201
|
Mason FM, Martin AC. Tuning cell shape change with contractile ratchets. Curr Opin Genet Dev 2011; 21:671-9. [PMID: 21893409 DOI: 10.1016/j.gde.2011.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/03/2011] [Accepted: 08/10/2011] [Indexed: 11/15/2022]
Abstract
Throughout the lifespan of an organism, shape changes are necessary for cells to carry out their essential functions. Nowhere is this more dramatic than embryonic development and gastrulation, when cell shape changes drive large-scale rearrangements in tissue architecture to establish the body plan of the organism. A longstanding question for both cell and developmental biologists has been how are forces generated to change cell shape? Recent studies in both cell culture and developing embryos have combined live imaging, computational analysis, genetics, and biophysics to identify ratchet-like behaviors in actomyosin networks that operate to incrementally change cell shape, drive cell movement, and deform tissues. Our analysis of several cell shape changes leads us to propose four regulatory modules associated with ratchet-like deformations that are tuned to generate diverse cell behaviors, coordinating cell shape change across a tissue.
Collapse
Affiliation(s)
- Frank M Mason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
202
|
Lapébie P, Borchiellini C, Houliston E. Dissecting the PCP pathway: one or more pathways?: Does a separate Wnt-Fz-Rho pathway drive morphogenesis? Bioessays 2011; 33:759-68. [PMID: 21919026 DOI: 10.1002/bies.201100023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Planar cell polarity (PCP), the alignment of cells within 2D tissue planes, involves a set of core molecular regulators highly conserved between animals and cell types. These include the transmembrane proteins Frizzled (Fz) and VanGogh and the cytoplasmic regulators Dishevelled (Dsh) and Prickle. It is widely accepted that this core forms part of a 'PCP pathway' for signal transduction, which can affect cell morphology through activation of an evolutionary ancient regulatory module involving Rho family GTPases and Myosin II, and/or the JNK kinase cascade. We have re-examined the evidence for interactions between the proposed PCP pathway components, and question the placing of the cell morphology regulators in the same pathway as the PCP core. While Fz and Dsh are clearly involved in both PCP and Rho-based cell morphology regulation, available evidence cannot currently discriminate whether these processes are linked mechanistically by a shared Fz/Dsh population, or pass by two distinct pathways.
Collapse
Affiliation(s)
- Pascal Lapébie
- Université Pierre et Marie Curie and CNRS, UMR 7009 Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France.
| | | | | |
Collapse
|
203
|
Abstract
Inositol phospholipids have been implicated in almost all aspects of cellular physiology including spatiotemporal regulation of cellular signaling, acquisition of cellular polarity, specification of membrane identity, cytoskeletal dynamics, and regulation of cellular adhesion, motility, and cytokinesis. In this review, we examine the critical role phosphoinositides play in these processes to execute the establishment and maintenance of cellular architecture. Epithelial tissues perform essential barrier and transport functions in almost all major organs. Key to their development and function is the establishment of epithelial cell polarity. We place a special emphasis on highlighting recent studies demonstrating phosphoinositide regulation of epithelial cell polarity and how individual cells use phosphoinositides to further organize into epithelial tissues.
Collapse
Affiliation(s)
- Annette Shewan
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143-2140, USA
| | | | | |
Collapse
|
204
|
Sawyer JK, Choi W, Jung KC, He L, Harris NJ, Peifer M. A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension. Mol Biol Cell 2011; 22:2491-508. [PMID: 21613546 PMCID: PMC3135475 DOI: 10.1091/mbc.e11-05-0411] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 01/17/2023] Open
Abstract
Integrating individual cell movements to create tissue-level shape change is essential to building an animal. We explored mechanisms of adherens junction (AJ):cytoskeleton linkage and roles of the linkage regulator Canoe/afadin during Drosophila germband extension (GBE), a convergent-extension process elongating the body axis. We found surprising parallels between GBE and a quite different morphogenetic movement, mesoderm apical constriction. Germband cells have an apical actomyosin network undergoing cyclical contractions. These coincide with a novel cell shape change--cell extension along the anterior-posterior (AP) axis. In Canoe's absence, GBE is disrupted. The apical actomyosin network detaches from AJs at AP cell borders, reducing coordination of actomyosin contractility and cell shape change. Normal GBE requires planar polarization of AJs and the cytoskeleton. Canoe loss subtly enhances AJ planar polarity and dramatically increases planar polarity of the apical polarity proteins Bazooka/Par3 and atypical protein kinase C. Changes in Bazooka localization parallel retraction of the actomyosin network. Globally reducing AJ function does not mimic Canoe loss, but many effects are replicated by global actin disruption. Strong dose-sensitive genetic interactions between canoe and bazooka are consistent with them affecting a common process. We propose a model in which an actomyosin network linked at AP AJs by Canoe and coupled to apical polarity proteins regulates convergent extension.
Collapse
Affiliation(s)
- Jessica K. Sawyer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Wangsun Choi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kuo-Chen Jung
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Li He
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore MD 21205
| | - Nathan J. Harris
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
205
|
A novel function for the PAR complex in subcellular morphogenesis of tracheal terminal cells in Drosophila melanogaster. Genetics 2011; 189:153-64. [PMID: 21750259 DOI: 10.1534/genetics.111.130351] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The processes that generate cellular morphology are not well understood. To investigate this problem, we use Drosophila melanogaster tracheal terminal cells, which undergo two distinct morphogenetic processes: subcellular branching morphogenesis and subcellular apical lumen formation. Here we show these processes are regulated by components of the PAR-polarity complex. This complex, composed of the proteins Par-6, Bazooka (Par-3), aPKC, and Cdc42, is best known for roles in asymmetric cell division and apical/basal polarity. We find Par-6, Bazooka, and aPKC, as well as known interactions between them, are required for subcellular branch initiation, but not for branch outgrowth. By analysis of single and double mutants, and isolation of two novel alleles of Par-6, one of which specifically truncates the Par-6 PDZ domain, we conclude that dynamic interactions between apical PAR-complex members control the branching pattern of terminal cells. These data suggest that canonical apical PAR-complex activity is required for subcellular branching morphogenesis. In addition, we find the PAR proteins are downstream of the FGF pathway that controls terminal cell branching. In contrast, we find that while Par-6 and aPKC are both required for subcellular lumen formation, neither Bazooka nor a direct interaction between Par-6 and aPKC is needed for this process. Thus a novel, noncanonical role for the polarity proteins Par-6 and aPKC is used in formation of this subcellular apical compartment. Our results demonstrate that proteins from the PAR complex can be deployed independently within a single cell to control two different morphogenetic processes.
Collapse
|
206
|
Willin and Par3 cooperatively regulate epithelial apical constriction through aPKC-mediated ROCK phosphorylation. Nat Cell Biol 2011; 13:860-6. [PMID: 21685893 DOI: 10.1038/ncb2274] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/06/2011] [Indexed: 12/16/2022]
Abstract
Apical-domain constriction is important for regulating epithelial morphogenesis. Epithelial cells are connected by apical junctional complexes (AJCs) that are lined with circumferential actomyosin cables. The contractility of these cables is regulated by Rho-associated kinases (ROCKs). Here, we report that Willin (a FERM-domain protein) and Par3 (a polarity-regulating protein) cooperatively regulate ROCK-dependent apical constriction. We found that Willin recruits aPKC and Par6 to the AJCs, independently of Par3. Simultaneous depletion of Willin and Par3 completely removed aPKC and Par6 from the AJCs and induced apical constriction. Induced constriction was through upregulation of the level of AJC-associated ROCKs, which was due to loss of aPKC. Our results indicate that aPKC phosphorylates ROCK and suppresses its junctional localization, thereby allowing cells to retain normally shaped apical domains. Thus, we have uncovered a Willin/Par3-aPKC-ROCK pathway that controls epithelial apical morphology.
Collapse
|
207
|
Monier B, Pélissier-Monier A, Sanson B. Establishment and maintenance of compartmental boundaries: role of contractile actomyosin barriers. Cell Mol Life Sci 2011; 68:1897-910. [PMID: 21437644 PMCID: PMC11114499 DOI: 10.1007/s00018-011-0668-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/12/2011] [Accepted: 03/08/2011] [Indexed: 12/29/2022]
Abstract
During animal development, tissues and organs are partitioned into compartments that do not intermix. This organizing principle is essential for correct tissue morphogenesis. Given that cell sorting defects during compartmentalization in humans are thought to cause malignant invasion and congenital defects such as cranio-fronto-nasal syndrome, identifying the molecular and cellular mechanisms that keep cells apart at boundaries between compartments is important. In both vertebrates and invertebrates, transcription factors and short-range signalling pathways, such as EPH/Ephrin, Hedgehog, or Notch signalling, govern compartmental cell sorting. However, the mechanisms that mediate cell sorting downstream of these factors have remained elusive for decades. Here, we review recent data gathered in Drosophila that suggest that the generation of cortical tensile forces at compartmental boundaries by the actomyosin cytoskeleton could be a general mechanism that inhibits cell mixing between compartments.
Collapse
Affiliation(s)
- Bruno Monier
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY UK
- Present Address: Institut de Biologie du Développement de Marseille-Luminy, UMR6216, Campus de Luminy, Case 907, 13288 Marseille cedex 9, France
| | - Anne Pélissier-Monier
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY UK
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Present Address: Institut de Biologie du Développement de Marseille-Luminy, UMR6216, Campus de Luminy, Case 907, 13288 Marseille cedex 9, France
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY UK
| |
Collapse
|
208
|
Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. ACTA ACUST UNITED AC 2011; 192:907-17. [PMID: 21422226 PMCID: PMC3063136 DOI: 10.1083/jcb.201009141] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The epithelial cadherin (E-cadherin)–catenin complex binds to cytoskeletal components and regulatory and signaling molecules to form a mature adherens junction (AJ). This dynamic structure physically connects neighboring epithelial cells, couples intercellular adhesive contacts to the cytoskeleton, and helps define each cell’s apical–basal axis. Together these activities coordinate the form, polarity, and function of all cells in an epithelium. Several molecules regulate AJ formation and integrity, including Rho family GTPases and Par polarity proteins. However, only recently, with the development of live-cell imaging, has the extent to which E-cadherin is actively turned over at junctions begun to be appreciated. This turnover contributes to junction formation and to the maintenance of epithelial integrity during tissue homeostasis and remodeling.
Collapse
Affiliation(s)
- Buzz Baum
- University College London, London WC1E 6BT, England, UK
| | | |
Collapse
|
209
|
Nemo kinase phosphorylates β-catenin to promote ommatidial rotation and connects core PCP factors to E-cadherin-β-catenin. Nat Struct Mol Biol 2011; 18:665-72. [PMID: 21552260 PMCID: PMC3109122 DOI: 10.1038/nsmb.2049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 02/17/2011] [Indexed: 01/13/2023]
Abstract
Frizzled planar cell polarity (PCP) signaling regulates cell motility in several tissues, including ommatidial rotation in Drosophila melanogaster. The Nemo kinase (Nlk in vertebrates) has also been linked to cell-motility regulation and ommatidial rotation but its mechanistic role(s) during rotation remain obscure. We show that nemo functions throughout the entire rotation movement, increasing the rotation rate. Genetic and molecular studies indicate that Nemo binds both the core PCP factor complex of Strabismus-Prickle, as well as the E-cadherin-β-catenin (E-cadherin-Armadillo in Drosophila) complex. These two complexes colocalize and, like Nemo, also promote rotation. Strabismus (also called Vang) binds and stabilizes Nemo asymmetrically within the ommatidial precluster; Nemo and β-catenin then act synergistically to promote rotation, which is mediated in vivo by Nemo's phosphorylation of β-catenin. Our data suggest that Nemo serves as a conserved molecular link between core PCP factors and E-cadherin-β-catenin complexes, promoting cell motility.
Collapse
|
210
|
Levayer R, Pelissier-Monier A, Lecuit T. Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nat Cell Biol 2011; 13:529-40. [PMID: 21516109 DOI: 10.1038/ncb2224] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 02/14/2011] [Indexed: 11/09/2022]
Abstract
E-cadherin plays a pivotal role in epithelial morphogenesis. It controls the intercellular adhesion required for tissue cohesion and anchors the actomyosin-driven tension needed to change cell shape. In the early Drosophila embryo, Myosin-II (Myo-II) controls the planar polarized remodelling of cell junctions and tissue extension. The E-cadherin distribution is also planar polarized and complementary to the Myosin-II distribution. Here we show that E-cadherin polarity is controlled by the polarized regulation of clathrin- and dynamin-mediated endocytosis. Blocking E-cadherin endocytosis resulted in cell intercalation defects. We delineate a pathway that controls the initiation of E-cadherin endocytosis through the regulation of AP2 and clathrin coat recruitment by E-cadherin. This requires the concerted action of the formin Diaphanous (Dia) and Myosin-II. Their activity is controlled by the guanine exchange factor RhoGEF2, which is planar polarized and absent in non-intercalating regions. Finally, we provide evidence that Dia and Myo-II control the initiation of E-cadherin endocytosis by regulating the lateral clustering of E-cadherin.
Collapse
Affiliation(s)
- Romain Levayer
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy, case 907. 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
211
|
Abstract
Cell polarity is essential for cells to divide asymmetrically, form spatially restricted subcellular structures and participate in three-dimensional multicellular organization. PAR proteins are conserved polarity regulators that function by generating cortical landmarks that establish dynamic asymmetries in the distribution of effector proteins. Here, we review recent findings on the role of PAR proteins in cell polarity in C. elegans and Drosophila, and emphasize the links that exist between PAR networks and cytoskeletal proteins that both regulate PAR protein localization and act as downstream effectors to elaborate polarity within the cell.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
212
|
Horikoshi Y, Hamada S, Ohno S, Suetsugu S. Phosphoinositide binding by par-3 involved in par-3 localization. Cell Struct Funct 2011; 36:97-102. [PMID: 21467691 DOI: 10.1247/csf.11005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Electrostatic interactions between lipids and proteins control many cellular events. We found that phospholipids, including phosphatidylinositol 3-phosphate, phosphatidylinositol 4,5-bisphosphate, and phosphatidylinositol 3,4,5-triphosphate, bound to the C-terminal coiled-coil region of par-3 at conserved, basic residues. We identified K1013 and K1014 as the phosphoinositide binding site, because the K1013E/K1014E mutation of rat par-3 abolished its lipid binding. Importantly, the K1013E/K1014E par-3 mutant exhibited significantly weaker localization at the cell-cell junctions than the wild-type par-3. Fluorescence recovery after photo-bleaching analyses confirmed the faster turnover of mutant par-3 at cell-cell junctions. The treatment of cells with an inhibitor of phosphatidylinositol 3-kinases partially increased the turnover of par-3. These data suggested that the putative phospholipid binding by par-3 is important for its localization at cell-cell junctions.
Collapse
Affiliation(s)
- Yosuke Horikoshi
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
213
|
Abstract
During morphogenesis, tissues are shaped by cell behaviors such as apical cell constriction and cell intercalation, which are the result of cell intrinsic forces, but are also shaped passively by forces acting on the cells. The latter extrinsic forces can be produced either within the deforming tissue by the tissue-scale integration of intrinsic forces, or outside the tissue by other tissue movements or by fluid flows. Here we review the intrinsic and extrinsic forces that sculpt the epithelium of early Drosophila embryos, focusing on three conserved morphogenetic processes: tissue internalization, axis extension, and segment boundary formation. Finally, we look at how the actomyosin cytoskeleton forms force-generating structures that power these three morphogenetic events at the cell and the tissue scales.
Collapse
|
214
|
Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B, Sahai E. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 2010; 13:49-58. [PMID: 21170030 PMCID: PMC3018349 DOI: 10.1038/ncb2133] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 11/02/2010] [Indexed: 12/16/2022]
Abstract
Collective cell migration occurs in a range of contexts: cancer cells frequently invade in cohorts while retaining cell-cell junctions. Here we show that collective cancer cell invasion depends on reducing actomyosin contractility at sites of cell-cell contact. When actomyosin is not down-regulated at cell-cell contacts migrating cells lose cohesion. We provide a novel molecular mechanism for this down-regulation. Depletion of Discoidin Domain Receptor 1 (DDR1) blocks collective cancer cell invasion in a range of 2D, 3D and ‘organotypic’ models. DDR1 co-ordinates the Par3/6 cell polarity complex through its C-terminus binding PDZ domains in Par3 and Par6. The DDR1/Par3/6 complex controls the localisation of RhoE to cell-cell contacts where it antagonizes ROCK-driven actomyosin contractility. Depletion of DDR1, Par3, Par6 or RhoE leads to increased actomyosin at cell-cell contacts, a loss of cell-cell cohesion and defective collective cell invasion.
Collapse
Affiliation(s)
- Cristina Hidalgo-Carcedo
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|