201
|
Gutierrez-Aviño FJ, Ferres-Marco D, Dominguez M. The position and function of the Notch-mediated eye growth organizer: the roles of JAK/STAT and four-jointed. EMBO Rep 2009; 10:1051-8. [PMID: 19662079 DOI: 10.1038/embor.2009.140] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 05/14/2009] [Accepted: 05/20/2009] [Indexed: 11/09/2022] Open
Abstract
In many animal systems, the local activation of patterning signals in spatially confined regions (organizers) is crucial for promoting the growth of developing organs. Nevertheless, how organizers are set up and how their activity influences global organ growth remains poorly understood. In the Drosophila eye, local Notch activation establishes a conserved dorsal-ventral organizer that promotes growth. The dorsal selector Iroquois complex defines the position of the organizer at the mid-first instar, and through its ligand, unpaired, the Janus kinase (JAK)/signal transducers and activator of transcription (STAT) pathway is thought to mediate global growth downstream of the organizer. However, here we show that the unpaired/JAK/STAT pathway is actually a fundamental element in the spatial control of the organizer, upstream from Notch activation. Furthermore, we identify four-jointed, a target of the Fat and Hippo tumour-suppressor pathways, as a mediator of the growth controlled by the organizer. These findings redefine the process of organizer formation and function, and they identify four-jointed as a regulatory node, integrating multiple growth-control pathways.
Collapse
Affiliation(s)
- Francisco Jose Gutierrez-Aviño
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, Avd Santiago Ramon y Cajal s/n Crta. Alicante-Valencia km 87, Alicante, Apartado 18, E-03550, San Juan de Alicante, Spain
| | | | | |
Collapse
|
202
|
Abstract
During development, epithelial cells in some tissues acquire a polarity orthogonal to their apical-basal axis. This polarity, referred to as planar cell polarity (PCP), or tissue polarity, is essential for the normal physiological function of many epithelia. Early studies of PCP focused on insect epithelia (Lawrence, 1966 [1]), and the earliest genetic analyses were carried out in Drosophila (Held et al., 1986; Gubb and Garcia-Bellido, 1982 [2,3]). Indeed, most of our mechanistic understanding of PCP derives from the ongoing use of Drosophila as a model system. However, a range of medically important developmental defects and physiological processes are under the control of PCP mechanisms that appear to be at least partially conserved, driving considerable interest in studying PCP both in Drosophila and in vertebrate model systems. Here, I present a model of the PCP signaling mechanism based on studies in Drosophila. I highlight two areas in which our understanding is deficient, and which lead to current confusion in the literature. Future studies that shed light on these areas will substantially enhance our understanding of the fascinating yet challenging problem of understanding the mechanisms that generate PCP.
Collapse
Affiliation(s)
- Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Room R226a, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
203
|
Abstract
The Drosophila tumor suppressors fat and discs overgrown (dco) function within an intercellular signaling pathway that controls growth and polarity. fat encodes a transmembrane receptor, but post-translational regulation of Fat has not been described. We show here that Fat is subject to a constitutive proteolytic processing, such that most or all cell surface Fat comprises a heterodimer of stably associated N- and C-terminal fragments. The cytoplasmic domain of Fat is phosphorylated, and this phosphorylation is promoted by the Fat ligand Dachsous. dco encodes a kinase that influences Fat signaling, and Dco is able to promote the phosphorylation of the Fat intracellular domain in cultured cells and in vivo. Evaluation of dco mutants indicates that they affect Fat's influence on growth and gene expression but not its influence on planar cell polarity. Our observations identify processing and phosphorylation as post-translational modifications of Fat, correlate the phosphorylation of Fat with its activation by Dachsous in the Fat-Warts pathway, and enhance our understanding of the requirement for Dco in Fat signaling.
Collapse
|
204
|
Sopko R, Silva E, Clayton L, Gardano L, Barrios-Rodiles M, Wrana J, Varelas X, Arbouzova NI, Shaw S, Saburi S, Matakatsu H, Blair S, McNeill H. Phosphorylation of the tumor suppressor fat is regulated by its ligand Dachsous and the kinase discs overgrown. Curr Biol 2009; 19:1112-7. [PMID: 19540118 DOI: 10.1016/j.cub.2009.05.049] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 01/15/2023]
Abstract
The Drosophila tumor suppressor gene fat encodes a large cadherin that regulates growth and a form of tissue organization known as planar cell polarity (PCP). Fat regulates growth via the Hippo kinase pathway, which controls expression of genes promoting cell proliferation and inhibiting apoptosis (reviewed in). The Hippo pathway is highly conserved and is implicated in the regulation of mammalian growth and cancer development. Genetic studies suggest that Fat activity is regulated by binding to another large cadherin, Dachsous (Ds). The tumor suppressor discs overgrown (dco)/Casein Kinase I delta/epsilon also regulates Hippo activity and PCP. The biochemical nature of how Fat, Ds, and Dco interact to regulate these pathways is poorly understood. Here we demonstrate that Fat is cleaved to generate 450 kDa and 110 kDa fragments (Fat(450) and Fat(110)). Fat(110) contains the cytoplasmic and transmembrane domain. The cytoplasmic domain of Fat binds Dco and is phosphorylated by Dco at multiple sites. Importantly, we show Fat forms cis-dimers and that Fat phosphorylation is regulated by Dachsous and Dco in vivo. We propose that Ds regulates Dco-dependent phosphorylation of Fat and Fat-associated proteins to control Fat signaling in growth and PCP.
Collapse
Affiliation(s)
- Richelle Sopko
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Bando T, Mito T, Maeda Y, Nakamura T, Ito F, Watanabe T, Ohuchi H, Noji S. Regulation of leg size and shape by the Dachsous/Fat signalling pathway during regeneration. Development 2009; 136:2235-45. [PMID: 19474149 DOI: 10.1242/dev.035204] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An amputated cricket leg regenerates all missing parts with normal size and shape, indicating that regenerating blastemal cells are aware of both their position and the normal size of the leg. However, the molecular mechanisms regulating this process remain elusive. Here, we use a cricket model to show that the Dachsous/Fat (Ds/Ft) signalling pathway is essential for leg regeneration. We found that knockdown of ft or ds transcripts by regeneration-dependent RNA interference (rdRNAi) suppressed proliferation of the regenerating cells along the proximodistal (PD) axis concomitantly with remodelling of the pre-existing stump, making the regenerated legs shorter than normal. By contrast, knockdown of the expanded (ex) or Merlin (Mer) transcripts induced over-proliferation of the regenerating cells, making the regenerated legs longer. These results are consistent with those obtained using rdRNAi during intercalary regeneration induced by leg transplantation. We present a model to explain our results in which the steepness of the Ds/Ft gradient controls growth along the PD axis of the regenerating leg.
Collapse
Affiliation(s)
- Tetsuya Bando
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima city, 770-8506, Japan
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Engler AJ, Humbert PO, Wehrle-Haller B, Weaver VM. Multiscale modeling of form and function. Science 2009; 324:208-12. [PMID: 19359578 DOI: 10.1126/science.1170107] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Topobiology posits that morphogenesis is driven by differential adhesive interactions among heterogeneous cell populations. This paradigm has been revised to include force-dependent molecular switches, cell and tissue tension, and reciprocal interactions with the microenvironment. It is now appreciated that tissue development is executed through conserved decision-making modules that operate on multiple length scales from the molecular and subcellular level through to the cell and tissue level and that these regulatory mechanisms specify cell and tissue fate by modifying the context of cellular signaling and gene expression. Here, we discuss the origin of these decision-making modules and illustrate how emergent properties of adhesion-directed multicellular structures sculpt the tissue, promote its functionality, and maintain its homeostasis through spatial segregation and organization of anchored proteins and secreted factors and through emergent properties of tissues, including tension fields and energy optimization.
Collapse
Affiliation(s)
- Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
207
|
Abstract
Our understanding of organ growth control during development has recently been given a boost by the discovery of the Hippo signalling pathway in Drosophila. This phosphorylation cascade is required for imaginal disc, the organ precursors, to stop growing at the end of larval life; indeed, mutations in the genes encoding the kinases of this pathway, or in their interactors, lead to organ overgrowth. The Hippo pathway acts in repressing the transcription of target genes promoting proliferation and survival. This pathway is thought to integrate many upstream signals, although this is only partially understood. Altogether, integration of these inputs enables a tight control of cell number within organs and hence of organ size. As this pathway is conserved in mammals, it offers new research opportunities to better understand and fight cancer.
Collapse
Affiliation(s)
- Pierre-Luc Bardet
- National Institute for Medical Research (MRC), The Ridgeway, NW7 1AA London, UK.
| |
Collapse
|
208
|
Abstract
Initially discovered in Drosophila, the Hippo (Hpo) pathway has been recognized as a conserved signaling pathway that controls organ size during development by restricting cell growth and proliferation and by promoting apoptosis. In addition, abnormal activities of several Hpo pathway components have been implicated in human cancer. Here, we review the current understanding of the molecular and cellular basis of Hpo signaling in development and tumorigenesis, and discuss how the Hpo pathway integrates spatial and temporal signals to control tissue growth and organ size.
Collapse
Affiliation(s)
- Lei Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
209
|
Lawrence PA, Struhl G, Casal J. Do the protocadherins Fat and Dachsous link up to determine both planar cell polarity and the dimensions of organs? Nat Cell Biol 2008; 10:1379-82. [PMID: 19043429 PMCID: PMC2747020 DOI: 10.1038/ncb1208-1379] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Most, perhaps all cells in epithelial sheets are polarized in the plane of the sheet. This type of polarity, referred to as planar cell polarity (PCP), can be expressed in the orientation of cilia and stereocilia, in oriented outgrowths such as hairs, in the plane of cell division, in directed cell movement and possibly in the orientation of axon extension. Another popular area in current research is growth: there is an attempt to find systems that fix the shape and size of organs. Although both polarity and growth are subject to overall control by morphogen gradients, the mechanisms of this control are almost completely unknown. Here we discuss recent evidence for a 'steepness hypothesis' that links these two apparently disconnected features of animal development.
Collapse
Affiliation(s)
- Peter A Lawrence
- Department of Zoology, Downing Street, University of Cambridge, Cambridge CB2 3EJ, UK.
| | | | | |
Collapse
|
210
|
Goodrich LV. The plane facts of PCP in the CNS. Neuron 2008; 60:9-16. [PMID: 18940584 DOI: 10.1016/j.neuron.2008.09.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 08/27/2008] [Accepted: 09/06/2008] [Indexed: 11/15/2022]
Abstract
Planar cell polarity (PCP) pathways have been defined by their ability to direct the development of obviously polarized cellular architectures. Recent studies indicate that PCP pathways also regulate aspects of cell morphology that are not restricted to the plane of the epithelium. In the developing nervous system, PCP-mediated changes in the cytoskeleton are fundamental to neuronal migration, neuronal polarity, axon guidance, and dendritic arborization, highlighting the importance of "planar polarity" genes for defining the shape of a neuron in all dimensions.
Collapse
Affiliation(s)
- Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
211
|
Crickmore MA, Mann RS. The control of size in animals: insights from selector genes. Bioessays 2008; 30:843-53. [PMID: 18693263 DOI: 10.1002/bies.20806] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
How size is controlled during animal development remains a fascinating problem despite decades of research. Here we review key concepts in size biology and develop our thesis that much can be learned by studying how different organ sizes are differentially scaled by homeotic selector genes. A common theme from initial studies using this approach is that morphogen pathways are modified in numerous ways by selector genes to effect size control. We integrate these results with other pathways known to regulate organ size in developing a comprehensive model for organ size control.
Collapse
Affiliation(s)
- Michael A Crickmore
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
212
|
Badouel C, McNeill H. Apical junctions and growth control in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:755-60. [PMID: 18952051 DOI: 10.1016/j.bbamem.2008.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 08/22/2008] [Accepted: 08/27/2008] [Indexed: 12/25/2022]
Abstract
Recent studies have revealed unexpected links between cell polarity and proliferation, suggesting that the polarized organization of cells is necessary to regulate growth. Drosophila melanogaster is a genetically simple model that is especially suited for the study of polarity and growth control, as polarized tissues undergo a well-defined pattern of proliferation and differentiation during the development. In addition, genetic studies have identified a number of tumor suppressor genes, which later studies have shown to be associated with junctions, or in the regulation of junctional proteins. We will explore in this review the links between growth and apical junction proteins in the regulation of growth control in Drosophila.
Collapse
Affiliation(s)
- Caroline Badouel
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
213
|
Reddy BVVG, Irvine KD. The Fat and Warts signaling pathways: new insights into their regulation,mechanism and conservation. Development 2008; 135:2827-38. [DOI: 10.1242/dev.020974] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A cassette of cytoplasmic Drosophila tumor suppressors, including the kinases Hippo and Warts, has recently been linked to the transmembrane tumor suppressor Fat. These proteins act within interconnected signaling pathways, the principal functions of which are to control the growth and polarity of developing tissues. Recent studies have enhanced our understanding of the basis for signal transduction by Fat and Warts pathways, including the identification of a DNA-binding protein at the end of the pathway, have established the conservation of Fat and Warts signaling from flies to mammals,and have given us new insights into their regulation and biological functions.
Collapse
Affiliation(s)
- B. V. V. G. Reddy
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kenneth D. Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|