201
|
Mathematical modeling of cinnamon (Cinnamomum verum) bark oil release from agar/PVA biocomposite film for antimicrobial food packaging: The effects of temperature and relative humidity. Food Chem 2021; 363:130306. [PMID: 34134074 DOI: 10.1016/j.foodchem.2021.130306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022]
Abstract
Antimicrobial biocomposite films were prepared using agar (AG) and polyvinyl alcohol (PVA) as polymer matrix materials and cinnamon bark oil (CBO) as antimicrobial agent. AG and PVA were blended with different mixing ratios. The addition of AG improved the overall water resistance properties of the composite films. To evaluate the effects of temperature and relative humidity (RH) on the release kinetics of CBO from films, CBO release kinetics were analyzed under the 9 combinations of temperature and RH. Then, mathematical modeling of obtained data was conducted using Peleg, Ritger-Peppas, and Peppas-Sahlin models to investigate the release mechanisms of CBO. Consequently, the CBO release rate proportionally increased with the temperature and RH, with the RH being the main factor affecting the release behavior of CBO. In vitro antimicrobial activity tests against gram-positive and gram-negative bacteria showed that the developed composite films have high applicability as an antimicrobial food packaging material.
Collapse
|
202
|
Said N, Howell NK, Sarbon N. A Review on Potential Use of Gelatin-based Film as Active and Smart Biodegradable Films for Food Packaging Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- N.S. Said
- School of Food Science and Technology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Nazlin K. Howell
- Department of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - N.M Sarbon
- School of Food Science and Technology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
203
|
Tereucan G, Ercoli S, Cornejo P, Winterhalter P, Contreras B, Ruiz A. Stability of antioxidant compounds and activities of a natural dye from coloured-flesh potatoes in dairy foods. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
204
|
Ma Q, Lu X, Wang W, Hubbe MA, Liu Y, Mu J, Wang J, Sun J, Rojas OJ. Recent developments in colorimetric and optical indicators stimulated by volatile base nitrogen to monitor seafood freshness. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
205
|
A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100641] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
206
|
Mousazadeh S, Ehsani A, Moghaddas Kia E, Ghasempour Z. Zinc oxide nanoparticles and periodate oxidation in developing pH-sensitive packaging film based on modified gelatin. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
207
|
Synthesis of novel pyrano-3,7-deoxyanthocyanin derivatives and study of their thermodynamic, photophysical and cytotoxicity properties. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
208
|
Nazaruddin N, Afifah N, Bahi M, Susilawati S, Sani NDM, Esmaeili C, Iqhrammullah M, Murniana M, Hasanah U, Safitri E. A simple optical pH sensor based on pectin and Ruellia tuberosa L-derived anthocyanin for fish freshness monitoring. F1000Res 2021; 10:422. [PMID: 34527216 PMCID: PMC8366298 DOI: 10.12688/f1000research.52836.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 11/15/2023] Open
Abstract
A simple optical pH sensor using the active compound anthocyanin (ACN), derived Ruellia tuberosa L. flower immobilized in a pectin membrane matrix, was been fabricated and employed to monitor the freshness of tilapia fish at room temperature and 4 oC storage. The optimum pectin weight and ACN concentrations were 0.1% and 0.025 mg/L. The sensor showed good sensitivity at 0.03 M phosphate buffer solution. The sensor's reproducibility was evaluated using 10 replicate sensors where a standard deviation of 0.045 or relative standard deviation of 9.15 was achieved. The sensor displayed an excellent response after 10 minutes of exposure, possessing a response stability for 10 consecutive days. The decrease in pH value of the Tilapia fish from 7.3 to 5 was observed in a 48 hour test, which can be used as the parameter when monitoring fish freshness.
Collapse
Affiliation(s)
- Nazaruddin Nazaruddin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Nurul Afifah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Muhammad Bahi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Susilawati Susilawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Nor Diyana Md. Sani
- Sanichem Resources Sdn. Bhd., Bandar Estek, Negeri Sembilan, 71060, Malaysia
| | - Chakavak Esmaeili
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, 14176-14411, Iran
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Murniana Murniana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Uswatun Hasanah
- Department of Fisheries, Universitas Teuku Umar, West Aceh, Aceh, 23615, Indonesia
| | - Eka Safitri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| |
Collapse
|
209
|
Nazaruddin N, Afifah N, Bahi M, Susilawati S, Sani NDM, Esmaeili C, Iqhrammullah M, Murniana M, Hasanah U, Safitri E. A simple optical pH sensor based on pectin and Ruellia tuberosa L-derived anthocyanin for fish freshness monitoring. F1000Res 2021; 10:422. [PMID: 34527216 PMCID: PMC8366298 DOI: 10.12688/f1000research.52836.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
A simple optical pH sensor using the active compound anthocyanin (ACN), derived Ruellia tuberosa L. flower immobilized in a pectin membrane matrix, was been fabricated and employed to monitor the freshness of tilapia fish at room temperature and 4 oC storage. The quantitative pH values were measured based on the UV-Vis spectroscopy absorbance. The optimum pectin weight and ACN concentrations were 0.1% and 0.025 mg/L. The sensor showed good sensitivity at 0.03 M phosphate buffer solution. The sensor's reproducibility was evaluated using 10 replicate sensors where a standard deviation of 0.045 or relative standard deviation of 9.15 was achieved. The sensor displayed an excellent response after 10 minutes of exposure, possessing a response stability for 10 consecutive days. The decrease in pH value of the Tilapia fish from 7.3 to 5 was observed in a 48 hour test, which can be used as the parameter when monitoring fish freshness. Overall, this reported optical pH sensor has a novelty as it could be used to monitor the rigor mortis phase of fish meat, which is useful in food industry.
Collapse
Affiliation(s)
- Nazaruddin Nazaruddin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Nurul Afifah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Muhammad Bahi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Susilawati Susilawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Nor Diyana Md. Sani
- Sanichem Resources Sdn. Bhd., Bandar Estek, Negeri Sembilan, 71060, Malaysia
| | - Chakavak Esmaeili
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, 14176-14411, Iran
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Murniana Murniana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Uswatun Hasanah
- Department of Fisheries, Universitas Teuku Umar, West Aceh, Aceh, 23615, Indonesia
| | - Eka Safitri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| |
Collapse
|
210
|
Sani MA, Azizi-Lalabadi M, Tavassoli M, Mohammadi K, McClements DJ. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1331. [PMID: 34070054 PMCID: PMC8158105 DOI: 10.3390/nano11051331] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Interest in the development of smart and active biodegradable packaging materials is increasing as food manufacturers try to improve the sustainability and environmental impact of their products, while still maintaining their quality and safety. Active packaging materials contain components that enhance their functionality, such as antimicrobials, antioxidants, light blockers, or oxygen barriers. Smart packaging materials contain sensing components that provide an indication of changes in food attributes, such as alterations in their quality, maturity, or safety. For instance, a smart sensor may give a measurable color change in response to a deterioration in food quality. This article reviews recent advances in the development of active and smart biodegradable packaging materials in the food industry. Moreover, studies on the application of these packaging materials to monitor the freshness and safety of food products are reviewed, including dairy, meat, fish, fruit and vegetable products. Finally, the potential challenges associated with the application of these eco-friendly packaging materials in the food industry are discussed, as well as potential future directions.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran;
| | - Milad Tavassoli
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran;
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | | |
Collapse
|
211
|
Becerril R, Nerín C, Silva F. Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
212
|
Arruda HS, Silva EK, Peixoto Araujo NM, Pereira GA, Pastore GM, Marostica Junior MR. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021; 26:2632. [PMID: 33946376 PMCID: PMC8125576 DOI: 10.3390/molecules26092632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Eric Keven Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| | - Nayara Macêdo Peixoto Araujo
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Gustavo Araujo Pereira
- School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N, Belém 66075-110, Brazil;
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| |
Collapse
|
213
|
Shi C, Zhang J, Jia Z, Yang X, Zhou Z. Intelligent pH indicator films containing anthocyanins extracted from blueberry peel for monitoring tilapia fillet freshness. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1800-1811. [PMID: 32893889 DOI: 10.1002/jsfa.10794] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Fish spoilage leads to an increase in the pH value of the fish. A colorimetric pH indicator can be used to monitor fish spoilage and has been exploited in intelligent packaging because of its simplicity, practicality and low cost. The aim of this study was to develop two pH-indicator films comprising starch (S), tara gum (TG), polyvinyl alcohol (PVA) and anthocyanins extracted from blueberry peel and the films were then used to monitor the freshness of tilapia fillets during storage at 25 and 4 °C. RESULTS The ultraviolet-visible (UV-visible) spectra and color of anthocyanins changed within pH 2-10. Fourier-transform infrared spectroscopy, UV-visible spectrophotometry and scanning electron microscopy certified that blueberry peel extract (BPE) had been introduced into the S/PVA and TG/PVA matrices. Visual color changes in the films occurred at pH 2-8. A freshness application test was conducted in tilapia fillets stored at 4 and 25 °C, and visual color changes in the films were observed. The TG/PVA/BPE film had a greater color difference (ΔE) from pink and transparent to dark yellow at 25 °C and to dark purple at 4 °C than ΔE of S/PVA/BPE film, which sufficiently correlated with the change of total volatile base nitrogen (TVB-N) and total aerobic counts (TACs) of fillets. CONCLUSION It can be concluded that the color changes of TG/PVA/BPE films were corresponded with TVB-N and TAC values of tilapia fillets, which presented great potential as a visual package label to monitor fish freshness at ambient and chilled temperatures. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ce Shi
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jiaran Zhang
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Zhixin Jia
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xinting Yang
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Zhongyun Zhou
- Department of Quality Management, Shandong Institute for Product Quality Ispection, Jinan, China
| |
Collapse
|
214
|
Effect of Cellulose Nanocrystal Addition on the Physicochemical Properties of Hydroxypropyl Guar-Based Intelligent Films. MEMBRANES 2021; 11:membranes11040242. [PMID: 33805285 PMCID: PMC8065842 DOI: 10.3390/membranes11040242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022]
Abstract
As an important functional material in food industry, intelligent packaging films can bring great convenience for consumers in the field of food preservation and freshness detection. Herein, we fabricated pH-sensing films employing hydroxypropyl guar (HPG), 1-butyl-3-methylimidazolium chloride (BmimCl), and anthocyanin (Anth). Besides, the effects of adding cellulose nanocrystals (CNC) into the composite films upon the films’ structures and physicochemical properties are elucidated. The addition of CNC promoted more compact film structures. Moreover, CNC dramatically improved several properties of the pH-sensing films, including the distinguishability of their color changes, sensitivity to pH, permeability to oxygen and water vapor, solvent resistance, durability, and low-temperature resistance. These results expand the application range of pH-sensing films containing CNC in the fields of food freshness detection and intelligent packaging.
Collapse
|
215
|
Li W, Yu Y, Dai Z, Peng J, Wu J, Wang Z. Preparation and evaluation of a novel intelligent starch‐based film with both color indication and antibacterial function. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Wenhui Li
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Ying Yu
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Ziyang Dai
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Jielong Peng
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Jinhong Wu
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Zhengwu Wang
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
216
|
Hamid HA, Mutazah R, Yahya IH, Zeyohannes SS. Starch Based Film Incorporated with <i>Clitoria ternatea</i> Flower Extracts as pH Indicator. MATERIALS SCIENCE FORUM 2021; 1025:252-256. [DOI: 10.4028/www.scientific.net/msf.1025.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The present study demonstrated the evaluation of starch based film formulated with ClitoriaTernatea flowers extracts which act as pH indicator. Maceration, sonication and infusion extraction were employed to determine the percentage yield of the flower extracts. Extract solutions (1mg/mL) were subjected to UPLC-QTOF/MS in order to detect and identify the chemical constituents of C. ternatea. UV-Vis analysis is done by treating the extracts (4mg/mL) with prepared buffer solution in various pH value ranged (2.0 – 11.0) and the absorbance were observed within a broad range of wavelength (400-700 nm). 100 mL solution of 4g starch, C. ternatea extracts and glycerol (19g plasticizer/100g starch) in distilled water were undergo gelatinization process to form the desired thin film. The functional group presented in the film and raw materials were detected and defined by analyzing through FTIR spectroscopy. From the results, maceration techniques produced the higher yield of extracts with 41.48% compared to sonication and infusion method. Variation colours of C. ternatea solution were displayed in different value of pH. At pH lower than 3, the extract solution illustrated light red to purple in colour while at higher pH value to the more basic pH (4,5,6,7,8 and 9), the colour can be perceived as blue. From the gelatinization process, the blue smooth thin layer of film was produced. FTIR analysis showed that all of samples contain C-O bond (3300 cm-1). Starch based film formulated with C. ternatea as pH indicator can be applied to detect the spoilage of foods in the production of food wrapper and packaging.
Collapse
|
217
|
A pH indicator film based on chitosan and butterfly pudding extract for monitoring fish freshness. Int J Biol Macromol 2021; 177:328-336. [PMID: 33621573 DOI: 10.1016/j.ijbiomac.2021.02.137] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
A pH indicator film was prepared by mixing natural polymeric chitosan (CH) with natural dye from butterfly pudding extract (BP). The films were determined by color changes at different pH value, absorbance, thickness, moisture content, swelling property, water contact angle, mechanical property, barrier property, and microstructure of films. The structural change of film was analyzed by Fourier transform infrared spectra. The application to monitor fish freshness was also studied. The prepared film was sensitive to the changes in pH value and showed distinct color changes from pink purple to yellow, with pH value ranging from 1 to 14. The films showed visible color changes from purple-blue to dark green during fish preservation. The total volatile basic nitrogen (TVB-N) content and pH value changes of tilapia were closely related to the visual color changes in film. The result indicated that the fabricated film was a highly pH-sensitive film for monitoring fish freshness.
Collapse
|
218
|
Ghazal AF, Zhang M, Bhandari B, Chen H. Investigation on spontaneous 4D changes in color and flavor of healthy 3D printed food materials over time in response to external or internal pH stimulus. Food Res Int 2021; 142:110215. [PMID: 33773693 DOI: 10.1016/j.foodres.2021.110215] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
This study aimed to investigate 4D changes in colors and flavors of 3D-printed healthy food products in response to an external or internal pH stimulus. The formulations obtained by 3D printing of multi-smart materials, comprised of the combination of red cabbage juice, vanillin powder, potato starch and different fruit juices were used. 3D printing ability of red cabbage juice and vanillin powder affected by different potato starch concentrations was first studied. Then, changes in color, texture, flavor (by E-nose) and taste (by E-tongue) induced by the stimulus were determined. Results revealed that the color of the 3D-printed product changed from blue (control sample) to red, purple, violet, blue, blue-green, and green-yellow colors when sprayed with pH solutions of 2, 3-4, 5-6, 7, 8-9, and 10, respectively. In addition, clear differences in aroma and taste profiles among pH samples were detected. Moreover, dried 4D product samples exhibited color and anthocyanins stability when stored in ambient temperature for three weeks. This study is important for manufacturing new healthy 3D-printed food products with desired and attractive sensory characteristics, which can be particularly significant to people with poor appetite.
Collapse
Affiliation(s)
- Ahmed Fathy Ghazal
- State Key Laboratory of Food Science and Technology, Jiangnan University, 14122 Wuxi, China; Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, 41522 Ismailia, Egypt; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 14122 Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Huizhi Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 14122 Wuxi, China
| |
Collapse
|
219
|
Oliveira Filho JGD, Braga ARC, Oliveira BRD, Gomes FP, Moreira VL, Pereira VAC, Egea MB. The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films: A review. Food Res Int 2021; 142:110202. [PMID: 33773677 DOI: 10.1016/j.foodres.2021.110202] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/15/2022]
Abstract
Among the bioactive compounds that are considered important for the food industry, anthocyanins, which are flavonoid compounds presenting antioxidant activity and are responsible for beneficial health effects, have received researchers' attention in the last decades. In addition, anthocyanins are highly reactive and can be used as indicators of foodstuff quality conditions, particularly as a packaging ingredient. Considering this line of work, the eco-friendly film is a novel packaging technology that arose from the concern to reduce non-renewable resources and their impact on the environment. These films can be vehicles for loading bioactive compounds such as anthocyanins. Among the contribution of films in the food industry, we can highlight several potential applications: i) smart film: assess food quality and safety, transmitting food information to consumers and increasing the reliability of their consumption without breaking the packaging; ii) active film: use to preserve food quality through the release of active agents; and iii) bioactive film: carry substances in desired concentrations until their controlled or rapid diffusion within the gastrointestinal tract so that they can promote its benefit to human health. Thus, this review presents anthocyanin extract's potential as a powerful tool to improve the development of eco-friendly films, directing its purpose to the application as smart, active, and bioactive films.
Collapse
Affiliation(s)
| | | | - Bianca Ribeiro de Oliveira
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| | - Francileni Pompeu Gomes
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| | - Virgínia Lopes Moreira
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| | | | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| |
Collapse
|
220
|
Priyadarshi R, Ezati P, Rhim JW. Recent Advances in Intelligent Food Packaging Applications Using Natural Food Colorants. ACTA ACUST UNITED AC 2021. [DOI: 10.1021/acsfoodscitech.0c00039] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
221
|
Application of a Natural Antioxidant from Grape Pomace Extract in the Development of Bioactive Jute Fibers for Food Packaging. Antioxidants (Basel) 2021; 10:antiox10020216. [PMID: 33540565 PMCID: PMC7912872 DOI: 10.3390/antiox10020216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
There is an increasing demand for the use of new food packaging materials. In this study, natural jute fibers impregnated with a Petit Verdot Red Grape Pomace Extract (RGPE) was proposed as a new active food packaging material. Pressurized Liquid Extraction (PLE) and Enhanced Solvent Extraction (ESE) techniques were employed to obtain the bioactive RGPE. Afterward the supercritical solvent impregnation conditions to obtain RGPE-natural jute fibers were studied, by varying pressure, modifier percentage and dried RGPE mass. PLE technique offered the highest bioactive extract at 20 MPa, 55 °C, 1 h residence time using C2H5OH:H2O (1:1 v/v), providing an EC50 of 3.35 ± 0.25 and antibacterial capacity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa (MIC of 12.0, 1.5 and 4.0 mg/mL RGPE respectively). The natural jute fibers impregnated with 3 mL of that RGPE (90 mg/mL) at 50 MPa and 55 °C generated the most efficient packing material with regards to its food preservation potential.
Collapse
|
222
|
Multifunctional halochromic packaging materials: Saffron petal anthocyanin loaded-chitosan nanofiber/methyl cellulose matrices. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106237] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
223
|
Yang Z, Zhai X, Zou X, Shi J, Huang X, Li Z, Gong Y, Holmes M, Povey M, Xiao J. Bilayer pH-sensitive colorimetric films with light-blocking ability and electrochemical writing property: Application in monitoring crucian spoilage in smart packaging. Food Chem 2021; 336:127634. [PMID: 32777654 DOI: 10.1016/j.foodchem.2020.127634] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 06/29/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Bilayer colorimetric films were developed for monitoring fish spoilage by using gelatin (GN) incorporated with ZnO nanoparticles as the upper layer (GN-ZnO), and gellan gum (GG) incorporated with mulberry anthocyanins (MBA) as the lower layer (GG-MBA). The color stability of the bilayer colorimetric films under visible and ultraviolet light was improved with the increase of ZnO nanoparticles content. Meanwhile, the bilayer films had good NH3 sensitivity. The limit of detection of the GG-MBA/GN-2.0% ZnO film to NH3 was 0.01 mM. The electrochemical writing ability of the bilayer films was also identified, indicating the feasibility of inks-free printing on biopolymer films. Finally, the GG-MBA/GN-2.0% ZnO film with an electrochemical writing pattern was used to monitor crucian spoilage. The GG-MBA/GN-2.0% ZnO film with electrochemical writing pattern showed visible color changes with the crucian spoilage. In conclusion, the bilayer colorimetric film was expected to be a good fish spoilage indicator in smart packaging.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China.
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau, China
| |
Collapse
|
224
|
Chen L, Chen L, Hu X, Cai S, Fu Z, Feng W, Li H, Liu X. A novel colorimetric label based on ZnTPPS 4/AG indicating pork freshness. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel colorimetric indicator for pork freshness composed of agar, ZnTPPS4 and glycerin was designed and developed by casting/solvent evaporation method. The FT-IR, UV-vis, XRD and SEM were employed to analyze the structure and valence bonds of ZnTPPS4/AG compound, and the results showed good compatibility between agar and ZnTPPS4. The tensile strength and elongation at the breaking point of indicator films increased slightly with increase of porphyrin, which may have been a contributing factor of H-bonds. After 7 days of placement, the total color variation ([Formula: see text]E) of major films was less than 5, manifesting in the color stability being sufficient enough to act as a color indicator, and the mechanism for color variation was explained therein. Furthermore, the prepared films were utilized as indicators for monitoring the freshness of lean meat at room temperature (25[Formula: see text]C). The total volatile basic nitrogen (TVB-N) of pork and [Formula: see text]E of the labels were recorded simultaneously. The trials demonstrated that ZnTPPS4/AG with higher content of ZnTPPS4 had the superior sensitivity and the color changes of labels in pork packaging changed according to the decay threshold of TVB-N, which implied that ZnTPPS4/AG was able to indicate the spoilage via colorimetric method. Therefore, these novel indication labels could be used to monitor the pork freshness in a real-time, nondestructive and inexpensive way.
Collapse
Affiliation(s)
- Liangzhe Chen
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
- Jingchu University of Technology, Jingmen 448000, China
| | - Lu Chen
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
| | - Xiaolin Hu
- Jingchu University of Technology, Jingmen 448000, China
| | - Shaoyong Cai
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
| | - Zhiqiang Fu
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
| | - Weiqiang Feng
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
| | - Houbin Li
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
| | - Xinghai Liu
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
| |
Collapse
|
225
|
Qi XN, Zhang YM, Yao H, Lin Q, Wei TB. Fabrication of a solid sensor based on a phenazine derivative film for enhancing the sensing properties of biogenic amine and applying for monitoring shrimp freshness. NEW J CHEM 2021. [DOI: 10.1039/d1nj01670a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In practical applications, fixing a fluorescent sensor on a solid composite film matrix can settle the boundaries of keeping the sensor in the solution state.
Collapse
Affiliation(s)
- Xiao-Ni Qi
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
226
|
Vedove TM, Maniglia BC, Tadini CC. Production of sustainable smart packaging based on cassava starch and anthocyanin by an extrusion process. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110274] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
227
|
Marangoni Júnior L, Vieira RP, Jamróz E, Anjos CAR. Furcellaran: An innovative biopolymer in the production of films and coatings. Carbohydr Polym 2021; 252:117221. [DOI: 10.1016/j.carbpol.2020.117221] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
|
228
|
Fabrication of kappa-carrageenan hydrogels with cinnamon essential oil/hydroxypropyl-β-cyclodextrin composite: Evaluation of physicochemical properties, release kinetics and antimicrobial activity. Int J Biol Macromol 2020; 170:593-601. [PMID: 33385448 DOI: 10.1016/j.ijbiomac.2020.12.176] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 01/16/2023]
Abstract
A novel antimicrobial gel composed of κ-carrageenan (KC) and a cinnamon essential oil (CEO)/hydroxypropyl-β-cyclodextrin (HPCD) composite was developed. The CEO/HPCD composite was characterized by UV-visible spectrophotometry and Fourier-transform infrared spectroscopy (FT-IR), and the changes in the principal components of CEO upon encapsulation by HPCD were analyzed by gas chromatography-mass spectrometry (GC-MS). The physicochemical properties, release kinetics and antimicrobial activity of the fabricated gels were investigated. The hardness of the KC gels increased with composite concentration in the range of 1.0-3.0% (w/v) and thereafter decreased. A similar trend was observed for the gumminess and chewiness, whereas the gel springiness remained essentially constant. The CEO/HPCD composite also enhanced the fluidity of the system, and the syneresis was positively correlated with the composite concentration. The controlled release of CEO from the gels was affected by the relative humidity (RH) and CEO content. The Ritger-Peppas model indicated that the CEO release kinetics from the gels proceeded through a combination of diffusion and framework erosion. The KC gel containing 5% CEO/HPCD composite displayed effective antimicrobial activity, prolonging the shelf life of sliced bread by at least two days. The reported gels may have potential applications as a promising material for food preservation.
Collapse
|
229
|
Lu P, Yang Y, Liu R, Liu X, Ma J, Wu M, Wang S. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr Polym 2020; 249:116831. [DOI: 10.1016/j.carbpol.2020.116831] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
|
230
|
Yong H, Liu J. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100550] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
231
|
da Silva Filipini G, Romani VP, Guimarães Martins V. Biodegradable and active-intelligent films based on methylcellulose and jambolão (Syzygium cumini) skins extract for food packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106139] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
232
|
Liu L, Zhang J, Shi J, Huang X, Zou X, Zhang D, Zhai X, Yang Z, Li Z, Li Y. Preparation and comparison of two functional nanoparticle-based bilayers reinforced with a κ-carrageenan–anthocyanin complex. Int J Biol Macromol 2020; 165:758-766. [DOI: 10.1016/j.ijbiomac.2020.09.178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023]
|
233
|
Extruded low density polyethylene-curcumin film: A hydrophobic ammonia sensor for intelligent food packaging. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100595] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
234
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
235
|
Singh A, Gu Y, Castellarin SD, Kitts DD, Pratap-Singh A. Development and Characterization of the Edible Packaging Films Incorporated with Blueberry Pomace. Foods 2020; 9:foods9111599. [PMID: 33153235 PMCID: PMC7693314 DOI: 10.3390/foods9111599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/02/2022] Open
Abstract
This work focused on the development of starch-based (potato, corn, sweet potato, green bean and tapioca) edible packaging film incorporated with blueberry pomace powder (BPP). The optical, mechanical, thermal, and physicochemical properties were subsequently tested. The film color was not affected by the addition of BPP. BPP incorporated into corn and green bean starch films showed increased light barrier properties, indicating a beneficial effect to prevent UV radiation-induced food deterioration. Film thickness and transparency were not primarily affected by changing the starch type or the BPP concentration, although the corn starch films were the most transparent. Furthermore, all films maintained structural integrity and had a high tensile strength. The water vapor transmission rate of all the films was found to be greater than conventional polyethylene films. The average solubility of all the films made from different starch types was between 24 and 37%, which indicates the usability of these films for packaging, specifically for low to intermediate moisture foods. There were no statistical differences in Differential Scanning Calorimetry parameters with changes in the starch type and pomace levels. Migration assays showed a greater release of the active compounds from BPP into acetic acid medium (aqueous food simulant) than ethanol medium (fatty food simulant). The incorporation of BPP into starch-chitosan films resulted in the improvement of film performance, thereby suggesting the potential for applying BPP into starch-based films for active packaging.
Collapse
Affiliation(s)
- Anika Singh
- Food, Nutrition, and Health, Faculty of Land & Food Systems, 2205 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.S.); (Y.G.); (D.D.K.)
| | - Yixin Gu
- Food, Nutrition, and Health, Faculty of Land & Food Systems, 2205 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.S.); (Y.G.); (D.D.K.)
| | - Simone D. Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, 2205 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - David D. Kitts
- Food, Nutrition, and Health, Faculty of Land & Food Systems, 2205 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.S.); (Y.G.); (D.D.K.)
| | - Anubhav Pratap-Singh
- Food, Nutrition, and Health, Faculty of Land & Food Systems, 2205 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.S.); (Y.G.); (D.D.K.)
- Correspondence:
| |
Collapse
|
236
|
|
237
|
Microencapsulation of copigmented anthocyanins using double emulsion followed by complex coacervation: Preparation, characterization and stability. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
238
|
Qin Y, Xu F, Yuan L, Hu H, Yao X, Liu J. Comparison of the physical and functional properties of starch/polyvinyl alcohol films containing anthocyanins and/or betacyanins. Int J Biol Macromol 2020; 163:898-909. [DOI: 10.1016/j.ijbiomac.2020.07.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022]
|
239
|
Bhargava N, Sharanagat VS, Mor RS, Kumar K. Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
240
|
Alizadeh-Sani M, Mohammadian E, Rhim JW, Jafari SM. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
241
|
Design and validation of antibacterial and pH response of cationic guar gum film by combining hydroxyethyl cellulose and red cabbage pigment. Int J Biol Macromol 2020; 162:1311-1322. [DOI: 10.1016/j.ijbiomac.2020.06.198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/01/2020] [Accepted: 06/21/2020] [Indexed: 01/28/2023]
|
242
|
Alizadeh-Sani M, Tavassoli M, Mohammadian E, Ehsani A, Khaniki GJ, Priyadarshi R, Rhim JW. pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. Int J Biol Macromol 2020; 166:741-750. [PMID: 33137387 DOI: 10.1016/j.ijbiomac.2020.10.231] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023]
Abstract
A new pH-responsive color indicator film was prepared by blending barberry anthocyanin (BA) with methylcellulose (MC)/chitosan nanofiber (ChNF) composite film. The addition of ChNF and BA increased the mechanical and water barrier properties but reduced the UV-vis light transmittance of the composite film. Anthocyanin showed proper compatibility with the composite film. The color indicator film showed an apparent color change in response to pH changes and ammonia gas, being suitable for indicating the change in food pH, the formation of volatile nitrogen compounds, and food decay. The color indicator film changed clearly from reddish-pink to pale peach and finally to yellow when exposed to different pH buffers. However, in response to ammonia vapor, the color changed from pink to pale green and yellow. Besides, the color indicator film exhibited remarkable antioxidant activity. Therefore, the pH-sensing color indicator film can be used as a smart indicator for real-time freshness monitoring of meat and seafood products.
Collapse
Affiliation(s)
- Mahmood Alizadeh-Sani
- Food Safety and Hygiene Division, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esamil Mohammadian
- Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ehsani
- Nutrition Research Center, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Jahed Khaniki
- Food Safety and Hygiene Division, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
243
|
Mary SK, Koshy RR, Daniel J, Koshy JT, Pothen LA, Thomas S. Development of starch based intelligent films by incorporating anthocyanins of butterfly pea flower and TiO 2 and their applicability as freshness sensors for prawns during storage. RSC Adv 2020; 10:39822-39830. [PMID: 35515414 PMCID: PMC9057438 DOI: 10.1039/d0ra05986b] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Intelligent pH sensitive starch films were developed by incorporation of anthocyanin pigment extracted from butterfly pea flower (BPE) and nanosized TiO2 using the method of solution casting. This research work evaluated the influence of BPE and TiO2 on the physical and structural properties of starch films. The physical properties of the starch films could be significantly altered by the addition of BPE and or TiO2. The starch films S/BPE and S/BPE/TiO2 exhibited higher barrier properties against water vapour as compared to the control films. Incorporation of BPE and TiO2 could decrease the thickness and moisture content of films. S, S/BPE starch films were transparent and, S/TiO2 and S/BPE/TiO2 films were opaque. Control starch films were colourless, whereas S/BPE films have purple colour. Owing to the inclusion of BPE and TiO2 particles, structural characterization by X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) did not show any major changes in polymer structure. Thermogravimetric analysis revealed that the addition of TiO2 enhanced the thermal stability of starch films to a significant extent. The color of different starch-based films was determined using the CIE Lab scale under different pH conditions and compared with the control. The fabricated (S/BPE and S/BPE/TiO2) films exhibited visually perceptible colour changes in the pH range between 1 and 12. Consequently these films could be used as intelligent pH indicators for monitoring the freshness of prawn seafood samples. During the storage of prawn food samples for 6 days, the color of the film changed from light pink to green which is a clear indication of spoilage of food material.
Collapse
Affiliation(s)
- Siji K Mary
- Department of Chemistry, Bishop Moore College Mavelikara Kerala India
- Department of Chemistry, CMS College Kottayam Kerala India +91 306 966-5030
| | - Rekha Rose Koshy
- Department of Chemistry, Bishop Moore College Mavelikara Kerala India
- Department of Chemistry, CMS College Kottayam Kerala India +91 306 966-5030
| | - Jomol Daniel
- Department of Chemistry, Bishop Moore College Mavelikara Kerala India
| | - Jijo Thomas Koshy
- Department of Chemistry, Bishop Moore College Mavelikara Kerala India
| | - Laly A Pothen
- Department of Chemistry, CMS College Kottayam Kerala India +91 306 966-5030
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
244
|
Pismenskaya N, Sarapulova V, Klevtsova A, Mikhaylin S, Bazinet L. Adsorption of Anthocyanins by Cation and Anion Exchange Resins with Aromatic and Aliphatic Polymer Matrices. Int J Mol Sci 2020; 21:ijms21217874. [PMID: 33114195 PMCID: PMC7660631 DOI: 10.3390/ijms21217874] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023] Open
Abstract
This study examines the mechanisms of adsorption of anthocyanins from model aqueous solutions at pH values of 3, 6, and 9 by ion-exchange resins making the main component of heterogeneous ion-exchange membranes. This is the first report demonstrating that the pH of the internal solution of a KU-2-8 aromatic cation-exchange resin is 2-3 units lower than the pH of the external bathing anthocyanin-containing solution, and the pH of the internal solution of some anion-exchange resins with an aromatic (AV-17-8, AV-17-2P) or aliphatic (EDE-10P) matrix is 2-4 units higher than the pH of the external solution. This pH shift is caused by the Donnan exclusion of hydroxyl ions (in the KU-2-8 resin) or protons (in the AV-17-8, AV-17-2P, and EDE-10P resins). The most significant pH shift is observed for the EDE-10P resin, which has the highest ion-exchange capacity causing the highest Donnan exclusion. Due to the pH shift, the electric charge of anthocyanin inside an ion-exchange resin differs from its charge in the external solution. At pH 6, the external solution contains uncharged anthocyanin molecules. However, in the AV-17-8 and AV-17-2P resins, the anthocyanins are present as singly charged anions, while in the EDE-10P resin, they are in the form of doubly charged anions. Due to the electrostatic interactions of these anions with the positively charged fixed groups of anion-exchange resins, the adsorption capacities of AV-17-8, AV-17-2P, and EDE-10P were higher than expected. It was established that the electrostatic interactions of anthocyanins with the charged fixed groups increase the adsorption capacity of the aromatic resin by a factor of 1.8-2.5 compared to the adsorption caused by the π-π (stacking) interactions. These results provide new insights into the fouling mechanism of ion-exchange materials by polyphenols; they can help develop strategies for membrane cleaning and for extracting anthocyanins from juices and wine using ion-exchange resins and membranes.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (V.S.); (A.K.)
- Correspondence: ; Tel.: +7-918-48-91-292
| | - Veronika Sarapulova
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (V.S.); (A.K.)
| | - Anastasia Klevtsova
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (V.S.); (A.K.)
| | - Sergey Mikhaylin
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laboratory of Food Processing and ElectroMembrane Process (LTAPEM), University Laval, Québec, QC G1V, Canada; (S.M.); (L.B.)
| | - Laurent Bazinet
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laboratory of Food Processing and ElectroMembrane Process (LTAPEM), University Laval, Québec, QC G1V, Canada; (S.M.); (L.B.)
| |
Collapse
|
245
|
Mohammadian E, Alizadeh‐Sani M, Jafari SM. Smart monitoring of gas/temperature changes within food packaging based on natural colorants. Compr Rev Food Sci Food Saf 2020; 19:2885-2931. [DOI: 10.1111/1541-4337.12635] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Esmaeil Mohammadian
- Department of Medicinal Chemistry, School of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Mahmood Alizadeh‐Sani
- Department of Food Safety and Hygiene, School of Public Health Tehran University of Medical Sciences Tehran Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science & Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
246
|
Yu Z, Jung D, Park S, Hu Y, Huang K, Rasco BA, Wang S, Ronholm J, Lu X, Chen J. Smart traceability for food safety. Crit Rev Food Sci Nutr 2020; 62:905-916. [DOI: 10.1080/10408398.2020.1830262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zhilong Yu
- Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| | - Dongyun Jung
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| | - Soyoun Park
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| | - Yaxi Hu
- Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Kang Huang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Barbara A. Rasco
- College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| | - Xiaonan Lu
- Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
247
|
Estrada-Montaño AS, Espinobarro-Velázquez D, Sauzameda M, Terrazas E, Reyes-Martínez R, Lardizábal D, Manjarrez-Nevárez LA, Zaragoza-Galán G. Photoluminescence in non-conjugated polyelectrolyte films containing 7-hydroxy-flavylium cation. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02975-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
248
|
Development of a colorimetric pH indicator using nanofibers containing Spirulina sp. LEB 18. Food Chem 2020; 328:126768. [DOI: 10.1016/j.foodchem.2020.126768] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/01/2019] [Accepted: 04/06/2020] [Indexed: 01/12/2023]
|
249
|
Freitas PA, Silva RR, de Oliveira TV, Soares RR, Junior NS, Moraes AR, Pires ACDS, Soares NF. Development and characterization of intelligent cellulose acetate-based films using red cabbage extract for visual detection of volatile bases. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109780] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
250
|
Sun J, Jiang H, Wu H, Tong C, Pang J, Wu C. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105942] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|