201
|
Hill MA. Radiation Track Structure: How the Spatial Distribution of Energy Deposition Drives Biological Response. Clin Oncol (R Coll Radiol) 2020; 32:75-83. [PMID: 31511190 DOI: 10.1016/j.clon.2019.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022]
Abstract
Ionising radiation is incredibly effective at causing biological effects. This is due to the unique way energy is deposited along highly structured tracks of ionisation and excitation events, which results in correlation with sites of DNA damage from the nanometre to the micrometre scale. Correlation of these events along the track on the nanometre scale results in clustered damage, which not only results in the formation of DNA double-strand breaks (DSB), but also more difficult to repair complex DSB, which include additional damage within a few base pairs. The track structure varies significantly with radiation quality and the increase in relative biological effectiveness observed with increasing linear energy transfer in part corresponds to an increase in the probability and complexity of clustered DNA damage produced. Likewise, correlation over larger scales, associated with packing of DNA and associated chromosomes within the cell nucleus, can also have a major impact on the biological response. The proximity of the correlated damage along the track increases the probability of miss-repair through pairwise interactions resulting in an increase in probability and complexity of DNA fragments/deletions, mutations and chromosomal rearrangements. Understanding the mechanisms underlying the biological effectiveness of ionising radiation can provide an important insight into ways of increasing the efficacy of radiotherapy, as well as the risks associated with exposure. This requires a multi-scale approach for modelling, not only considering the physics of the track structure from the millimetre scale down to the nanometre scale, but also the structural packing of the DNA within the nucleus, the resulting chemistry in the context of the highly reactive environment of the nucleus, together with the subsequent biological response.
Collapse
Affiliation(s)
- M A Hill
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, Oxford, UK.
| |
Collapse
|
202
|
Determination of fast neutron RBE using a fully mechanistic computational model. Appl Radiat Isot 2020; 156:108952. [DOI: 10.1016/j.apradiso.2019.108952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 11/19/2022]
|
203
|
Dos Santos M, Delorme R, Salmon R, Prezado Y. Minibeam radiation therapy: A micro- and nano-dosimetry Monte Carlo study. Med Phys 2020; 47:1379-1390. [PMID: 31900944 DOI: 10.1002/mp.14009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/12/2019] [Accepted: 12/22/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Minibeam radiation therapy (MBRT) is an innovative strategy based on a distinct dose delivery method that is administered using a series of narrow (submillimetric) parallel beams. To shed light on the biological effects of MBRT irradiation, we explored the micro- and nanodosimetric characteristics of three promising MBRT modalities (photon, electron, and proton) using Monte Carlo (MC) calculations. METHODS Irradiation with proton (100 MeV), electron (300 MeV), and photon (effective energy of 69 keV) minibeams were simulated using Geant4 MC code and the Geant4-DNA extension, which allows the simulation of energy transfer points with nanometric accuracy. As the target of the simulations, cells containing spherical nuclei with or without a detailed description of the DNA (deoxyribonucleic acid) geometry were placed at different depths in peak and valley regions in a water phantom. The energy deposition and number of events in the cell nuclei were recorded in the microdosimetry study, and the number of DNA breaks and their complexity were determined in the nanodosimetric study, where a multi-scale simulation approach was used for the latter. For DNA damage assessment, an adapted DBSCAN clustering algorithm was used. To compare the photon MBRT (xMBRT), electron MBRT (eMBRT), and proton MBRT (pMBRT) approaches, we considered the treatment of a brain tumor located at a depth of 75 mm. RESULTS Both mean energy deposition at micrometric scale and DNA damage in the "valley" cell nuclei were very low as compared with these parameters in the peak region at all depths for xMBRT and at depths of 0 to 30 mm and 0 to 50 mm for eMBRT and pMBRT, respectively. Only the charged minibeams were favorable for tumor control by producing similar effects in peak and valley cells after 70 mm. At the micrometer scale, the energy deposited per event pointed to a potential advantage of proton beams for tumor control, as more aggressive events could be expected at the end of their tracks. At the nanometer scale, all three MBRT modalities produced direct clustered DNA breaks, although the majority of damage (>93%) was composed of isolated single strand breaks. The pMBRT led to a significant increase in the proportion of clustered single strand breaks and double-strand breaks at the end of its range as compared to the entrance (7% at 75 mm vs 3% at 10 mm) in contrast to eMBRT and xMBRT. In the latter cases, the proportions of complex breaks remained constant, irrespective of the depth and region (peak or valley). CONCLUSIONS Enhanced normal tissue sparing can be expected with these three MBRT techniques. Among the three modalities, pMBRT offers an additional gain for radioresistant tumors, as it resulted in a higher number of complex DNA damage clusters in the tumor region. These results can aid understanding of the biological mechanisms of MBRT.
Collapse
Affiliation(s)
- M Dos Santos
- Department of Radiobiology and regenerative medicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc), IRSN, F-92260, Fontenay-aux-Roses, France
| | - R Delorme
- Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91400, Orsay, France.,Université de Paris, IMNC, F-91400, Orsay, France
| | - R Salmon
- Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91400, Orsay, France.,Université de Paris, IMNC, F-91400, Orsay, France
| | - Y Prezado
- Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91400, Orsay, France.,Université de Paris, IMNC, F-91400, Orsay, France
| |
Collapse
|
204
|
Wang Y, Li Z, Zhang S, Tang W, Li X, Chen D, Sun L. The influence of Geant4-DNA toolkit parameters on electron microdosimetric track structure. JOURNAL OF RADIATION RESEARCH 2020; 61:58-67. [PMID: 31846034 PMCID: PMC6977597 DOI: 10.1093/jrr/rrz076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/19/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
The influence of different physical process factors on tracks of low-energy electrons in liquid water was analyzed and evaluated based on the Geant4-DNA toolkit of Geant4 version 10.4, and it provides theoretical support for obtaining the basic parameters of microdosimetry concerned with radiotherapy and radiation protection. According to the characteristics of different models, five physics constructors of Geant4-DNA toolkit were selected to simulate monoenergetic electrons in microscopic scale. Details of track structure of different Geant4-DNA physics constructors were compared, including total number of interaction processes, number and energy percentage of excitation and ionization; analyzing the impacts of mean lineal energy of several factors, including Geant4-DNA physics constructors, initial energy, radius of scoring spheres, interaction processes and cut-off energy. Firstly, 'G4EmDNAPhysics' (hereinafter referred to as 'dna') is well consistent with 'G4EmDNAPhysics_option 2' (hereinafter referred to as 'option 2'), and 'G4EmDNAPhysics_option 4' (hereinafter referred to as 'option 4') is well consistent with 'G4EmDNAPhysics_option 5' (hereinafter referred to as 'option 5'); secondly, there are differences for the information of track structure and mean lineal energy between 'option 2' 'option 4' and 'G4EmDNAPhysics_option 6' (hereinafter referred to as 'option 6'); thirdly, the influence of the model on the mean lineal energy decreases with the increase of the radius of the scoring spheres, whereas mean lineal energy increases as the tracking cut increases. Several alternative discrete physics constructors of Geant4-DNA are comprehensively discussed overlaying multiple perspectives under different conditions in this work.
Collapse
Affiliation(s)
- Yidi Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, China
- Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhanpeng Li
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, China
- Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Shuyuan Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, China
- Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Wei Tang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, China
- Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Xiang Li
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, China
- Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Dandan Chen
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, China
- Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Liang Sun
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, China
- Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
205
|
Li WB, Belchior A, Beuve M, Chen YZ, Di Maria S, Friedland W, Gervais B, Heide B, Hocine N, Ipatov A, Klapproth AP, Li CY, Li JL, Multhoff G, Poignant F, Qiu R, Rabus H, Rudek B, Schuemann J, Stangl S, Testa E, Villagrasa C, Xie WZ, Zhang YB. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Phys Med 2020; 69:147-163. [PMID: 31918367 DOI: 10.1016/j.ejmp.2019.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 11/29/2019] [Accepted: 12/15/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Targeted radiation therapy has seen an increased interest in the past decade. In vitro and in vivo experiments showed enhanced radiation doses due to gold nanoparticles (GNPs) to tumors in mice and demonstrated a high potential for clinical application. However, finding a functionalized molecular formulation for actively targeting GNPs in tumor cells is challenging. Furthermore, the enhanced energy deposition by secondary electrons around GNPs, particularly by short-ranged Auger electrons is difficult to measure. Computational models, such as Monte Carlo (MC) radiation transport codes, have been used to estimate the physical quantities and effects of GNPs. However, as these codes differ from one to another, the reliability of physical and dosimetric quantities needs to be established at cellular and molecular levels, so that the subsequent biological effects can be assessed quantitatively. METHODS In this work, irradiation of single GNPs of 50 nm and 100 nm diameter by X-ray spectra generated by 50 and 100 peak kilovoltages was simulated for a defined geometry setup, by applying multiple MC codes in the EURADOS framework. RESULTS The mean dose enhancement ratio of the first 10 nm-thick water shell around a 100 nm GNP ranges from 400 for 100 kVp X-rays to 600 for 50 kVp X-rays with large uncertainty factors up to 2.3. CONCLUSIONS It is concluded that the absolute dose enhancement effects have large uncertainties and need an inter-code intercomparison for a high quality assurance; relative properties may be a better measure until more experimental data is available to constrain the models.
Collapse
Affiliation(s)
- W B Li
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - A Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - M Beuve
- Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3 UMR 5822, Villeurbanne, France
| | - Y Z Chen
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - S Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - W Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - B Gervais
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, UMR 6252, BP 5133, F-14070 Caen Cedex 05, France
| | - B Heide
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - N Hocine
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - A Ipatov
- Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
| | - A P Klapproth
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Y Li
- Department of Engineering Physics, Tsinghua University, Beijing, China; Nuctech Company Limited, Beijing, China
| | - J L Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - G Multhoff
- TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - F Poignant
- Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3 UMR 5822, Villeurbanne, France
| | - R Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - H Rabus
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - B Rudek
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany; Massachusetts General Hospital & Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| | - J Schuemann
- Massachusetts General Hospital & Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| | - S Stangl
- TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - E Testa
- Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3 UMR 5822, Villeurbanne, France
| | - C Villagrasa
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - W Z Xie
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Y B Zhang
- Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
206
|
Microdosimetric calculations by simulating monoenergetic electrons in voxel models of human normal individual cells. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
207
|
Warmenhoven JW, Henthorn NT, Ingram SP, Chadwick AL, Sotiropoulos M, Korabel N, Fedotov S, Mackay RI, Kirkby KJ, Merchant MJ. Insights into the non-homologous end joining pathway and double strand break end mobility provided by mechanistic in silico modelling. DNA Repair (Amst) 2020; 85:102743. [DOI: 10.1016/j.dnarep.2019.102743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
|
208
|
Rabus H, Ngcezu SA, Braunroth T, Nettelbeck H. “Broadscale” nanodosimetry: Nanodosimetric track structure quantities increase at distal edge of spread-out proton Bragg peaks. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
209
|
Alvarez-Ibarra A, Parise A, Hasnaoui K, de la Lande A. The physical stage of radiolysis of solvated DNA by high-energy-transfer particles: insights from new first principles simulations. Phys Chem Chem Phys 2020; 22:7747-7758. [DOI: 10.1039/d0cp00165a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electron dynamics simulations based on density functional theory are carried out on nanometric molecular systems to decipher the primary processes following irradiation of bio-macromolecules by high energy transfer charged particles.
Collapse
Affiliation(s)
| | - Angela Parise
- Université Paris-Saclay
- CNRS
- Institut de Chimie Physique UMR8000
- Orsay
- France
| | - Karim Hasnaoui
- Institut du Développement et des Ressources en Informatique Scientifique
- Rue John von Neumann
- Orsay
- France
- Maison de la Simulation
| | | |
Collapse
|
210
|
Smith EAK, Henthorn NT, Warmenhoven JW, Ingram SP, Aitkenhead AH, Richardson JC, Sitch P, Chadwick AL, Underwood TSA, Merchant MJ, Burnet NG, Kirkby NF, Kirkby KJ, Mackay RI. In Silico Models of DNA Damage and Repair in Proton Treatment Planning: A Proof of Concept. Sci Rep 2019; 9:19870. [PMID: 31882690 PMCID: PMC6934522 DOI: 10.1038/s41598-019-56258-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/29/2019] [Indexed: 01/29/2023] Open
Abstract
There is strong in vitro cell survival evidence that the relative biological effectiveness (RBE) of protons is variable, with dependence on factors such as linear energy transfer (LET) and dose. This is coupled with the growing in vivo evidence, from post-treatment image change analysis, of a variable RBE. Despite this, a constant RBE of 1.1 is still applied as a standard in proton therapy. However, there is a building clinical interest in incorporating a variable RBE. Recently, correlations summarising Monte Carlo-based mechanistic models of DNA damage and repair with absorbed dose and LET have been published as the Manchester mechanistic (MM) model. These correlations offer an alternative path to variable RBE compared to the more standard phenomenological models. In this proof of concept work, these correlations have been extended to acquire RBE-weighted dose distributions and calculated, along with other RBE models, on a treatment plan. The phenomenological and mechanistic models for RBE have been shown to produce comparable results with some differences in magnitude and relative distribution. The mechanistic model found a large RBE for misrepair, which phenomenological models are unable to do. The potential of the MM model to predict multiple endpoints presents a clear advantage over phenomenological models.
Collapse
Affiliation(s)
- Edward A K Smith
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK. .,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK.
| | - N T Henthorn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - J W Warmenhoven
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - S P Ingram
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - A H Aitkenhead
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - J C Richardson
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - P Sitch
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - A L Chadwick
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - T S A Underwood
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - M J Merchant
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - N G Burnet
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - N F Kirkby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - K J Kirkby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R I Mackay
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
211
|
Mehnaz, Yang LH, Zou YB, Da B, Mao SF, Li HM, Zhao YF, Ding ZJ. A comparative study on Monte Carlo simulations of electron emission from liquid water. Med Phys 2019; 47:759-771. [PMID: 31702062 DOI: 10.1002/mp.13913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/06/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Liquid water being the major constituent of the human body, is of fundamental importance in radiobiological research. Hence, the knowledge of electron-water interaction physics and particularly the secondary electron yield is essential. However, to date, only very little is known experimentally on the low energy electron interaction with liquid water because of certain practical limitations. The purpose of this study was to gain some useful information about electron emission from water using a Monte Carlo (MC) simulation technique that can numerically model electron transport trajectories in water. METHODS In this study, we have performed MC simulations of electron emission from liquid water in the primary energy range of 50 eV-30 keV by using two different codes, i.e., a classical trajectory MC (CMC) code developed in our laboratory and the Geant4-DNA (G4DNA) code. The calculated secondary electron yield and electron backscattering coefficient are compared with experimental results wherever applicable to verify the validity of physical models for the electron-water interaction. RESULTS The secondary electron yield vs. primary energy curves calculated using the two codes present the same generic curve shape as that of metals but in rather different absolute values. G4DNA underestimates the secondary electron yield due to the application of one step thermalization model by setting a cutoff energy at 10 eV so that the low energy losses due to phonon excitations are omitted. Our CMC code, using a full energy loss spectrum to model electron inelastic scattering, allows the simulation of individual phonon scattering events for very low energy losses down to 10 meV, which then enables the calculated secondary electron yields much closer to the experimental data and also gives quite reasonable energy distribution curve of secondary electrons. CONCLUSIONS It is concluded that full dielectric function data at low energy loss values below 10 eV are recommended for modeling of low energy electrons in liquid water.
Collapse
Affiliation(s)
- Mehnaz
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - L H Yang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Y B Zou
- School of Physics & Electronic Engineering, Xinjiang Normal University, Urumqi, Xinjiang, 830054, P.R. China
| | - B Da
- Center for Materials Research by Information Integration (CMI2), Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - S F Mao
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - H M Li
- Supercomputing Center, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Y F Zhao
- Radiotherapy Department, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Z J Ding
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
212
|
Forster JC, Douglass MJJ, Phillips WM, Bezak E. Stochastic multicellular modeling of x-ray irradiation, DNA damage induction, DNA free-end misrejoining and cell death. Sci Rep 2019; 9:18888. [PMID: 31827107 PMCID: PMC6906404 DOI: 10.1038/s41598-019-54941-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/19/2019] [Indexed: 01/26/2023] Open
Abstract
The repair or misrepair of DNA double-strand breaks (DSBs) largely determines whether a cell will survive radiation insult or die. A new computational model of multicellular, track structure-based and pO2-dependent radiation-induced cell death was developed and used to investigate the contribution to cell killing by the mechanism of DNA free-end misrejoining for low-LET radiation. A simulated tumor of 1224 squamous cells was irradiated with 6 MV x-rays using the Monte Carlo toolkit Geant4 with low-energy Geant4-DNA physics and chemistry modules up to a uniform dose of 1 Gy. DNA damage including DSBs were simulated from ionizations, excitations and hydroxyl radical interactions along track segments through cell nuclei, with a higher cellular pO2 enhancing the conversion of DNA radicals to strand breaks. DNA free-ends produced by complex DSBs (cDSBs) were able to misrejoin and produce exchange-type chromosome aberrations, some of which were asymmetric and lethal. A sensitivity analysis was performed and conditions of full oxia and anoxia were simulated. The linear component of cell killing from misrejoining was consistently small compared to values in the literature for the linear component of cell killing for head and neck squamous cell carcinoma (HNSCC). This indicated that misrejoinings involving DSBs from the same x-ray (including all associated secondary electrons) were rare and that other mechanisms (e.g. unrejoined ends) may be important. Ignoring the contribution by the indirect effect toward DNA damage caused the DSB yield to drop to a third of its original value and the cDSB yield to drop to a tenth of its original value. Track structure-based cell killing was simulated in all 135306 viable cells of a 1 mm3 hypoxic HNSCC tumor for a uniform dose of 1 Gy.
Collapse
Affiliation(s)
- Jake C Forster
- Department of Nuclear Medicine, South Australia Medical Imaging, The Queen Elizabeth Hospital, Woodville South, SA, 5011, Australia. .,Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Michael J J Douglass
- Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Wendy M Phillips
- Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Eva Bezak
- Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia.,Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| |
Collapse
|
213
|
Assessment of Radio-Induced Damage in Endothelial Cells Irradiated with 40 kVp, 220 kVp, and 4 MV X-rays by Means of Micro and Nanodosimetric Calculations. Int J Mol Sci 2019; 20:ijms20246204. [PMID: 31835321 PMCID: PMC6940891 DOI: 10.3390/ijms20246204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
The objective of this work was to study the differences in terms of early biological effects that might exist between different X-rays energies by using a mechanistic approach. To this end, radiobiological experiments exposing cell monolayers to three X-ray energies were performed in order to assess the yields of early DNA damage, in particular of double-strand breaks (DSBs). The simulation of these irradiations was set in order to understand the differences in the obtained experimental results. Hence, simulated results in terms of microdosimetric spectra and early DSB induction were analyzed and compared to the experimental data. Human umbilical vein endothelial cells (HUVECs) were irradiated with 40, 220 kVp, and 4 MV X-rays. The Geant4 Monte Carlo simulation toolkit and its extension Geant4-DNA were used for the simulations. Microdosimetric calculations aiming to determine possible differences in the variability of the energy absorbed by the irradiated cell population for those photon spectra were performed on 10,000 endothelial cell nuclei representing a cell monolayer. Nanodosimetric simulations were also carried out using a computation chain that allowed the simulation of physical, physico-chemical, and chemical stages on a single realistic endothelial cell nucleus model including both heterochromatin and euchromatin. DNA damage was scored in terms of yields of prompt DSBs per Gray (Gy) and per giga (109) base pair (Gbp) and DSB complexity was derived in order to be compared to experimental data expressed as numbers of histone variant H2AX (γ-H2AX) foci per cell. The calculated microdosimetric spread in the irradiated cell population was similar when comparing between 40 and 220 kVp X-rays and higher when comparing with 4 MV X-rays. Simulated yields of induced DSB/Gy/Gbp were found to be equivalent to those for 40 and 220 kVp but larger than those for 4 MV, resulting in a relative biological effectiveness (RBE) of 1.3. Additionally, DSB complexity was similar between the considered photon spectra. Simulated results were in good agreement with experimental data obtained by IRSN (Institut de radioprotection et de sûreté nucléaire) radiobiologists. Despite differences in photon energy, few differences were observed when comparing between 40 and 220 kVp X-rays in microdosimetric and nanodosimetric calculations. Nevertheless, variations were observed when comparing between 40/220 kVp and 4 MV X-rays. Thanks to the simulation results, these variations were able to be explained by the differences in the production of secondary electrons with energies below 10 keV.
Collapse
|
214
|
Peukert D, Kempson I, Douglass M, Bezak E. Gold nanoparticle enhanced proton therapy: A Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield. Med Phys 2019; 47:651-661. [DOI: 10.1002/mp.13923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Dylan Peukert
- Future Industries Institute University of South Australia Adelaide 5095 SA Australia
- Division of ITEE University of South Australia Adelaide 5095 SA Australia
| | - Ivan Kempson
- Future Industries Institute University of South Australia Adelaide 5095 SA Australia
| | - Michael Douglass
- Department of Medical Physics Royal Adelaide Hospital Adelaide 5000 SA Australia
- Department of Physics University of Adelaide Adelaide 5005 SA Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences University of South Australia Adelaide 5001 SA Australia
- Department of Physics University of Adelaide Adelaide 5005 SA Australia
| |
Collapse
|
215
|
Yachi Y, Yoshii Y, Matsuya Y, Mori R, Oikawa J, Date H. Track Structure Study for Energy Dependency of Electrons and X-rays on DNA Double-Strand Break Induction. Sci Rep 2019; 9:17649. [PMID: 31776470 PMCID: PMC6881292 DOI: 10.1038/s41598-019-54081-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Radiation weighting factor wR for photons and electrons has been defined as unity independently of the energy of the particles. However, the biological effects depend on the incident energies according to in vitro experimental data. In this study, we have quantified the energy concentration along electron tracks in terms of dose-mean lineal energy (yD) on chromosome (micro-meter) and DNA (nano-meter) order scales by Monte Carlo simulations, and evaluated the impact of photon energies on DNA double-strand break (DNA-DSB) induction from an experimental study of irradiated cells. Our simulation result shows that the yD values for diagnostic X-rays (60-250 kVp) are higher than that for therapeutic X-rays (linac 6 MV), which agrees well with the tissue equivalent proportional counter (TEPC) measurements. The relation between the yD values and the numbers of γ-H2AX foci for various photon energy spectra suggests that low energy X-rays induce DNA-DSB more efficiently than higher energy X-rays even at the same absorbed dose (e.g., 1.0 Gy). The relative biological effectiveness based on DNA-DSBs number (RBEDSB) is proportionally enhanced as the yD value increases, demonstrating that the biological impact of the photon irradiation depends on energy concentration along radiation tracks of electrons produced in the bio-tissues. Ultimately, our study implies that the value of wR for photons varies depending on their energies.
Collapse
Affiliation(s)
- Yoshie Yachi
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yuji Yoshii
- Biological Research, Education and Instrumentation Centre, Sapporo Medical University, Minami-1 Nishi-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yusuke Matsuya
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
- Japan Atomic Energy Agency (JAEA), Nuclear Science and Engineering Centre, Research Group for Radiation Transport Analysis, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Ryosuke Mori
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
- Department of Radiology, Tokyo University Hospital, Tokyo, 113-8655, Japan
| | - Joma Oikawa
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
216
|
Zacchia NA, Martinez DM, Hoehr C. Radiolysis reduction in liquid solution targets for the production of 89Zr. Appl Radiat Isot 2019; 155:108791. [PMID: 31756554 DOI: 10.1016/j.apradiso.2019.06.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 11/25/2022]
Abstract
Increased interest in radiometals for nuclear medicine and imaging can be hampered by radionuclide supply. 89Zr for example, is a PET imaging nuclide for which no radionuclide generator exists. One method to produce 89Zr involves irradiating aqueous solutions of yttrium nitrate salt on small medical cyclotrons. However, in irradiating these solutions the radiolysis of water can cause significant H2 and O2 gas buildup, which can eventually rupture a sealed target vessel. We examine the role of nitrate and nitrite in radiolysis. Here, we find that using copper-coated cadmium pellets to chemically reduce nitrate to nitrite in solution prior to irradiation can reduce in-target radiolysis by approximately 60% as compared to other published methods of radiolysis reduction, but only in acidic solutions. We hypothesize that during irradiation, nitrate is converted to nitrite, consuming free radicals which would otherwise be available to eliminate molecular gas species. Performing this conversion before irradiation may limit the consumption of these beneficial free radicals.
Collapse
Affiliation(s)
- N A Zacchia
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3; Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada, V6T 1Z3.
| | - D M Martinez
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada, V6T 1Z3
| | - C Hoehr
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3
| |
Collapse
|
217
|
Zabihi A, Incerti S, Francis Z, Forozani G, Semsarha F, Moslehi A, Rezaeian P, Bernal MA. Computational approach to determine the relative biological effectiveness of fast neutrons using the Geant4-DNA toolkit and a DNA atomic model from the Protein Data Bank. Phys Rev E 2019; 99:052404. [PMID: 31212425 DOI: 10.1103/physreve.99.052404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 11/07/2022]
Abstract
This study proposes an innovative approach to estimate relative biological effectiveness (RBE) of fast neutrons using the Geant4 toolkit. The Geant4-DNA version cannot track heavy ions below 0.5 MeV/nucleon. In order to explore the impact of this issue, secondary particles are simulated instead of the primary low-energy neutrons. The Evaluated Nuclear Data File library is used to determine the cross sections for the elastic and inelastic interactions of neutrons with water and to find the contribution of each secondary particle spectrum. Two strategies are investigated in order to find the best possible approach and results. The first one takes into account only light particles, protons produced from elastic scattering, and α particles from inelastic scattering. Geantino particles are shot instead of heavy ions; hence all heavy ions are considered in the simulations, though their physical effects on DNA not. The second strategy takes into account all the heavy and light ions, although heavy ions cannot be tracked down to very low energies (E<0.5 MeV/nucleon). Our model is based on the combination of an atomic resolution DNA geometrical model and a Monte Carlo simulation toolkit for tracking particles. The atomic coordinates of the DNA double helix are extracted from the Protein Data Bank. Since secondary particle spectra are used instead of simulating the interaction of neutrons explicitly, this method reduces the computation times dramatically. Double-strand break induction is used as the end point for the estimation of the RBE of fast neutrons. ^{60}Co γ rays are used as the reference radiation quality. Both strategies succeed in reproducing the behavior of the RBE_{max} as a function of the incident neutron energy ranging from 0.1 to 14 MeV, including the position of its peak. A comparison of the behavior of the two strategies shows that for neutrons with energies less than 0.7 MeV, the effect of heavy ions would not be very significant, but above 0.7 MeV, heavy ions have an important role in neutron RBE.
Collapse
Affiliation(s)
- Azam Zabihi
- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan 651744161, Iran
| | - Sebastien Incerti
- University of Bordeaux, CENBG, UMR No. 5797, 33170 Gradignan, France CNRS, IN2P3, CENBG, UMR No. 5797, 33170 Gradignan, France
| | - Ziad Francis
- Department of Physics, Faculty of Sciences, Université Saint Joseph, 2020 1104 Beirut, Lebanon
| | - Ghasem Forozani
- Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Farid Semsarha
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Amir Moslehi
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran
| | - Peiman Rezaeian
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran
| | - Mario A Bernal
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo, Brazil
| |
Collapse
|
218
|
McNamara A, Willers H, Paganetti H. Modelling variable proton relative biological effectiveness for treatment planning. Br J Radiol 2019; 93:20190334. [PMID: 31738081 DOI: 10.1259/bjr.20190334] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dose in proton radiotherapy is generally prescribed by scaling the physical proton dose by a constant value of 1.1. Relative biological effectiveness (RBE) is defined as the ratio of doses required by two radiation modalities to cause the same level of biological effect. The adoption of an RBE of 1.1. assumes that the biological efficacy of protons is similar to photons, allowing decades of clinical dose prescriptions from photon treatments and protocols to be utilized in proton therapy. There is, however, emerging experimental evidence that indicates that proton RBE varies based on technical, tissue and patient factors. The notion that a single scaling factor may be used to equate the effects of photons and protons across all biological endpoints and doses is too simplistic and raises concern for treatment planning decisions. Here, we review the models that have been developed to better predict RBE variations in tissue based on experimental data as well as using a mechanistic approach.
Collapse
Affiliation(s)
- Aimee McNamara
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
219
|
Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers (Basel) 2019; 11:E1789. [PMID: 31739493 PMCID: PMC6895987 DOI: 10.3390/cancers11111789] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Biological responses to ionizing radiation (IR) have been studied for many years, generally showing the dependence of these responses on the quality of radiation, i.e., the radiation particle type and energy, types of DNA damage, dose and dose rate, type of cells, etc. There is accumulating evidence on the pivotal role of complex (clustered) DNA damage towards the determination of the final biological or even clinical outcome after exposure to IR. In this review, we provide literature evidence about the significant role of damage clustering and advancements that have been made through the years in its detection and prediction using Monte Carlo (MC) simulations. We conclude that in the future, emphasis should be given to a better understanding of the mechanistic links between the induction of complex DNA damage, its processing, and systemic effects at the organism level, like genomic instability and immune responses.
Collapse
Affiliation(s)
| | | | | | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Athens, Greece
| |
Collapse
|
220
|
Salado-Leza D, Traore A, Porcel E, Dragoe D, Muñoz A, Remita H, García G, Lacombe S. Radio-Enhancing Properties of Bimetallic Au:Pt Nanoparticles: Experimental and Theoretical Evidence. Int J Mol Sci 2019; 20:ijms20225648. [PMID: 31718091 PMCID: PMC6888691 DOI: 10.3390/ijms20225648] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
The use of nanoparticles, in combination with ionizing radiation, is considered a promising method to improve the performance of radiation therapies. In this work, we engineered mono- and bimetallic core-shell gold–platinum nanoparticles (NPs) grafted with poly (ethylene glycol) (PEG). Their radio-enhancing properties were investigated using plasmids as bio-nanomolecular probes and gamma radiation. We found that the presence of bimetallic Au:Pt-PEG NPs increased by 90% the induction of double-strand breaks, the signature of nanosize biodamage, and the most difficult cell lesion to repair. The radio-enhancement of Au:Pt-PEG NPs were found three times higher than that of Au-PEG NPs. This effect was scavenged by 80% in the presence of dimethyl sulfoxide, demonstrating the major role of hydroxyl radicals in the damage induction. Geant4-DNA Monte Carlo simulations were used to elucidate the physical processes involved in the radio-enhancement. We predicted enhancement factors of 40% and 45% for the induction of nanosize damage, respectively, for mono- and bimetallic nanoparticles, which is attributed to secondary electron impact processes. This work contributed to a better understanding of the interplay between energy deposition and the induction of nanosize biomolecular damage, being Monte Carlo simulations a simple method to guide the synthesis of new radio-enhancing agents.
Collapse
Affiliation(s)
- Daniela Salado-Leza
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
- Cátedras CONACyT, Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, Av. Dr. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, S.L.P., Mexico
| | - Ali Traore
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain; (A.T.); (G.G.)
| | - Erika Porcel
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
| | - Diana Dragoe
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (UMR 8182) CNRS, Université Paris Saclay, Université Paris Sud, 91405 Orsay, France;
| | - Antonio Muñoz
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 22, 28040 Madrid, Spain;
| | - Hynd Remita
- Laboratoire de Chimie Physique (UMR 8000) CNRS, Université Paris Saclay, Université Paris Sud, 91405 Orsay, France;
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain; (A.T.); (G.G.)
| | - Sandrine Lacombe
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
- Correspondence: ; Tel.: +33-(1)-6915-8263
| |
Collapse
|
221
|
Dai T, Li Q, Liu X, Dai Z, He P, Ma Y, Shen G, Chen W, Zhang H, Meng Q, Zhang X. Nanodosimetric quantities and RBE of a clinically relevant carbon-ion beam. Med Phys 2019; 47:772-780. [PMID: 31705768 DOI: 10.1002/mp.13914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/09/2019] [Accepted: 11/01/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Although carbon-ion therapy is becoming increasingly attractive to the treatment of tumors, details about the ionization pattern formed by therapeutic carbon-ion beam in tissue have not been fully investigated. In this work, systematic calculations for the nanodosimetric quantities and relative biological effectiveness (RBE) of a clinically relevant carbon-ion beam were studied for the first time. METHODS The method combining both track structure and condensed history Monte Carlo (MC) simulations was adopted to calculate the nanodosimetric quantities. Fragments and energy spectra at different positions of the radiation field of a clinically relevant carbon-ion pencil beam were generated by means of MC simulations in water. Nanodosimetric quantities such as mean ionization cluster size ( M 1 ), the first moment of conditional cluster size ( M 1 C 2 ), cumulative probability ( F 2 ), and conditional cumulative probability ( F 3 C 2 ) at these positions were then acquired based on the spectra and the pre-calculated nanodosimetric database created by track structure MC simulations. What's more, a novel approach to calculate RBE based on the said nanodosimetric quantities was introduced. The RBE calculations were then conducted for the carbon-ion beam at different water-equivalent depths. RESULTS Lateral distributions at various water-equivalent depths of both the nanodosimetric quantities and RBE values were obtained. The values of M 1 , M 1 C 2 , F 2 , and F 3 C 2 were 1.49, 2.67, 0.30, and 0.38 at the plateau at the beam central axis and maximized at 2.79, 5.69, 0.47, and 0.68 at the depths around the Bragg peak, respectively. At a given depth, M 1 and F 2 decreased laterally with increasing the distance to the beam central axis while M 1 C 2 and F 3 C 2 remained nearly unchanged at first and then decreased except for M 1 C 2 at the rising edge of the Bragg peak. The calculated RBE values were 1.07 at the plateau and 3.13 around the Bragg peak. Good agreement between the calculated RBE values and experimental data was obtained. CONCLUSIONS Different nanodosimetric quantities feature the track structure of therapeutic carbon-ion beam in different manners. Detailed ionization patterns generated by carbon-ion beam could be characterized by nanodosimetric quantities. Moreover the combined method adopted in this work to calculate nanodosimetric quantities is not only valid but also convenient. Nanodosimetric quantities are significantly helpful for the RBE calculations in carbon-ion therapy.
Collapse
Affiliation(s)
- Tianyuan Dai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Gansu Province, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Gansu Province, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinguo Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Gansu Province, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongying Dai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Gansu Province, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengbo He
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Gansu Province, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Ma
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Gansu Province, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guosheng Shen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Gansu Province, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Gansu Province, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Gansu Province, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Meng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Gansu Province, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine Gansu Province, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
222
|
Mancini-Terracciano C, Asai M, Caccia B, Cirrone GAP, Dotti A, Faccini R, Napolitani P, Pandola L, Wright DH, Colonna M. Preliminary results coupling "Stochastic Mean Field" and "Boltzmann-Langevin One Body" models with Geant4. Phys Med 2019; 67:116-122. [PMID: 31706147 DOI: 10.1016/j.ejmp.2019.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Monte Carlo (MC) simulations are widely used for medical applications and nuclear reaction models are fundamental for the simulation of the particle interactions with patients in ion therapy. Therefore, it is of utmost importance to have reliable models in MC simulations for such interactions. Geant4 is one of the most used toolkits for MC simulation. However, its models showed severe limitations in reproducing the yields measured in the interaction of ion beams below 100 MeV/u with thin targets. For this reason, we interfaced two models, SMF ("Stochastic Mean Field") and BLOB ("Boltzmann-Langevin One Body"), dedicated to simulate such reactions, with Geant4. METHODS Both SMF and BLOB are semi-classical, one-body approaches to solve the Boltzmann-Langevin equation. They include an identical treatment of the mean-field propagation, on the basis of the same effective interaction, but they differ in the way fluctuations are included. Furthermore, we tested a correction to the excitation energy calculated for the light fragments emerging from the simulations and a simple coalescence model. RESULTS While both SMF and BLOB have been developed to simulate heavy ion interactions, they show very good results in reproducing the experimental yields of light fragments, up to alpha particles, obtained in the interaction of 12C with a thin carbon target at 62 MeV/u. CONCLUSIONS BLOB in particular gives promising results and this stresses the importance of integrating it into the Geant4 toolkit.
Collapse
Affiliation(s)
- C Mancini-Terracciano
- Dip. Fisica, Sapienza Univ. di Roma, Rome, Italy; INFN Sezione di Roma, Rome, Italy.
| | - M Asai
- SLAC National Accelerator Laboratory, Menlo Park, United States
| | - B Caccia
- National Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanit, Italy
| | | | - A Dotti
- SLAC National Accelerator Laboratory, Menlo Park, United States
| | - R Faccini
- Dip. Fisica, Sapienza Univ. di Roma, Rome, Italy; INFN Sezione di Roma, Rome, Italy
| | - P Napolitani
- IPN, CNRS/IN2P3, Université Paris-Sud 11, UniversitéParis-Saclay, 91406 Orsay Cedex, France
| | - L Pandola
- INFN, Laboratori Nazionali del Sud, Catania, Italy
| | - D H Wright
- SLAC National Accelerator Laboratory, Menlo Park, United States
| | - M Colonna
- INFN, Laboratori Nazionali del Sud, Catania, Italy
| |
Collapse
|
223
|
Bertolet A, Cortés‐Giraldo MA, Souris K, Cohilis M, Carabe‐Fernandez A. Calculation of clinical dose distributions in proton therapy from microdosimetry. Med Phys 2019; 46:5816-5823. [DOI: 10.1002/mp.13861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Alejandro Bertolet
- Department of Radiation Oncology Hospital of The University of Pennsylvania Philadelphia PA 19104USA
- Department of Atomic, Molecular and Nuclear Physics Universidad de Sevilla Seville 41080Spain
| | | | - Kevin Souris
- Center for Molecular Imaging and Experimental Radiotherapy Université Catholique de Louvain Louvain Belgium
| | - Marie Cohilis
- Center for Molecular Imaging and Experimental Radiotherapy Université Catholique de Louvain Louvain Belgium
| | | |
Collapse
|
224
|
Vassiliev ON, Peterson CB, Cao W, Grosshans DR, Mohan R. Systematic microdosimetric data for protons of therapeutic energies calculated with Geant4-DNA. Phys Med Biol 2019; 64:215018. [PMID: 31553958 PMCID: PMC7232815 DOI: 10.1088/1361-6560/ab47cc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to generate physical data needed for microdosimetry-based models of proton RBE. Our focus was on the frequency and dose average lineal energies, y F and y D . We report data for proton energies from 0.1 to 100 MeV, for spherical volumes 2-103 nm in diameter. These data were calculated using Geant4-DNA Monte Carlo software. The physics implemented in Geant4-DNA has been extensively tested for this type of calculations but data on y F and y D for protons generated with this code have been very limited. An innovative aspect of our study is that we introduced a straightforward procedure for calculation of y F and y D for polyenergetic beams and presented the data in a format that simplifies these calculations. We compared our data with previous studies that used different Monte Carlo codes and with experimental data.
Collapse
Affiliation(s)
- Oleg N Vassiliev
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Wenhua Cao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| |
Collapse
|
225
|
A simulation study of gold nanoparticles localisation effects on radiation enhancement at the mitochondrion scale. Phys Med 2019; 67:148-154. [DOI: 10.1016/j.ejmp.2019.10.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 11/23/2022] Open
|
226
|
Gholami YH, Maschmeyer R, Kuncic Z. Radio-enhancement effects by radiolabeled nanoparticles. Sci Rep 2019; 9:14346. [PMID: 31586146 PMCID: PMC6778074 DOI: 10.1038/s41598-019-50861-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
In cancer radiation therapy, dose enhancement by nanoparticles has to date been investigated only for external beam radiotherapy (EBRT). Here, we report on an in silico study of nanoparticle-enhanced radiation damage in the context of internal radionuclide therapy. We demonstrate the proof-of-principle that clinically relevant radiotherapeutic isotopes (i.e. 213Bi, 223Ra, 90Y, 177Lu, 67Cu, 64Cu and 89Zr) labeled to clinically relevant superparamagnetic iron oxide nanoparticles results in enhanced radiation damage effects localized to sub-micron scales. We find that radiation dose can be enhanced by up to 20%, vastly outperforming nanoparticle dose enhancement in conventional EBRT. Our results demonstrate that in addition to the favorable spectral characteristics of the isotopes and their proximity to the nanoparticles, clustering of the nanoparticles results in a nonlinear collective effect that amplifies nanoscale radiation damage effects by electron-mediated inter-nanoparticle interactions. In this way, optimal radio-enhancement is achieved when the inter-nanoparticle distance is less than the mean range of the secondary electrons. For the radioisotopes studied here, this corresponds to inter-nanoparticle distances <50 nm, with the strongest effects within 20 nm. The results of this study suggest that radiolabeled nanoparticles offer a novel and potentially highly effective platform for developing next-generation theranostic strategies for cancer medicine.
Collapse
Affiliation(s)
- Yaser Hadi Gholami
- The University of Sydney, Institute of Medical Physics, School of Physics, Sydney, NSW, 2006, Australia.
| | - Richard Maschmeyer
- The University of Sydney, Institute of Medical Physics, School of Physics, Sydney, NSW, 2006, Australia
| | - Zdenka Kuncic
- The University of Sydney, Institute of Medical Physics, School of Physics, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, Sydney, NSW, 2006, Australia.
| |
Collapse
|
227
|
Ivanchenko V, Bagulya A, Bakr S, Bandieramonte M, Bernard D, Bordage MC, Brown J, Burkhardt H, Dondero P, Elles S, Grichine V, Guatelli S, Hariri F, Howard A, Incerti S, Yung Jun S, Kadri O, Kyriakou I, Maire M, Mantero A, Novak M, Sawkey D, Sawkey D, Semeniouk I, Sokolov A, Urban L. Progress of Geant4 electromagnetic physics developments and applications. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201921402046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We report on developments of the Geant4 electromagnetic physics sub-libraries of Geant4 release 10.4 and beyond. Modifications are introduced to the models of photoelectric effect, bremsstrahlung, gamma conversion, single and multiple scattering. The theory-based Goudsmit-Saunderson model of electron/positron multiple scattering has been recently reviewed and a new improved version, providing the most accurate results for scattering of electrons and positrons, was made available. The updated interfaces, models and configurations have already been integrated into LHC applications and may be useful for any type of simulations.
Collapse
|
228
|
Peukert D, Kempson I, Douglass M, Bezak E. Gold Nanoparticle Enhanced Proton Therapy: Monte Carlo Modeling of Reactive Species' Distributions Around a Gold Nanoparticle and the Effects of Nanoparticle Proximity and Clustering. Int J Mol Sci 2019; 20:ijms20174280. [PMID: 31480532 PMCID: PMC6747251 DOI: 10.3390/ijms20174280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 01/12/2023] Open
Abstract
Gold nanoparticles (GNPs) are promising radiosensitizers with the potential to enhance radiotherapy. Experiments have shown GNP enhancement of proton therapy and indicated that chemical damage by reactive species plays a major role. Simulations of the distribution and yield of reactive species from 10 ps to 1 µs produced by a single GNP, two GNPs in proximity and a GNP cluster irradiated with a proton beam were performed using the Geant4 Monte Carlo toolkit. It was found that the reactive species distribution at 1 µs extended a few hundred nm from a GNP and that the largest enhancement occurred over 50 nm from the nanoparticle. Additionally, the yield for two GNPs in proximity and a GNP cluster was reduced by up to 17% and 60% respectively from increased absorption. The extended range of action from the diffusion of the reactive species may enable simulations to model GNP enhanced proton therapy. The high levels of absorption for a large GNP cluster suggest that smaller clusters and diffuse GNP distributions maximize the total radiolysis yield within a cell. However, this must be balanced against the high local yields near a cluster particularly if the cluster is located adjacent to a biological target.
Collapse
Affiliation(s)
- Dylan Peukert
- Future Industries Institute, University of South Australia, Adelaide, 5095 SA, Australia.
- Division of ITEE, University of South Australia, Adelaide, 5095 SA, Australia.
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Adelaide, 5095 SA, Australia
| | - Michael Douglass
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, 5000 SA, Australia
- Department of Physics, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, 5001 SA, Australia
- Department of Physics, University of Adelaide, Adelaide, 5005 SA, Australia
| |
Collapse
|
229
|
Rabus H, Gargioni E, Li WB, Nettelbeck H, Villagrasa C. Determining dose enhancement factors of high-Z nanoparticles from simulations where lateral secondary particle disequilibrium exists. Phys Med Biol 2019; 64:155016. [PMID: 31300616 DOI: 10.1088/1361-6560/ab31d4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanoparticles (NPs) containing high atomic number (high-Z) materials have been shown to enhance the radiobiological effectiveness of ionizing radiation. This effect is often attributed to an enhancement of the absorbed dose in the vicinity of the NPs, based on Monte Carlo simulations that show a significant local enhancement of the energy deposition on the microscopic scale. The results of such simulations may be significantly biased and lead to a severe overestimation of the dose enhancement if the condition of secondary particle equilibrium is not met in the simulation setup. This current work shows an approach to estimate a 'realistic' dose enhancement from the results of such biased simulations which is based on published photon interaction data and provides a way for correcting biased results.
Collapse
Affiliation(s)
- Hans Rabus
- Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
230
|
Salim R, Taherparvar P. Monte Carlo single-cell dosimetry using Geant4-DNA: the effects of cell nucleus displacement and rotation on cellular S values. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:353-371. [PMID: 30927051 DOI: 10.1007/s00411-019-00788-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Investigation of biological effects of low-dose ionizing radiation at the (sub-) cellular level, which is referred to as microdosimetry, remains a major challenge of today's radiobiology research. Monte Carlo simulation of radiation tracks can provide a detailed description of the physical processes involved in dimensions as small as the critical substructures of the cell. Hereby, in the present study, microdosimetric calculations of cellular S values for mono-energetic electrons and six Auger-emitting radionuclides were performed in single-cell models of liquid water using Geant4-DNA. The effects of displacement and rotation of the nucleus within the cell on the cellular S values were studied in spherical and ellipsoidal geometries. It was found that for the examined electron energies and radionuclides, in the case of nucleus cross-absorption where the radioactivity is either localized in the cytoplasm of the cell or distributed on the cell surface, rotation of the nucleus within the cell affects cellular S values less than displacement of the nucleus. Especially, the considerable differences observed in S(nucleus ← cell surface) values between an eccentric and a concentric cell-nucleus configuration in spherical and ellipsoidal geometries (up to 63% and up to 44%, respectively) suggests that the approximation of concentricity should be used with caution, at least for localized irradiation of the cell membrane by an Auger-emitter in targeted radionuclide cancer therapy. The obtained results, which are based on a more realistic modeling of the cell than was done before, provide more accurate information about nuclear dose. This can be useful for theranostic applications.
Collapse
Affiliation(s)
- Ramak Salim
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 41335-19141, Rasht, 4193833697, Iran
| | - Payvand Taherparvar
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 41335-19141, Rasht, 4193833697, Iran.
| |
Collapse
|
231
|
de Vera P, Surdutovich E, Solov’yov AV. The role of shock waves on the biodamage induced by ion beam radiation. Cancer Nanotechnol 2019. [DOI: 10.1186/s12645-019-0050-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
232
|
Liu R, Zhao T, Swat MH, Reynoso FJ, Higley KA. Development of computational model for cell dose and DNA damage quantification of multicellular system. Int J Radiat Biol 2019; 95:1484-1497. [DOI: 10.1080/09553002.2019.1642537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ruirui Liu
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maciej H. Swat
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA
| | - Francisco J. Reynoso
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn A. Higley
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
233
|
Torfeh E, Simon M, Muggiolu G, Devès G, Vianna F, Bourret S, Incerti S, Barberet P, Seznec H. Monte-Carlo dosimetry and real-time imaging of targeted irradiation consequences in 2-cell stage Caenorhabditis elegans embryo. Sci Rep 2019; 9:10568. [PMID: 31332255 PMCID: PMC6646656 DOI: 10.1038/s41598-019-47122-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Charged-particle microbeams (CPMs) provide a unique opportunity to investigate the effects of ionizing radiation on living biological specimens with a precise control of the delivered dose, i.e. the number of particles per cell. We describe a methodology to manipulate and micro-irradiate early stage C. elegans embryos at a specific phase of the cell division and with a controlled dose using a CPM. To validate this approach, we observe the radiation-induced damage, such as reduced cell mobility, incomplete cell division and the appearance of chromatin bridges during embryo development, in different strains expressing GFP-tagged proteins in situ after irradiation. In addition, as the dosimetry of such experiments cannot be extrapolated from random irradiations of cell populations, realistic three-dimensional models of 2 cell-stage embryo were imported into the Geant4 Monte-Carlo simulation toolkit. Using this method, we investigate the energy deposit in various chromatin condensation states during the cell division phases. The experimental approach coupled to Monte-Carlo simulations provides a way to selectively irradiate a single cell in a rapidly dividing multicellular model with a reproducible dose. This method opens the way to dose-effect investigations following targeted irradiation.
Collapse
Affiliation(s)
- Eva Torfeh
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Marina Simon
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Giovanna Muggiolu
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Guillaume Devès
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - François Vianna
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,François Vianna: Institut de Radioprotection et de Sûreté Nucléaire, Bat.159, BP3, 13115, St-Paul-Lez-Durance, Cedex, France
| | - Stéphane Bourret
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Sébastien Incerti
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Philippe Barberet
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France. .,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.
| | - Hervé Seznec
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France. .,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.
| |
Collapse
|
234
|
Bertolet A, Baratto‐Roldán A, Cortés‐Giraldo MA, Carabe‐Fernandez A. Segment‐averaged LET concept and analytical calculation from microdosimetric quantities in proton radiation therapy. Med Phys 2019; 46:4204-4214. [DOI: 10.1002/mp.13673] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/10/2019] [Accepted: 06/13/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- A. Bertolet
- Department of Radiation Oncology Hospital of The University of Pennsylvania Philadelphia PA USA
- Department of Atomic, Molecular and Nuclear Physics Universidad de Sevilla Seville Spain
| | - A. Baratto‐Roldán
- Department of Atomic, Molecular and Nuclear Physics Universidad de Sevilla Seville Spain
| | - M. A. Cortés‐Giraldo
- Department of Atomic, Molecular and Nuclear Physics Universidad de Sevilla Seville Spain
| | - A. Carabe‐Fernandez
- Department of Radiation Oncology Hospital of The University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
235
|
Forster JC, Marcu LG, Bezak E. Approaches to combat hypoxia in cancer therapy and the potential for in silico models in their evaluation. Phys Med 2019; 64:145-156. [PMID: 31515013 DOI: 10.1016/j.ejmp.2019.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
AIM The negative impact of tumour hypoxia on cancer treatment outcome has been long-known, yet there has been little success combating it. This paper investigates the potential role of in silico modelling to help test emerging hypoxia-targeting treatments in cancer therapy. METHODS A Medline search was undertaken on the current landscape of in silico models that simulate cancer therapy and evaluate their ability to test hypoxia-targeting treatments. Techniques and treatments to combat tumour hypoxia and their current challenges are also presented. RESULTS Hypoxia-targeting treatments include tumour reoxygenation, hypoxic cell radiosensitization with nitroimidazoles, hypoxia-activated prodrugs and molecular targeting. Their main challenges are toxicity and not achieving adequate delivery to hypoxic regions of the tumour. There is promising research toward combining two or more of these techniques. Different types of in silico therapy models have been developed ranging from temporal to spatial and from stochastic to deterministic models. Numerous models have compared the effectiveness of different radiotherapy fractionation schedules for controlling hypoxic tumours. Similarly, models could help identify and optimize new treatments for overcoming hypoxia that utilize novel hypoxia-targeting technology. CONCLUSION Current therapy models should attempt to incorporate more sophisticated modelling of tumour angiogenesis/vasculature and vessel perfusion in order to become more useful for testing hypoxia-targeting treatments, which typically rely upon the tumour vasculature for delivery of additional oxygen, (pro)drugs and nanoparticles.
Collapse
Affiliation(s)
- Jake C Forster
- SA Medical Imaging, Department of Nuclear Medicine, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; Department of Physics, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - Loredana G Marcu
- Faculty of Science, University of Oradea, Oradea 410087, Romania; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Eva Bezak
- Department of Physics, University of Adelaide, North Terrace, Adelaide SA 5005, Australia; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia
| |
Collapse
|
236
|
Bertolet A, Baratto‐Roldán A, Barbieri S, Baiocco G, Carabe A, Cortés‐Giraldo M. Dose‐averaged LET calculation for proton track segments using microdosimetric Monte Carlo simulations. Med Phys 2019; 46:4184-4192. [DOI: 10.1002/mp.13643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 11/07/2022] Open
Affiliation(s)
- A. Bertolet
- Department of Radiation Oncology Hospital of The University of Pennsylvania Philadelphia 19104PA USA
- Department of Atomic, Molecular and Nuclear Physics Universidad de Sevilla Seville Spain
| | - A. Baratto‐Roldán
- Department of Atomic, Molecular and Nuclear Physics Universidad de Sevilla Seville Spain
| | - S. Barbieri
- Department of Physics University of Pavia Pavia Italy
| | - G. Baiocco
- Department of Physics University of Pavia Pavia Italy
| | - A. Carabe
- Department of Radiation Oncology Hospital of The University of Pennsylvania Philadelphia 19104PA USA
| | - M.A. Cortés‐Giraldo
- Department of Atomic, Molecular and Nuclear Physics Universidad de Sevilla Seville Spain
| |
Collapse
|
237
|
Electron track structure simulations in a gold nanoparticle using Geant4-DNA. Phys Med 2019; 63:98-104. [DOI: 10.1016/j.ejmp.2019.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/09/2019] [Accepted: 05/25/2019] [Indexed: 01/30/2023] Open
|
238
|
Newpower M, Patel D, Bronk L, Guan F, Chaudhary P, McMahon SJ, Prise KM, Schettino G, Grosshans DR, Mohan R. Using the Proton Energy Spectrum and Microdosimetry to Model Proton Relative Biological Effectiveness. Int J Radiat Oncol Biol Phys 2019; 104:316-324. [PMID: 30731186 PMCID: PMC6499683 DOI: 10.1016/j.ijrobp.2019.01.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/28/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE We introduce a methodology to calculate the microdosimetric quantity dose-mean lineal energy for input into the microdosimetric kinetic model (MKM) to model the relative biological effectiveness (RBE) of proton irradiation experiments. METHODS AND MATERIALS The data from 7 individual proton RBE experiments were included in this study. In each experiment, the RBE at several points along the Bragg curve was measured. Monte Carlo simulations to calculate the lineal energy probability density function of 172 different proton energies were carried out with use of Geant4 DNA. We calculated the fluence-weighted lineal energy probability density function (fw(y)), based on the proton energy spectra calculated through Monte Carlo at each experimental depth, calculated the dose-mean lineal energy yD¯ for input into the MKM, and then computed the RBE. The radius of the domain (rd) was varied to reach the best agreement between the MKM-predicted RBE and experimental RBE. A generic RBE model as a function of dose-averaged linear energy transfer (LETD) with 1 fitting parameter was presented and fit to the experimental RBE data as well to facilitate a comparison to the MKM. RESULTS Both the MKM and LETD-based models modeled the RBE from experiments well. Values for rd were similar to those of other cell lines under proton irradiation that were modeled with the MKM. Analysis of the performance of each model revealed that neither model was clearly superior to the other. CONCLUSIONS Our 3 key accomplishments include the following: (1) We developed a method that uses the proton energy spectra and lineal energy distributions of those protons to calculate dose-mean lineal energy. (2) We demonstrated that our application of the MKM provides theoretical validation of proton irradiation experiments that show that RBE is significantly greater than 1.1. (3) We showed that there is no clear evidence that the MKM is better than LETD-based RBE models.
Collapse
Affiliation(s)
- Mark Newpower
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; Medical Physics Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.
| | - Darshana Patel
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lawrence Bronk
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fada Guan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pankaj Chaudhary
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Stephen J McMahon
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Giuseppe Schettino
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, United Kingdom; University of Surrey, Department of Physics, Guilford, United Kingdom
| | - David R Grosshans
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Radhe Mohan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
239
|
Lee BH, Wang CKC. A cell-by-cell Monte Carlo simulation for assessing radiation-induced DNA double strand breaks. Phys Med 2019; 62:140-151. [DOI: 10.1016/j.ejmp.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/08/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022] Open
|
240
|
Sakata D, Lampe N, Karamitros M, Kyriakou I, Belov O, Bernal MA, Bolst D, Bordage MC, Breton V, Brown JM, Francis Z, Ivanchenko V, Meylan S, Murakami K, Okada S, Petrovic I, Ristic-Fira A, Santin G, Sarramia D, Sasaki T, Shin WG, Tang N, Tran HN, Villagrasa C, Emfietzoglou D, Nieminen P, Guatelli S, Incerti S. Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA. Phys Med 2019; 62:152-157. [DOI: 10.1016/j.ejmp.2019.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/25/2019] [Accepted: 04/13/2019] [Indexed: 11/26/2022] Open
|
241
|
Villagomez-Bernabe B, Currell FJ. Physical Radiation Enhancement Effects Around Clinically Relevant Clusters of Nanoagents in Biological Systems. Sci Rep 2019; 9:8156. [PMID: 31148555 PMCID: PMC6544818 DOI: 10.1038/s41598-019-44482-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Here we show that the determining factor for physical radiation enhancement effects for a clinically realistic cluster of heavy-atom bearing nanoparticles is the total number of heavy atoms packed into the cluster. We do this through a multiscale Monte Carlo approach which permits the consideration of radiation transport through clusters of millions of nanoparticles. The finding is in contrast to that predicted when isolated nanoparticles are considered and is a direct consequence of the Auger electrons playing less of a role for clusters compared to isolate nanoparticles. We further show that this result is agnostic to selection of the subcellular region considered to be sensitive to the effects of radiation, provided the inside the cluster of nanoparticles is not considered to be biologically active.
Collapse
Affiliation(s)
| | - F J Currell
- The University of Manchester The Dalton Cumbrian Facility, Westlakes Science & Technology Park, Moor Row, Cumbria, CA24 3HA, UK. .,School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
242
|
Perales Á, Baratto-Roldán A, Kimstrand P, Cortés-Giraldo MA, Carabe A. Parameterising microdosimetric distributions of mono-energetic proton beams for fast estimates of y
D
and y*. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab236a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
243
|
Belousov AV, Morozov VN, Krusanov GA, Kolyvanova MA, Shtil AA. The Effect of Gold Nanoparticle Surface Modification with Polyethylene Glycol on the Absorbed Dose Distribution upon Irradiation with 137Cs and 60Co Photons. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
244
|
Byrne H, McNamara A, Kuncic Z. IMPACT OF NANOPARTICLE CLUSTERING ON DOSE RADIO-ENHANCEMENT. RADIATION PROTECTION DOSIMETRY 2019; 183:50-54. [PMID: 30535388 DOI: 10.1093/rpd/ncy218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 06/09/2023]
Abstract
High atomic number nanoparticles (NPs) have been shown to enhance the effects of radiation in vitro and in vivo. However, NPs are often observed to cluster together, leading to inhomogeneous distribution within the tissue and within cells themselves. The effect of this clustering on the capability of NPs to enhance radiation dose has not yet been fully investigated. In this Monte Carlo simulation study, the dependence of radio-enhancement on a separation parameter characterising NP clustering was investigated. A target water cube of side length 100 μm was simulated containing gold NPs constituting ~1% by mass. The NPs were placed in a cubic grid pattern and the separation distance between nanoparticles was varied. For NPs of 100 nm radius widely separated 2 μm apart, 91% of the total energy deposit was found to occur in the surrounding water, compared to only 56% when the NPs were moved closer together to 0.2 μm. The remaining energy deposit was absorbed by the NPs themselves. A similar trend was observed for NPs of radius 50 nm. The clustering effect was found to persist to greater separations for the larger NPs. The proportion of energy deposit in the available water of the target impacts the potential for cellular damage. Energy deposited within nanoparticles is unlikely to cause biological damage, as ionisations in the surrounding water are required to create radical oxygen species which then progress to cause the biological response to radiation. Clustering of nanoparticles is therefore expected to decrease their effectiveness for enhancing radiotherapy.
Collapse
Affiliation(s)
- Hilary Byrne
- The University of Sydney, School of Physics, New South Wales, Australia
| | - Aimee McNamara
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit St, Boston, MA, USA
| | - Zdenka Kuncic
- The University of Sydney, School of Physics, New South Wales, Australia
| |
Collapse
|
245
|
Gonon G, Villagrasa C, Voisin P, Meylan S, Bueno M, Benadjaoud MA, Tang N, Langner F, Rabus H, Barquinero JF, Giesen U, Gruel G. From Energy Deposition of Ionizing Radiation to Cell Damage Signaling: Benchmarking Simulations by Measured Yields of Initial DNA Damage after Ion Microbeam Irradiation. Radiat Res 2019; 191:566-584. [PMID: 31021733 DOI: 10.1667/rr15312.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Advances in accelerator technology, which have enabled conforming radiotherapy with charged hadronic species, have brought benefits as well as potential new risks to patients. To better understand the effects of ionizing radiation on tumor and surrounding tissue, it is important to investigate and quantify the relationship between energy deposition at the nanometric scale and the initial biological events. Monte Carlo track structure simulation codes provide a powerful tool for investigating this relationship; however, their success and reliability are dependent on their improvement and development accordingly to the dedicated biological data to which they are challenged. For this aim, a microbeam facility that allows for fluence control, down to one ion per cell nucleus, was used to evaluate relative frequencies of DNA damage after interaction between the incoming ion and DNA according to radiation quality. Primary human cells were exposed to alpha particles of three different energies with respective linear energy transfers (LETs) of approximately 36, 85 or 170 keV·µm-1 at the cells' center position, or to protons (19 keV·µm-1). Statistical evaluation of nuclear foci formation (53BP1/γ-H2AX), observed using immunofluorescence and related to a particle traversal, was undertaken in a large population of cell nuclei. The biological results were adjusted to consider the factors that drive the experimental uncertainties, then challenged with results using Geant4-DNA code modeling of the ionizing particle interactions on a virtual phantom of the cell nucleus with the same mean geometry and DNA density as the cells used in our experiments. Both results showed an increase of relative frequencies of foci (or simulated DNA damage) in cell nuclei as a function of increasing LET of the traversing particles, reaching a quasi-plateau when the LET exceeded 80-90 keV·µm-1. For the LET of an alpha particle ranging from 80-90 to 170 keV·µm-1, 10-30% of the particle hits did not lead to DNA damage inducing 53BP1 or γ-H2AX foci formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohamed Amine Benadjaoud
- c Radiobiology and Regenerative Medicine Research Service, Direction of Human Health, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - Frank Langner
- d Department 6.5 Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Hans Rabus
- d Department 6.5 Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | | | - Ulrich Giesen
- d Department 6.5 Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Gaëtan Gruel
- a Radiobiology of Accidental Exposure Laboratory
| |
Collapse
|
246
|
Hespeels F, Lucas S, Tabarrant T, Scifoni E, Kraemer M, Chêne G, Strivay D, Tran HN, Heuskin AC. Experimental measurements validate the use of the binary encounter approximation model to accurately compute proton induced dose and radiolysis enhancement from gold nanoparticles. Phys Med Biol 2019; 64:065014. [PMID: 30731439 DOI: 10.1088/1361-6560/ab0516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In protontherapy, it has been suggested that nanoparticles of high-Z material like gold (GNP) could be used as radiosensitizers. The origin of this enhancement phenomenon for proton radiation is not yet well understood and additional mechanistic insights are required. Previous works have highlighted the good capabilities of TRAX to reproduce secondary electron emission from gold material. Therefore, TRAX cross sections obtained with the binary encounter approximation (BEA) model for proton ionization were implemented within Geant4 for gold material. Based on the TRAX cross sections, improved Geant4 simulations have been developed to investigate the energy deposition and radical species production around a spherical gold nanoparticle (5 and 10 nm in diameter) placed in a water volume during proton irradiation. Simulations were performed for incident 2 MeV proton. The dose enhancement factor and the radiolysis enhancement factor were quantified. Results obtained with the BEA model were compared with results obtained with condensed-history models. Experimental irradiation of 200 nm gold films were performed to validate the secondary electron emission reproduction capabilities of physical models used in Monte Carlo (MC) simulations. TRAX simulations reproduced the experimental backscattered electron energy spectrum from gold film with better agreement than Geant4. Results on gold film obtained with the BEA model enabled to estimate the electron emission from GNPs. Results obtained in our study tend to support that the use of the BEA discrete model leads to a significant increase of the dose in the near vicinity of GNPs (<20 nm), while condensed history models used in Geant4 seem to overestimate the dose and the number of chemical species for increasing distances from the GNP. Based on discrete BEA model results, no enhancement effect due to secondary electron emitted from the GNP is expected if the GNP is not in close proximity to key cellular functional elements (DNA, mitochondria…).
Collapse
Affiliation(s)
- F Hespeels
- University of Namur, PMR, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Tang N, Bueno M, Meylan S, Incerti S, Tran HN, Vaurijoux A, Gruel G, Villagrasa C. Influence of chromatin compaction on simulated early radiation-induced DNA damage using Geant4-DNA. Med Phys 2019; 46:1501-1511. [DOI: 10.1002/mp.13405] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 11/11/2022] Open
Affiliation(s)
- N. Tang
- IRSN; Institut de Radioprotection et de Sûreté Nucléaire; BP17 92262 Fontenay aux Roses France
| | - M. Bueno
- IRSN; Institut de Radioprotection et de Sûreté Nucléaire; BP17 92262 Fontenay aux Roses France
| | - S. Meylan
- SymAlgo Technologies; 75 rue Léon Frot 75011 Paris France
| | - S. Incerti
- Université de Bordeaux CNRS/IN2P3 Centre d'Etudes Nucléaires de Bordeaux; Gradignan CENBG; chemin du solarium, BP120 33175 Gradignan France
| | - H. N. Tran
- IRSN; Institut de Radioprotection et de Sûreté Nucléaire; BP17 92262 Fontenay aux Roses France
| | - A. Vaurijoux
- IRSN; Institut de Radioprotection et de Sûreté Nucléaire; BP17 92262 Fontenay aux Roses France
| | - G. Gruel
- IRSN; Institut de Radioprotection et de Sûreté Nucléaire; BP17 92262 Fontenay aux Roses France
| | - C. Villagrasa
- IRSN; Institut de Radioprotection et de Sûreté Nucléaire; BP17 92262 Fontenay aux Roses France
| |
Collapse
|
248
|
Mechanistic Modelling of Radiation Responses. Cancers (Basel) 2019; 11:cancers11020205. [PMID: 30744204 PMCID: PMC6406300 DOI: 10.3390/cancers11020205] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
Radiobiological modelling has been a key part of radiation biology and therapy for many decades, and many aspects of clinical practice are guided by tools such as the linear-quadratic model. However, most of the models in regular clinical use are abstract and empirical, and do not provide significant scope for mechanistic interpretation or making predictions in novel cell lines or therapies. In this review, we will discuss the key areas of ongoing mechanistic research in radiation biology, including physical, chemical, and biological steps, and review a range of mechanistic modelling approaches which are being applied in each area, highlighting the possible opportunities and challenges presented by these techniques.
Collapse
|
249
|
Kyriakou I, Ivanchenko V, Sakata D, Bordage M, Guatelli S, Incerti S, Emfietzoglou D. Influence of track structure and condensed history physics models of Geant4 to nanoscale electron transport in liquid water. Phys Med 2019; 58:149-154. [DOI: 10.1016/j.ejmp.2019.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/31/2018] [Accepted: 01/01/2019] [Indexed: 12/20/2022] Open
|
250
|
Tan HQ, Mi Z, Bettiol AA, Osipowicz T, Watt F. A mechanistic approach towards determining double strand breaks and Relative Biological Effectiveness variation along proton tracks. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aaff2b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|