201
|
Hou Q, Lin X, Lu X, Bai C, Wei H, Luo G, Xiang H. Discovery of novel steroidal-chalcone hybrids with potent and selective activity against triple-negative breast cancer. Bioorg Med Chem 2020; 28:115763. [PMID: 32992255 DOI: 10.1016/j.bmc.2020.115763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
A series of novel steroidal-chalcone derivates were designed and synthesized based on the molecular hybridization strategy and further evaluated for their growth inhibitory activity against three human cancer cell lines. The MTT results indicated that most compounds were apparently more sensitive to human breast cancer cells MDA-MB-231. Compounds 8 and 18 exerted the best cytotoxic activity against triple-negative MDA-MB-231 cells with the IC50 values of 0.42 μM and 0.52 μM respectively, which were 23-fold increase or more compared with 5-Fu. Further mechanism studies demonstrated that compound 8 could induce cells apoptosis through regulating Bcl-2/Bax proteins and activating caspase-3 signaling pathway. Moreover, compound 8 could upregulate the cellular ROS levels which accelerated the apoptosis of MDA-MB-231 cells. In addition, interestingly, cell cycle assay showed that compound 8 could arrest MDA-MB-231 cells at S phase but not commonly anticipated G2/M phase. These evidences fully confirmed that compound 8 could be a potential candidate that deserves further development as an antitumor agent against triple-negative breast cancer.
Collapse
Affiliation(s)
- Qiangqiang Hou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xin Lin
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiang Lu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chengfeng Bai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hanlin Wei
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Guoshun Luo
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Hua Xiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
202
|
Oliveira MM, Santos HS, Coutinho HD, Bandeira PN, da Silva PT, Freitas TS, Rocha JE, Xavier JC, Campina FF, Barbosa CR, Araújo Neto JB, Pereira RL, Silva MM, Muniz DF, Teixeira AM, Frota VM, Rodrigues TH, Amado AM, Marques MP, Batista de Carvalho LA, Nogueira CE. Spectroscopic characterization and efflux pump modulation of a thiophene curcumin derivative. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
203
|
Synthesis, In Silico and In Vitro Evaluation for Acetylcholinesterase and BACE-1 Inhibitory Activity of Some N-Substituted-4-Phenothiazine-Chalcones. Molecules 2020; 25:molecules25173916. [PMID: 32867308 PMCID: PMC7504348 DOI: 10.3390/molecules25173916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022] Open
Abstract
Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are two attractive targets in the discovery of novel substances that could control multiple aspects of Alzheimer’s disease (AD). Chalcones are the flavonoid derivatives with diverse bioactivities, including AChE and BACE-1 inhibition. In this study, a series of N-substituted-4-phenothiazine-chalcones was synthesized and tested for AChE and BACE-1 inhibitory activities. In silico models, including two-dimensional quantitative structure–activity relationship (2D-QSAR) for AChE and BACE-1 inhibitors, and molecular docking investigation, were developed to elucidate the experimental process. The results indicated that 13 chalcone derivatives were synthesized with relatively high yields (39–81%). The bioactivities of these substances were examined with pIC50 3.73–5.96 (AChE) and 5.20–6.81 (BACE-1). Eleven of synthesized chalcones had completely new structures. Two substances AC4 and AC12 exhibited the highest biological activities on both AChE and BACE-1. These substances could be employed for further researches. In addition to this, the present study results suggested that, by using a combination of two types of predictive models, 2D-QSAR and molecular docking, it was possible to estimate the biological activities of the prepared compounds with relatively high accuracy.
Collapse
|
204
|
Mohamed MFA, Abuo-Rahma GEDA. Molecular targets and anticancer activity of quinoline-chalcone hybrids: literature review. RSC Adv 2020; 10:31139-31155. [PMID: 35520674 PMCID: PMC9056499 DOI: 10.1039/d0ra05594h] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
α,β-Unsaturated chalcone moieties and quinoline scaffolds play an important role in medicinal chemistry, especially in the identification and development of potential anticancer agents. The multi-target approach or hybridization is considered as a promising strategy in drug design and discovery. Hybridization may improve the affinity and potency while simultaneously decreasing the resistance and/or side effects. The conjugation of quinolines with chalcones has been a promising approach to the identification of potential anticancer agents. Most of these hybrids showed anticancer activities through the inhibition of tubulin polymerization, different kinases, topoisomerases, or by affecting DNA cleavage activity. Accordingly, this class of compounds can be classified based on their molecular modes of action. In this article, the quinolone-chalcone hybrids with potential anticancer activity have been reviewed. This class of compounds might be helpful for the design, discovery and development of new and potential multi-target anticancer agents or drugs.
Collapse
Affiliation(s)
- Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University 82524 Sohag Egypt (+20)-1018384461
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University Minia 61519 Egypt +201003069431
| |
Collapse
|
205
|
Novel chalcones as Bcl-2 inhibitor in lung cancer: docking, design and synthesis of 2,3-Tetrasubstituted-2,3-dihydrobenzofuran-3-carboxamides. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
206
|
Melanogenic Inhibition and Toxicity Assessment of Flavokawain A and B on B16/F10 Melanoma Cells and Zebrafish ( Danio rerio). Molecules 2020; 25:molecules25153403. [PMID: 32731323 PMCID: PMC7436045 DOI: 10.3390/molecules25153403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive production of melanin implicates hyperpigmentation disorders. Flavokawain A (FLA) and flavokawain B (FLB) have been reported with anti-melanogenic activity, but their melanogenic inhibition and toxicity effects on the vertebrate model of zebrafish are still unknown. In the present study, cytotoxic as well as melanogenic effects of FLA and FLB on cellular melanin content and tyrosinase activity were evaluated in α-MSH-induced B16/F10 cells. Master regulator of microphthalmia-associated transcription factor (Mitf) and the other downstream melanogenic-related genes were verified via quantitative real time PCR (qPCR). Toxicity assessment and melanogenesis inhibition on zebrafish model was further observed. FLA and FLB significantly reduced the specific cellular melanin content by 4.3-fold and 9.6-fold decrement, respectively in α-MSH-induced B16/F10 cells. Concomitantly, FLA significantly reduced the specific cellular tyrosinase activity by 7-fold whilst FLB by 9-fold. The decrement of melanin production and tyrosinase activity were correlated with the mRNA suppression of Mitf which in turn down-regulate Tyr, Trp-1 and Trp-2. FLA and FLB exhibited non-toxic effects on the zebrafish model at 25 and 6.25 µM, respectively. Further experiments on the zebrafish model demonstrated successful phenotype-based depigmenting activity of FLA and FLB under induced melanogenesis. To sum up, our findings provide an important first key step for both of the chalcone derivatives to be further studied and developed as potent depigmenting agents.
Collapse
|
207
|
Abstract
For their biological properties and particularly for their anticancer activities, chalcones are widely studied. In this work, we have submitted diverse sets of chalcone derivatives to the 3D-QSAR (3-dimensional quantitative structural-activity relationship) to study their anticancer activities against HTC116 (human colon cancer), relying on the 3-dimensional descriptors: steric and electrostatic descriptors for the CoMFA (comparative molecular field analysis) method and steric, electrostatic, hydrophobic, H-bond donor, and H-bond acceptor descriptors for the CoMSIA method. CoMFA as well as the CoMSIA model have encouraging values of the cross-validation coefficient (Q2) of 0.608 and 0.806 and conventional correlation coefficient (R2) of 0.960 and 0.934, respectively. Furthermore, values of R2test have been obtained as 0.75 and 0.90, respectively. Besides, y-randomization test was also performed to validate our 3D-QSAR models. Based on these satisfactory results, ten new compounds have been designed and predicted by in silico ADMET method. This study could expand the understanding of chalcone derivatives as anticancer agents and would be of great help in lead optimization for early drug discovery of highly potent anticancer activity.
Collapse
|
208
|
Farani PSG, Marconato DG, Emídio NB, Pereira VRD, Alves Junior IJ, da Silveira LS, Couri MRC, Vasconcelos EG, Castro-Borges W, Filho AAS, Faria-Pinto P. Screening of plant derived chalcones on the inhibition of potato apyrase: Potential protein biotechnological applications in health. Int J Biol Macromol 2020; 164:687-693. [PMID: 32663559 DOI: 10.1016/j.ijbiomac.2020.07.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
NTPDases (EC 3.6.1.5) are enzymes belonging to a protein family which have as a common feature the ability to hydrolyze di- and triphosphate nucleotides (ADP and ATP) to monophosphate nucleosides (AMP) in the presence of Ca+2 and Mg+. The potato apyrase has been the first protein of the NTPDase family to be purified. In mammals, these enzymes are involved in physiologic and sick processes as thromboregulation, inflammatory and immunologic responses. In this study, we investigated the in vitro potential of synthetic chalcones on the inhibition of potato apyrase purified from Solanum tuberosum. The protein was purified with high grade purity and its identity was confirmed by electrophoresis, western blot, and LC-MS/MS. Five out of the eight chemically synthetized chalcones analyzed in this study showed significant inhibition of the apyrase activity. The compound with the best rate of inhibition of ATP hydrolytic activity was able to promote 54% inhibition with a concentration of 3.125 μM. Ticlopidine, used as an inhibition drug control, was able to promote inhibitions around 50% of the activity (IC50 = 2.167 μM). Our results with the potato apyrase inhibition with the synthetic chalcones suggest that these compounds may use as potential lead candidates for the treatment of some diseases associated with nucleotides.
Collapse
Affiliation(s)
- Priscila Silva Grijó Farani
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Danielle Gomes Marconato
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Nayara Braga Emídio
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Vinícius R D Pereira
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ismael J Alves Junior
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Lígia S da Silveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Brazil
| | - Mara R C Couri
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Brazil
| | - Eveline Gomes Vasconcelos
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, Brazil
| | - Ademar Alves Silva Filho
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Priscila Faria-Pinto
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil.
| |
Collapse
|
209
|
Zhou W, Zhang W, Peng Y, Jiang ZH, Zhang L, Du Z. Design, Synthesis and Anti-Tumor Activity of Novel Benzimidazole-Chalcone Hybrids as Non-Intercalative Topoisomerase II Catalytic Inhibitors. Molecules 2020; 25:molecules25143180. [PMID: 32664629 PMCID: PMC7397320 DOI: 10.3390/molecules25143180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Chemical diversification of type II topoisomerase (Topo II) inhibitors remains indispensable to extend their anti-tumor therapeutic values which are limited by their side effects. Herein, we designed and synthesized a novel series of benzimidazole-chalcone hybrids (BCHs). These BCHs showed good inhibitory effect in the Topo II mediated DNA relaxation assay and anti-proliferative effect in 4 tumor cell lines. 4d and 4n were the most potent, with IC50 values less than 5 μM, superior to etoposide. Mechanistic studies indicated that the BCHs functioned as non-intercalative Topo II catalytic inhibitors. Moreover, 4d and 4n demonstrated versatile properties against tumors, including inhibition on the colony formation and cell migration, and promotion of apoptosis of A549 cells. The structure-activity relationship and molecular docking analysis suggested possible contribution of the chalcone motif to the Topo II inhibitory and anti-proliferative potency. These results indicated that 4d and 4n could be promising lead compounds for further anti-tumor drug research.
Collapse
Affiliation(s)
- Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
- Correspondence: (W.Z.); (Z.D.)
| | - Wenjin Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
| | - Yi Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China;
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
- Correspondence: (W.Z.); (Z.D.)
| |
Collapse
|
210
|
Ramesh D, Joji A, Vijayakumar BG, Sethumadhavan A, Mani M, Kannan T. Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis. Eur J Med Chem 2020; 198:112358. [DOI: 10.1016/j.ejmech.2020.112358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
|
211
|
Carboxylated Chalcone and Benzaldehyde Derivatives of Triosmium Carbonyl Clusters: Synthesis, Characterization and Biological Activity Towards MCF-7 Cells. J CLUST SCI 2020. [DOI: 10.1007/s10876-019-01684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
212
|
Chen YF, Wu SN, Gao JM, Liao ZY, Tseng YT, Fülöp F, Chang FR, Lo YC. The Antioxidant, Anti-Inflammatory, and Neuroprotective Properties of the Synthetic Chalcone Derivative AN07. Molecules 2020; 25:2907. [PMID: 32599797 PMCID: PMC7355731 DOI: 10.3390/molecules25122907] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022] Open
Abstract
Chalcones belong to a class of biologically active polyphenolic natural products. As a result of their simple chemical nature, they are easily synthesized and show a variety of promising biological activities. 2-Hydroxy-4'-methoxychalcone (AN07) is a synthetic chalcone derivate with potential anti-atherosclerosis effects. In this study, we demonstrated the novel antioxidant, anti-inflammatory, and neuroprotective effects of AN07. In RAW 264.7 macrophages, AN07 attenuated lipopolysaccharide (LPS)-induced elevations in reactive oxygen species (ROS) level and oxidative stress via down-regulating gp91phox expression and stimulating the antioxidant system of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathways, which were accompanied by increased glutathione (GSH) levels. Additionally, AN07 attenuated LPS-induced inflammatory factors, including NO, inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and phosphorylated inhibitor of nuclear factor kappa B-alpha (p-IκBα) in RAW 264.7 macrophages. However, the effects of AN07 on promoting nuclear Nrf2 levels and decreasing COX-2 expressions were significantly abrogated by the peroxisome proliferator-activated receptor-γ (PPARγ) antagonist GW9662. In human dopaminergic SH-SY5Y cells treated with or without methylglyoxal (MG), a toxic endogenous by-product of glycolysis, AN07 up-regulated neurotrophic signals including insulin-like growth factor 1 receptor (IGF-1R), p-Akt, p-GSK3β, glucagon-like peptide 1 receptor (GLP-1R), and brain-derived neurotrophic factor (BDNF). AN07 attenuated MG-induced apoptosis by up-regulating the B-cell lymphoma 2 (Bcl-2) protein and down-regulating the cytosolic expression of cytochrome c. AN07 also attenuated MG-induced neurite damage via down-regulating the Rho-associated protein kinase 2 (ROCK2)/phosphorylated LIM kinase 1 (p-LIMK1) pathway. Moreover, AN07 ameliorated the MG-induced down-regulation of neuroprotective Parkinsonism-associated proteins parkin, pink1, and DJ-1. These findings suggest that AN07 possesses the potentials to be an anti-inflammatory, antioxidant, and neuroprotective agent.
Collapse
Affiliation(s)
- Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-F.C.); (F.-R.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan;
| | - Jia-Mao Gao
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-M.G.); (Z.-Y.L.); (Y.-T.T.)
| | - Zhi-Yao Liao
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-M.G.); (Z.-Y.L.); (Y.-T.T.)
| | - Yu-Ting Tseng
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-M.G.); (Z.-Y.L.); (Y.-T.T.)
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-F.C.); (F.-R.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ching Lo
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-F.C.); (F.-R.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-M.G.); (Z.-Y.L.); (Y.-T.T.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
213
|
Qin Y, Zheng B, Yang GS, Yang HJ, Zhou J, Yang Z, Zhang XH, Zhao HY, Shi JH, Wen JK. Salvia miltiorrhiza-Derived Sal-miR-58 Induces Autophagy and Attenuates Inflammation in Vascular Smooth Muscle Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:492-511. [PMID: 32679544 PMCID: PMC7360890 DOI: 10.1016/j.omtn.2020.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is associated with the cytoprotection of physiological processes against inflammation and oxidative stress. Salvia miltiorrhiza possesses cardiovascular protective actions and has powerful anti-oxidative and anti-inflammatory effects; however, whether and how Salvia miltiorrhiza-derived microRNAs (miRNAs) protect vascular smooth muscle cells (VSMCs) by inducing autophagy across species are unknown. We first screened and identified Sal-miR-58 from Salvia miltiorrhiza as a natural autophagy inducer. Synthetic Sal-miR-58 suppresses chronic angiotensin II (Ang II) infusion-induced abdominal aortic aneurysm (AAA) formation in mice, as well as induces autophagy in VSMCs and attenuates the inflammatory response elicited by Ang II in vivo and in vitro. Mechanistically, Sal-miR-58 downregulates Krüppel-like factor 3 (KLF3) expression through direct binding to the 3' UTR of KLF3, which in turn relieves KLF3 repression of E3 ubiquitin ligase neural precursor cell-expressed developmentally downregulated 4-like (NEDD4L) expression, whereas NEDD4L upregulation increases the ubiquitination and degradation of the platelet isoform of phosphofructokinase (PFKP), subsequently leading to a decrease in the activation of Akt/mammalian target of rapamycin (mTOR) signaling and facilitating VSMC autophagy induced by Sal-miR-58 in the context of chronic Ang II stimulation and aneurysm formation. Our results provide the first evidence that plant-derived Sal-miR-58 induces autophagy and attenuates inflammation in VSMCs through cross-species modulation of the KLF3/NEDD4L/PFKP regulatory pathway.
Collapse
Affiliation(s)
- Yan Qin
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang 050017, China; Department of Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China; Department of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang 050017, China
| | - Gao-Shan Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Hao-Jie Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Zhou
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang 050017, China; Department of Endocrine, The Second Hospital of Hebei Medical University, Shijiazhuang 050005, China
| | - Zhan Yang
- Department of Science and Technology, The Second Hospital of Hebei Medical University, Shijiazhuang 050005, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang 050017, China
| | - Hong-Ye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang 050017, China
| | - Jian-Hong Shi
- Department of Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China; Department of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
214
|
Yepes AF, Quintero‐Saumeth J, Cardona‐G W. Chalcone‐Quinoline Conjugates as Potential
T. cruzi
Cruzipain Inhibitors: Docking Studies, Molecular Dynamics and Evaluation of Drug‐Likeness. ChemistrySelect 2020. [DOI: 10.1002/slct.202000777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andrés F. Yepes
- Chemistry of Colombian Plants, Institute of ChemistryFaculty of Exact and Natural Sciences University of Antioquia-UdeA Calle 70 No. 52–21, A.A 1226 Medellín Colombia
| | - Jorge Quintero‐Saumeth
- University of PamplonaFaculty of Basic Sciences Km 1 Vía Bucaramanga Ciudad Universitaria Pamplona Colombia
| | - Wilson Cardona‐G
- Chemistry of Colombian Plants, Institute of ChemistryFaculty of Exact and Natural Sciences University of Antioquia-UdeA Calle 70 No. 52–21, A.A 1226 Medellín Colombia
| |
Collapse
|
215
|
Fu DJ, Zhang YF, Chang AQ, Li J. β-Lactams as promising anticancer agents: Molecular hybrids, structure activity relationships and potential targets. Eur J Med Chem 2020; 201:112510. [PMID: 32592915 DOI: 10.1016/j.ejmech.2020.112510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
β-Lactam, commonly referred as azetidin-2-one, is a multifunctional building block for synthesizing β-amino ketones, γ-amino alcohols, and other compounds. Besides its well known antibiotic activity, this ring system exhibits a wide range of activities, attracting the attention of researchers. However, the structurally diverse β-lactam analogues as anticancer agents and their different molecular targets are poorly discussed. The purpose of this review is 3-fold: (1) to explore the molecular hybridization approach to design β-lactams hybrids as anticancer agents; (2) the structure activity relationship of the most active anticancer β-lactams and (3) to summarize their antitumor mechanisms.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yun-Feng Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - An-Qi Chang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
216
|
Badroon NA, Abdul Majid N, Alshawsh MA. Antiproliferative and Apoptotic Effects of Cardamonin against Hepatocellular Carcinoma HepG2 Cells. Nutrients 2020; 12:nu12061757. [PMID: 32545423 PMCID: PMC7353428 DOI: 10.3390/nu12061757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the sixth most common cancer in terms of incidence and the fourth in terms of mortality. Hepatocellular carcinoma (HCC) represents almost 90% of primary liver cancer and has become a major health problem globally. Cardamonin (CADMN) is a natural bioactive chalcone found in several edible plants such as cardamom and Alpinia species. Previous studies have shown that CADMN possesses anticancer activities against breast, lung, prostate and colorectal cancer. In the present study, the mechanisms underlying the anti-hepatocellular carcinoma effects of CADMN were investigated against HepG2 cells. The results demonstrated that CADMN has anti-proliferative effects and apoptotic action on HepG2 cells. CADMN showed potent cytotoxicity against HepG2 cells with an IC50 of 17.1 ± 0.592 μM at 72 h. Flow cytometry analysis demonstrated that CADMN arrests HepG2 cells in G1 phase and induces a significant increase in early and late apoptosis in a time-dependent manner. The mechanism by which CADMN induces apoptotic action was via activation of both extrinsic and intrinsic pathways. Moreover, the findings of this study showed the involvement of reactive oxygen species (ROS), which inhibit the NF-κB pathway and further enhance the apoptotic process. Together, our findings further support the potential anticancer activity of CADMN as an alternative therapeutic agent against HCC.
Collapse
Affiliation(s)
- Nassrin A. Badroon
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: (N.A.M.); (M.A.A.)
| | - Mohammed A. Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (N.A.M.); (M.A.A.)
| |
Collapse
|
217
|
Kumar G, Siva Krishna V, Sriram D, Jachak SM. Pyrazole–coumarin and pyrazole–quinoline chalcones as potential antitubercular agents. Arch Pharm (Weinheim) 2020; 353:e2000077. [DOI: 10.1002/ardp.202000077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Gautam Kumar
- Department of Natural ProductsNational Institute of Pharmaceutical Education and Research (NIPER) Mohali Punjab India
| | - Vagolu Siva Krishna
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy GroupBirla Institute of Technology & Science–Pilani Hyderabad Andhra Pradesh India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy GroupBirla Institute of Technology & Science–Pilani Hyderabad Andhra Pradesh India
| | - Sanjay M. Jachak
- Department of Natural ProductsNational Institute of Pharmaceutical Education and Research (NIPER) Mohali Punjab India
| |
Collapse
|
218
|
Kurubanjerdjit N. Identifying the regulation mechanism of phytochemicals on triple negative breast cancer's biological network. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
219
|
Encarnacion-Thomas E, Sommer RD, Mallia A, Sloop J. ( E)-2-(3,5-Di-meth-oxy-benzyl-idene)indan-1-one. IUCRDATA 2020; 5:x200759. [PMID: 36340617 PMCID: PMC9462231 DOI: 10.1107/s2414314620007592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/19/2022] Open
Abstract
The title chalcone, C18H16O3, was prepared by a solventless base-promoted Claisen-Schmidt condensation and, upon recrystallization from ethanol, obtained in 56% yield. The dihedral angle between the indanone ring system and the benzene ring is 2.54 (4) ° and the C atoms of the methoxy groups deviate from the benzene ring by 0.087 (1) and 0.114 (1) Å. In the crystal, π-stacking is the predominant inter-molecular force, with the mol-ecules stacking into columns running parallel to the b axis of the unit cell.
Collapse
Affiliation(s)
- Elvia Encarnacion-Thomas
- School of Science and Technology, H-3209, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA
| | - Roger D. Sommer
- North Carolina State University, Molecular Education, Technology, and Research Innovation Center, 2620 Yarbrough Dr., Raleigh, NC 27695, USA
| | - Ajay Mallia
- School of Science and Technology, H-3209, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA
| | - Joseph Sloop
- School of Science and Technology, H-3209, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA
| |
Collapse
|
220
|
Design, synthesis and biological evaluation of novel 3,4-dihydro-2(1H)-quinolinone derivatives as potential chitin synthase inhibitors and antifungal agents. Eur J Med Chem 2020; 195:112278. [DOI: 10.1016/j.ejmech.2020.112278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
|
221
|
Gomes C, Vinagreiro CS, Damas L, Aquino G, Quaresma J, Chaves C, Pimenta J, Campos J, Pereira M, Pineiro M. Advanced Mechanochemistry Device for Sustainable Synthetic Processes. ACS OMEGA 2020; 5:10868-10877. [PMID: 32455207 PMCID: PMC7240818 DOI: 10.1021/acsomega.0c00521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/03/2020] [Indexed: 05/02/2023]
Abstract
Mechanochemistry is an alternative for sustainable solvent-free processes that has taken the big step to become, in the near future, a useful synthetic method for academia and the fine chemical industry. The apparatus available, based on ball milling systems possessing several optimizable variables, requires too many control and optimization experiments to ensure reproducibility, which has limited its widespread utilization so far. Herein, we describe the development of an automatic mechanochemical single-screw device consisting of an electrical motor, a drill, and a drill chamber. The applicability and versatility of the new device are demonstrated by the implementation of di- and multicomponent chemical reactions with high reproducibility, using mechanical action exclusively. As examples, chalcones, dihydropyrimidinones, dihydropyrimidinethiones, pyrazoline, and porphyrins, were synthesized with high yields. The unprecedented sustainability is demonstrated by comparison of EcoScale and E-factor values of these processes with those previously described in the literature.
Collapse
Affiliation(s)
- Carla Gomes
- University
of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| | - Carolina S. Vinagreiro
- University
of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| | - Liliana Damas
- University
of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| | - Gilberto Aquino
- Faculty
of Pharmacy, Exact Sciences and Technology Unit, State University of Goias, 75132400 Anapolis, Goias, Brazil
| | - Joana Quaresma
- LEDAP,
Departamento de Engenharia Mecânica, FCT-Universidade de Coimbra, Polo II, 3030-194 Coimbra, Portugal
| | - Cristina Chaves
- University
of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| | - João Pimenta
- LEDAP,
Departamento de Engenharia Mecânica, FCT-Universidade de Coimbra, Polo II, 3030-194 Coimbra, Portugal
| | - José Campos
- LEDAP,
Departamento de Engenharia Mecânica, FCT-Universidade de Coimbra, Polo II, 3030-194 Coimbra, Portugal
| | - Mariette Pereira
- University
of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
- . Tel: +351919853716. Fax: +351239852080
| | - Marta Pineiro
- University
of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
- . Tel: +351239854479. Fax: +351239852080
| |
Collapse
|
222
|
Novel Class of Chalcone Oxime Ethers as Potent Monoamine Oxidase-B and Acetylcholinesterase Inhibitors. Molecules 2020; 25:molecules25102356. [PMID: 32443652 PMCID: PMC7288026 DOI: 10.3390/molecules25102356] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Previously synthesized novel chalcone oxime ethers (COEs) were evaluated for inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Twenty-two of the 24 COEs synthesized, except COE-17 and COE-24, had potent and/or significant selective inhibitory effects on MAO-B. COE-6 potently inhibited MAO-B with an IC50 value of 0.018 µM, which was 105, 2.3, and 1.1 times more potent than clorgyline, lazabemide, and pargyline (reference drugs), respectively. COE-7, and COE-22 were also active against MAO-B, both had an IC50 value of 0.028 µM, which was 67 and 1.5 times lower than those of clorgyline and lazabemide, respectively. Most of the COEs exhibited weak inhibitory effects on MAO-A and AChE. COE-13 most potently inhibited MAO-A (IC50 = 0.88 µM) and also significantly inhibited MAO-B (IC50 = 0.13 µM), and it could be considered as a potential nonselective MAO inhibitor. COE-19 and COE-22 inhibited AChE with IC50 values of 5.35 and 4.39 µM, respectively. The selectivity index (SI) of COE-22 for MAO-B was higher than that of COE-6 (SI = 778.6 vs. 222.2), but the IC50 value (0.028 µM) was slightly lower than that of COE-6 (0.018 µM). In reversibility experiments, inhibitions of MAO-B by COE-6 and COE-22 were recovered to the levels of reference reversible inhibitors and both competitively inhibited MAO-B, with Ki values of 0.0075 and 0.010 µM, respectively. Our results show that COE-6 and COE-22 are potent, selective MAO-B inhibitors, and COE-22 is a candidate of dual-targeting molecule for MAO-B and AChE.
Collapse
|
223
|
Pasricha S, Gahlot P. Synthetic Strategies and Biological Potential of Coumarin-Chalcone Hybrids: A New Dimension to Drug Design. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200219091830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Privileged scaffolds are ubiquitous as effective templates in drug discovery regime.
Natural and synthetically derived hybrid molecules are one such attractive scaffold
for therapeutic agent development due to their dual or multiple modes of action, minimum
or no side effects, favourable pharmacokinetics and other advantages. Coumarins and
chalcone are two important classes of natural products affording diverse pharmacological
activities which make them ideal templates for building coumarin-chalcone hybrids as effective
biological scaffold for drug discovery research. Provoked by the promising medicinal
application of hybrid molecules as well as those of coumarins and chalcones, the
medicinal chemists have used molecular hybridisation strategy to report dozens of coumarin-
chalcone hybrids with a wide spectrum of biological properties including anticancer,
antimicrobial, antimalarial, antioxidant, anti-tubercular and so on. The present review provides a systematic
summary on synthetic strategies, biological or chemical potential, SAR studies, some mechanisms of action
and some plausible molecular targets of synthetic coumarin-chalcone hybrids published from 2001 till
date. The review is expected to assist medicinal chemists in the effective and successful development of coumarin-
chalcone hybrid based drug discovery regime.
Collapse
Affiliation(s)
- Sharda Pasricha
- Department of Chemistry, Sri Venkateswara College, University of Delhi, P.O. Box: 110021, New Delhi, India
| | - Pragya Gahlot
- Department of Chemistry, Sri Venkateswara College, University of Delhi, P.O. Box: 110021, New Delhi, India
| |
Collapse
|
224
|
Custodio JM, Gotardo F, Vaz WF, D’Oliveira GD, de Almeida LR, Fonseca RD, Cocca LH, Perez CN, Oliver AG, de Boni L, Napolitano HB. Benzenesulfonyl incorporated chalcones: Synthesis, structural and optical properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
225
|
Tang YL, Zheng X, Qi Y, Pu XJ, Liu B, Zhang X, Li XS, Xiao WL, Wan CP, Mao ZW. Synthesis and anti-inflammatory evaluation of new chalcone derivatives bearing bispiperazine linker as IL-1β inhibitors. Bioorg Chem 2020; 98:103748. [DOI: 10.1016/j.bioorg.2020.103748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
|
226
|
Chunying Luo, Li P, Liu H, Feng P, Li J, Zhao L, Wu CL. Synthesis of Novel Chalcone-Based L-Homoserine Lactones and Their Quorum Sensing Inhibitory Activity Evaluation. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020020132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
227
|
Bilginer S, Gul HI, Erdal FS, Sakagami H, Gulcin I. New halogenated chalcones with cytotoxic and carbonic anhydrase inhibitory properties: 6‐(3‐Halogenated phenyl‐2‐propen‐1‐oyl)‐2(3
H
)‐benzoxazolones. Arch Pharm (Weinheim) 2020; 353:e1900384. [DOI: 10.1002/ardp.201900384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/11/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Sinan Bilginer
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAtaturk University Erzurum Turkey
| | - Halise I. Gul
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAtaturk University Erzurum Turkey
| | - Feyza S. Erdal
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAtaturk University Erzurum Turkey
| | - Hiroshi Sakagami
- Meikai University School of DentistryMeikai University Research Institute of Odontology (M‐RIO) Sakado Saitama Japan
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of ScienceAtaturk University Erzurum Turkey
| |
Collapse
|
228
|
Feng D, Zhang A, Yang Y, Yang P. Coumarin-containing hybrids and their antibacterial activities. Arch Pharm (Weinheim) 2020; 353:e1900380. [PMID: 32253782 DOI: 10.1002/ardp.201900380] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Infections caused by Gram-positive and -negative bacteria are one of the foremost causes of morbidity and mortality globally. Antibiotics are the mainstay of therapy for bacterial infections, but the emergence and wide spread of drug-resistant pathogens have already become a huge issue for public healthcare systems. The coumarin moiety, which is ubiquitous in nature, could bind to the B subunit of DNA gyrase in bacteria and inhibit DNA supercoiling by blocking the ATPase activity; hence, coumarin derivatives possess potential antibacterial activity. Several coumarin-containing hybrids such as coumermycin A1, clorobiocin, and novobiocin have already been used in clinical practice for the treatment of various bacterial infections; thus, it is conceivable that hybridization of the coumarin moiety with other antibacterial pharmacophores may provide opportunities for the development of novel antibiotics. This review outlines the advances in coumarin-containing hybrids with antibacterial potential in the recent 5 years and the structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Dongxu Feng
- Department of Disinfection Center, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuan Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China.,Dong Medicine Key Laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Peng Yang
- Dong Medicine Key Laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
229
|
Nisa S, Yusuf M. Synthetic and antimicrobial studies of
N
‐substituted‐pyrazoline‐based new bisheterocycles. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shehneela Nisa
- Department of ChemistryPunjabi University Patiala Punjab India
| | - Mohamad Yusuf
- Department of ChemistryPunjabi University Patiala Punjab India
| |
Collapse
|
230
|
Natural Chalcones in Chinese Materia Medica: Licorice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3821248. [PMID: 32256642 PMCID: PMC7102474 DOI: 10.1155/2020/3821248] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Licorice is an important Chinese materia medica frequently used in clinical practice, which contains more than 20 triterpenoids and 300 flavonoids. Chalcone, one of the major classes of flavonoid, has a variety of biological activities and is widely distributed in nature. To date, about 42 chalcones have been isolated and identified from licorice. These chalcones play a pivotal role when licorice exerts its pharmacological effects. According to the research reports, these compounds have a wide range of biological activities, containing anticancer, anti-inflammatory, antimicrobial, antioxidative, antiviral, antidiabetic, antidepressive, hepatoprotective activities, and so on. This review aims to summarize structures and biological activities of chalcones from licorice. We hope that this work can provide a theoretical basis for the further studies of chalcones from licorice.
Collapse
|
231
|
Farghaly TA, Masaret GS, Muhammad ZA, Harras MF. Discovery of thiazole-based-chalcones and 4-hetarylthiazoles as potent anticancer agents: Synthesis, docking study and anticancer activity. Bioorg Chem 2020; 98:103761. [PMID: 32200332 DOI: 10.1016/j.bioorg.2020.103761] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/13/2020] [Indexed: 01/11/2023]
Abstract
The crucial need for novel antitumor agents with high selectivity toward cancer cells has promoted us to synthesize new series of thiazole-based chalcones and 4-hetarylthiazoles (rigid chalcones). The synthesis of thiazolyl chalcones and 4-hetarylthiazoles and the assertion of their structure are described. Their anti-proliferative activity was estimated against three human cancer cell lines; HepG-2, A549 and MCF-7. 3-(4-Methoxyphenyl)-1-(5-methyl-2-(methylamino)thiazol-4-yl)prop-2-en-1-one (chalcone derivative 3a) showed significant and broad antitumor activity that was more potent than Doxorubicin. In addition, compounds 3d, 3e and 7a displayed potent activity compared to Doxorubicin. Additionally, these compounds were less toxic on normal lung cells WI-38 with high selectivity index. Further study on 3a regarding its effect on the normal cell cycle profile in A549 cells demonstrated cell cycle arrest at the G2/M phase together with rise in the percentage of the apoptotic pre-G1 cells. CDK1/CDK2/CDK4 inhibition assays were carried out on 3a, 3d, 3e and 7a and the results revealed non selective inhibition on the tested CDKs with IC50 values of 0.78-1.97 µM. Moreover, docking study predicted that 3a, 3d, 3e and 7a can fit in the ATP binding site of CDK1 enzyme. The apoptosis induction potential of 3a, 3d, 3e and 7a was also estimated against some apoptosis markers. Interestingly, they elevated the level of Bax by 6.36-10.12 folds and reduced the expression of Bcl-2 by 1.94-4.12 folds compared to the control. Furthermore, they increased both active caspase-3 and p53 levels by 8.76-10.56 and 6.85-10.36 folds, respectively higher than the control which indicates their potential to induce apoptosis.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia.
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Zeinab A Muhammad
- National Organization for Drug Control and Research (NODCAR), P.O. Box 29, Cairo, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
232
|
Das S, Porashar B, Saikia S, Borah R. Brönsted Acidic Ionic Liquids Catalysed Sequential Michael‐Like Addition of Indole with Chalcones via Claisen‐Schmidt Condensation. ChemistrySelect 2020. [DOI: 10.1002/slct.201904851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sukanya Das
- Department of Chemical SciencesTezpur University Napaam 784028, Tezpur India
| | - Bikoshita Porashar
- Department of Chemical Sciences Tezpur University Napaam 784028, Tezpur India
| | - Susmita Saikia
- Department of Chemical Sciences Tezpur University Napaam 784028, Tezpur India
| | - Ruli Borah
- Department of Chemical Sciences Tezpur University Napaam 784028, Tezpur India
| |
Collapse
|
233
|
Li P, Li X, Yao L, Wu Y, Li B. Soybean isoflavones prevent atrazine-induced neurodegenerative damage by inducing autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110065. [PMID: 31869719 DOI: 10.1016/j.ecoenv.2019.110065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/12/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Atrazine (ATR) is a widely used herbicide with documented dopaminergic (DAergic) neurotoxicity that can lead to a Parkinson's disease (PD)-like motor syndrome. However, there have been few studies on preventative interventions. The aim of the present study was to investigate the neuroprotective efficacy of soybean isoflavones (SI) and associated molecular mechanisms in a rat model of ATR-induced DAergic toxicity. Male Sprague-Dawley rats (6 weeks old) received daily intraperitoneal injection of SI (10, 50, or 100 mg/kg) or vehicle followed 1 h later by oral gavage of ATR (50 mg/kg) for 45 consecutive days. Open field and grip-strength tests indicated no differences in motor function among treatment groups. Alternatively, histopathology revealed neuronal damage in the striatum of rats receiving vehicle plus ATR that was ameliorated by SI pretreatment. SI attenuate ATR-induced oxidative stress (indicated by MDA accumulation and GSH depletion) and inflammatory damage (as evidenced by TNF-α and IL-6 elevation) in the substantia nigra. ATR increased expression of the pro-apoptotic factor Bax and reduced expression levels of the DA synthesis enzyme tyrosine hydroxylase (TH) and the anti-apoptotic factor Bcl-2 in the substantia nigra and striatum. All of these effects were reversed by SI pretreatment, suggesting that SI can inhibit ATR-induced apoptosis of DAergic neurons. ATR also inhibited autophagy in the substantial nigra as evidenced by LC3-II and Beclin-1 downregulation and increased expression of p62, whereas SI pretreatment reversed these effects, indicating autophagy induction. Furthermore, ATR increased the expression of mTOR and reduced the expression of phosphorylated S6 (p-S6) and BEX2 in the substantia nigra. Collectively, these findings suggest that SI can prevent ATR-mediated degeneration of DAergic neurons by inducing autophagy through an mTOR-dependent signaling pathway.
Collapse
Affiliation(s)
- Peng Li
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China.
| | - Xueting Li
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China.
| | - Liyan Yao
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China.
| | - Yanping Wu
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China.
| | - Baixiang Li
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China.
| |
Collapse
|
234
|
Cui Y, Li Y, Huang N, Xiong Y, Cao R, Meng L, Liu J, Feng Z. Structure based modification of chalcone analogue activates Nrf2 in the human retinal pigment epithelial cell line ARPE-19. Free Radic Biol Med 2020; 148:52-59. [PMID: 31887452 DOI: 10.1016/j.freeradbiomed.2019.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
Oxidative stress-induced degeneration of retinal pigment epithelial (RPE) cells is known to be a key contributor to the development of age-related macular degeneration (AMD). Activation of the nuclear factor-(erythroid-derived 2)-related factor-2 (Nrf2)-mediated cellular defense system is believed to be a valid therapeutic approach. In the present study, we designed and synthesized a novel chalcone analogue, 1-(2,3,4-trimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-acrylketone (Tak), as a Nrf2 activator. The potency of Tak was measured in RPE cells by the induction of the Nrf2-dependent antioxidant genes HO-1, NQO-1, GCLc, and GCLm, which were regulated through the Erk pathway. We also showed that Tak could protect RPE cells against oxidative stress-induced cell death and mitochondrial dysfunction. Furthermore, by modifying the α, β unsaturated carbonyl entity in Tak, we showed that the induction of antioxidant genes was abolished, indicating that this unique feature in Tak was responsible for the Nrf2 activation. These results suggest that Tak is a potential candidate for clinical application against AMD.
Collapse
Affiliation(s)
- Yuting Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuan Li
- Institute of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, PR China
| | - Na Huang
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yue Xiong
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruijun Cao
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lingjie Meng
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
235
|
Hellewell L, Bhakta S. Chalcones, stilbenes and ketones have anti-infective properties via inhibition of bacterial drug-efflux and consequential synergism with antimicrobial agents. Access Microbiol 2020; 2:acmi000105. [PMID: 33005869 PMCID: PMC7523622 DOI: 10.1099/acmi.0.000105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
With antimicrobial resistance creating a major public health crisis, the designing of novel antimicrobial compounds that effectively combat bacterial infection is becoming increasingly critical. Interdisciplinary approaches integrate the best features of whole-cell phenotypic evaluation to validate novel therapeutic targets and discover new leads to combat antimicrobial resistance. In this project, whole-cell phenotypic evaluation such as testing inhibitors on bacterial growth, viability, efflux pump, biofilm formation and their interaction with other drugs were performed on a panel of Gram-positive, Gram-negative and acid-fast group of bacterial species. This enabled additional antimicrobial activities of compounds belonging to the flavonoid family including ketones, chalcones and stilbenes, to be identified. Flavonoids have received renewed attention in literature over the past decade, and a variety of beneficial effects of these compounds have been illuminated, including anti-cancer, anti-inflammatory, anti-tumour as well as anti-fungal and anti-bacterial. However, their mechanisms of action are yet to be identified. In this paper, we found that the compounds belonging to the flavonoid family exerted a range of anti-infective properties being identified as novel efflux pump inhibitors, whilst offering the opportunity to be used in combination therapy. The compound 2-phenylacetophenone displayed broad-spectrum efflux pump inhibition activity, whilst trans-chalcone, displayed potent activity against Gram-negative and mycobacterial efflux pumps causing inhibition higher than known potent efflux pump inhibitors, verapamil and chlorpromazine. Drug-drug interaction studies also highlighted that 2-phenylacetophenone not only has the potential to work additively with known antibacterial agents that affect the cell-wall and DNA replication but also trans-chalcone has the potential to work synergistically with anti-tubercular agents. Overall, this paper shows how whole-cell phenotypic analysis allows for the discovery of new antimicrobial agents and their consequent mode of action whilst offering the opportunity for compounds to be repurposed, in order to contribute in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Lauren Hellewell
- Division of Biosciences, Institue of Structual and Molecular Biology, University College London, London, WC1E 6PT, UK
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, WC1E 7HX, UK
| |
Collapse
|
236
|
Singh N, Kumar N, Rathee G, Sood D, Singh A, Tomar V, Dass SK, Chandra R. Privileged Scaffold Chalcone: Synthesis, Characterization and Its Mechanistic Interaction Studies with BSA Employing Spectroscopic and Chemoinformatics Approaches. ACS OMEGA 2020; 5:2267-2279. [PMID: 32064388 PMCID: PMC7016911 DOI: 10.1021/acsomega.9b03479] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/15/2020] [Indexed: 05/28/2023]
Abstract
Chalcone, a privileged structure, is considered as an effective template in the field of medicinal chemistry for potent drug discovery. In the present study, a privileged template chalcone was designed, synthesized, and characterized by various spectroscopic techniques (NMR, high-resolution mass spectrometry, Fourier transform infrared (FT-IR) spectroscopy, UV spectroscopy, and single-crystal X-ray diffraction). The mechanism of binding of chalcone with bovine serum albumin (BSA) was determined by multispectroscopic techniques and computational methods. Steady-state fluorescence spectroscopy suggests that the intrinsic fluorescence of BSA was quenched upon the addition of chalcone by the combined dynamic and static quenching mechanism. Time-resolved spectroscopy confirms complex formation. FT-IR and circular dichroism spectroscopy suggested the presence of chalcone in the BSA molecule microenvironment and also the possibility of rearrangement of the native structure of BSA. Moreover, molecular docking studies confirm the moderate binding of chalcone with BSA and the molecular dynamics simulation analysis shows the stability of the BSA-drug complex system with minimal deformability fluctuations and potential interaction by the covariance matrix. Moreover, pharmacodynamics and pharmacological analysis show good results through Lipinski rules, with no toxicity profile and high gastrointestinal absorptions by boiled egg permeation assays. This study elucidates the mechanistic profile of the privileged chalcone scaffold to be used in therapeutic applications.
Collapse
Affiliation(s)
- Nidhi Singh
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Neeraj Kumar
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Garima Rathee
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Damini Sood
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Aarushi Singh
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Vartika Tomar
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Sujata K. Dass
- BLK
Super Speciality Hospital, Pusa Road, Delhi, New Delhi 110005, India
| | - Ramesh Chandra
- Department
of Chemistry, University of Delhi, Delhi 110007, India
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
237
|
Hegde H, Sinha RK, Kulkarni SD, Shetty NS. Synthesis, photophysical and DFT studies of naphthyl chalcone and nicotinonitrile derivatives. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
238
|
Awolade P, Cele N, Kerru N, Gummidi L, Oluwakemi E, Singh P. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Eur J Med Chem 2020; 187:111921. [PMID: 31835168 PMCID: PMC7111419 DOI: 10.1016/j.ejmech.2019.111921] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023]
Abstract
The emergence of disease and dearth of effective pharmacological agents on most therapeutic fronts, constitutes a major threat to global public health and man's existence. Consequently, this has created an exigency in the search for new drugs with improved clinical utility or means of potentiating available ones. To this end, accumulating empirical evidence supports molecular target therapy as a plausible egress and, β-glucuronidase (βGLU) - a lysosomal acid hydrolase responsible for the catalytic deconjugation of β-d-glucuronides has emerged as a viable molecular target for several therapeutic applications. The enzyme's activity level in body fluids is also deemed a potential biomarker for the diagnosis of some pathological conditions. Moreover, due to its role in colon carcinogenesis and certain drug-induced dose-limiting toxicities, the development of potent inhibitors of βGLU in human intestinal microbiota has aroused increased attention over the years. Nevertheless, although our literature survey revealed both natural products and synthetic scaffolds as potential inhibitors of the enzyme, only few of these have found clinical utility, albeit with moderate to poor pharmacokinetic profile. Hence, in this review we present a compendium of exploits in the present millennium directed towards the inhibition of βGLU. The aim is to proffer a platform on which new scaffolds can be modelled for improved βGLU inhibitory potency and the development of new therapeutic agents in consequential.
Collapse
Affiliation(s)
- Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ebenezer Oluwakemi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
239
|
Rani A, Singh GI, Kaur R, Palma G, Perumal S, Kaur M, Ebenezer O, Awolade P, Singh P, Kumar V. Azide-alkyne cycloaddition en route to ferrocenyl-methoxy-methyl-isatin-conjugates: Synthesis, anti-breast cancer activities and molecular docking studies. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
240
|
Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur J Med Chem 2020; 187:111980. [DOI: 10.1016/j.ejmech.2019.111980] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022]
|
241
|
Li K, Zhao S, Long J, Su J, Wu L, Tao J, Zhou J, Zhang J, Chen X, Peng C. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell Int 2020; 20:36. [PMID: 32021565 PMCID: PMC6993520 DOI: 10.1186/s12935-020-1114-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Melanoma is one of the most aggressive tumors with the remarkable characteristic of resistance to traditional chemotherapy and radiotherapy. Although targeted therapy and immunotherapy benefit advanced melanoma patient treatment, BRAFi (BRAF inhibitor) resistance and the lower response rates or severe side effects of immunotherapy have been observed, therefore, it is necessary to develop novel inhibitors for melanoma treatment. Methods We detected the cell proliferation of lj-1-59 in different melanoma cells by CCK 8 and colony formation assay. To further explore the mechanisms of lj-1-59 in melanoma, we performed RNA sequencing to discover the pathway of differential gene enrichment. Western blot and Q-RT-PCR were confirmed to study the function of lj-1-59 in melanoma. Results We found that lj-1-59 inhibits melanoma cell proliferation in vitro and in vivo, induces cell cycle arrest at the G2/M phase and promotes apoptosis in melanoma cell lines. Furthermore, RNA-Seq was performed to study alterations in gene expression profiles after treatment with lj-1-59 in melanoma cells, revealing that this compound regulates various pathways, such as DNA replication, P53, apoptosis and the cell cycle. Additionally, we validated the effect of lj-1-59 on key gene expression alterations by Q-RT-PCR. Our findings showed that lj-1-59 significantly increases ROS (reactive oxygen species) products, leading to DNA toxicity in melanoma cell lines. Moreover, lj-1-59 increases ROS levels in BRAFi -resistant melanoma cells, leading to DNA damage, which caused G2/M phase arrest and apoptosis. Conclusions Taken together, we found that lj-1-59 treatment inhibits melanoma cell growth by inducing apoptosis and DNA damage through increased ROS levels, suggesting that this compound is a potential therapeutic drug for melanoma treatment.
Collapse
Affiliation(s)
- Keke Li
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Shuang Zhao
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jing Long
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Juan Su
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Lisha Wu
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Juan Tao
- 4Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianda Zhou
- 5Department of Plastic Surgery of Third Xiangya Hospital, Central South University, Changsha, China
| | - JiangLin Zhang
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Xiang Chen
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Cong Peng
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
242
|
Luo N, Liu J, Wang S, Wang C. DBU-promoted ring-opening reactions of multi-substituted donor–acceptor cyclopropanes: access to functionalized chalcones with a quaternary carbon group. Org Biomol Chem 2020; 18:9210-9215. [DOI: 10.1039/d0ob01895c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A strategy to synthesize highly stereoselective chalcones with alkylcyanoacetate subunits via DBU-promoted ring-opening reactions of multi-substituted D–A cyclopropanes has been developed without the requirement of a transition metal catalyst and extra solvent.
Collapse
Affiliation(s)
- Naili Luo
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Jiamin Liu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Shan Wang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| |
Collapse
|
243
|
Tandem chalcone-sulfonamide hybridization, cyclization and further Claisen–Schmidt condensation: Tuning molecular diversity through reaction time and order and catalyst. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
244
|
Janse van Rensburg HD, Legoabe LJ, Terre'Blanche G, Aucamp J. Synthesis and evaluation of methoxy substituted 2-benzoyl-1-benzofuran derivatives as lead compounds for the development adenosine A1 and/or A2A receptor antagonists. Bioorg Chem 2020; 94:103459. [DOI: 10.1016/j.bioorg.2019.103459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
|
245
|
Ragab FAEF, Mohammed EI, Abdel Jaleel GA, Selim AAMAER, Nissan YM. Synthesis of Hydroxybenzofuranyl-pyrazolyl and Hydroxyphenyl-pyrazolyl Chalcones and Their Corresponding Pyrazoline Derivatives as COX Inhibitors, Anti-inflammatory and Gastroprotective Agents. Chem Pharm Bull (Tokyo) 2020; 68:742-752. [PMID: 32741915 DOI: 10.1248/cpb.c20-00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Five new series of hydroxybenzofuranyl-pyrazolyl chalcones 3a,b, hydroxyphenyl-pyrazolyl chalcones 6a-c and their corresponding pyrazolylpyrazolines 4a, d, 7a-c and 8a-f have been synthesized and evaluated for their in vitro cyclooxygenase (COX)-1 and COX-2 inhibitory activity. All the synthesized compounds exhibited dual COX-1 and COX-2 inhibitory activity with obvious selectivity against COX-2. The pyrazolylpyrazolines 4a-d and 8a-f bearing two vicinal aryl moieties in the pyrazoline nucleus showed more selectivity towards COX-2. Within these two series, derivatives 4c, d and 8d-f bearing the benzenesulfonamide group were the most selective. Compounds 4a-d and 8a-f were further subjected to in vivo anti-inflammatory screening, ulcerogenic liability and showed good anti-inflammatory activity with no ulcerogenic effect. In addition compounds 4c and 8d as examples showed prostaglandin (PG)E2 inhibition % 44.23 and 51.4 respectively, tumor necrosis factor α (TNFα) inhibition % 33.48 and 41.41 respectively and gastroprotective effect in ethanol induced rodent gastric ulcer model. In addition, to explore the binding mode and selectivity of our compounds, 8d and celecoxib were docked into the active site of COX-1 and COX-2. It was found that compound 8d exhibited a binding pattern and interactions similar to that of celecoxib with COX-2 active site, while bitter manner of interaction than celecoxib to COX-1 active site.
Collapse
Affiliation(s)
| | | | | | | | - Yassin Mohammed Nissan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| |
Collapse
|
246
|
Synthesis and biological evaluation of novel millepachine derivative containing aminophosphonate ester species as novel anti-tubulin agents. Bioorg Chem 2020; 94:103486. [DOI: 10.1016/j.bioorg.2019.103486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 11/27/2019] [Indexed: 01/17/2023]
|
247
|
Wang FC, Peng B, Cao SL, Li HY, Yuan XL, Zhang TT, Shi R, Li Z, Liao J, Wang H, Li J, Xu X. Synthesis and cytotoxic activity of chalcone analogues containing a thieno[2,3-d]pyrimidin-2-yl group as the A-ring or B-ring. Bioorg Chem 2020; 94:103346. [DOI: 10.1016/j.bioorg.2019.103346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/18/2019] [Accepted: 10/04/2019] [Indexed: 12/28/2022]
|
248
|
Chotsaeng N, Laosinwattana C, Charoenying P. Herbicidal Activity of Flavokawains and Related trans-Chalcones against Amaranthus tricolor L. and Echinochloa crus-galli (L.) Beauv. ACS OMEGA 2019; 4:20748-20755. [PMID: 31858061 PMCID: PMC6906942 DOI: 10.1021/acsomega.9b03144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/13/2019] [Indexed: 05/14/2023]
Abstract
Flavokawains have a broad spectrum of biological activities; however, the herbicidal activity of these naturally occurring chalcones has been less investigated. Flavokawains and their analogues were prepared by the Claisen-Schmidt condensation reaction between xanthoxyline (or aromatic ketones) and a variety of aromatic and heteroaromatic aldehydes. These compounds were then evaluated for their inhibitory effect against representative dicot and monocot plants. Among 45 synthetic chalcones, derivatives containing phenoxyacetic acid, 4-(N,N-dimethylamino)phenyl, N-methylpyrrole, or thiophenyl groups inhibited the germination and growth of Chinese amaranth (Amaranthus tricolor L.) with moderate to high degrees compared to commercial butachlor. For barnyardgrass (Echinochloa crus-galli (L.) Beauv.), most of the thiophenyl chalcones interrupted shoot and root emergence. This finding highlighted the importance of functional groups on the herbicidal activity of chalcones. The level of inhibition also depended on the applied concentrations, plant species, and plant organs. (E)-2-(2-(3-Oxo-3-(thiophen-2-yl)prop-1-enyl)phenoxy)acetic acid (14f) was the most active compound among 45 derivatives. This chalcone could be a promising structure for controlling the germination and growth of weeds. The structure-activity relationship results provide useful information about the development of active chalconoids as novel natural product-like herbicides.
Collapse
Affiliation(s)
- Nawasit Chotsaeng
- Department
of Chemistry, Faculty of Science, Integrated Applied Chemistry Research
Unit, Faculty of Science, and Department of Plant Production Technology, Faculty
of Agricultural Technology, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- E-mail: . Phone: +66-2329-8400 ext.
6228. Fax: +662-3298428
| | - Chamroon Laosinwattana
- Department
of Chemistry, Faculty of Science, Integrated Applied Chemistry Research
Unit, Faculty of Science, and Department of Plant Production Technology, Faculty
of Agricultural Technology, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Patchanee Charoenying
- Department
of Chemistry, Faculty of Science, Integrated Applied Chemistry Research
Unit, Faculty of Science, and Department of Plant Production Technology, Faculty
of Agricultural Technology, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
249
|
Mashayekh K, Shiri P. An Overview of Recent Advances in the Applications of Click Chemistry in the Synthesis of Bioconjugates with Anticancer Activities. ChemistrySelect 2019. [DOI: 10.1002/slct.201902362] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Koroush Mashayekh
- Medicinal Plants and Drugs Research InstituteShahid Beheshti University, Tehran Iran
| | - Pezhman Shiri
- Department of ChemistryShiraz University, Shiraz Iran
| |
Collapse
|
250
|
Alotibi MF, Abdel-Wahab BF, Yousif E, Hegazy AS, Kariuki BM, El-Hiti GA. Crystal structure of ( E)-3-(3-(5-methyl-1-phenyl-1 H-1,2,3-triazol-4-yl)-1-phenyl-1 H-pyrazol-4-yl)-1-phenylprop-2-en-1-one, C 27H 21N 5O. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2019-0779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C27H21N5O, triclinic, P1̄ (no. 2), a = 8.1464(7) Å, b = 10.3861(8) Å, c = 13.2507(9) Å, α = 84.898(6)°, β = 89.413(6)°, γ = 80.351(7)°, V = 1100.88(15) Å3, Z = 2, R
gt(F) = 0.0648, wR
ref(F
2) = 0.1726, T = 296(2) K.
Collapse
Affiliation(s)
- Mohammed F. Alotibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology , P.O. Box 6086 , Riyadh 11442, Saudi Arabia
| | - Bakr F. Abdel-Wahab
- Applied Organic Chemistry Department , National Research Centre , Dokki, Giza 12622, Egypt
| | - Emad Yousif
- Department of Chemistry , College of Science, Al-Nahrain University , Baghdad 64021, Iraq
| | - Amany S. Hegazy
- School of Chemistry, Cardiff University , Main Building , Park Place, Cardiff CF10 3AT , UK
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University , Main Building , Park Place, Cardiff CF10 3AT , UK
| | - Gamal A. El-Hiti
- Cornea Research Chair, Department of Optometry , College of Applied Medical Sciences, King Saud University , P.O. Box 10219 , Riyadh 11433, Saudi Arabia
| |
Collapse
|