources and animal hosts.
Collapse
Affiliation(s)
- Peter Gerner-Smidt
- The Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John Besser
- The Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jeniffer Concepción-Acevedo
- The Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jason P Folster
- The Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jasmine Huffman
- The Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Lavin A Joseph
- The Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Zuzana Kucerova
- The Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Megin C Nichols
- The Outbreak Response and Prevention Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Colin A Schwensohn
- The Outbreak Response and Prevention Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Beth Tolar
- The Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
238
|
Abstract
PURPOSE OF REVIEW The cardiovascular (CV) risk related to lipid disorders is well established and is based on a robust body of evidence from well-designed randomized clinical trials, as well as prospective observational studies. In the last two decades, significant advances have been made in understanding the genetic basis of dyslipidemias. The present review is intended as a comprehensive discussion of current knowledge about the genetics and pathophysiology of disorders that predispose to dyslipidemia. We also focus on issues related to statins and the proprotein convertase subtilisin/kexin type 9 (PCSK9) and some of its polymorphisms, as well as new cholesterol-lowering medications, including PCSK9 inhibitors. RECENT FINDING Cholesterol is essential for the proper functioning of several body systems. However, dyslipidemia-especially elevated low-density lipoprotein (LDL-c) and triglyceride levels, as well as reduced lipoprotein lipase activity-is associated with an increased risk of coronary artery disease (CAD). High-density lipoprotein (HDL-c), however, seems to play a role as a risk marker rather than as a causal factor of the disease, as suggested by Mendelian randomization studies. Several polymorphisms in the lipoprotein lipase locus have been described and are associated with variations in the activity of this enzyme, producing high concentrations of triglycerides and increased risk of CAD. Dyslipidemia, especially increased LDL-c and triglyceride levels, continues to play a significant role in CV risk. The combination of genetic testing and counseling is important in the management of patients with dyslipidemia of genetic etiology. Strategies focused on primary prevention can offer an opportunity to reduce CV events.
Collapse
Affiliation(s)
- Ricardo Stein
- Graduate Program in Cardiology and Cardiovascular Sciences, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Exercise Cardiology Research Group (CardioEx), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,School of Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Serviço de Fisiatria e Reabilitação, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil.
| | - Filipe Ferrari
- Graduate Program in Cardiology and Cardiovascular Sciences, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Exercise Cardiology Research Group (CardioEx), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Scolari
- Graduate Program in Cardiology and Cardiovascular Sciences, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
239
|
Crisafulli C, Romeo PD, Calabrò M, Epasto LM, Alberti S. Pharmacogenetic and pharmacogenomic discovery strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:225-241. [PMID: 35582724 PMCID: PMC8992635 DOI: 10.20517/cdr.2018.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 11/12/2022]
Abstract
Genetic/genomic profiling at a single-patient level is expected to provide critical information for determining inter-individual drug toxicity and potential efficacy in cancer therapy. A better definition of cancer subtypes at a molecular level, may correspondingly complement such pharmacogenetic and pharmacogenomic approaches, for more effective personalized treatments. Current pharmacogenetic/pharmacogenomic strategies are largely based on the identification of known polymorphisms, thus limiting the discovery of novel or rarer genetic variants. Recent improvements in cost and throughput of next generation sequencing (NGS) are now making whole-genome profiling a plausible alternative for clinical procedures. Beyond classical pharmacogenetic/pharmacogenomic traits for drug metabolism, NGS screening programs of cancer genomes may lead to the identification of novel cancer-driving mutations. These may not only constitute novel therapeutic targets, but also effector determinants for metabolic pathways linked to drug metabolism. An additional advantage is that cancer NGS profiling is now leading to discovering targetable mutations, e.g., in glioblastomas and pancreatic cancers, which were originally discovered in other tumor types, thus allowing for effective repurposing of active drugs already on the market.
Collapse
Affiliation(s)
- Concetta Crisafulli
- Department of Biomedical Sciences - BIOMORF, University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | | | - Marco Calabrò
- Department of Biomedical Sciences - BIOMORF, University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Ludovica Martina Epasto
- Unit of Medical Genetics, University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Saverio Alberti
- Department of Biomedical Sciences - BIOMORF, University of Messina, via Consolare Valeria, 98125 Messina, Italy.,Unit of Medical Genetics, University of Messina, via Consolare Valeria, 98125 Messina, Italy.,Correspondence Address: Prof. Saverio Alberti, Unit of Medical Genetics, BIOMORF Department of Biomedical Sciences, University of Messina, via Consolare Valeria, 98125 Messina, Italy. E-mail:
| |
Collapse
|
240
|
Ma L, Jakobiec FA, Dryja TP. A Review of Next-Generation Sequencing (NGS): Applications to the Diagnosis of Ocular Infectious Diseases. Semin Ophthalmol 2019; 34:223-231. [PMID: 31170015 DOI: 10.1080/08820538.2019.1620800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: To review the value of next-generation sequencing (NGS) in identifying the pathogens which cause ocular infections, thereby facilitating prompt initiation of treatment with an optimal anti-microbial regimen. Both contemporary and futuristic approaches to identifying pathogens in ocular infections are covered in this brief overview. Methods: Review of the peer reviewed literature on conventional and advanced methods as applied to the diagnosis of infectious diseases of the eye. Conclusion: NGS is a novel technology for identifying the pathogens responsible for ocular infections with the potential to improve the accuracy and speed of diagnosis and hastening the selection of the best therapy.
Collapse
Affiliation(s)
- Lina Ma
- a David G Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear Infirmary , Harvard Medical School , Boston , MA , USA
| | - Frederick A Jakobiec
- a David G Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear Infirmary , Harvard Medical School , Boston , MA , USA
| | - Thaddeus P Dryja
- a David G Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear Infirmary , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
241
|
Xiao W, Han P, Xu Z, Huang M. Pulmonary scedosporiosis in a patient with acute hematopoietic failure: Diagnosis aided by next-generation sequencing. Int J Infect Dis 2019; 85:114-116. [PMID: 31170547 DOI: 10.1016/j.ijid.2019.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/15/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022] Open
Abstract
We report the first case of pulmonary scedosporiosis detected by next-generation sequencing (NGS) from bronchoalveolar lavage fluid (BALF) in a 67-year-old male with bronchiectasis and hematopoietic failure. Scedosporium apiospermum is a ubiquitous organism present in the environment with intrinsic resistance to many antifungal agents. The patient developed respiratory failure, pulmonary consolidation, and septic shock shortly thereafter, and responded poorly to antifungal therapy. This case highlights the combined application of NGS and traditional fungal culture in the clinical diagnosis of pulmonary invasive fungal disease. NGS is proposed as an important adjunctive diagnostic approach for uncommon pathogens.
Collapse
Affiliation(s)
- Wei Xiao
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Han
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhijun Xu
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
242
|
Humphreys H, Coleman D. Contribution of whole-genome sequencing to understanding of the epidemiology and control of meticillin-resistant Staphylococcus aureus. J Hosp Infect 2019; 102:189-199. [DOI: 10.1016/j.jhin.2019.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023]
|
243
|
Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, Chaffron S, Van Der Vossen J, Tang S, Katase M, McClure P, Kimura B, Ching Chai L, Chapman J, Grant K. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol 2019; 79:96-115. [PMID: 30621881 PMCID: PMC6492263 DOI: 10.1016/j.fm.2018.11.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 01/06/2023]
Abstract
Next Generation Sequencing (NGS) combined with powerful bioinformatic approaches are revolutionising food microbiology. Whole genome sequencing (WGS) of single isolates allows the most detailed comparison possible hitherto of individual strains. The two principle approaches for strain discrimination, single nucleotide polymorphism (SNP) analysis and genomic multi-locus sequence typing (MLST) are showing concordant results for phylogenetic clustering and are complementary to each other. Metabarcoding and metagenomics, applied to total DNA isolated from either food materials or the production environment, allows the identification of complete microbial populations. Metagenomics identifies the entire gene content and when coupled to transcriptomics or proteomics, allows the identification of functional capacity and biochemical activity of microbial populations. The focus of this review is on the recent use and future potential of NGS in food microbiology and on current challenges. Guidance is provided for new users, such as public health departments and the food industry, on the implementation of NGS and how to critically interpret results and place them in a broader context. The review aims to promote the broader application of NGS technologies within the food industry as well as highlight knowledge gaps and novel applications of NGS with the aim of driving future research and increasing food safety outputs from its wider use.
Collapse
Affiliation(s)
- Balamurugan Jagadeesan
- Nestlé Research, Nestec Ltd, Route du Jorat 57, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland.
| | - Peter Gerner-Smidt
- Centers for Disease Control and Prevention, MS-CO-3, 1600 Clifton Road, 30329-4027, Atlanta, USA
| | - Marc W Allard
- US Food and Drug Administration, 5001 Campus Drive, College Park, MD, 02740, USA
| | - Sébastien Leuillet
- Institut Mérieux, Mérieux NutriSciences, 3 route de la Chatterie, 44800, Saint Herblain, France
| | - Anett Winkler
- Cargill Deutschland GmbH, Cerestarstr. 2, 47809, Krefeld, Germany
| | - Yinghua Xiao
- Arla Innovation Center, Agro Food Park 19, 8200, Aarhus, Denmark
| | - Samuel Chaffron
- Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS UMR 6004 - Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Jos Van Der Vossen
- The Netherlands Organisation for Applied Scientific Research, TNO, Utrechtseweg 48, 3704 HE, Zeist, NL, the Netherlands
| | - Silin Tang
- Mars Global Food Safety Center, Yanqi Economic Development Zone, 101407, Beijing, China
| | - Mitsuru Katase
- Fuji Oil Co., Ltd., Sumiyoshi-cho 1, Izumisano Osaka, 598-8540, Japan
| | - Peter McClure
- Mondelēz International, Linden 3, Bournville Lane, B30 2LU, Birmingham, United Kingdom
| | - Bon Kimura
- Tokyo University of Marine Science & Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Lay Ching Chai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - John Chapman
- Unilever Research & Development, Postbus, 114, 3130 AC, Vlaardingen, the Netherlands
| | - Kathie Grant
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom.
| |
Collapse
|
244
|
Epidemiology of Foodborne Illnesses. Food Microbiol 2019. [DOI: 10.1128/9781555819972.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
245
|
hicap: In Silico Serotyping of the Haemophilus influenzae Capsule Locus. J Clin Microbiol 2019; 57:JCM.00190-19. [PMID: 30944197 PMCID: PMC6535587 DOI: 10.1128/jcm.00190-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/29/2019] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae exclusively colonizes the human nasopharynx and can cause a variety of respiratory infections as well as invasive diseases, including meningitis and sepsis. A key virulence determinant of H. influenzae is the polysaccharide capsule, of which six serotypes are known, each encoded by a distinct variation of the capsule biosynthesis locus (cap-a to cap-f). Haemophilus influenzae exclusively colonizes the human nasopharynx and can cause a variety of respiratory infections as well as invasive diseases, including meningitis and sepsis. A key virulence determinant of H. influenzae is the polysaccharide capsule, of which six serotypes are known, each encoded by a distinct variation of the capsule biosynthesis locus (cap-a to cap-f). H. influenzae type b (Hib) was historically responsible for the majority of invasive H. influenzae disease, and its prevalence has been markedly reduced in countries that have implemented vaccination programs targeting this serotype. In the postvaccine era, nontypeable H. influenzae emerged as the most dominant group causing disease, but in recent years a resurgence of encapsulated H. influenzae strains has also been observed, most notably serotype a. Given the increasing incidence of encapsulated strains and the high frequency of Hib in countries without vaccination programs, there is growing interest in genomic epidemiology of H. influenzae. Here we present hicap, a software tool for rapid in silico serotype prediction from H. influenzae genome sequences. hicap is written using Python3 and is freely available at https://github.com/scwatts/hicap under the GNU General Public License v3 (GPL3). To demonstrate the utility of hicap, we used it to investigate the cap locus diversity and distribution in 691 high-quality H. influenzae genomes from GenBank. These analyses identified cap loci in 95 genomes and confirmed the general association of each serotype with a unique clonal lineage, and they also identified occasional recombination between lineages that gave rise to hybrid cap loci (2% of encapsulated strains).
Collapse
|
246
|
A core genome approach that enables prospective and dynamic monitoring of infectious outbreaks. Sci Rep 2019; 9:7808. [PMID: 31127153 PMCID: PMC6534532 DOI: 10.1038/s41598-019-44189-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/09/2019] [Indexed: 11/16/2022] Open
Abstract
Whole-genome sequencing is increasingly adopted in clinical settings to identify pathogen transmissions, though largely as a retrospective tool. Prospective monitoring, in which samples are continuously added and compared to previous samples, can generate more actionable information. To enable prospective pathogen comparison, genomic relatedness metrics based on single-nucleotide differences must be consistent across time, efficient to compute and reliable for a large variety of samples. The choice of genomic regions to compare, i.e., the core genome, is critical to obtain a good metric. We propose a novel core genome method that selects conserved sequences in the reference genome by comparing its k-mer content to that of publicly available genome assemblies. The conserved-sequence genome is sample set-independent, which enables prospective pathogen monitoring. Based on clinical data sets of 3436 S. aureus, 1362 K. pneumoniae and 348 E. faecium samples, ROC curves demonstrate that the conserved-sequence genome disambiguates same-patient samples better than a core genome consisting of conserved genes. The conserved-sequence genome confirms outbreak samples with high sensitivity: in a set of 2335 S. aureus samples, it correctly identifies 44 out of 44 known outbreak samples, whereas the conserved-gene method confirms 38 known outbreak samples.
Collapse
|
247
|
Abstract
The growth of pathogen genomics shows no signs of abating. Whole-genome sequencing of clinical viral and bacterial isolates continues to grow in nearly exponential bounds. Reductions in cost driven by new technology have created a seamless environment for generating, sharing, and analyzing pathogen genomes. The high-resolution view of infectious disease transmission dynamics offered by analyzing whole genomes from pathogens, coupled with the genomicist ethic of widespread data sharing, has created a veritable Internet of pathogens, which inadvertently produces new threats to patient privacy and protected heath information. The health care system, and society more generally, have yet to explore the far-reaching privacy concerns raised by readily accessible pathogen genomic data. The recent use of human genomic databases, the existence of freely available alternative data and metadata sources, and lax regulation of collecting publicly available genomes to identify individuals in a criminal context raise concerning parallels about what is possible with pathogen genomics. The growing ability to ascertain culpability for infectious disease transmission at a nearly individual level could change our perspective on disease outbreaks from one based on public health to one based on individual liability. These technological breakthroughs in the absence of an understanding of potential privacy and liability issues lead to questions about the dominant paradigm of better living through pathogen genomics.
Collapse
|
248
|
Tolar B, Joseph LA, Schroeder MN, Stroika S, Ribot EM, Hise KB, Gerner-Smidt P. An Overview of PulseNet USA Databases. Foodborne Pathog Dis 2019; 16:457-462. [PMID: 31066584 DOI: 10.1089/fpd.2019.2637] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PulseNet USA is the molecular surveillance network for foodborne disease in the United States. The network consists of state and local public health laboratories, as well as food regulatory agencies, that follow PulseNet's standardized protocols to perform pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) and analyze the results using standardized software. The raw sequences are uploaded to the GenomeTrakr or PulseNet bioprojects at the National Center for Biotechnology Information. The PFGE patterns and analyzed sequence data are uploaded in real time with associated demographic data to the PulseNet national databases managed at the Centers for Disease Control and Prevention. The PulseNet databases are organism specific and provide a central storage location for molecular and demographic data related to an isolate. Sequences are compared in the databases, thereby facilitating the rapid detection of clusters of foodborne diseases that may represent widespread outbreaks. WGS genotyping data, for example, antibiotic resistance and virulence profiles, are also uploaded in real time to the PulseNet databases to improve food safety surveillance activities.
Collapse
Affiliation(s)
- Beth Tolar
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lavin A Joseph
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Morgan N Schroeder
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Steven Stroika
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Efrain M Ribot
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kelley B Hise
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Peter Gerner-Smidt
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
249
|
Pereira De Martinis EC, Almeida OGGD. Relating next-generation sequencing and bioinformatics concepts to routine microbiological testing. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2019. [DOI: 10.29333/ejgm/108690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
250
|
Mintzer V, Moran-Gilad J, Simon-Tuval T. Operational models and criteria for incorporating microbial whole genome sequencing in hospital microbiology - A systematic literature review. Clin Microbiol Infect 2019; 25:1086-1095. [PMID: 31039443 DOI: 10.1016/j.cmi.2019.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Microbial whole genome sequencing (WGS) has many advantages over standard microbiological methods. However, it is not yet widely implemented in routine hospital diagnostics due to notable challenges. OBJECTIVES The aim was to extract managerial, financial and clinical criteria supporting the decision to implement WGS in routine diagnostic microbiology, across different operational models of implementation in the hospital setting. METHODS This was a systematic review of literature identified through PubMed and Web of Science. English literature studies discussing the applications of microbial WGS without limitation on publication date were eligible. A narrative approach for categorization and synthesis of the sources identified was adopted. RESULTS A total of 98 sources were included. Four main alternative operational models for incorporating WGS in clinical microbiology laboratories were identified: full in-house sequencing and analysis, full outsourcing of sequencing and analysis and two hybrid models combining in-house/outsourcing of the sequencing and analysis components. Six main criteria (and multiple related sub-criteria) for WGS implementation emerged from our review and included cost (e.g. the availability of resources for capital and operational investment); manpower (e.g. the ability to provide training programmes or recruit trained personnel), laboratory infrastructure (e.g. the availability of supplies and consumables or sequencing platforms), bioinformatics requirements (e.g. the availability of valid analysis tools); computational infrastructure (e.g. the availability of storage space or data safety arrangements); and quality control (e.g. the existence of standardized procedures). CONCLUSIONS The decision to incorporate WGS in routine diagnostics involves multiple, sometimes competing, criteria and sub-criteria. Mapping these criteria systematically is an essential stage in developing policies for adoption of this technology, e.g. using a multicriteria decision tool. Future research that will prioritize criteria and sub-criteria that were identified in our review in the context of operational models will inform decision-making at clinical and managerial levels with respect to effective implementation of WGS for routine use. Beyond WGS, similar decision-making challenges are expected with respect to future integration of clinical metagenomics.
Collapse
Affiliation(s)
- V Mintzer
- Department of Health Systems Management, Guilford Glazer Faculty of Business and Management and Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel; Leumit Health Services, Israel
| | - J Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel; ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - T Simon-Tuval
- Department of Health Systems Management, Guilford Glazer Faculty of Business and Management and Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|