201
|
To TT, Witten PE, Huysseune A, Winkler C. An adult osteopetrosis model in medaka reveals the importance of osteoclast function for bone remodeling in teleost fish. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:68-75. [PMID: 26334373 DOI: 10.1016/j.cbpc.2015.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 02/07/2023]
Abstract
Osteoclasts play important roles during bone growth and in maintaining bone health and bone homeostasis. Dysfunction or lack of osteoclasts leads to increased bone mass and osteopetrosis phenotypes in mouse and human. Here we report a severe osteopetrosis-like phenotype in transgenic medaka fish, in which membrane bound EGFP (mEGFP) was expressed in osteoclasts under control of the cathepsin K promoter (ctsk:mEGFP). In contrast to reporter lines with GFP expression in the cytoplasm of osteoclasts, adult fish of the mEGFP line developed bone defects indicative for an osteoclast dysfunction. Activity of tartrate-resistant acid phosphatase (TRAP) was down-regulated and excess bone was observed in most parts of the skeleton. The osteopetrotic phenotype was particularly obvious at the neural and haemal arches that failed to increase their volume in growing fish. Excess bone caused severe constriction of the spinal cord and the ventral aorta. The continuation of tooth development and the failure to shed teeth resulted in severe hyperdontia. Interestingly, at the vertebral column vertebral body arches displayed a severe osteopetrosis, while vertebral centra had no or only a mild osteopetrotic phenotype. This confirms previous reports from cichlids that, different from the arches, allometric growth of fish vertebral centra initially does not depend on the action of osteoclasts. Independent developmental mechanism that shapes arches and vertebral centra can also lend support to the hypothesis that vertebral centra and arches function as independent developmental modules. Together, this medaka osteopetrosis model confirms the importance of proper osteoclast function during normal skeletal development in teleost fish that requires bone modeling and remodeling.
Collapse
Affiliation(s)
- Thuy Thanh To
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; NUS Centre for Bioimaging Sciences (CBIS), Singapore
| | | | | | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; NUS Centre for Bioimaging Sciences (CBIS), Singapore.
| |
Collapse
|
202
|
Intubation-based anesthesia for long-term time-lapse imaging of adult zebrafish. Nat Protoc 2015; 10:2064-73. [DOI: 10.1038/nprot.2015.130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
203
|
Hesse RG, Kouklis GK, Ahituv N, Pomerantz JH. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration. eLife 2015; 4:e07702. [PMID: 26575287 PMCID: PMC4657621 DOI: 10.7554/elife.07702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/02/2015] [Indexed: 12/29/2022] Open
Abstract
The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species' regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF -p53 axis activation.
Collapse
Affiliation(s)
- Robert G Hesse
- Department of Surgery,
Division of Plastic Surgery, Program in Craniofacial Biology,
University of California, San Francisco,
San
Francisco, United States
| | - Gayle K Kouklis
- Department of Surgery,
Division of Plastic Surgery, Program in Craniofacial Biology,
University of California, San Francisco,
San
Francisco, United States
| | - Nadav Ahituv
- Department of
Bioengineering and Therapeutic Sciences and Institute for Human
Genetics, University of California, San
Francisco, San
Francisco, United States
| | - Jason H Pomerantz
- Departments of Surgery
and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial
Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, University of California, San
Francisco, San
Francisco, United States
| |
Collapse
|
204
|
Abstract
Bone defects do not heal in 5-10% of the fractures. In order to enhance bone regeneration, drug delivery systems are needed. They comprise a scaffold with or without inducing factors and/or cells. To test these drug delivery systems before application in patients, they finally need to be tested in animal models. The choice of animal model depends on the main research question; is a functional or mechanistic evaluation needed? Furthermore, which type of bone defects are investigated: load-bearing (i.e. orthopedic) or non-load-bearing (i.e. craniomaxillofacial)? This determines the type of model and in which type of animal. The experiments need to be set-up using the 3R principle and must be reported following the ARRIVE guidelines.
Collapse
|
205
|
Mariotti M, Carnovali M, Banfi G. Danio rerio: the Janus of the bone from embryo to scale. ACTA ACUST UNITED AC 2015; 12:188-94. [PMID: 26604948 DOI: 10.11138/ccmbm/2015.12.2.188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Danio rerio (zebrafish), like the Roman god Janus, is an old animal model which is recently emerged and looks to the future with an increasing scientific success. Unlike other traditional animal models, zebrafish represents a versatile way to approach the study of the skeleton. Transparency of the larval stage, genetic manipulability and unique anatomical structures (scales) makes zebrafish a powerful and versatile instrument to investigate the bone tissue in terms of structure and function. Like Janus, zebrafish offers two different faces, or better, two models in one animal: larval and adult stage. The embryo can be used to isolate new genes involved in osteogenesis by large-scale mutagenesis screenings. The behavior of bone cells and genes in osteogenesis can be investigate by using transgenic lines, vital dyes, mutants and traditional molecular biology techniques. The adult zebrafish represents an important resource to study the pathways related to the bone metabolism and turnover. In particular, the properties of the caudal fin allow to study mechanisms of bone regeneration and reparation whereas the elasmoid scale represents an unique tool to investigate the bone metabolism under physiological or pathological conditions.
Collapse
Affiliation(s)
- Massimo Mariotti
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy ; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | - Giuseppe Banfi
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy ; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
206
|
Abstract
The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research.
Collapse
|
207
|
Osteogenic programs during zebrafish fin regeneration. BONEKEY REPORTS 2015; 4:745. [PMID: 26421148 DOI: 10.1038/bonekey.2015.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/22/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022]
Abstract
Recent advances in genomic, screening and imaging technologies have provided new opportunities to examine the molecular and cellular landscape underlying human physiology and disease. In the context of skeletal research, technologies for systems genetics, high-throughput screening and high-content imaging can aid an unbiased approach when searching for new biological, pathological or therapeutic pathways. However, these approaches necessitate the use of specialized model systems that rapidly produce a phenotype, are easy to manipulate, and amenable to optical study, all while representing mammalian bone physiologies at the molecular and cellular levels. The emerging use of zebrafish (Danio rerio) for modeling human disease highlights its potential to accelerate therapeutic and pathway discovery in the mammalian skeleton. In this review, we consider the potential value of zebrafish fin ray regeneration (a rapid, genetically tractable and optically transparent model of intramembranous ossification) as a translational model for such studies.
Collapse
|
208
|
Saera-Vila A, Kasprick DS, Junttila TL, Grzegorski SJ, Louie KW, Chiari EF, Kish PE, Kahana A. Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish. Invest Ophthalmol Vis Sci 2015; 56:4977-93. [PMID: 26230763 DOI: 10.1167/iovs.14-16103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish. METHODS Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury. RESULTS Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI). Following injury, the residual muscle stump was replaced by a mesenchymal cell population that lost cell polarity and expressed mesenchymal markers. Next, a robust proliferative burst repopulated the area of the regenerating muscle. Regenerating cells expressed myod, identifying them as myoblasts. However, both immunofluorescence and electron microscopy failed to identify classic Pax7-positive satellite cells in control or injured EOMs. Instead, some proliferating nuclei were noted to express mef2c at the very earliest point in the proliferative burst, suggesting myonuclear reprogramming and dedifferentiation. Bromodeoxyuridine (BrdU) labeling of regenerating cells followed by a second myectomy without repeat labeling resulted in a twice-regenerated muscle broadly populated by BrdU-labeled nuclei with minimal apparent dilution of the BrdU signal. A double-pulse experiment using BrdU and 5-ethynyl-2'-deoxyuridine (EdU) identified double-labeled nuclei, confirming the shared progenitor lineage. Rapid regeneration occurred despite a cell cycle length of 19.1 hours, whereas 72% of the regenerating muscle nuclei entered the cell cycle by 48 hours post injury (HPI). Dextran lineage tracing revealed that residual myocytes were responsible for muscle regeneration. CONCLUSIONS EOM regeneration in adult zebrafish occurs by dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. A mechanistic understanding of myocyte reprogramming may facilitate novel approaches to the development of molecular tools for targeted therapeutic regeneration in skeletal muscle disorders and beyond.
Collapse
|
209
|
Duran I, Csukasi F, Taylor S, Krakow D, Becerra J, Bombarely A, Marí-Beffa M. Collagen duplicate genes of bone and cartilage participate during regeneration of zebrafish fin skeleton. Gene Expr Patterns 2015; 19:60-9. [DOI: 10.1016/j.gep.2015.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/14/2015] [Accepted: 07/31/2015] [Indexed: 11/17/2022]
|
210
|
Govindan J, Iovine MK. Dynamic remodeling of the extra cellular matrix during zebrafish fin regeneration. Gene Expr Patterns 2015; 19:21-9. [DOI: 10.1016/j.gep.2015.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/01/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022]
|
211
|
Blum N, Begemann G. Osteoblast de- and redifferentiation are controlled by a dynamic response to retinoic acid during zebrafish fin regeneration. Development 2015; 142:2894-903. [PMID: 26253409 DOI: 10.1242/dev.120204] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 07/27/2015] [Indexed: 12/25/2022]
Abstract
Zebrafish restore amputated fins by forming tissue-specific blastema cells that coordinately regenerate the lost structures. Fin amputation triggers the synthesis of several diffusible signaling factors that are required for regeneration, raising the question of how cell lineage-specific programs are protected from regenerative crosstalk between neighboring fin tissues. During fin regeneration, osteoblasts revert from a non-cycling, mature state to a cycling, preosteoblastic state to establish a pool of progenitors within the blastema. After several rounds of proliferation, preosteoblasts redifferentiate to produce new bone. Blastema formation and proliferation are driven by the continued synthesis of retinoic acid (RA). Here, we find that osteoblast dedifferentiation and redifferentiation are inhibited by RA signaling, and we uncover how the bone regenerative program is achieved against a background of massive RA synthesis. Stump osteoblasts manage to contribute to the blastema by upregulating expression of the RA-degrading enzyme cyp26b1. Redifferentiation is controlled by a presumptive gradient of RA, in which high RA levels towards the distal tip of the blastema suppress redifferentiation. We show that this might be achieved through a mechanism involving repression of Bmp signaling and promotion of Wnt/β-catenin signaling. In turn, cyp26b1(+) fibroblast-derived blastema cells in the more proximal regenerate serve as a sink to reduce RA levels, thereby allowing differentiation of neighboring preosteoblasts. Our findings reveal a mechanism explaining how the osteoblast regenerative program is protected from adverse crosstalk with neighboring fibroblasts that advances our understanding of the regulation of bone repair by RA.
Collapse
Affiliation(s)
- Nicola Blum
- Developmental Biology, University of Bayreuth, Bayreuth 95440, Germany RTG1331, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Gerrit Begemann
- Developmental Biology, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
212
|
Blum N, Begemann G. Retinoic acid signaling spatially restricts osteoblasts and controls ray-interray organization during zebrafish fin regeneration. Development 2015; 142:2888-93. [PMID: 26253402 DOI: 10.1242/dev.120212] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 07/22/2015] [Indexed: 12/25/2022]
Abstract
The zebrafish caudal fin consists of repeated units of bony rays separated by soft interray tissue, an organization that must be faithfully re-established during fin regeneration. How and why regenerating rays respect ray-interray boundaries, thus extending only the existing bone, has remained unresolved. Here, we demonstrate that a retinoic acid (RA)-degrading niche is established by Cyp26a1 in the proximal basal epidermal layer that orchestrates ray-interray organization by spatially restricting osteoblasts. Disruption of this niche causes preosteoblasts to ignore ray-interray boundaries and to invade neighboring interrays where they form ectopic bone. Concomitantly, non-osteoblastic blastema cells and regenerating blood vessels spread into the interrays, resulting in overall disruption of ray-interray organization and irreversible inhibition of fin regeneration. The cyp26a1-expressing niche plays another important role during subsequent regenerative outgrowth, where it facilitates the Shha-promoted proliferation of osteoblasts. Finally, we show that the previously observed distal shift of ray bifurcations in regenerating fins upon RA treatment or amputation close to the bifurcation can be explained by inappropriate preosteoblast alignment and does not necessarily require putative changes in proximodistal information. Our findings uncover a mechanism regulating preosteoblast alignment and maintenance of ray-interray boundaries during fin regeneration.
Collapse
Affiliation(s)
- Nicola Blum
- Developmental Biology, University of Bayreuth, Bayreuth 95440, Germany RTG1331, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Gerrit Begemann
- Developmental Biology, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
213
|
Mateus R, Lourenço R, Fang Y, Brito G, Farinho A, Valério F, Jacinto A. Control of tissue growth by Yap relies on cell density and F-actin in zebrafish fin regeneration. Development 2015. [PMID: 26209644 DOI: 10.1242/dev.119701] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Caudal fin regeneration is characterized by a proliferation boost in the mesenchymal blastema that is controlled precisely in time and space. This allows a gradual and robust restoration of original fin size. However, how this is established and regulated is not well understood. Here, we report that Yap, the Hippo pathway effector, is a chief player in this process: functionally manipulating Yap during regeneration dramatically affects cell proliferation and expression of key signaling pathways, impacting regenerative growth. The intracellular location of Yap is tightly associated with different cell densities along the blastema proximal-distal axis, which correlate with alterations in cell morphology, cytoskeleton and cell-cell contacts in a gradient-like manner. Importantly, Yap inactivation occurs in high cell density areas, conditional to F-actin distribution and polymerization. We propose that Yap is essential for fin regeneration and that its function is dependent on mechanical tension, conferred by a balancing act of cell density and cytoskeleton activity.
Collapse
Affiliation(s)
- Rita Mateus
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Raquel Lourenço
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Yi Fang
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Gonçalo Brito
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Ana Farinho
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Fábio Valério
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Antonio Jacinto
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto Gulbenkian Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| |
Collapse
|
214
|
Thorimbert V, König D, Marro J, Ruggiero F, Jazwinska A. Bone morphogenetic protein signaling promotes morphogenesis of blood vessels, wound epidermis, and actinotrichia during fin regeneration in zebrafish. FASEB J 2015; 29:4299-312. [DOI: 10.1096/fj.15-272955] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/22/2015] [Indexed: 11/11/2022]
Affiliation(s)
| | - Désirée König
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Jan Marro
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle‐École Normale Supérieure de LyonLyonFrance
| | - Anna Jazwinska
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
215
|
Hedgehog Signaling during Appendage Development and Regeneration. Genes (Basel) 2015; 6:417-35. [PMID: 26110318 PMCID: PMC4488672 DOI: 10.3390/genes6020417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 12/29/2022] Open
Abstract
Regulatory networks that govern embryonic development have been well defined. While a common hypothesis supports the notion that the embryonic regulatory cascades are reexpressed following injury and tissue regeneration, the mechanistic regulatory pathways that mediate the regenerative response in higher organisms remain undefined. Relative to mammals, lower vertebrates, including zebrafish and newts, have a tremendous regenerative capacity to repair and regenerate a number of organs including: appendages, retina, heart, jaw and nervous system. Elucidation of the pathways that govern regeneration in these lower organisms may provide cues that will enhance the capacity for the regeneration of mammalian organs. Signaling pathways, such as the hedgehog pathway, have been shown to play critical functions during development and during regeneration in lower organisms. These signaling pathways have been shown to modulate multiple processes including cellular origin, positional identity and cellular maturation. The present review will focus on the cellular and molecular regulation of the hedgehog (HH) signaling pathway and its interaction with other signaling factors during appendage development and regeneration.
Collapse
|
216
|
Jungke P, Hammer J, Hans S, Brand M. Isolation of Novel CreERT2-Driver Lines in Zebrafish Using an Unbiased Gene Trap Approach. PLoS One 2015; 10:e0129072. [PMID: 26083735 PMCID: PMC4471347 DOI: 10.1371/journal.pone.0129072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/04/2015] [Indexed: 01/01/2023] Open
Abstract
Gene manipulation using the Cre/loxP-recombinase system has been successfully employed in zebrafish to study gene functions and lineage relationships. Recently, gene trapping approaches have been applied to produce large collections of transgenic fish expressing conditional alleles in various tissues. However, the limited number of available cell- and tissue-specific Cre/CreERT2-driver lines still constrains widespread application in this model organism. To enlarge the pool of existing CreERT2-driver lines, we performed a genome-wide gene trap screen using a Tol2-based mCherry-T2a-CreERT2 (mCT2aC) gene trap vector. This cassette consists of a splice acceptor and a mCherry-tagged variant of CreERT2 which enables simultaneous labeling of the trapping event, as well as CreERT2 expression from the endogenous promoter. Using this strategy, we generated 27 novel functional CreERT2-driver lines expressing in a cell- and tissue-specific manner during development and adulthood. This study summarizes the analysis of the generated CreERT2-driver lines with respect to functionality, expression, integration, as well as associated phenotypes. Our results significantly enlarge the existing pool of CreERT2-driver lines in zebrafish and combined with Cre-dependent effector lines, the new CreERT2-driver lines will be important tools to manipulate the zebrafish genome.
Collapse
Affiliation(s)
- Peggy Jungke
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Juliane Hammer
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Stefan Hans
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Michael Brand
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
217
|
Akiva A, Malkinson G, Masic A, Kerschnitzki M, Bennet M, Fratzl P, Addadi L, Weiner S, Yaniv K. On the pathway of mineral deposition in larval zebrafish caudal fin bone. Bone 2015; 75:192-200. [PMID: 25725266 DOI: 10.1016/j.bone.2015.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/08/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
A poorly understood aspect of bone biomineralization concerns the mechanisms whereby ions are sequestered from the environment, concentrated, and deposited in the extracellular matrix. In this study, we follow mineral deposition in the caudal fin of the zebrafish larva in vivo. Using fluorescence and cryo-SEM-microscopy, in combination with Raman and XRF spectroscopy, we detect the presence of intracellular mineral particles located between bones, and in close association with blood vessels. Calcium-rich particles are also located away from the mineralized bone, and these are also in close association with blood vessels. These observations challenge the view that mineral formation is restricted to osteoblast cells juxtaposed to bone, or to the extracellular matrix. Our results, derived from observations performed in living animals, contribute a new perspective to the comprehensive mechanism of bone formation in vertebrates, from the blood to the bone. More broadly, these findings may shed light on bone mineralization processes in other vertebrates, including humans.
Collapse
Affiliation(s)
- Anat Akiva
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Malkinson
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Admir Masic
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Michael Kerschnitzki
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mathieu Bennet
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
218
|
Lund TC, Patrinostro X, Kramer AC, Stadem P, Higgins LA, Markowski TW, Wroblewski MS, Lidke DS, Tolar J, Blazar BR. sdf1 Expression reveals a source of perivascular-derived mesenchymal stem cells in zebrafish. Stem Cells 2015; 32:2767-79. [PMID: 24905975 DOI: 10.1002/stem.1758] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/01/2014] [Indexed: 12/17/2022]
Abstract
There is accumulating evidence that mesenchymal stem cells (MSCs) have their origin as perivascular cells (PVCs) in vivo, but precisely identifying them has been a challenge, as they have no single definitive marker and are rare. We have developed a fluorescent transgenic vertebrate model in which PVC can be visualized in vivo based upon sdf1 expression in the zebrafish. Prospective isolation and culture of sdf1(DsRed) PVC demonstrated properties consistent with MSC including prototypical cell surface marker expression; mesodermal differentiation into adipogenic, osteogenic, and chondrogenic lineages; and the ability to support hematopoietic cells. Global proteomic studies performed by two-dimensional liquid chromatography and tandem mass spectrometry revealed a high degree of similarity to human MSC (hMSC) and discovery of novel markers (CD99, CD151, and MYOF) that were previously unknown to be expressed by hMSC. Dynamic in vivo imaging during fin regeneration showed that PVC may arise from undifferentiated mesenchyme providing evidence of a PVC-MSC relationship. This is the first model, established in zebrafish, in which MSC can be visualized in vivo and will allow us to better understand their function in a native environment.
Collapse
Affiliation(s)
- Troy C Lund
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Wehner D, Weidinger G. Signaling networks organizing regenerative growth of the zebrafish fin. Trends Genet 2015; 31:336-43. [PMID: 25929514 DOI: 10.1016/j.tig.2015.03.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 02/07/2023]
Abstract
In contrast to mammals, adult salamanders and fish can completely regenerate their appendages after amputation. The cellular and molecular mechanisms underlying this fascinating phenomenon are beginning to emerge, including substantial progress in the identification of signals that control regenerative growth of the zebrafish caudal fin. Despite the fairly simple architecture of the fin, the regulation of its regeneration is complex. Many signals, including fibroblast growth factor (FGF), Wnt, Hedgehog (Hh), retinoic acid (RA), Notch, bone morphogenic protein (BMP), activin, and insulin-like growth factor (IGF), are required for regeneration. Much work needs to be done to dissect tissue-specific functions of these pathways and how they interact, but Wnt/β-catenin signaling is already emerging as a central player. Surprisingly, Wnt/β-catenin signaling appears to largely indirectly control epidermal patterning, progenitor cell proliferation, and osteoblast maturation via regulation of a multitude of secondary signals.
Collapse
Affiliation(s)
- Daniel Wehner
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
220
|
Abstract
Introduction Adipocytes can dedifferentiate into fibroblast-like cells in vitro and thereby acquire proliferation and multipotent capacities to participate in the repair of various organs and tissues. Whether dedifferentiation occurs under physiological or pathological conditions in vivo is unknown. Methods A tissue expander was placed under the inguinal fat pads of rats and gradually expanded by injection of water. Samples were collected at various time points, and morphological, histological, cytological, ultrastructural, and gene expression analyses were conducted. In a separate experiment, purified green fluorescent protein+ adipocytes were transplanted into C57 mice and collected at various time points. The transplanted adipocytes were assessed by bioluminescence imaging and whole-mount staining. Results The expanded fat pad was obviously thinner than the untreated fat pad on the opposite side. It was also tougher in texture and with more blood vessels attached. Hematoxylin and eosin staining and transmission electron microscopy indicated there were fewer monolocular adipocytes in the expanded fat pad and the morphology of these cells was altered, most notably their lipid content was discarded. Immunohistochemistry showed that the expanded fat pad contained an increased number of proliferative cells, which may have been derived from adipocytes. Following removal of the tissue expander, many small adipocytes were observed. Bioluminescence imaging suggested that some adipocytes survived when transplanted into an ischemic-hypoxic environment. Whole-mount staining revealed that surviving adipocytes underwent a process similar to adipocyte dedifferentiation in vitro. Monolocular adipocytes became multilocular adipocytes and then fibroblast-like cells. Conclusions Mature adipocytes may be able to dedifferentiate in vivo, and this may be an adipose tissue self-repair mechanism. The capacity of adipocytes to dedifferentiate into stem cell-like cells may also have a more general role in the regeneration of many tissues, notably in fat grafting.
Collapse
|
221
|
Abstract
The zebrafish (Danio rerio) is now a widely used model organism in biomedical research. The species is also increasingly used for studying skeletal development and regeneration and for understanding human skeletal diseases. The small size of this model organism is an advantage and an extreme challenge for visualizing and diagnosing the animals' skeleton. This applies especially to early stages of skeletal development. Similar challenges arise for the analysis of the skeleton of other small fish species, such as medaka (Oryzias latipes). High quality histological preparations and knowledge about the special quality of the zebrafish skeleton remain prerequisites for a correct analysis. In addition, new methods for fast and high-resolution 2D and 3D skeletal tissue screening are required for a maximal understanding of skeletal development. We, in this study, review advantages and limitations of adapting current visualization techniques for zebrafish skeletal research. We discuss the methods for in toto visualization, such as X-raying, micro-CT, Alizarin red staining and optical projection tomography. Techniques for in vivo imaging, such as second harmonic generation microscopy and two-photon excitation fluorescence, are also discussed. Finally, we explore the possibilities of light-sheet microscopy for the analysis of the zebrafish skeleton.
Collapse
Affiliation(s)
- Bart Bruneel
- Department of Biology, Research Group Evolutionary Developmental Biology, Ghent University , Ghent , Belgium and
| | | |
Collapse
|
222
|
Pfefferli C, Jaźwińska A. The art of fin regeneration in zebrafish. REGENERATION (OXFORD, ENGLAND) 2015; 2:72-83. [PMID: 27499869 PMCID: PMC4895310 DOI: 10.1002/reg2.33] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/15/2022]
Abstract
The zebrafish fin provides a valuable model to study the epimorphic type of regeneration, whereby the amputated part of the appendage is nearly perfectly replaced. To accomplish fin regeneration, two reciprocally interacting domains need to be established at the injury site, namely a wound epithelium and a blastema. The wound epithelium provides a supporting niche for the blastema, which contains mesenchyme-derived progenitor cells for the regenerate. The fate of blastemal daughter cells depends on their relative position with respect to the fin margin. The apical compartment of the outgrowth maintains its undifferentiated character, whereas the proximal descendants of the blastema progressively switch from the proliferation program to the morphogenesis program. A delicate balance between self-renewal and differentiation has to be continuously adjusted during the course of regeneration. This review summarizes the current knowledge about the cellular and molecular mechanisms of blastema formation, and discusses several studies related to the regulation of growth and morphogenesis during fin regeneration. A wide range of canonical signaling pathways has been implicated during the establishment and maintenance of the blastema. Epigenetic mechanisms play a crucial role in the regulation of cellular plasticity during the transition between differentiation states. Ion fluxes, gap-junctional communication and protein phosphatase activity have been shown to coordinate proliferation and tissue patterning in the caudal fin. The identification of the downstream targets of the fin regeneration signals and the discovery of mechanisms integrating the variety of input pathways represent exciting future aims in this fascinating field of research.
Collapse
Affiliation(s)
- Catherine Pfefferli
- Department of BiologyUniversity of FribourgCh. du Musée 101700FribourgSwitzerland
| | - Anna Jaźwińska
- Department of BiologyUniversity of FribourgCh. du Musée 101700FribourgSwitzerland
| |
Collapse
|
223
|
Li Q, Yang H, Zhong TP. Regeneration across metazoan phylogeny: lessons from model organisms. J Genet Genomics 2015; 42:57-70. [PMID: 25697100 DOI: 10.1016/j.jgg.2014.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 01/09/2023]
Abstract
Comprehending the diversity of the regenerative potential across metazoan phylogeny represents a fundamental challenge in biology. Invertebrates like Hydra and planarians exhibit amazing feats of regeneration, in which an entire organism can be restored from minute body segments. Vertebrates like teleost fish and amphibians can also regrow large sections of the body. While this regenerative capacity is greatly attenuated in mammals, there are portions of major organs that remain regenerative. Regardless of the extent, there are common basic strategies to regeneration, including activation of adult stem cells and proliferation of differentiated cells. Here, we discuss the cellular features and molecular mechanisms that are involved in regeneration in different model organisms, including Hydra, planarians, zebrafish and newts as well as in several mammalian organs.
Collapse
Affiliation(s)
- Qiao Li
- State Key Laboratory of Genetic Engineering, Department of Genetics, Fudan University School of Life Science, Shanghai 200433, China
| | - Hao Yang
- State Key Laboratory of Genetic Engineering, Department of Genetics, Fudan University School of Life Science, Shanghai 200433, China
| | - Tao P Zhong
- State Key Laboratory of Genetic Engineering, Department of Genetics, Fudan University School of Life Science, Shanghai 200433, China; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
224
|
Simões MG, Bensimon-Brito A, Fonseca M, Farinho A, Valério F, Sousa S, Afonso N, Kumar A, Jacinto A. Denervation impairs regeneration of amputated zebrafish fins. BMC DEVELOPMENTAL BIOLOGY 2014; 14:49. [PMID: 25551555 PMCID: PMC4333893 DOI: 10.1186/s12861-014-0049-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/18/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Zebrafish are able to regenerate many of its tissues and organs after damage. In amphibians this process is regulated by nerve fibres present at the site of injury, which have been proposed to release factors into the amputated limbs/fins, promoting and sustaining the proliferation of blastemal cells. Although some candidate factors have been proposed to mediate the nerve dependency of regeneration, the molecular mechanisms involved in this process remain unclear. RESULTS We have used zebrafish as a model system to address the role of nerve fibres in fin regeneration. We have developed a protocol for pectoral fin denervation followed by amputation and analysed the regenerative process under this experimental conditions. Upon denervation fins were able to close the wound and form a wound epidermis, but could not establish a functional apical epithelial cap, with a posterior failure of blastema formation and outgrowth, and the accumulation of several defects. The expression patterns of genes known to be key players during fin regeneration were altered upon denervation, suggesting that nerves can contribute to the regulation of the Fgf, Wnt and Shh pathways during zebrafish fin regeneration. CONCLUSIONS Our results demonstrate that proper innervation of the zebrafish pectoral fin is essential for a successful regenerative process, and establish this organism as a useful model to understand the molecular and cellular mechanisms of nerve dependence, during vertebrate regeneration.
Collapse
Affiliation(s)
- Mariana G Simões
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| | - Anabela Bensimon-Brito
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
| | - Mariana Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Ana Farinho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| | - Fábio Valério
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| | - Sara Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Nuno Afonso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Anoop Kumar
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| | - Antonio Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
225
|
Xu C, Hasan SS, Schmidt I, Rocha SF, Pitulescu ME, Bussmann J, Meyen D, Raz E, Adams RH, Siekmann AF. Arteries are formed by vein-derived endothelial tip cells. Nat Commun 2014; 5:5758. [PMID: 25502622 PMCID: PMC4275597 DOI: 10.1038/ncomms6758] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/04/2014] [Indexed: 12/23/2022] Open
Abstract
Tissue vascularization entails the formation of a blood vessel plexus, which remodels into arteries and veins. Here we show, by using time-lapse imaging of zebrafish fin regeneration and genetic lineage tracing of endothelial cells in the mouse retina, that vein-derived endothelial tip cells contribute to emerging arteries. Our movies uncover that arterial-fated tip cells change migration direction and migrate backwards within the expanding vascular plexus. This behaviour critically depends on chemokine receptor cxcr4a function. We show that the relevant Cxcr4a ligand Cxcl12a selectively accumulates in newly forming bone tissue even when ubiquitously overexpressed, pointing towards a tissue-intrinsic mode of chemokine gradient formation. Furthermore, we find that cxcr4a mutant cells can contribute to developing arteries when in association with wild-type cells, suggesting collective migration of endothelial cells. Together, our findings reveal specific cell migratory behaviours in the developing blood vessel plexus and uncover a conserved mode of artery formation. Sprouting of new blood vessels depends on the migration of endothelial tip cells into surrounding tissue. Here the authors reveal the existence of a distinct migratory signalling circuit that guides endothelial cells from developing veins to the leading tip position in developing arteries.
Collapse
Affiliation(s)
- Cong Xu
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| | - Sana S Hasan
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| | - Inga Schmidt
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| | - Susana F Rocha
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| | - Mara E Pitulescu
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| | - Jeroen Bussmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| | - Dana Meyen
- Institute of Cell Biology, ZMBE, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Erez Raz
- Institute of Cell Biology, ZMBE, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Ralf H Adams
- 1] Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany [2] University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| |
Collapse
|
226
|
Kratochwil CF, Meyer A. Mapping active promoters by ChIP-seq profiling of H3K4me3 in cichlid fish - a first step to uncover cis-regulatory elements in ecological model teleosts. Mol Ecol Resour 2014; 15:761-71. [PMID: 25403420 DOI: 10.1111/1755-0998.12350] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/29/2014] [Accepted: 11/15/2014] [Indexed: 01/08/2023]
Abstract
Evolutionary alterations to cis-regulatory sequences are likely to cause adaptive phenotypic complexity, through orchestrating changes in cellular proliferation, identity and communication. For nonmodel organisms with adaptive key innovations, patterns of regulatory evolution have been predominantly limited to targeted sequence-based analyses. Chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) is a technology that has been primarily used in genetic model systems and is a powerful experimental tool to screen for active cis-regulatory elements. Here, we show that it can also be used in ecological model systems and permits genomewide functional exploration of cis-regulatory elements. As a proof of concept, we use ChIP-seq technology in adult fin tissue of the cichlid fish Oreochromis niloticus to map active promoter elements, as indicated by occupancy of trimethylated Histone H3 Lysine 4 (H3K4me3). The fact that cichlids are one of the most phenotypically diverse and species-rich families of vertebrates could make them a perfect model system for the further in-depth analysis of the evolution of transcriptional regulation.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany.,Zukunftskolleg, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
227
|
Duran I, Ruiz-Sánchez J, Santamaría JA, Marí-Beffa M. Holmgren's principle of delamination during fin skeletogenesis. Mech Dev 2014; 135:16-30. [PMID: 25460362 DOI: 10.1016/j.mod.2014.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
During fin morphogenesis, several mesenchyme condensations occur to give rise to the dermal skeleton. Although each of them seems to create distinctive and unique structures, they all follow the premises of the same morphogenetic principle. Holmgren's principle of delamination was first proposed to describe the morphogenesis of skeletal elements of the cranium, but Jarvik extended it to the development of the fin exoskeleton. Since then, some cellular or molecular explanations, such as the "flypaper" model (Thorogood et al.), or the evolutionary description by Moss, have tried to clarify this topic. In this article, we review new data from zebrafish studies to meet these criteria described by Holmgren and other authors. The variety of cell lineages involved in these skeletogenic condensations sheds light on an open discussion of the contributions of mesoderm- versus neural crest-derived cell lineages to the development of the head and trunk skeleton. Moreover, we discuss emerging molecular studies that are disclosing conserved regulatory mechanisms for dermal skeletogenesis and similarities during fin development and regeneration, which may have important implications in the potential use of the zebrafish fin as a model for regenerative medicine.
Collapse
Affiliation(s)
- I Duran
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Department of Orthopedic Surgery, University of California, Los Angeles, CA 90095, USA; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| | - J Ruiz-Sánchez
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - J A Santamaría
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - M Marí-Beffa
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| |
Collapse
|
228
|
Recidoro AM, Roof AC, Schmitt M, Worton LE, Petrie T, Strand N, Ausk BJ, Srinivasan S, Moon RT, Gardiner EM, Kaminsky W, Bain SD, Allan CH, Gross TS, Kwon RY. Botulinum toxin induces muscle paralysis and inhibits bone regeneration in zebrafish. J Bone Miner Res 2014; 29:2346-56. [PMID: 24806738 PMCID: PMC5108653 DOI: 10.1002/jbmr.2274] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 01/05/2023]
Abstract
Intramuscular administration of Botulinum toxin (BTx) has been associated with impaired osteogenesis in diverse conditions of bone formation (eg, development, growth, and healing), yet the mechanisms of neuromuscular-bone crosstalk underlying these deficits have yet to be identified. Motivated by the emerging utility of zebrafish (Danio rerio) as a rapid, genetically tractable, and optically transparent model for human pathologies (as well as the potential to interrogate neuromuscular-mediated bone disorders in a simple model that bridges in vitro and more complex in vivo model systems), in this study, we developed a model of BTx-induced muscle paralysis in adult zebrafish, and we examined its effects on intramembranous ossification during tail fin regeneration. BTx administration induced rapid muscle paralysis in adult zebrafish in a manner that was dose-dependent, transient, and focal, mirroring the paralytic phenotype observed in animal and human studies. During fin regeneration, BTx impaired continued bone ray outgrowth, morphology, and patterning, indicating defects in early osteogenesis. Further, BTx significantly decreased mineralizing activity and crystalline mineral accumulation, suggesting delayed late-stage osteoblast differentiation and/or altered secondary bone apposition. Bone ray transection proximal to the amputation site focally inhibited bone outgrowth in the affected ray, implicating intra- and/or inter-ray nerves in this process. Taken together, these studies demonstrate the potential to interrogate pathological features of BTx-induced osteoanabolic dysfunction in the regenerating zebrafish fin, define the technological toolbox for detecting bone growth and mineralization deficits in this process, and suggest that pathways mediating neuromuscular regulation of osteogenesis may be conserved beyond established mammalian models of bone anabolic disorders.
Collapse
Affiliation(s)
- Anthony M Recidoro
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Petrie TA, Strand NS, Yang CT, Tsung-Yang C, Rabinowitz JS, Moon RT. Macrophages modulate adult zebrafish tail fin regeneration. Development 2014; 141:2581-91. [PMID: 24961798 PMCID: PMC4067955 DOI: 10.1242/dev.098459] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neutrophils and macrophages, as key mediators of inflammation, have defined functionally important roles in mammalian tissue repair. Although recent evidence suggests that similar cells exist in zebrafish and also migrate to sites of injury in larvae, whether these cells are functionally important for wound healing or regeneration in adult zebrafish is unknown. To begin to address these questions, we first tracked neutrophils (lyzC+, mpo+) and macrophages (mpeg1+) in adult zebrafish following amputation of the tail fin, and detailed a migratory timecourse that revealed conserved elements of the inflammatory cell response with mammals. Next, we used transgenic zebrafish in which we could selectively ablate macrophages, which allowed us to investigate whether macrophages were required for tail fin regeneration. We identified stage-dependent functional roles of macrophages in mediating fin tissue outgrowth and bony ray patterning, in part through modulating levels of blastema proliferation. Moreover, we also sought to detail molecular regulators of inflammation in adult zebrafish and identified Wnt/β-catenin as a signaling pathway that regulates the injury microenvironment, inflammatory cell migration and macrophage phenotype. These results provide a cellular and molecular link between components of the inflammation response and regeneration in adult zebrafish.
Collapse
Affiliation(s)
- Timothy A Petrie
- HHMI, Chevy Chase, MD 20815, USA Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
| | - Nicholas S Strand
- HHMI, Chevy Chase, MD 20815, USA Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
| | | | - Chao Tsung-Yang
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Jeremy S Rabinowitz
- HHMI, Chevy Chase, MD 20815, USA Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
| | - Randall T Moon
- HHMI, Chevy Chase, MD 20815, USA Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
230
|
Centanin L, Ander JJ, Hoeckendorf B, Lust K, Kellner T, Kraemer I, Urbany C, Hasel E, Harris WA, Simons BD, Wittbrodt J. Exclusive multipotency and preferential asymmetric divisions in post-embryonic neural stem cells of the fish retina. Development 2014; 141:3472-82. [PMID: 25142461 PMCID: PMC4197724 DOI: 10.1242/dev.109892] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The potency of post-embryonic stem cells can only be addressed in the living organism, by labeling single cells after embryonic development and following their descendants. Recently, transplantation experiments involving permanently labeled cells revealed multipotent neural stem cells (NSCs) of embryonic origin in the medaka retina. To analyze whether NSC potency is affected by developmental progression, as reported for the mammalian brain, we developed an inducible toolkit for clonal labeling and non-invasive fate tracking. We used this toolkit to address post-embryonic stem cells in different tissues and to functionally differentiate transient progenitor cells from permanent, bona fide stem cells in the retina. Using temporally controlled clonal induction, we showed that post-embryonic retinal NSCs are exclusively multipotent and give rise to the complete spectrum of cell types in the neural retina. Intriguingly, and in contrast to any other vertebrate stem cell system described so far, long-term analysis of clones indicates a preferential mode of asymmetric cell division. Moreover, following the behavior of clones before and after external stimuli, such as injuries, shows that NSCs in the retina maintained the preference for asymmetric cell division during regenerative responses. We present a comprehensive analysis of individual post-embryonic NSCs in their physiological environment and establish the teleost retina as an ideal model for studying adult stem cell biology at single cell resolution.
Collapse
Affiliation(s)
- Lázaro Centanin
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Janina-J Ander
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Burkhard Hoeckendorf
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Katharina Lust
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Tanja Kellner
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Isabel Kraemer
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Cedric Urbany
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Eva Hasel
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, JJ Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| |
Collapse
|
231
|
Rampon C, Gauron C, Meda F, Volovitch M, Vriz S. Adenosine enhances progenitor cell recruitment and nerve growth via its A2B receptor during adult fin regeneration. Purinergic Signal 2014; 10:595-602. [PMID: 25084769 DOI: 10.1007/s11302-014-9420-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022] Open
Abstract
A major issue in regenerative medicine is the control of progenitor cell mobilisation. Apoptosis has been reported as playing a role in cell plasticity, and it has been recently shown that apoptosis is necessary for organ and appendage regeneration. In this context, we explore its possible mode of action in progenitor cell recruitment during adult regeneration in zebrafish. Here, we show that apoptosis inhibition impairs blastema formation and nerve growth, both of which can be restored by exogenous adenosine acting through its A2B receptor. Moreover, adenosine increases the number of progenitor cells. Purinergic signalling is therefore an early and essential event in the pathway from lesion to blastema formation and provides new targets for manipulating cell plasticity in the adult.
Collapse
Affiliation(s)
- Christine Rampon
- Centre Interdisciplinaire de Recherche en biologie (CIRB), CNRS UMR 7241//INSERM U1050, Collège de France, 11, Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
232
|
Tryon RC, Johnson SL. Clonal analysis of kit ligand a functional expression reveals lineage-specific competence to promote melanocyte rescue in the mutant regenerating caudal fin. PLoS One 2014; 9:e102317. [PMID: 25009992 PMCID: PMC4092134 DOI: 10.1371/journal.pone.0102317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
The study of regeneration in an in vivo vertebrate system has the potential to reveal targetable genes and pathways that could improve our ability to heal and repair damaged tissue. We have developed a system for clonal labeling of discrete cell lineages and independently inducing gene expression under control of the heat shock promoter in the zebrafish caudal fin. Consequently we are able to test the affects of overexpressing a single gene in the context of regeneration within each of the nine different cell lineage classes that comprise the caudal fin. This can test which lineage is necessary or sufficient to provide gene function. As a first example to demonstrate this approach, we explored which lineages were competent to functionally express the kit ligand a protein as assessed by the local complementation of the mutation in the sparse-like (kitlgatc244b) background. We show that dermal fibroblast expression of kit ligand a robustly supports the rescue of melanocytes in the regenerating caudal fin. kit ligand a expression from skin and osteoblasts results in more modest and variable rescue of melanocytes, while lateral line expression was unable to complement the mutation.
Collapse
Affiliation(s)
- Robert C. Tryon
- Washington University School of Medicine, Department of Genetics, St. Louis, Missouri, United States of America
- * E-mail:
| | - Stephen L. Johnson
- Washington University School of Medicine, Department of Genetics, St. Louis, Missouri, United States of America
| |
Collapse
|
233
|
van Wolfswinkel JC. Piwi and Potency: PIWI Proteins in Animal Stem Cells and Regeneration. Integr Comp Biol 2014; 54:700-13. [DOI: 10.1093/icb/icu084] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
234
|
Geurtzen K, Knopf F, Wehner D, Huitema LFA, Schulte-Merker S, Weidinger G. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull. Development 2014; 141:2225-34. [PMID: 24821985 DOI: 10.1242/dev.105817] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Zebrafish have an unlimited capacity to regenerate bone after fin amputation. In this process, mature osteoblasts dedifferentiate to osteogenic precursor cells and thus represent an important source of newly forming bone. By contrast, differentiated osteoblasts do not appear to contribute to repair of bone injuries in mammals; rather, osteoblasts form anew from mesenchymal stem cells. This raises the question whether osteoblast dedifferentiation is specific to appendage regeneration, a special feature of the lepidotrichia bone of the fish fin, or a process found more generally in fish bone. Here, we show that dedifferentiation of mature osteoblasts is not restricted to fin regeneration after amputation, but also occurs during repair of zebrafish fin fractures and skull injuries. In both models, mature osteoblasts surrounding the injury downregulate the expression of differentiation markers, upregulate markers of the pre-osteoblast state and become proliferative. Making use of photoconvertible Kaede protein as well as Cre-driven genetic fate mapping, we show that osteoblasts migrate to the site of injury to replace damaged tissue. Our findings suggest a fundamental role for osteoblast dedifferentiation in reparative bone formation in fish and indicate that adult fish osteoblasts display elevated cellular plasticity compared with mammalian bone-forming cells.
Collapse
Affiliation(s)
- Karina Geurtzen
- Biotechnology Center and CRTD, Technische Universität Dresden, 01307 Dresden, Germany
| | - Franziska Knopf
- Biotechnology Center and CRTD, Technische Universität Dresden, 01307 Dresden, Germany Kennedy Institute of Rheumatology, Oxford OX3 7FY, UK
| | - Daniel Wehner
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | | | - Stefan Schulte-Merker
- Hubrecht Institut-KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands EZO, WUR, 6709 PG Wageningen, The Netherlands Institute of Cardiovascular Organogenesis and Regeneration, University of Münster, 48149 Münster, Germany
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
235
|
Pfefferli C, Müller F, Jaźwińska A, Wicky C. Specific NuRD components are required for fin regeneration in zebrafish. BMC Biol 2014; 12:30. [PMID: 24779377 PMCID: PMC4038851 DOI: 10.1186/1741-7007-12-30] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/23/2014] [Indexed: 01/04/2023] Open
Abstract
Background Epimorphic regeneration of a missing appendage in fish and urodele amphibians involves the creation of a blastema, a heterogeneous pool of progenitor cells underneath the wound epidermis. Current evidence indicates that the blastema arises by dedifferentiation of stump tissues in the vicinity of the amputation. In response to tissue loss, silenced developmental programs are reactivated to form a near-perfect copy of the missing body part. However, the importance of chromatin regulation during epimorphic regeneration remains poorly understood. Results We found that specific components of the Nucleosome Remodeling and Deacetylase complex (NuRD) are required for fin regeneration in zebrafish. Transcripts of the chromatin remodeler chd4a/Mi-2, the histone deacetylase hdac1/HDAC1/2, the retinoblastoma-binding protein rbb4/RBBP4/7, and the metastasis-associated antigen mta2/MTA were specifically co-induced in the blastema during adult and embryonic fin regeneration, and these transcripts displayed a similar spatial and temporal expression patterns. In addition, chemical inhibition of Hdac1 and morpholino-mediated knockdown of chd4a, mta2, and rbb4 impaired regenerative outgrowth, resulting in reduction in blastema cell proliferation and in differentiation defects. Conclusion Altogether, our data suggest that specialized NuRD components are induced in the blastema during fin regeneration and are involved in blastema cell proliferation and redifferentiation of osteoblast precursor cells. These results provide in vivo evidence for the involvement of key epigenetic factors in the cellular reprogramming processes occurring during epimorphic regeneration in zebrafish.
Collapse
Affiliation(s)
| | | | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Ch, du Musée 10, CH-1700 Fribourg, Switzerland.
| | | |
Collapse
|
236
|
Abstract
Regeneration of a lost appendage in adult amphibians and fish is a remarkable feat of developmental patterning. Although the limb or fin may be years removed from its initial creation by an embryonic primordium, the blastema that emerges at the injury site fashions a close mimic of adult form. Central to understanding these events are revealing the cellular origins of new structures, how positional identity is maintained, and the determinants for completion. Each of these topics has been advanced recently, strengthening models for how complex tissue pattern is recalled in the adult context.
Collapse
Affiliation(s)
- Valerie A Tornini
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
237
|
Abstract
Epigenetic interventions are required to induce reprogramming from one cell type to another. At present, various cellular reprogramming methods such as somatic cell nuclear transfer, cell fusion, and direct reprogramming using transcription factors have been reported. In particular, direct reprogramming from somatic cells to induced pluripotent stem cells (iPSCs) has been achieved using defined factors that play important epigenetic roles. Although the mechanisms underlying cellular reprogramming and vertebrate regeneration, including appendage regeneration, remain unknown, dedifferentiation occurs at an early phase in both the events, and both events are contrasting with regard to cell death. We compared the current status of changes in cell fate of iPSCs with that of vertebrate regeneration and suggested that substantial insights into vertebrate regeneration should be helpful for safe applications of iPSCs to medicine.
Collapse
Affiliation(s)
- Daisuke Kami
- Department of Regenerative Medicine; Kyoto Prefectural University of Medicine; Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine; Kyoto Prefectural University of Medicine; Kyoto, Japan
| |
Collapse
|
238
|
Monteiro J, Aires R, Becker JD, Jacinto A, Certal AC, Rodríguez-León J. V-ATPase proton pumping activity is required for adult zebrafish appendage regeneration. PLoS One 2014; 9:e92594. [PMID: 24671205 PMCID: PMC3966808 DOI: 10.1371/journal.pone.0092594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 02/24/2014] [Indexed: 11/18/2022] Open
Abstract
The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration.
Collapse
Affiliation(s)
- Joana Monteiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | - Rita Aires
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - António Jacinto
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, Lisboa, Portugal
| | - Ana C. Certal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Champalimaud Foundation, Lisboa, Portugal
- * E-mail: (JRL); (ACC)
| | - Joaquín Rodríguez-León
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department de Anatomía Humana, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
- * E-mail: (JRL); (ACC)
| |
Collapse
|
239
|
Iida Y, Hibiya K, Inohaya K, Kudo A. Eda/Edar signaling guides fin ray formation with preceding osteoblast differentiation, as revealed by analyses of the medaka all-fin less mutantafl. Dev Dyn 2014; 243:765-77. [DOI: 10.1002/dvdy.24120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yuuki Iida
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| | - Kenta Hibiya
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| | - Keiji Inohaya
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| | - Akira Kudo
- Department of Biological Information; Tokyo Institute of Technology; Yokohama Japan
| |
Collapse
|
240
|
de Vrieze E, van Kessel MAHJ, Peters HM, Spanings FAT, Flik G, Metz JR. Prednisolone induces osteoporosis-like phenotype in regenerating zebrafish scales. Osteoporos Int 2014; 25:567-78. [PMID: 23903952 DOI: 10.1007/s00198-013-2441-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/03/2013] [Indexed: 11/29/2022]
Abstract
UNLABELLED We demonstrate that glucocorticoids induce an osteoporotic phenotype in regenerating scales of zebrafish. Exposure to prednisolone results in altered mineral content, enhanced matrix breakdown, and an osteoporotic gene-expression profile in osteoblasts and osteoclasts. This highlights that the zebrafish scale provides a powerful tool for preclinical osteoporosis research. INTRODUCTION This study aims to evaluate whether glucocorticoid (prednisolone) treatment of zebrafish induces an osteoporotic phenotype in regenerating scales. Scales, a readily accessible dermal bone tissue, may provide a tool to study direct osteogenesis and its disturbance by glucocorticoids. METHODS In adult zebrafish, treated with 25 μM prednisolone phosphate via the water, scales were removed and allowed to regenerate. During regeneration scale morphology and the molar calcium/phosphorus ratio in scales were assessed and osteoblast and osteoclast activities were monitored by time profiling of cell-specific genes; mineralization was visualized by Von Kossa staining, osteoclast activity by tartrate-resistant acid phosphatase histochemistry. RESULTS Prednisolone (compared to controls) enhances osteoclast activity and matrix resorption and slows down the build up of the calcium/phosphorus molar ratio indicative of altered crystal maturation. Prednisolone treatment further impedes regeneration through a shift in the time profiles of osteoblast and osteoclast genes that commensurates with an osteoporosis-like imbalance in bone formation. CONCLUSIONS A glucocorticoid-induced osteoporosis phenotype as seen in mammals was induced in regenerating scalar bone of zebrafish treated with prednisolone. An unsurpassed convenience and low cost then make the zebrafish scale a superior model for preclinical studies in osteoporosis research.
Collapse
Affiliation(s)
- E de Vrieze
- Department of Organismal Animal Physiology, Faculty of Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
241
|
Stewart S, Gomez AW, Armstrong BE, Henner A, Stankunas K. Sequential and opposing activities of Wnt and BMP coordinate zebrafish bone regeneration. Cell Rep 2014; 6:482-98. [PMID: 24485659 PMCID: PMC4009375 DOI: 10.1016/j.celrep.2014.01.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/29/2013] [Accepted: 01/07/2014] [Indexed: 01/20/2023] Open
Abstract
Zebrafish fully regenerate lost bone, including after fin amputation, through a process mediated by dedifferentiated, lineage-restricted osteoblasts. Mechanisms controlling the osteoblast regenerative program from its initiation through reossification are poorly understood. We show that fin amputation induces a Wnt/β-catenin-dependent epithelial to mesenchymal transformation (EMT) of osteoblasts in order to generate proliferative Runx2+ preosteoblasts. Localized Wnt/β-catenin signaling maintains this progenitor population toward the distal tip of the regenerative blastema. As they become proximally displaced, preosteoblasts upregulate sp7 and subsequently mature into re-epithelialized Runx2−/sp7+ osteoblasts that extend preexisting bone. Auto-crine bone morphogenetic protein (BMP) signaling promotes osteoblast differentiation by activating sp7 expression and counters Wnt by inducing Dickkopf-related Wnt antagonists. As such, opposing activities of Wnt and BMP coordinate the simultaneous demand for growth and differentiation during bone regeneration. This hierarchical signaling network model provides a conceptual framework for understanding innate bone repair and regeneration mechanisms and rationally designing regenerative therapeutics.
Collapse
Affiliation(s)
- Scott Stewart
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Alan W Gomez
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Astra Henner
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
242
|
Wehner D, Cizelsky W, Vasudevaro MD, Ozhan G, Haase C, Kagermeier-Schenk B, Röder A, Dorsky RI, Moro E, Argenton F, Kühl M, Weidinger G. Wnt/β-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin. Cell Rep 2014; 6:467-81. [PMID: 24485658 DOI: 10.1016/j.celrep.2013.12.036] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 08/30/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022] Open
Abstract
Zebrafish regenerate their fins via the formation of a population of progenitor cells, the blastema. Wnt/β-catenin signaling is essential for blastemal cell proliferation and patterning of the overlying epidermis. Yet, we find that β-catenin signaling is neither active in the epidermis nor the majority of the proliferative blastemal cells. Rather, tissue-specific pathway interference indicates that Wnt signaling in the nonproliferative distal blastema is required for cell proliferation in the proximal blastema, and signaling in cells lining the osteoblasts directs osteoblast differentiation. Thus, Wnt signaling regulates epidermal patterning, blastemal cell proliferation, and osteoblast maturation indirectly via secondary signals. Gene expression profiling, chromatin immunoprecipitation, and functional rescue experiments suggest that Wnt/β-catenin signaling acts through Fgf and Bmp signaling to control epidermal patterning, whereas retinoic acid and Hedgehog signals mediate its effects on blastemal cell proliferation. We propose that Wnt signaling orchestrates fin regeneration by defining organizing centers that instruct cellular behaviors of adjacent tissues.
Collapse
Affiliation(s)
- Daniel Wehner
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Wiebke Cizelsky
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Günes Ozhan
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Christa Haase
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | | | - Alexander Röder
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | | | - Michael Kühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
243
|
Panula P, Sundvik M, Karlstedt K. Developmental roles of brain histamine. Trends Neurosci 2014; 37:159-68. [PMID: 24486025 DOI: 10.1016/j.tins.2014.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022]
Abstract
Histamine appears early during brain development, has been shown to regulate fetal and adult brain-derived stem cells in a receptor type-dependent manner, and has widespread actions on systems involved in arousal and movement. Developmental studies in both rodents and zebrafish have elucidated the spatiotemporal patterning of the histaminergic system and, in zebrafish, have revealed the mechanisms whereby histamine regulates the number of hypocretin/orexin (hcrt) neurons, which in turn may regulate the number of histaminergic cells. Recent demonstrations of increased numbers of histaminergic neurons in patients with narcolepsy highlight the importance, for our understanding of both normal and pathological brain function, of understanding these interactions. Here, we review recent research into the developmental roles of histamine and suggest key areas for future research.
Collapse
Affiliation(s)
- Pertti Panula
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; Institute of Biomedicine, Anatomy, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Maria Sundvik
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; Institute of Biomedicine, Anatomy, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Kaj Karlstedt
- Institute of Biomedicine, Physiology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| |
Collapse
|
244
|
Fish: a suitable system to model human bone disorders and discover drugs with osteogenic or osteotoxic activities. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.ddmod.2014.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
245
|
Varga M, Sass M, Papp D, Takács-Vellai K, Kobolak J, Dinnyés A, Klionsky DJ, Vellai T. Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ 2013; 21:547-56. [PMID: 24317199 DOI: 10.1038/cdd.2013.175] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 11/09/2022] Open
Abstract
Regeneration is the ability of multicellular organisms to replace damaged tissues and regrow lost body parts. This process relies on cell fate transformation that involves changes in gene expression as well as in the composition of the cytoplasmic compartment, and exhibits a characteristic age-related decline. Here, we present evidence that genetic and pharmacological inhibition of autophagy - a lysosome-mediated self-degradation process of eukaryotic cells, which has been implicated in extensive cellular remodelling and aging - impairs the regeneration of amputated caudal fins in the zebrafish (Danio rerio). Thus, autophagy is required for injury-induced tissue renewal. We further show that upregulation of autophagy in the regeneration zone occurs downstream of mitogen-activated protein kinase/extracellular signal-regulated kinase signalling to protect cells from undergoing apoptosis and enable cytosolic restructuring underlying terminal cell fate determination. This novel cellular function of the autophagic process in regeneration implies that the role of cellular self-digestion in differentiation and tissue patterning is more fundamental than previously thought.
Collapse
Affiliation(s)
- M Varga
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - M Sass
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - D Papp
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - K Takács-Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - J Kobolak
- BioTalentum Ltd., H-2100, Gödöllő, Hungary
| | - A Dinnyés
- BioTalentum Ltd., H-2100, Gödöllő, Hungary
| | - D J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - T Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
246
|
Vijayakumar P, Laizé V, Cardeira J, Trindade M, Cancela ML. Development of an in vitro cell system from zebrafish suitable to study bone cell differentiation and extracellular matrix mineralization. Zebrafish 2013; 10:500-9. [PMID: 23909483 PMCID: PMC3842872 DOI: 10.1089/zeb.2012.0833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mechanisms of bone formation and skeletal development have been successfully investigated in zebrafish using a variety of in vivo approaches, but in vitro studies have been hindered due to a lack of homologous cell lines capable of producing an extracellular matrix (ECM) suitable for mineral deposition. Here we describe the development and characterization of a new cell line termed ZFB1, derived from zebrafish calcified tissues. ZFB1 cells have an epithelium-like phenotype, grow at 28°C in a regular L-15 medium supplemented with 15% of fetal bovine serum, and are maintained and manipulated using standard methods (e.g., trypsinization, cryopreservation, and transfection). They can therefore be propagated and maintained easily in most cell culture facilities. ZFB1 cells show aneuploidy with 2n=78 chromosomes, indicative of cell transformation. Furthermore, because DNA can be efficiently delivered into their intracellular space by nucleofection, ZFB1 cells are suitable for gene targeting approaches and for assessing gene promoter activity. ZFB1 cells can also differentiate toward osteoblast or chondroblast lineages, as demonstrated by expression of osteoblast- and chondrocyte-specific markers, they exhibit an alkaline phosphatase activity, a marker of bone formation in vivo, and they can mineralize their ECM. Therefore, they represent a valuable zebrafish-derived in vitro system for investigating bone cell differentiation and extracellular matrix mineralization.
Collapse
Affiliation(s)
- Parameswaran Vijayakumar
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - João Cardeira
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Marlene Trindade
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - M. Leonor Cancela
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Campus de Gambelas, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| |
Collapse
|
247
|
Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 2013; 14:174-87. [PMID: 24268695 DOI: 10.1016/j.stem.2013.11.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 09/12/2013] [Accepted: 11/05/2013] [Indexed: 12/17/2022]
Abstract
Salamanders regenerate appendages via a progenitor pool called the blastema. The cellular mechanisms underlying regeneration of muscle have been much debated but have remained unclear. Here we applied Cre-loxP genetic fate mapping to skeletal muscle during limb regeneration in two salamander species, Notophthalmus viridescens (newt) and Ambystoma mexicanum (axolotl). Remarkably, we found that myofiber dedifferentiation is an integral part of limb regeneration in the newt, but not in axolotl. In the newt, myofiber fragmentation results in proliferating, PAX7(-) mononuclear cells in the blastema that give rise to the skeletal muscle in the new limb. In contrast, myofibers in axolotl do not generate proliferating cells, and do not contribute to newly regenerated muscle; instead, resident PAX7(+) cells provide the regeneration activity. Our results therefore show significant diversity in limb muscle regeneration mechanisms among salamanders and suggest that multiple strategies may be feasible for inducing regeneration in other species, including mammals.
Collapse
|
248
|
Ton QV, Iovine MK. Identification of an evx1-dependent joint-formation pathway during FIN regeneration. PLoS One 2013; 8:e81240. [PMID: 24278401 PMCID: PMC3835681 DOI: 10.1371/journal.pone.0081240] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/10/2013] [Indexed: 12/05/2022] Open
Abstract
Joints are essential for skeletal flexibly and form, yet the process underlying joint morphogenesis is poorly understood. Zebrafish caudal fins are comprised of numerous segmented bony fin rays, where growth occurs by the sequential addition of new segments and new joints. Here, we evaluate joint gene expression during fin regeneration. First, we identify three genes that influence joint formation, evx1, dlx5a, and mmp9. We place these genes in a common molecular pathway by evaluating both their expression patterns along the distal-proximal axis (i.e. where the youngest tissue is always the most distal), and by evaluating changes in gene expression following gene knockdown. Prior studies from our lab indicate that the gap junction protein Cx43 suppresses joint formation. Remarkably, changes in Cx43 activity alter the expression of joint markers. For example, the reduced levels of Cx43 in the sof b123 mutant causes short fin ray segments/premature joints. We also find that the expression of evx1-dlx5a-mmp9 is shifted distally in sof b123, consistent with premature expression of these genes. In contrast, increased Cx43 in the alf dty86 mutant leads to stochastic joint failure and stochastic loss of evx1 expression. Indeed, reducing the level of Cx43 in alf dty86 rescues both the evx1 expression and joint formation. These results suggest that Cx43 influences the pattern of joint formation by influencing the timing of evx1 expression.
Collapse
Affiliation(s)
- Quynh V Ton
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | | |
Collapse
|
249
|
Mackay EW, Apschner A, Schulte-Merker S. A bone to pick with zebrafish. BONEKEY REPORTS 2013; 2:445. [PMID: 24422140 DOI: 10.1038/bonekey.2013.179] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/07/2023]
Abstract
The development of high-throughput sequencing and genome-wide association studies allows us to deduce the genetic factors underlying diseases much more rapidly than possible through classical genetics, but a true understanding of the molecular mechanisms of these diseases still relies on integrated approaches including in vitro and in vivo model systems. One such model that is particularly suitable for studying bone diseases is the zebrafish (Danio rerio), a small fresh-water teleost that is highly amenable to genetic manipulation and in vivo imaging. Zebrafish physiology and genome organization are in many aspects similar to those of humans, and the skeleton and mineralizing tissues are no exception. In this review, we highlight some of the contributions that have been made through the study of mutant zebrafish that feature bone and/or mineralization disorders homologous to human diseases, including osteogenesis imperfecta, fibrodysplasia ossificans progressiva and generalized arterial calcification of infancy. The genomic and phenotypic similarities between the zebrafish and human cases are illustrated. We show that, despite some systemic physiological differences between mammals and teleosts, and a relative lack of a history as a model for bone research, the zebrafish represents a useful complement to mouse and tissue culture systems in the investigation of genetic bone disorders.
Collapse
Affiliation(s)
- Eirinn W Mackay
- Hubrecht Institute-KNAW & University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Alexander Apschner
- Hubrecht Institute-KNAW & University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute-KNAW & University Medical Centre Utrecht , Utrecht, The Netherlands
| |
Collapse
|
250
|
Gauron C, Rampon C, Bouzaffour M, Ipendey E, Teillon J, Volovitch M, Vriz S. Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Sci Rep 2013; 3:2084. [PMID: 23803955 PMCID: PMC3694286 DOI: 10.1038/srep02084] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/10/2013] [Indexed: 12/23/2022] Open
Abstract
A major issue in regenerative medicine is the role of injury in promoting cell plasticity. Here we explore the function of reactive oxygen species (ROS) induced through lesions in adult zebrafish. We show that ROS production, following adult fin amputation, is tightly regulated in time and space for at least 24 hours, whereas ROS production remains transient (2 hours) in mere wound healing. In regenerative tissue, ROS signaling triggers two distinct parallel pathways: one pathway is responsible for apoptosis, and the other pathway is responsible for JNK activation. Both events are involved in the compensatory proliferation of stump epidermal cells and are necessary for the progression of regeneration. Both events impact the Wnt, SDF1 and IGF pathways, while apoptosis only impacts progenitor marker expression. These results implicate oxidative stress in regeneration and provide new insights into the differences between healing and regeneration.
Collapse
Affiliation(s)
- Carole Gauron
- Centre Interdisciplinaire de Recherche en Biologie-CIRB, CNRS UMR 7241/INSERM U1050/Collège de France, Paris, France
| | | | | | | | | | | | | |
Collapse
|