201
|
Tischler D, Schlömann M, van Berkel WJH, Gassner GT. FAD C(4a)-hydroxide stabilized in a naturally fused styrene monooxygenase. FEBS Lett 2013; 587:3848-52. [PMID: 24157359 DOI: 10.1016/j.febslet.2013.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
StyA2B represents a new class of styrene monooxygenases that integrates flavin-reductase and styrene-epoxidase activities into a single polypeptide. This naturally-occurring fusion protein offers new avenues for studying and engineering biotechnologically relevant enantioselective biochemical epoxidation reactions. Stopped-flow kinetic studies of StyA2B reported here identify reaction intermediates similar to those reported for the separate reductase and epoxidase components of related two-component systems. Our studies identify substrate epoxidation and elimination of water from the FAD C(4a)-hydroxide as rate-limiting steps in the styrene epoxidation reaction. Efforts directed at accelerating these reaction steps are expected to greatly increase catalytic efficiency and the value of StyA2B as biocatalyst.
Collapse
Affiliation(s)
- Dirk Tischler
- Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands; Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, United States.
| | | | | | | |
Collapse
|
202
|
Catalano J, Sadre-Bazzaz K, Amodeo GA, Tong L, McDermott A. Structural evidence: a single charged residue affects substrate binding in cytochrome P450 BM-3. Biochemistry 2013; 52:6807-15. [PMID: 23829560 PMCID: PMC5945292 DOI: 10.1021/bi4000645] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 BM-3 is a bacterial enzyme with sequence similarity to mammalian P450s that catalyzes the hydroxylation of fatty acids with high efficiency. Enzyme-substrate binding and dynamics has been an important topic of study for cytochromes P450 because most of the crystal structures of substrate-bound structures show the complex in an inactive state. We have determined a new crystal structure for cytochrome P450 BM-3 in complex with N-palmitoylglycine (NPG), which unexpectedly showed a direct bidentate ion pair between NPG and arginine 47 (R47). We further explored the role of R47, the only charged residue in the binding pocket in cytochrome P450 BM-3, through mutagenesis and crystallographic studies. The mutations of R47 to glutamine (R47Q), glutamic acid (R47E), and lysine (R47K) were designed to investigate the role of its charge in binding and catalysis. The oppositely charged R47E mutation had the greatest effect on activity and binding. The crystal structure of R47E BMP shows that the glutamic acid side chain is blocking the entrance to the binding pocket, accounting for NPG's low binding affinity and charge repulsion. For R47Q and R47K BM-3, the mutations caused only a slight change in kcat and a large change in Km and Kd, which suggests that R47 mostly is involved in binding and that our crystal structure, 4KPA , represents an initial binding step in the P450 cycle.
Collapse
Affiliation(s)
- Jaclyn Catalano
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Kianoush Sadre-Bazzaz
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, New York 10027, United States
| | - Gabriele A. Amodeo
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, New York 10027, United States
| | - Liang Tong
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, New York 10027, United States
| | - Ann McDermott
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
203
|
Rabe KS, Niemeyer CM. Screening for cytochrome P450 reactivity with a reporter enzyme. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 987:149-56. [PMID: 23475675 DOI: 10.1007/978-1-62703-321-3_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The identification of novel substrates of cytochrome P450 enzymes by high-throughput screening assays is of utmost importance to further increase the scope of these enzymes for future applications. Most screens are either confined to individual substrate analogues or hampered by low throughput due to elaborate analysis techniques. Here we describe a general high-throughput screening assay that interrogates the activity of P450 enzymes with the aid of catalase as a reporter enzyme.
Collapse
Affiliation(s)
- Kersten S Rabe
- Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Technische Universität Dortmund, Dortmund, Germany
| | | |
Collapse
|
204
|
Tailoring immunoglobulin Fc for highly potent and serum-stable therapeutic antibodies. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0711-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
205
|
Syed K, Porollo A, Miller D, Yadav JS. Rational engineering of the fungal P450 monooxygenase CYP5136A3 to improve its oxidizing activity toward polycyclic aromatic hydrocarbons. Protein Eng Des Sel 2013; 26:553-7. [PMID: 23904501 DOI: 10.1093/protein/gzt036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A promising polycyclic aromatic hydrocarbon-oxidizing P450 CYP5136A3 from Phanerochaete chrysosporium was rationally engineered to enhance its catalytic activity. The residues W129 and L324 found to be critical in substrate recognition were transformed by single (L324F) and double (W129L/L324G, W129L/L324F, W129A/L324G, W129F/L324G and W129F/L324F) mutations, and the engineered enzyme forms were expressed in Pichia pastoris. L324F and W129F/L324F mutations enhanced the oxidation activity toward pyrene and phenanthrene. L324F also altered the regio-selectivity favoring C position 4 over 9 for hydroxylation of phenanthrene. This is the first instance of engineering a eukaryotic P450 for enhanced oxidation of these fused-ring hydrocarbons.
Collapse
Affiliation(s)
- Khajamohiddin Syed
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | | | | | | |
Collapse
|
206
|
Kim KR, Oh DK. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol Adv 2013; 31:1473-85. [PMID: 23860413 DOI: 10.1016/j.biotechadv.2013.07.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
Abstract
Hydroxy fatty acids are widely used in chemical, food, and cosmetic industries as starting materials for the synthesis of polymers and as additives for the manufacture of lubricants, emulsifiers, and stabilizers. They have antibiotic, anti-inflammatory, and anticancer activities and therefore can be applied for medicinal uses. Microbial fatty acid-hydroxylation enzymes, including P450, lipoxygenase, hydratase, 12-hydroxylase, and diol synthase, synthesize regio-specific hydroxy fatty acids. In this article, microbial fatty acid-hydroxylation enzymes, with a focus on region-specificity and diversity, are summarized and the production of mono-, di-, and tri-hydroxy fatty acids is introduced. Finally, the production methods of regio-specific and diverse hydroxy fatty acids, such as gene screening, protein engineering, metabolic engineering, and combinatory biosynthesis, are suggested.
Collapse
Affiliation(s)
- Kyoung-Rok Kim
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-Dong Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | | |
Collapse
|
207
|
Stereo- and regioselectivity in the P450-catalyzed oxidative tandem difunctionalization of 1-methylcyclohexene. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.04.132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
208
|
Ba L, Li P, Zhang H, Duan Y, Lin Z. Engineering of a hybrid biotransformation system for cytochrome P450sca-2 in Escherichia coli. Biotechnol J 2013; 8:785-93. [PMID: 23744742 DOI: 10.1002/biot.201200097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/24/2013] [Accepted: 05/29/2013] [Indexed: 11/09/2022]
Abstract
P450sca-2 is an industrially important enzyme that stereoselectively converts mevastatin into pravastatin. However, little information or engineering efforts have been reported for this enzyme or its redox partner. In this study, we successfully reconstituted the P450sca-2 activity in Escherichia coli by co-expression with putidaredoxin reductase (Pdr) and putidaredoxin (Pdx) from the Pseudomonas putida cytochrome P450cam system. With an HPLC-based screening assay, random mutagenesis was applied to yield a mutant (R8-5C) with a pravastatin yield of the whole-cell biotransformation 4.1-fold that of the wild type. P450sca-2 wild-type and R8-5C were characterized in terms of mevastatin binding and hydroxylation, electron transfer, and circular dichroism spectroscopy. R8-5C showed an active P450 expression level that was 3.8-fold that of the wild type, with relatively smaller changes in the apparent k(cat)/K(M) with respect to the substrate mevastatin (1.3-fold) or Pdx (1.5-fold) compared with the wild type. Thus, the increase in the pravastatin yield of the whole-cell biotransformation primarily came from the improved active P450 expression, which has resulted largely from better heme incorporation, although none of the six mutations of R8-5C are located near the heme active site. These results will facilitate further engineering of this P450sca-2 system and provide useful clues for improving other hybrid P450 systems.
Collapse
Affiliation(s)
- Lina Ba
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, Beijing, P.R. China
| | | | | | | | | |
Collapse
|
209
|
Ba L, Li P, Zhang H, Duan Y, Lin Z. Semi-rational engineering of cytochrome P450sca-2 in a hybrid system for enhanced catalytic activity: Insights into the important role of electron transfer. Biotechnol Bioeng 2013; 110:2815-25. [DOI: 10.1002/bit.24960] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/28/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Lina Ba
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Pan Li
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Hui Zhang
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Yan Duan
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Zhanglin Lin
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| |
Collapse
|
210
|
|
211
|
Pirie CM, De Mey M, Prather KLJ, Ajikumar PK. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis. ACS Chem Biol 2013; 8:662-72. [PMID: 23373985 DOI: 10.1021/cb300634b] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.
Collapse
Affiliation(s)
- Christopher M. Pirie
- Manus Biosynthesis Inc., Suite 102, 790 Memorial Drive, Cambridge, Massachusetts 02139,
United States
| | - Marjan De Mey
- Manus Biosynthesis Inc., Suite 102, 790 Memorial Drive, Cambridge, Massachusetts 02139,
United States
- Centre of
Expertise−Industrial Biotechnology and Biocatalysis, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Kristala L. Jones Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Parayil Kumaran Ajikumar
- Manus Biosynthesis Inc., Suite 102, 790 Memorial Drive, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
212
|
|
213
|
Chang TS, Chao SY, Chen YC. Production of ortho-hydroxydaidzein derivatives by a recombinant strain of Pichia pastoris harboring a cytochrome P450 fusion gene. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
214
|
Ito M, Sato I, Ishizaka M, Yoshida SI, Koitabashi M, Yoshida S, Tsushima S. Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol. Appl Environ Microbiol 2013; 79:1619-28. [PMID: 23275503 PMCID: PMC3591976 DOI: 10.1128/aem.03227-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/20/2012] [Indexed: 11/20/2022] Open
Abstract
Deoxynivalenol (DON) is a natural toxin of fungi that cause Fusarium head blight disease of wheat and other small-grain cereals. DON accumulates in infected grains and promotes the spread of the infection on wheat, posing serious problems to grain production. The elucidation of DON-catabolic genes and enzymes in DON-degrading microbes will provide new approaches to decrease DON contamination. Here, we report a cytochrome P450 system capable of catabolizing DON in Sphingomonas sp. strain KSM1, a DON-utilizing bacterium newly isolated from lake water. The P450 gene ddnA was cloned through an activity-based screening of a KSM1 genomic library. The genes of its redox partner candidates (flavin adenine dinucleotide [FAD]-dependent ferredoxin reductase and mitochondrial-type [2Fe-2S] ferredoxin) were not found adjacent to ddnA; the redox partner candidates were further cloned separately based on conserved motifs. The DON-catabolic activity was reconstituted in vitro in an electron transfer chain comprising the three enzymes and NADH, with a catalytic efficiency (k(cat)/K(m)) of 6.4 mM(-1) s(-1). The reaction product was identified as 16-hydroxy-deoxynivalenol. A bioassay using wheat seedlings revealed that the hydroxylation dramatically reduced the toxicity of DON to wheat. The enzyme system showed similar catalytic efficiencies toward nivalenol and 3-acetyl deoxynivalenol, toxins that frequently cooccur with DON. These findings identify an enzyme system that catabolizes DON, leading to reduced phytotoxicity to wheat.
Collapse
Affiliation(s)
| | | | | | - Shin-ichiro Yoshida
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai, Japan
| | | | | | - Seiya Tsushima
- Natural Resources Inventory Center, National Institute for Agro-Environmental Sciences, Ibaraki, Japan
| |
Collapse
|
215
|
Gatti-Lafranconi P, Hollfelder F. Flexibility and reactivity in promiscuous enzymes. Chembiochem 2013; 14:285-92. [PMID: 23362046 DOI: 10.1002/cbic.201200628] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Indexed: 11/10/2022]
Abstract
Best of both worlds: The interplay of active site reactivity and the dynamic character of proteins allows enzymes to be promiscuous and--sometimes--remarkably efficient at the same time. This review analyses the roles structural flexibility and chemical reactivity play in the catalytic mechanism of selected enzymes.
Collapse
|
216
|
Verma R, Schwaneberg U, Roccatano D. Conformational Dynamics of the FMN-Binding Reductase Domain of Monooxygenase P450BM-3. J Chem Theory Comput 2012; 9:96-105. [DOI: 10.1021/ct300723x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rajni Verma
- School of Engineering and Science,
Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
- Department of Biotechnology,
RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Department of Biotechnology,
RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Danilo Roccatano
- School of Engineering and Science,
Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
217
|
Biotransformation and biocatalysis: roles and applications in the discovery of antimalarials. Future Med Chem 2012; 4:2325-36. [DOI: 10.4155/fmc.12.173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Several strategies to discover new antimalarials have been proposed to augment and complement the conventional drug-discovery paradigm. One approach, which has not yet been fully exploited, is the use of drug biotransformation to identify new active molecules. This concept rests on the use of the biotransformation of drugs to their pharmacologically active metabolites. This approach has been used successfully in human chemotherapy, with the discovery and development of several metabolite-based drugs. This review looks at the contribution that biotransformations can play in antimalarial drug discovery.
Collapse
|
218
|
|
219
|
Armstrong CT, Watkins DW, Anderson JLR. Constructing manmade enzymes for oxygen activation. Dalton Trans 2012; 42:3136-50. [PMID: 23076271 DOI: 10.1039/c2dt32010j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Natural oxygenases catalyse the insertion of oxygen into an impressive array of organic substrates with exquisite efficiency, specificity and power unparalleled by current biomimetic catalysts. However, their true potential to provide tailor-made oxygenation catalysts remains largely untapped, perhaps a consequence of the evolutionary complexity imprinted into their three-dimensional structures through millennia of exposure to parallel selective pressures. In this perspective we describe how we may take inspiration from natural enzymes to design manmade oxygenase enzymes free from such complexity. We explore the differing chemistries accessed by natural oxygenases and outline a stepwise methodology whereby functional elements key to oxygenase catalysis are assembled within artificially designed protein scaffolds.
Collapse
Affiliation(s)
- Craig T Armstrong
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
220
|
Abstract
Diverse oxygenation patterns of natural products generated by secondary metabolic pathways in microorganisms and plants are largely achieved through the tailoring reactions catalysed by cytochrome P450 enzymes (P450s). P450s are a large family of oxidative hemoproteins found in all life forms from prokaryotes to humans. Understanding the reactivity and selectivity of these fascinating C-H bond-activating catalysts will advance their use in generating valuable pharmaceuticals and products for medicine, agriculture and industry. A major strength of this P450 group is its set of established enzyme-substrate relationships, the source of the most detailed knowledge on how P450 enzymes work. Engineering microbial-derived P450 enzymes to accommodate alternative substrates and add new functions continues to be an important near- and long-term practical goal driving the structural characterization of these molecules. Understanding the natural evolution of P450 structure-function should accelerate metabolic engineering and directed evolutionary approaches to enhance diversification of natural product structures and other biosynthetic applications.
Collapse
Affiliation(s)
- Larissa M. Podust
- Department of Pathology, Molecular Structure Group and Center for Discovery and Innovation in Parasitic Diseases (CDIPD), University of California San Francisco, San Francisco, California, 94158, USA. Fax: 415 502 8193; Tel: 415 514 1381;
| | - David H. Sherman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, 48109, USA. Fax: 734-615-3641; Tel: 734 615 9907;
| |
Collapse
|
221
|
Reetz MT. Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.05.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
222
|
Pham SQ, Gao P, Li Z. Engineering of recombinant E. coli cells co-expressing P450pyrTM monooxygenase and glucose dehydrogenase for highly regio- and stereoselective hydroxylation of alicycles with cofactor recycling. Biotechnol Bioeng 2012; 110:363-73. [PMID: 22886996 DOI: 10.1002/bit.24632] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 11/07/2022]
Abstract
E. coli (P450pyrTM-GDH) with dual plasmids, pETDuet containing P450pyr triple mutant I83H/M305Q/A77S (P450pyrTM) and ferredoxin reductase (FdR) genes and pRSFDuet containing glucose dehydrogenase (GDH) and ferredoxin (Fdx) genes, was engineered to show a high activity (12.7 U g⁻¹ cdw) for the biohydroxylation of N-benzylpyrrolidine 1 and a GDH activity of 106 U g⁻¹ protein. The E. coli cells were used as efficient biocatalysts for highly regio- and stereoselective hydroxylation of alicyclic substrates at non-activated carbon atom with enhanced productivity via intracellular recycling of NAD(P)H. Hydroxylation of N-benzylpyrrolidine 1 with resting cells in the presence of glucose showed excellent regio- and stereoselectivity, giving (S)-N-benzyl-3-hydroxypyrrolidine 2 in 98% ee as the sole product in 9.8 mM. The productivity is much higher than that of the same biohydroxylation using E. coli (P450pyrTM)b without expressing GDH. E. coli (P450pyrTM-GDH) was found to be highly regio- and stereoselective for the hydroxylation of N-benzylpyrrolidin-2-one 3, improving the regioselectivity from 90% of the wild-type P450pyr to 100% and giving (S)-N-benzyl-4-hydroxylpyrrolidin-2-one 4 in 99% ee as the sole product. A high activity of 15.5 U g⁻¹ cdw was achieved and (S)-4 was obtained in 19.4 mM. E. coli (P450pyrTM-GDH) was also found to be highly regio- and stereoselective for the hydroxylation of N-benzylpiperidin-2-one 5, increasing the ee of the product (S)-N-benzyl-4-hydroxy-piperidin-2-one 6 to 94% from 33% of the wild-type P450pyr. A high activity of 15.8 U g⁻¹ cdw was obtained and (S)-6 was produced in 3.3 mM as the sole product. E. coli (P450pyrTM-GDH) represents the most productive system known thus far for P450-catalyzed hydroxylations with cofactor recycling, and the hydroxylations with E. coli (P450pyrTM-GDH) provide with simple and useful syntheses of (S)-2, (S)-4, and (S)-6 that are valuable pharmaceutical intermediates and difficult to prepare.
Collapse
Affiliation(s)
- Son Q Pham
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | | | | |
Collapse
|
223
|
Engineering of Human CYP3A Enzymes by Combination of Activating Polymorphic Variants. Appl Biochem Biotechnol 2012; 168:785-96. [DOI: 10.1007/s12010-012-9819-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/01/2012] [Indexed: 01/20/2023]
|
224
|
Venkataraman H, Beer SBAD, Geerke DP, Vermeulen NPE, Commandeur JNM. Regio- and Stereoselective Hydroxylation of Optically Active α-Ionone Enantiomers by Engineered Cytochrome P450 BM3 Mutants. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
225
|
Agudo R, Roiban GD, Reetz MT. Achieving regio- and enantioselectivity of P450-catalyzed oxidative CH activation of small functionalized molecules by structure-guided directed evolution. Chembiochem 2012; 13:1465-73. [PMID: 22711296 DOI: 10.1002/cbic.201200244] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Indexed: 11/08/2022]
Abstract
Directed evolution of the monooxygenase P450-BM3 utilizing iterative saturation mutagenesis at and near the binding site enables a high degree of both regio- and enantioselectivity in the oxidative hydroxylation of cyclohexene-1-carboxylic acid methyl ester. Wild-type P450-BM3 is 84% regioselective for the allylic 3-position with 34% enantioselectivity in favor of the R alcohol. Mutants enabling R selectivity (>95% ee) or S selectivity (>95% ee) were evolved, while reducing other oxidation products and thus maximizing regioselectivity to >93%. Control of the substrate-to-enzyme ratio is necessary for obtaining optimal and reproducible enantioselectivities, an observation which is important in future protein engineering of these mono-oxygenases. An E. coli strain capable of NADPH regeneration was also engineered, simplifying directed evolution of P450 enzymes in general. These synthetic results set the stage for subsequent stereoselective and stereospecific chemical transformations to form more complex compounds, thereby illustrating the viability of combining genetically altered enzymes as catalysts in organic chemistry with traditional chemical methods.
Collapse
Affiliation(s)
- Rubén Agudo
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
226
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
227
|
Venkataraman H, de Beer SBA, van Bergen LAH, van Essen N, Geerke DP, Vermeulen NPE, Commandeur JNM. A Single Active Site Mutation Inverts Stereoselectivity of 16-Hydroxylation of Testosterone Catalyzed by Engineered Cytochrome P450 BM3. Chembiochem 2012; 13:520-3. [DOI: 10.1002/cbic.201100750] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Indexed: 01/08/2023]
|
228
|
Barry SM, Challis GL. Tailoring reactions catalyzed by heme-dependent enzymes: spectroscopic characterization of the L-tryptophan-nitrating cytochrome P450 TxtE. Methods Enzymol 2012; 516:171-94. [PMID: 23034229 DOI: 10.1016/b978-0-12-394291-3.00001-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a truly vast quantity of research articles and textbooks, aimed at a variety of audiences, on cytochromes P450. However, a large amount of specialized terminology has become associated with these enzymes, which can be daunting to those new to the field. The aim of this chapter is to give a brief overview of the functions and importance of cytochromes P450 with particular emphasis on their roles as tailoring enzymes in natural product biosynthetic pathways. Differences between the biosynthetic enzymes and their catabolic counterparts are highlighted. Assays used to investigate substrate binding to cytochromes P450 are described using TxtE, a recently discovered unique nitrating enzyme involved in thaxtomin A biosynthesis, as an example.
Collapse
Affiliation(s)
- Sarah M Barry
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
229
|
Pham SQ, Pompidor G, Liu J, Li XD, Li Z. Evolving P450pyr hydroxylase for highly enantioselective hydroxylation at non-activated carbon atom. Chem Commun (Camb) 2012; 48:4618-20. [DOI: 10.1039/c2cc30779k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
230
|
Urlacher VB, Girhard M. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 2012; 30:26-36. [DOI: 10.1016/j.tibtech.2011.06.012] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 01/14/2023]
|
231
|
Kumar S, Jin M, Weemhoff JL. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes. ACTA ACUST UNITED AC 2012; 3. [PMID: 25298920 PMCID: PMC4186655 DOI: 10.4172/2157-7463.1000127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation.
Collapse
Affiliation(s)
| | - Mengyao Jin
- School of Pharmacy, University of Missouri, USA
| | | |
Collapse
|
232
|
Kumar S. Challenges and Opportunities of Cytochrome P450-Mediated Phytoremediation. JOURNAL OF PETROLEUM & ENVIRONMENTAL BIOTECHNOLOGY 2012; 4:e001. [PMID: 24533228 PMCID: PMC3923629 DOI: 10.4172/2157-7463.s4-e001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Santosh Kumar
- Corresponding author: School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte St., Kansas City, MO 64108, Tel: 816-235-5494; Fax: 816-235-1776;
| |
Collapse
|
233
|
Clouthier CM, Pelletier JN. Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem Soc Rev 2012; 41:1585-605. [DOI: 10.1039/c2cs15286j] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
234
|
Erkelenz M, Kuo CH, Niemeyer CM. DNA-mediated assembly of cytochrome P450 BM3 subdomains. J Am Chem Soc 2011; 133:16111-8. [PMID: 21919448 DOI: 10.1021/ja204993s] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 BM3 is a versatile enzyme, which holds great promise for applications in biocatalysis and biomedicine. We here report on the generation of a hybrid DNA-protein device based on the two subdomains of BM3, the reductase domain BMR and the porphyrin domain BMP. Both subdomains were fused genetically to the HaloTag protein, a self-labeling enzyme, allowing for the bioconjugation with chloroalkane-modified oligonucleotides. The subdomain-DNA-chimeras could be reassembled by complementary oligonucleotides, thus leading to reconstitution of the monooxygenase activity of BM3 holoenzyme, as demonstrated by conversion of the reporter substrate 12-pNCA. Arrangement of the two chimeras on a switchable DNA scaffold allowed one to control the distance between both subdomains, as indicated by the DNA-dependent activity of the holoenzyme. Furthermore, a switchable chimeric device was constructed, in which monooxygenase activity could be turned off by DNA strand displacement. This study demonstrates that P450 BM3 engineering and strategies of DNA nanotechnology can be merged to open up novel ways for the development of novel screening systems or responsive catalysts with potential applications in drug delivery.
Collapse
Affiliation(s)
- Michael Erkelenz
- TU Dortmund, Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Strasse 6, D-44227 Dortmund, Germany
| | | | | |
Collapse
|
235
|
Kille S, Zilly FE, Acevedo JP, Reetz MT. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat Chem 2011; 3:738-43. [PMID: 21860465 DOI: 10.1038/nchem.1113] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/07/2011] [Indexed: 11/09/2022]
Abstract
A current challenge in synthetic organic chemistry is the development of methods that allow the regio- and stereoselective oxidative C-H activation of natural or synthetic compounds with formation of the corresponding alcohols. Cytochrome P450 enzymes enable C-H activation at non-activated positions, but the simultaneous control of both regio- and stereoselectivity is problematic. Here, we demonstrate that directed evolution using iterative saturation mutagenesis provides a means to solve synthetic problems of this kind. Using P450 BM3(F87A) as the starting enzyme and testosterone as the substrate, which results in a 1:1 mixture of the 2β- and 15β-alcohols, mutants were obtained that are 96-97% selective for either of the two regioisomers, each with complete diastereoselectivity. The mutants can be used for selective oxidative hydroxylation of other steroids without performing additional mutagenesis experiments. Molecular dynamics simulations and docking experiments shed light on the origin of regio- and stereoselectivity.
Collapse
Affiliation(s)
- Sabrina Kille
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
236
|
Saccà B, Niemeyer CM. Functionalization of DNA nanostructures with proteins. Chem Soc Rev 2011; 40:5910-21. [DOI: 10.1039/c1cs15212b] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|