201
|
GC-IMS-Based Preliminary Analysis of Volatile Flavor Compounds in Ejiao at Different Processing Stages. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3961593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to find out the changes of flavor substances in the processing of Colla corii asini (Ejiao) and provide reference for the flavor and quality control in the production of Ejiao, gas chromatography-ion mobility spectrometry (GC-IMS) was used to analyze the Ejiao products in different processing stages and establish the fingerprint. The differences among these stages were analyzed using multivariate statistical analysis, and the mechanism underlying volatile flavor compound formation was explored by discriminant analysis of Ejiao at different processing stages. The results indicated that Ejiao contains 47 volatile flavor compounds at different processing stages; they mainly include aldehydes, alcohols, esters, ketones, dimethyl disulfide, thiazole, and pyrazines. During Ejiao processing, the formation of these substances is mainly attributable to the Maillard reaction, amino acid or protein-oxidized lipid interaction, lipid oxidation and degradation, and long-chain compound degradation during heating. Principal component analysis results showed that volatile flavor compounds could be used to distinguish different Ejiao processing stages. The current results provide some reference for flavor and quality control of Ejiao products.
Collapse
|
202
|
Sun W, Ji H, Zhang D, Zhang Z, Liu S, Song W. Evaluation of Aroma Characteristics of Dried Shrimp (Litopenaeus vannamei) Prepared by Five Different Procedures. Foods 2022; 11:foods11213532. [PMID: 36360145 PMCID: PMC9658951 DOI: 10.3390/foods11213532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Litopenaeus vannamei is one of the most popular shrimp species in the world and has been reported in studies on its dryness and flavor. However, the aroma characteristics of shrimps dried with different drying methods are compared in a unified way, and there are few reports on the difference in aroma of different shrimps dried. In order to clarify the difference in aroma characteristics of shrimp dried produced by different drying methods. In this study, blanched shrimp (BS) was used as a control to analyze the aroma characteristics of shrimp dried by five different procedures (SD-BFDP) samples, namely vacuum freeze-dried shrimp (VFDS), vacuum dried-shrimp (VDS), heat pump-dried shrimp (HPDS), hot air dried-shrimp (HADS) and microwave vacuum-dried shrimp (MVDS). An electronic nose (E-nose) was used to obtain the aroma fingerprint of SD-BFDP samples. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used for qualitative and quantitative analysis of volatile compounds in SD-BFDP samples. Partial least squares regression (PLSR) was used to analyze potential correlations between sensory attributes and aroma-active compounds (AACs). Partial least squares-discrimination analysis (PLS-DA) was used to screen for signature aroma compounds. The results of the E-nose showed that there were differences in the aroma fingerprints of the SD-BFDP samples, and the E-nose could distinguish the five kinds of SD-BFDP. The qualitative and quantitative results of GC-MS showed that the types and contents of the main volatile components of SD-BFDP samples were different. 15 AACs were screened from SD-BFDP based on odor activity value (OAV). The PLSR results showed good correlations between certain sensory attributes and the majority of AACs. PLS-DA results displayed that aroma attributes of SD-BFDP samples could be distinguished by six signature aroma compounds, including trimethylamine, 2,5-dimethylpyrazine, 2-ethyl-5-methylpyrazine, nonanal, 3-ethyl-2,5-dimethylpyrazine, and octanal. These research results reveal that shrimps dried in different procedures have unique aroma characteristics, which could provide a theoretical basis for the rapid identification of aroma attributes of dried shrimps in the future. From a flavor perspective, MVD is the best drying method.
Collapse
Affiliation(s)
- Weizhen Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongwu Ji
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zewei Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenkui Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
203
|
Schanzmann H, Augustini ALRM, Sanders D, Dahlheimer M, Wigger M, Zech PM, Sielemann S. Differentiation of Monofloral Honey Using Volatile Organic Compounds by HS-GCxIMS. Molecules 2022; 27:7554. [PMID: 36364381 PMCID: PMC9658347 DOI: 10.3390/molecules27217554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2023] Open
Abstract
Honey is a natural product and can be described by its botanical origin, determined by the plants from which the bees collect nectar. It significantly influences the taste of honey and is often used as a quality criterion. Unfortunately, this opens up the possibility of food fraud. Currently, various methods are used to check the authenticity of monofloral honey. The laborious, manual melissopalynology is considered an essential tool in the verification process. In this work, the volatile organic compounds obtained from the headspace of honey are used to prove their authenticity. The headspace of 58 honey samples was analyzed using a commercial easy-to-use gas chromatography-coupled ion mobility spectrometer with a headspace sampler (HS-GCxIMS). The honey samples were successfully differentiated by their six different botanical origins using specific markers with principal component analysis in combination with linear discriminant analysis. In addition, 15 honey-typical compounds were identified using measurements of reference compounds. Taking a previously published strategy, retention times of marker compounds were correlated with GC-coupled mass spectrometry (GC-MS) measurements to assist in the identification process.
Collapse
Affiliation(s)
- Hannah Schanzmann
- Laboratory of Applied Instrumental Analytical Chemistry, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Germany
| | - Alexander L. R. M. Augustini
- Laboratory of Applied Instrumental Analytical Chemistry, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Germany
| | - Daniel Sanders
- G.A.S. Gesellschaft Für Analytische Sensorsysteme mbH, BioMedizinZentrum, 44227 Dortmund, Germany
| | - Moritz Dahlheimer
- Laboratory of Applied Instrumental Analytical Chemistry, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Germany
| | - Modestus Wigger
- Laboratory of Applied Instrumental Analytical Chemistry, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Germany
| | - Philipp-Marius Zech
- Dezernat 330 Für Lebensmittel II, Chemisches und Veterinäruntersuchungsamt Ostwestfalen-Lippe, 32758 Detmold, Germany
| | - Stefanie Sielemann
- Laboratory of Applied Instrumental Analytical Chemistry, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Germany
| |
Collapse
|
204
|
Liu X, Wang X, Cheng Y, Wu Y, Yan Y, Li Z. Variations in volatile organic compounds in Zhenyuan Daocai samples at different storage durations evaluated using E-nose, E-tongue, gas chromatography, and spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
205
|
Yu J, Lu K, Zi J, Yang X, Zheng Z, Xie W. Halophilic bacteria as starter cultures: A new strategy to accelerate fermentation and enhance flavor of shrimp paste. Food Chem 2022; 393:133393. [DOI: 10.1016/j.foodchem.2022.133393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/04/2022]
|
206
|
Zhang S, Xing X, Chu Q, Sun S, Wang P. Impact of co-culture of Lactobacillus plantarum and Oenococcus oeni at different ratios on malolactic fermentation, volatile and sensory characteristics of mulberry wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
207
|
Wu D, Xia Q, Cheng H, Zhang Q, Wang Y, Ye X. Changes of Volatile Flavor Compounds in Sea Buckthorn Juice during Fermentation Based on Gas Chromatography-Ion Mobility Spectrometry. Foods 2022; 11:3471. [PMID: 36360085 PMCID: PMC9655934 DOI: 10.3390/foods11213471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 09/26/2023] Open
Abstract
Sea buckthorn is rich in polyphenolic compounds with antioxidant activities. However, it is very sour, and its odor is slightly unpleasant, so it requires flavor improvement. Fermentation is one potential method. Sea buckthorn juice was fermented at 37 °C for 72 h and then post-fermented at 4 °C for 10 days. The flavor-related properties of the sea buckthorn juice were evaluated during fermentation, including the pH, total soluble solids (TSS), color, sensory evaluation, and volatile flavors. The sea buckthorn fermented juice had a low pH. The total soluble solids decreased from 10.60 ± 0.10% to 5.60 ± 0.12%. The total color change was not more than 20%. Fermentation increased the sweet odor of the sea buckthorn juice, but the fruity flavor decreased and the bitter flavor increased. A total of 33 volatile flavors were identified by headspace gas chromatography-ion mobility spectrometry (GC-IMS), including 24 esters, 4 alcohols, 4 terpenes, and 1 ketone. Their total relative contents were 79.63-81.67%, 10.04-11.76%, 1.56-1.22%, and 0.25-0.55%, respectively. The differences in the characteristic volatile molecular species of the sea buckthorn juice at different fermentation stages could be visually discerned using fingerprint maps. Through principal component analysis (PCA), the total flavor difference of the sea buckthorn juice at different fermentation stages could be effectively distinguished into three groups: the samples fermented for 0 h and 12 h were in one group, the samples fermented for 36 h, 48 h, 60 h, and 72 h were in another group, and the samples fermented for 24 h were in another group. It is suggested that sea buckthorn juice be fermented for 36 h to improve its flavor. GC-IMS and PCA are effective methods of identifying and distinguishing the flavor characteristics of sea buckthorn juice. The above results can provide a theoretical basis for studying the changes in sea buckthorn's characteristics as a result of fermentation, particularly with regard to its flavor.
Collapse
Affiliation(s)
- Dan Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qile Xia
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Post-Harvest Handling of Fruits, Hangzhou 310021, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qichun Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Yanbin Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
208
|
Ruan S, Luo H, Wu F, He L, Lai R, Tang X. Organic cultivation induced regulation in yield formation, grain quality attributes, and volatile organic compounds of fragrant rice. Food Chem 2022; 405:134845. [DOI: 10.1016/j.foodchem.2022.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
209
|
Shao X, He W, Fan Y, Shen Q, Mao J, Li M, Hu G, Liu F, Wang C. Study on the differences in aroma components and formation mechanisms of "Nasmi" melon from different production areas. Food Sci Nutr 2022; 10:3608-3620. [PMID: 36348797 PMCID: PMC9632226 DOI: 10.1002/fsn3.2958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/10/2022] Open
Abstract
Aroma is an important factor that guides consumers in purchasing and is thus very important in melon research. To our knowledge, the number of studies with a focus on the aroma differences of the same melon variety in different production areas is largely limited. In this study, the differences in aroma components of "Nasmi" melons from two different production regions were analyzed using gas-phase ion migration spectroscopy. Transcriptome sequencing was performed for analyzing fragrance-related genes. Results showed that there were significant differences in the aroma components between products from the two regions. The total amount of aroma compounds from the Turpan region (TT) was 1.7 times higher than that from the Altay region (AT). Through the analysis of transcriptome data, the key genes encoding melon aroma components in different regions were identified as ethanol dehydrogenase, 3-hydroxyl-coenzyme A (CoA) dehydrogenase, acyl-CoA oxidase, long-chain acyl-CoA synthetase, acetaldehyde dehydrogenase, and acetyl-CoA acyltransferase. Real-time quantitative polymerase chain reaction (RT-qPCR) showed that the verified genes were similar to the transcriptome. In this study, the main aroma components of the same variety of melon that differed in different production areas and the key genes causing these differences were identified. In addition, the aroma metabolic pathway of melon in different regions was preliminarily elucidated. These results could provide a theoretical basis for further study of the formation mechanism of melon aroma and breeding.
Collapse
Affiliation(s)
- Xupeng Shao
- Key Laboratory of Agro‐Products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro‐Products (Urumqi), Institute of Quality Standards & Testing Technology for Agro‐Products, Xinjiang Academy of Agricultural SciencesMinistry of Agriculture and Rural AffairsUrumqiChina
- College of Food Science and PharmacyXinjiang Agricultural UniversityUrumqiChina
| | - Weizhong He
- Key Laboratory of Agro‐Products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro‐Products (Urumqi), Institute of Quality Standards & Testing Technology for Agro‐Products, Xinjiang Academy of Agricultural SciencesMinistry of Agriculture and Rural AffairsUrumqiChina
- College of Food Science and PharmacyXinjiang Agricultural UniversityUrumqiChina
| | - Yingying Fan
- Key Laboratory of Agro‐Products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro‐Products (Urumqi), Institute of Quality Standards & Testing Technology for Agro‐Products, Xinjiang Academy of Agricultural SciencesMinistry of Agriculture and Rural AffairsUrumqiChina
| | - Qi Shen
- Key Laboratory of Agro‐Products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro‐Products (Urumqi), Institute of Quality Standards & Testing Technology for Agro‐Products, Xinjiang Academy of Agricultural SciencesMinistry of Agriculture and Rural AffairsUrumqiChina
- College of Food Science and PharmacyXinjiang Agricultural UniversityUrumqiChina
| | - Jiancai Mao
- Hami Melon Research CenterXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Meihua Li
- Hami Melon Research CenterXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Guozhi Hu
- Hami Melon Research CenterXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Fengjuan Liu
- Key Laboratory of Agro‐Products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro‐Products (Urumqi), Institute of Quality Standards & Testing Technology for Agro‐Products, Xinjiang Academy of Agricultural SciencesMinistry of Agriculture and Rural AffairsUrumqiChina
- College of Food Science and PharmacyXinjiang Agricultural UniversityUrumqiChina
| | - Cheng Wang
- Key Laboratory of Agro‐Products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro‐Products (Urumqi), Institute of Quality Standards & Testing Technology for Agro‐Products, Xinjiang Academy of Agricultural SciencesMinistry of Agriculture and Rural AffairsUrumqiChina
- Xinjiang Academy of Agricultural SciencesUrumqiChina
| |
Collapse
|
210
|
Feng T, Sun J, Wang K, Song S, Chen D, Zhuang H, Lu J, Li D, Meng X, Shi M, Yao L, Ho CT. Variation in Volatile Compounds of Raw Pu-Erh Tea upon Steeping Process by Gas Chromatography-Ion Mobility Spectrometry and Characterization of the Aroma-Active Compounds in Tea Infusion Using Gas Chromatography-Olfactometry-Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13741-13753. [PMID: 36225119 DOI: 10.1021/acs.jafc.2c04342] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Steeping process is an important factor for aroma release of tea, which has rarely been investigated for the aroma changes of raw Pu-erh tea (RAPT). In addition, the comprehensive aroma characteristics identification of RAPT infusion is necessary. In this study, GC-IMS coupled with principal component analysis (PCA) was used to clarify the difference of volatile profiles during the steeping process of RAPT. Furthermore, the volatiles contained in the RAPT infusion were extracted by three pretreatment methods (HS-SPME, SBSE, and SAFE) and identified using GC-O-MS. According to the odor activity value, 28 of 66 compounds were categorized as aroma-active compounds. Aroma recombination and omission experiments showed that "fatty", "green", "fruity", and "floral" are considered to be the main aroma attributes of RAPT infusion with a strong relationship with 1-octen-3-one, 1-octen-3-ol, (E)-2-octenal, β-ionone, linalool, etc. This study will contribute a better understanding of the mechanism of the RAPT steeping process and volatile generation.
Collapse
Affiliation(s)
- Tao Feng
- Department of Perfume and Aroma Technology, University of Shanghai Institute of Technology, Shanghai201418, China
| | - Jiaqing Sun
- Department of Perfume and Aroma Technology, University of Shanghai Institute of Technology, Shanghai201418, China
| | - Kai Wang
- Technology Centre of China Tobacco Yunnan Industrial Co., Ltd., Kunming650231, China
| | - Shiqing Song
- Department of Perfume and Aroma Technology, University of Shanghai Institute of Technology, Shanghai201418, China
| | - Da Chen
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, 875 Perimeter Drive, Moscow, IdahoID 83844, United States
| | - Haining Zhuang
- Shanghai Urban Construction Vocational College, School of Health and Social Care, Shanghai201415, China
| | - Jun Lu
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Manukau1052, New Zealand
| | - Dejun Li
- R&D Center of Shanghai Apple Flavor and Fragrance Group Co., Ltd., Shanghai200436, China
| | - Xianle Meng
- R&D Center of Shanghai Apple Flavor and Fragrance Group Co., Ltd., Shanghai200436, China
| | - Mingliang Shi
- R&D Center of Shanghai Apple Flavor and Fragrance Group Co., Ltd., Shanghai200436, China
| | - Lingyun Yao
- Department of Perfume and Aroma Technology, University of Shanghai Institute of Technology, Shanghai201418, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey08901, United States
| |
Collapse
|
211
|
Zhang L, Chen J, Zhang J, Sagymbek A, Li Q, Gao Y, Du S, Yu X. Lipid oxidation in fragrant rapeseed oil: Impact of seed roasting on the generation of key volatile compounds. Food Chem X 2022; 16:100491. [PMID: 36339322 PMCID: PMC9626899 DOI: 10.1016/j.fochx.2022.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
This work sought to identify the influence of roasting on lipid oxidation-derived volatile compounds in fragrant rapeseed oils (FROs) via gas chromatography–mass spectrometry and gas chromatography–ion mobility spectrometry. Seven volatiles could be regard as aroma-active compounds by application of odor activity value (OAV ≥ 1) calculation, and caused fatty-like, nutty-like, and green-like notes. After 60 min of roasting, the OAVs of hexanal, octanal, (E,E)-2,4-heptadienal, and nonanal in FROs were greater than 3. The same compounds, including hexanal, (E,E)-2,4-heptadienal, nonanal, 1-octanol, and nonanoic acid were also detected in the model systems of lipid oxidation. Notably, the values of p-anisidine, conjugated dienes, and conjugated trienes increased significantly (p < 0.05). Furthermore, correlation analysis showed that hexanal, (E,E)-2,4-heptadienal, and nonanal have a significant positive correlation with the oxidative degree of FROs (R = 0.70–0.94, p < 0.05). Thus, the three above-mentioned aldehydes could serve as important markers for FRO quality during roasting.
Collapse
Key Words
- AV, acid value
- Aldehydes
- FRO, fragrant rapeseed oil
- Fragrant rapeseed oil
- K232, conjugated dienes
- K268, conjugated trienes
- Lipid oxidation
- OAV, odor activity value
- OBs, oil bodies
- PV, peroxide value
- RI, retention index
- Roasting
- TAG, triglyceride
- p-AnV, p-anisidine value
Collapse
Affiliation(s)
- Lingyan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Jia Chen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Jiaxin Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Altayuly Sagymbek
- Department of Food Science, Saken Seifullin Kazakh Agrotechnical University, 62 Zhenis Avenue, Nur-Sultan 010011, Kazakhstan
| | - Qi Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yuan Gao
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Shuangkui Du
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China,Corresponding author.
| |
Collapse
|
212
|
Jiang C, Chen Y, Li S, Shang S, Fu B, Wang L, Dong X, Jiang P. Ready-to-Eat Fish Cake Processing Methods and the Impacts on Quality and Flavor. Foods 2022; 11:3321. [PMID: 36359935 PMCID: PMC9655066 DOI: 10.3390/foods11213321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 10/03/2023] Open
Abstract
This study aimed to compare tilapia fish cake drying and sterilization conditions (105, 115, and 121 °C) on the quality of the cakes. The impacts of volatile flavor substances, the chroma value, quality and structure characteristics, microscopic structure, and the types and content of volatile flavor substances were also analyzed. The results showed that after drying and sterilization, the L* value, W value and delta-E value of fish cakes decreased significantly from 77.12 to 64.77, 66.21 to 52.57, 10.46 to 24.50, respectively. However, a* value and b* value increased significantly from 0.30 to 6.97 and 24.85 to 30.89, respectively. The elasticity, hardness, and chewiness increased significantly with the drying process but decreased significantly with the increased sterilization temperature. Scanning electron microscopy results showed that the internal pores of the fish cakes became smaller, and the tissue structure was closer after drying. Gas chromatography-ion mobile spectrometry analysis identified a total of 36 volatile flavor compounds. Among these, ketones comprised the largest content, aldehydes represented the largest variety, and all volatile compounds contributed significantly to the flavor of fish cake. PCA results and nearest-neighbor fingerprint analysis showed that there were obvious differences in volatile flavor compounds between different treatments. In summary, this study conducted a detailed comparative analysis of the quality and flavor of fish cakes subjected to different processing methods. These findings contribute suggestions for sterilization temperatures in industrial production processes.
Collapse
Affiliation(s)
- Caiyan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Yao Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Shuang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Shan Shang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Baoshang Fu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Lina Wang
- Dalian Center for Certification and Food and Drug Control, Dalian 116034, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Pengfei Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| |
Collapse
|
213
|
Li S, Du D, Wang J, Wei Z. Application progress of intelligent flavor sensing system in the production process of fermented foods based on the flavor properties. Crit Rev Food Sci Nutr 2022; 64:3764-3793. [PMID: 36259959 DOI: 10.1080/10408398.2022.2134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are sensitive to the production conditions because of microbial and enzymatic activities, which requires intelligent flavor sensing system (IFSS) to monitor and optimize the production process based on the flavor properties. As the simulation system of human olfaction and gustation, IFSS has been widely used in the field of food with the characteristics of nondestructive, pollution-free, and real-time detection. This paper reviews the application of IFSS in the control of fermentation, ripening, and shelf life, and the potential in the identification of quality differences and flavor-producing microbes in fermented foods. The survey found that electronic nose (tongue) is suitable to monitor fermentation process and identify food authenticity in real time based on the changes of flavor profile. Gas chromatography-ion mobility spectrometry and nuclear magnetic resonance technology can be used to analyze the flavor metabolism of fermented foods at various production stages and explore the correlation between flavor substances and microorganisms.
Collapse
Affiliation(s)
- Siying Li
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Dongdong Du
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Zhenbo Wei
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
214
|
Zhang Y, Xu J, Jiang Y, Niu J, Chen X, Han BZ. Microbial characteristics and metabolite profiles of high-temperature Daqu in different maturation stages. World J Microbiol Biotechnol 2022; 38:234. [PMID: 36222911 DOI: 10.1007/s11274-022-03428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022]
Abstract
The maturation period of high-temperature Daqu (HTD) is usually 3-6 months, and the characteristics of HTD at different maturation stages were different. In this study, the microbial characteristics and metabolite profiles of HTD at different maturation stages were revealed with the combination of physicochemical detection, the third generation Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) sequencing technology, gas chromatography-mass spectrometry (GC-MS), and gas chromatography-ion mobility spectrometry (GC-IMS). Results showed that HTD matured for 6 months (Mix_m6) had higher saccharification power but less culturable thermotolerant bacteria and fungi than HTD matured for 3 months (Mix_m3). The average relative abundances of Thermoactinomyces, Paenibacillus, and Rasamsonia in Mix_m3 were higher than that in Mix_m6, while the average relative abundances of Bacillus, Pseudomonas, Thermoascus increased obviously with the prolongation of the maturation period. Streptomyces and Thermoactinomyces were biomarkers in Mix_m3, while Burkholderia and Pseudomonas were regarded as biomarkers in Mix_m6. Differences in microbiota structure led to different enrichment of metabolic pathways in HTD at different maturation stages, resulting in different flavor profiles, especially in ethyl acetate, 1-octen-3-one, (E)-3-Hexen-1, 2,3,5-trimethy-6-ethylpyrazine, pyrazine, tetramethyl content. The microbiota and metabolite characteristics of HTD comprehensively reflected the HTD quality in different maturation stages, which provided a reference for determining the optimal maturation time.
Collapse
Affiliation(s)
- Yuandi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Jingguo Xu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | | | - Jiao Niu
- Sichuan Langjiu Co., Ltd., Luzhou, China
| | - Xiaoxue Chen
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China.
| |
Collapse
|
215
|
Peng L, Gao X, Wang L, Zhu A, Cai X, Li P, Li W. Design of experiment techniques for the optimization of chromatographic analysis conditions: A review. Electrophoresis 2022; 43:1882-1898. [PMID: 35848309 DOI: 10.1002/elps.202200072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
Design of experiment (DoE) techniques have been widely used in the field of chromatographic parameters optimization as a valuable tool. A systematic literature review of the available DoE techniques applied to the development of a chromatographic analysis method is presented in this paper. First, the most common available designs and the implementation steps of DoE are comprehensively introduced. Then the studies in recent 10 years for the application of DoE techniques in various chromatographic techniques are discussed, such as capillary electrophoresis, liquid chromatography, gas chromatography, thin-layer chromatography, and high-speed countercurrent chromatography. Current problems and future outlooks are finally given to provide a certain inspiration of research in the application of DoE techniques to the different chromatographic techniques field. This review contributes to a better understanding of the DoE techniques for the efficient optimization of chromatographic analysis conditions, especially for the analysis of complex systems, such as multicomponent drugs and natural products.
Collapse
Affiliation(s)
- Le Peng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xin Gao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Long Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Aiqiang Zhu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xiang Cai
- Langtian Pharmaceutical (Hubei) Co., Ltd., Huangshi, P. R. China
| | - Pian Li
- Langtian Pharmaceutical (Hubei) Co., Ltd., Huangshi, P. R. China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
216
|
Aroma classification and characterization of Lactobacillus delbrueckii subsp. bulgaricus fermented milk. Food Chem X 2022; 15:100385. [PMID: 36211740 PMCID: PMC9532717 DOI: 10.1016/j.fochx.2022.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
The aroma types of fermented milk produced by L. bulgaricus were divided into milky-type, cheesy-type, fermented-type and miscellaneous-type. The flavor fingerprints of different aroma types were established by GC-IMS. Acetaldehyde, 2,3-butanedione, acetic acid, butanoic acid, hexanoic acid and δ-decalactone of different aroma types were determined by Flavoromics.
The aroma of the fermented milk produced by twenty-eight Lactobacillus delbrueckii subsp. bulgaricus strains was evaluated via quantitative descriptive analysis. According to the sensory analysis results, the fermented milks were grouped into milky-type, cheesy-type, fermented-type and miscellaneous-type. The representative samples of cheese-type and fermented-type were analyzed by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and flavoromics. A total of 95 volatile compounds were identified and particularly, 12 aroma-active compounds were detected by using gas chromatography-olfactometry-mass spectrometry (GC-O-MS). Among the different aroma types, 2,3-butanedione, δ-decalactone, acetaldehyde, butanoic acid, acetic acid and hexanoic acid were finally screened out as the key aroma-active compounds by quantitative and odor activity value (OAV) analysis combined with aroma recombination, omission and addition experiments. These findings were valuable in developing specific fermented milk products with different aroma profiles.
Collapse
|
217
|
Lu K, Liu L, Zi J, Song L, Xie W. New insights from flavoromics on different heating methods of traditional fermented shrimp paste: The volatile components and metabolic pathways. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
218
|
Liu A, Zhang H, Liu T, Gong P, Wang Y, Wang H, Tian X, Liu Q, Cui Q, Xie X, Zhang L, Yi H. Aroma classification and flavor characterization of Streptococcus thermophilus fermented milk by HS-GC-IMS and HS-SPME-GC-TOF/MS. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
219
|
Geographical differentiation of Molixiang table grapes grown in China based on volatile compounds analysis by HS-GC-IMS coupled with PCA and sensory evaluation of the grapes. Food Chem X 2022; 15:100423. [PMID: 36211739 PMCID: PMC9532774 DOI: 10.1016/j.fochx.2022.100423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 01/23/2023] Open
Abstract
Volatile fingerprints of three Molixiang grapes were established using HS-GC-IMS. GC-IMS coupled with PCA could distinguished the three Molixiang grapes well. Sensory evaluation revealed significant (P ≤ 0.05) difference among the three samples. E-2-octenal, styrene and benzaldehyde were potential geographical marker compounds.
In this study, the volatile fingerprints of GC-IMS showed great differences on the volatile profiles of Molixiang grapes collected from three different regions of China, which suggested that aroma of table grapes could be largely impacted by origin areas. Butyl lactate, E-2-octenal and Z-2-pentanol were mainly contained in MLX-A, the grapes sampled from Ningbo, China. High contents of p-cymene, styrene and γ-terpinene were observed in MLX-B grapes sampled from Beizhen, China. In addition, benzaldehyde and methyl benzoate were major contained in MLX-C grapes sampled from Zhangzhou, China. The PCA results revealed effective differentiation of samples from different geographical origin based on the information obtained from GC-IMS. Furthermore, sensory evaluation showed that the aroma characters of grapes from different geographical origin were significantly different (P ≤ 0.05). E-2-octenal, styrene and benzaldehyde might serve as the geographical marker compounds of origin area based on the results of GC-IMS analysis and sensory evaluation.
Collapse
|
220
|
Lin Q, Ren A, Liu R, Xing Y, Yu X, Jiang H. Flavor properties of Chinese noodles processed by dielectric drying. Front Nutr 2022; 9:1007997. [PMID: 36245479 PMCID: PMC9558107 DOI: 10.3389/fnut.2022.1007997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds (VOCs) significantly impact food flavor. In this work, Electron nose (E-nose), head space solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), and head space-gas chromatography-ion mobility spectrometry (HS-GC-IMS) techniques were applied to analyze different drying effects: microwave, hot air, and radio frequency on the aroma of Chinese noodles. E-nose analysis suggests that aromatic differences are mainly from broad range-methane. HS-SPME-GC-MS and HS-GC-IMS identified 47 and 26 VOCs in the fresh and dried noodles, respectively. The VOCs in the dried noodles were mainly aldehydes, alcohols, and esters. Drying significantly reduced the types of VOCs in Chinese dried noodles. Microwave dried noodles exhibited the strongest aroma after the shortest time of treatment, suggesting microwave drying may be the best drying method for noodles. Using aromatic analysis, this paper provides useful information for understanding the flavor of flour products and offers new ideas for drying noodles.
Collapse
Affiliation(s)
- Qian Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Aiqing Ren
- Institute of Food Research, Hezhou University, Guangxi, China
| | - Rui Liu
- Cereal Industrial Technology Academy, Hebei Jinshahe Flour and Noodle Group/Hebei Cereal Food Processing Technology Innovation Centre, Xingtai, China
| | - Yanan Xing
- Cereal Industrial Technology Academy, Hebei Jinshahe Flour and Noodle Group/Hebei Cereal Food Processing Technology Innovation Centre, Xingtai, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Yangling, China
- *Correspondence: Hao Jiang, ;
| |
Collapse
|
221
|
Yao L, Guo S, Wang H, Feng T, Sun M, Song S, Hou F. Volatile fingerprints of different parts of Chongming saffron (Crocus sativus) flowers by headspace-gas chromatography-ion mobility spectrometry and in vitro bioactive properties of the saffron tepals. J Food Sci 2022; 87:4491-4503. [PMID: 36098230 DOI: 10.1111/1750-3841.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
In this work, the volatile fingerprints of different parts of Chongming saffron flowers (stigmas, stamens, and tepals) were analyzed and compared for the first time by headspace-gas chromatography-ion mobility spectrometry. Three different parts of saffron flowers could be clearly distinguished using principal component analysis based on signal intensity data of gas chromatography-ion mobility spectrometry. Therefore, gas chromatography-ion mobility spectrometry coupled with principal component analysis method could be employed as a new method for authentication and quality control of saffron for the reason of frequent addition with stamens and/or tepals as adulterants in saffron. Moreover, the bioactive composition (total flavonoids, total phenolics, and total anthocyanins) and bioactive properties of saffron tepals were evaluated. The results indicated that aqueous, ethanol, and ethyl acetate extracts of saffron tepals exhibited good radical scavenging (2,2-Diphenyl-1-picrylhydrazyl, ABTS, and OH) and enzyme (α-amylase/α-glucosidase) inhibition activities, which probably were attributed to the bioactive components contained in the extracts. This approach would provide the important information for monitoring the quality of saffron as well as exploring the utilization of saffron tepals in functional food technology. PRACTICAL APPLICATION: This study demonstrated that the HS-GC-IMS method might be used as a new strategy for quality control of saffron, and the saffron tepals were rich source of bioactive components that could be used in health-promoting products.
Collapse
Affiliation(s)
- Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Shuangfei Guo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Feina Hou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
222
|
Comparative Studies on the Physicochemical and Volatile Flavour Properties of Traditional Deep Fried and Circulating-Air Fried Hairtail ( Trichiurus lepturus). Foods 2022; 11:foods11172710. [PMID: 36076895 PMCID: PMC9455639 DOI: 10.3390/foods11172710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study is to investigate the effects of deep frying (DF) and air frying (AF) on the quality and flavour profile of hairtail (Trichiurus lepturus) fillets. The changes of some physicochemical indices such as moisture content, oil content, colour, thiobarbituric acid reactive substances (TBARS) and peroxide values (POV) in hairtail fillets were detected with increasing frying time. According to these physicochemical indices and sensory evaluation, deep frying for 7 min under 190 °C (DF7) and air frying for 24 min under 190 °C (AF24) were selected as samples for their great quality. The flavour fingerprint of hairtail (Raw, DF7, AF24) was developed and volatile compounds were investigated by HS-GC-IMS. A total of 28 volatile substances including aldehydes, alcohols, ketones and others were identified both in the DF7 and AF24 samples. There are differences in the aroma fingerprint between the DF7 and AF24 samples. DF was characterised by 2-Heptanone, (E)-2-Heptenal, 2-Pentyfuran and 1-Pentanol, AF was characterised by 2-methylbutanol, Ethyl methyl ketone-M and 3-hydroxy-2-butanone. These findings suggest that the aroma of hairtail fillets after DF7 and AF24 was significantly different and supply flavour information and practical applications of the fried hairtail fillets.
Collapse
|
223
|
Sun P, Xu B, Wang Y, Lin X, Chen C, Zhu J, Jia H, Wang X, Shen J, Feng T. Characterization of volatile constituents and odorous compounds in peach ( Prunus persica L) fruits of different varieties by gas chromatography-ion mobility spectrometry, gas chromatography-mass spectrometry, and relative odor activity value. Front Nutr 2022; 9:965796. [PMID: 36046134 PMCID: PMC9421302 DOI: 10.3389/fnut.2022.965796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study is to acquire information for future breeding efforts aimed at improving fruit quality via effects on aroma by comparing the diversity of Chinese local peach cultivars across 10 samples of three varieties (honey peach, yellow peach, and flat peach). The volatile components of peach fruits were analyzed and identified by gas chromatography–ion mobility spectrometry (GC-IMS) combined with gas chromatography–mass spectrometry (GC-MS), and the main flavor components of peach fruit were determined by relative odor activity value (ROAV) and principal component analysis (PCA). A total number of 57 volatile components were detected by GC-IMS, including eight aldehydes, nine alcohols, eight ketones, 22 esters, two acids, two phenols, two pyrazines, one thiophene, one benzene, and two furans. The proportion of esters was up to 38.6%. A total of 88 volatile components were detected by GC-MS, among which 40 were key aroma compounds, with an ROAV ≥ 1. The analysis results showed that alcohols, ketones, esters, and aldehydes contributed the most to the aroma of peach fruit. PCA demonstrated that (E,E)-2, 6-non-adienal, γ-decalactone, β-ionone, and hexyl hexanoate were the key contributors to the fruit aroma. A reference for future directional cultivation and breeding could be provided by this study through evaluating the aroma quality of the peach at the cultivar level. The possible reasonable application of these peach fruits pulp will be guided through these research.
Collapse
Affiliation(s)
- Ping Sun
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Bing Xu
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yi Wang
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Xianrui Lin
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chenfei Chen
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Jianxi Zhu
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huijuan Jia
- The College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiansheng Shen
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Tao Feng
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
224
|
Feng S, Tang Q, Xu Z, Huang K, Li H, Zou Z. Development of novel Co-MOF loaded sodium alginate based packaging films with antimicrobial and ammonia-sensitive functions for shrimp freshness monitoring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
225
|
Xuan X, Sun R, Zhang X, Cui Y, Lin X, Sun Y, Deng W, Liao X, Ling J. Novel application of HS-GC-IMS with PCA for characteristic fingerprints and flavor compound variations in NFC Chinese bayberry (Myrica rubra) juice during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
226
|
Discrimination and characterization of volatile organic compound fingerprints during sea bass (Lateolabrax japonicas) fermentation by combining GC-IMS and GC-MS. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
227
|
Feng H, Timira V, Zhao J, Lin H, Wang H, Li Z. Insight into the Characterization of Volatile Compounds in Smoke-Flavored Sea Bass ( Lateolabrax maculatus) during Processing via HS-SPME-GC-MS and HS-GC-IMS. Foods 2022; 11:2614. [PMID: 36076799 PMCID: PMC9455667 DOI: 10.3390/foods11172614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to ascertain how the volatile compounds changed throughout various processing steps when producing a smoke-flavored sea bass (Lateolabrax maculatus). The volatile compounds in different production steps were characterized by headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). A total of 85 compounds were identified, and 25 compounds that may be considered as potential key compounds were screened by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Results indicated that aldehydes were the major volatile compounds throughout the processing. The characteristic volatile compound in fresh samples was hexanol, and curing was an effective method to remove the fishy flavor. The concentration of volatile compounds was significantly higher in dried, smoked, and heated samples than in fresh and salted samples. Aldehydes accumulated because of the drying process, especially heptanal and hexanal. Smoke flavoring was an important stage in imparting smoked flavor, where phenols, furans and ketones were enriched, and heating leads to the breakdown of aldehydes and alcohols. This study will provide a theoretical basis for improving the quality of smoke-flavored sea bass products in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, China
| |
Collapse
|
228
|
Chen H, Pan D, Du H, Ma J, Kong B, Diao J. Flavor Differences of Edible Parts of Grass Carp between Jingpo Lake and Commercial Market. Foods 2022; 11:foods11172594. [PMID: 36076779 PMCID: PMC9455230 DOI: 10.3390/foods11172594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 12/10/2022] Open
Abstract
This study investigated the flavor differences among three individual parts (abdomen, back, and tail) of Jingpo Lake grass carp (JPGC) and commercial grass carp (CGC). The growing environment and fish parts influenced the volatile compounds of the fish. The highest total contents of alcohols and ethers were found in the back of JPGC (p < 0.05). The combination of an electronic tongue and electronic nose (E-nose) could effectively distinguish the flavor differences between the different parts of JPGC and CGC by principal component analysis. Both the content of total free amino acids (FAAs) and content of amino acids contributing to the sweet and fresh flavors were higher in JPGC than CGC (p < 0.05). Among the ATP-associated products, the inosine 5’-monophosphate (IMP) contents of the back and tail of JPGC were higher (p < 0.05), but the abdomen content was lower (p > 0.05) than the respective contents in the corresponding parts of CGC. Sensory evaluation shows that JPGC had a better texture, odor, and taste, compared to CGC. Correlation analysis showed that the E-nose data and FAAs were highly correlated with the content of alcohols, aldehydes, and ethers. This study showed that the flavors of the different parts of JPGC differed significantly from those of CGC.
Collapse
Affiliation(s)
- Hongsheng Chen
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- China-Canada Cooperation Agri-Food Research Center of Heilongjiang Province, Daqing 163319, China
| | - Deyin Pan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hongzhen Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinming Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingjing Diao
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence:
| |
Collapse
|
229
|
Fu M, Wang Y, Yu Y, Wen J, Cheong MS, Cheang WS, Wu J. Changes of volatile substance composition during processing of nine-processed tangerine peel (Jiuzhi Chenpi) determined by gas chromatography-ion mobility spectrometry. Front Nutr 2022; 9:963655. [PMID: 36091238 PMCID: PMC9449410 DOI: 10.3389/fnut.2022.963655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
Nine-processed tangerine peel (Jiuzhi Chenpi in Chinese) is a famous Chinese traditional snack. The composition and contents of volatile substances during its processing is unclear. Gas chromatography combined with ion mobility spectrometry (GC-IMS) was applied to determine the characteristic changes of volatile components throughout the production process. Four stages such as untreated dry tangerine peel (raw material), debittered tangerine peel, pickled tangerine peel, and final product were examined. A total of 110 flavor compounds including terpenes, alcohols, aldehydes, ketones, esters, acids, and two others were successfully detected in tangerine peel samples across the various production stages. There were abundant amounts of terpenes contributing to the flavor, including limonene, gamma-terpinene, alpha-pinene, myrcene, beta-pinene, and alpha-thujene which were reduced at the later stage of production. Large amounts of esters and alcohols such as methyl acetate, furfuryl acetate, ethyl acetate, benzyl propionate, 2-hexanol, linalool, and isopulegol, were diminished at the early stage of processing, i.e., soaking for debittering. One the other hand, the final product contained increased amount of aldehydes and ketones including pentanal, hexanal, 2-hexenal, 2-heptenal (E), 2-pentenal (E), 1-penten-3-one, 6-methyl-5-hepten-2-one, 2-methyl-2-propenal, and 2-cyclohexen-1-one, and very high level of acetic acid. Present findings help to understand the formation of the unique flavor of nine-processed tangerine peel and provide a scientific basis for the optimization of processing methods and quality control.
Collapse
Affiliation(s)
- Manqin Fu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yuehan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yuanshan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Jing Wen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Meng Sam Cheong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
- Wai San Cheang,
| | - Jijun Wu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- *Correspondence: Jijun Wu,
| |
Collapse
|
230
|
Xing Y, Yu Z, Hu X, Yin J, Fan T, Fu Z, Pan G, Liu E, Zhou J, Han L. Characterization of volatile organic compounds in Polygonum multiflorum and two of its processed products based on multivariate statistical analysis for processing technology monitoring. J Chromatogr A 2022; 1680:463431. [PMID: 36027836 DOI: 10.1016/j.chroma.2022.463431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023]
Abstract
Herein we describe a comprehensive analysis of the volatile organic compounds (VOCs) of raw Polygonum multiflorum Thunb. (PM) and two of its processed products, as well as an effective and simple method based on volatile markers to determine to which extent the PM had been processed. Sixty-five VOCs were identified by headspace-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), along with headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Principal component analysis (PCA) of the HS-SPME-GC-MS spectra and fingerprint analysis of the HS-GC-IMS spectra allowed the identification of raw PM from its processed products based the VOCs identified. Furthermore, the content and distribution of VOCs in the samples were easily analyzed visually based on clustering-kernel density estimation (Cluster-KDE). Finally, exploratory factor analysis (EFA) allowed the screening of significant markers to identify the processing method and consequently distinguish the three studied groups of PM.
Collapse
Affiliation(s)
- Yanchao Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Zhenyan Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Xiaohan Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Jiaxin Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Tianci Fan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Guixiang Pan
- Second Affiliated hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin, 300250, P.R. China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China
| | - Jianpeng Zhou
- Tianjin Institude for Drug Control, 98 Guizhou Road, Heping District, Tianjin, 300070, P.R. China.
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, P.R. China.
| |
Collapse
|
231
|
Ju H, Wu C, Jiang P, Qi L, Lin S. Inhibition effect of nitrogen‐filled technology on flavor degradation of infant nutrition powder. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huapeng Ju
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning P. R. China
| | - Chao Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning P. R. China
| | - Pengfei Jiang
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning P. R. China
| | - Libo Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning P. R. China
| |
Collapse
|
232
|
Effects of Submerged Macrophytes on the Growth, Morphology, Nutritional Value, and Flavor of Cultured Largemouth Bass ( Micropterus salmoides). Molecules 2022; 27:molecules27154927. [PMID: 35956873 PMCID: PMC9370443 DOI: 10.3390/molecules27154927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Aquaculture environment plays important roles in regulating the growth, morphology, nutrition, and flavor of aquatic products. The present study investigated growth, morphology, nutrition, and flavor formation in largemouth bass (Micropterus salmoides) cultured in the ponds with (EM group) and without (M group) the submerged macrophytes (Elodea nuttallii). Fish in the EM group showed a significantly greater body length, higher growth rate, and lower hepatosomatic index than those in the M group (p< 0.05). Moreover, compared with fish in the M group, those in the EM group showed improved muscle quality with significantly elevated levels of crude protein, total free and hydrolysable amino acids, and polyunsaturated fatty acids (p < 0.05). Specifically, certain amino acids related to flavor (Glu, Asp, Ala, and Arg) and valuable fatty acids (C18:2, C18:3n3, C20:3n3, and C22:6) were more abundant in the EM group (p < 0.05). In addition, the levels of 19 volatile (p < 0.05) were significantly higher in the EM group than in the M group. Therefore, E. nuttallii significantly improved growth, morphological traits, nutritional components, and characteristic flavor in largemouth bass, indicating the superior nutritional value and palatability of fish cultured with submerged macrophytes.
Collapse
|
233
|
Xiao N, Xu H, Jiang X, Sun T, Luo Y, Shi W. Evaluation of aroma characteristics in grass carp mince as affected by different washing processes using an E-nose, HS-SPME-GC-MS, HS-GC-IMS, and sensory analysis. Food Res Int 2022; 158:111584. [DOI: 10.1016/j.foodres.2022.111584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
|
234
|
Han L, Chen M, Li Y, Wu S, Zhang L, Tu K, Pan L, Wu J, Song L. Discrimination of different oil types and adulterated safflower seed oil based on electronic nose combined with gas chromatography-ion mobility spectrometry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
235
|
Yang X, Xing B, Guo Y, Wang S, Guo H, Qin P, Hou C, Ren G. Rapid, accurate and simply-operated determination of laboratory-made adulteration of quinoa flour with rice flour and wheat flour by headspace gas chromatography-ion mobility spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
236
|
Kang J, Jia L, Zhang Z, Zhang M, Huang X, Chen X, Han BZ. Comparison of physicochemical characteristics and microbiome profiles of low-temperature Daqu with and without adding tartary buckwheat. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
237
|
Jiang H, Li Y, Li L, Chen W, Zeng X, Bai W, Xiao G. Effects of different breeds and ages of meat pigeons on quality and flavor of pigeon soup. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hao Jiang
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering Zhongkai University of Agriculture and Engineering 510225 Guangzhou China
| | - Yingying Li
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering Zhongkai University of Agriculture and Engineering 510225 Guangzhou China
| | - Liubing Li
- Department of Food Engineering, Guangdong Maoming Agriculture & Forestry Technical College 525099 Maoming China
| | - Weibo Chen
- Meizhou Jinlv Modern Agriculture Development Co., Ltd. 514500 Meizhou China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering Zhongkai University of Agriculture and Engineering 510225 Guangzhou China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering Zhongkai University of Agriculture and Engineering 510225 Guangzhou China
| | - Gengsheng Xiao
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering Zhongkai University of Agriculture and Engineering 510225 Guangzhou China
| |
Collapse
|
238
|
Chen SJ, Tseng CC, Huang KH, Chang YC, Fu LM. Microfluidic Sliding Paper-Based Device for Point-of-Care Determination of Albumin-to-Creatine Ratio in Human Urine. BIOSENSORS 2022; 12:bios12070496. [PMID: 35884299 PMCID: PMC9313340 DOI: 10.3390/bios12070496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 01/09/2023]
Abstract
A novel assay platform consisting of a microfluidic sliding double-track paper-based chip and a hand-held Raspberry Pi detection system is proposed for determining the albumin-to-creatine ratio (ACR) in human urine. It is a clinically important parameter and can be used for the early detection of related diseases, such as renal insufficiency. In the proposed method, the sliding layer of the microchip is applied and the sample diffuses through two parallel filtration channels to the reaction/detection areas of the microchip to complete the detection reaction, which is a simple method well suited for self-diagnosis of ACR index in human urine. The RGB (red, green, and blue) value intensity signals of the reaction complexes in these two reaction zones are analyzed by a Raspberry Pi computer to derive the ACR value (ALB and CRE concentrations). It is shown that the G + B value intensity signal is linearly related to the ALB and CRE concentrations with the correlation coefficients of R2 = 0.9919 and R2 = 0.9923, respectively. It is additionally shown that the ALB and CRE concentration results determined using the proposed method for 23 urine samples were collected from real suffering chronic kidney disease (CKD) patients are in fine agreement with those acquired operating a traditional high-reliability macroscale method. Overall, for point-of-care (POC) CKD diagnosis and monitoring in clinical applications, the results prove that the proposed method offers a convenient, real time, reliable, and low-spending solution for POC CKD diagnosis.
Collapse
Affiliation(s)
- Szu-Jui Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.C.); (K.-H.H.); (Y.-C.C.)
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan;
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Kuan-Hsun Huang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.C.); (K.-H.H.); (Y.-C.C.)
| | - Yu-Chi Chang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.C.); (K.-H.H.); (Y.-C.C.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.C.); (K.-H.H.); (Y.-C.C.)
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Correspondence: ; Tel.: +886-6-275-7575 (ext. 63321)
| |
Collapse
|
239
|
Roles of sunlight exposure on chemosensory characteristic of broad bean paste by untargeted profiling of volatile flavors and multivariate statistical analysis. Food Chem 2022; 381:132115. [DOI: 10.1016/j.foodchem.2022.132115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
|
240
|
Abstract
Fermented foods and beverages have become a part of daily diets in several societies around the world. Emitted volatile organic compounds play an important role in the determination of the chemical composition and other information of fermented foods and beverages. Electronic nose (E-nose) technologies enable non-destructive measurement and fast analysis, have low operating costs and simplicity, and have been employed for this purpose over the past decades. In this work, a comprehensive review of the recent progress in E-noses is presented according to the end products of the main fermentation types, including alcohol fermentation, lactic acid fermentation, acetic acid fermentation and alkaline fermentation. The benefits, research directions, limitations and challenges of current E-nose systems are investigated and highlighted for fermented foods and beverage applications.
Collapse
|
241
|
Jing Q, Huang X, Lu C, Di D. Identification of characteristic flavour compounds and quality analysis in extra virgin olive oil based on
HS‐GC‐IMS. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Quan Jing
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xin‐Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Cong‐Hui Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Duo‐Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
242
|
Effects of dairy bioactive peptides and lotus seeds/lily bulb powder on flavor and quality characteristics of goat milk yogurt. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
243
|
Zhang Y, Xu J, Ding F, Deng W, Wang X, Xue Y, Chen X, Han BZ. Multidimensional profiling indicates the shifts and functionality of wheat-origin microbiota during high-temperature Daqu incubation. Food Res Int 2022; 156:111191. [DOI: 10.1016/j.foodres.2022.111191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
|
244
|
Lu Z, Li J, Yuan C, Xi B, Yang B, Meng X, Guo T, Yue Y, Gao Y, Liu J, Sun X. Evaluation of Mutton Quality Characteristics of Dongxiang Tribute Sheep Based on Membership Function and Gas Chromatography and Ion Mobility Spectrometry. Front Nutr 2022; 9:852399. [PMID: 35600824 PMCID: PMC9122487 DOI: 10.3389/fnut.2022.852399] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/07/2022] [Indexed: 01/13/2023] Open
Abstract
Dongxiang tribute sheep have a history of use in food dishes such as "Dongxiang Handgrip," which dates back hundreds of years and is a favorite halal food in northwestern China. However, little is known about the mutton quality characteristics of Dongxiang tribute sheep. Here, we measured the sensory characteristics, nutritional quality, and flavor substances to comprehensively evaluate the mutton quality characteristics of these sheep. The mutton qualities of Dongxiang tribute, Tibetan, Ujumqin, and Hu sheep were comprehensively evaluated by membership function. Subsequently, the volatile components in mutton samples from 30 Dongxiang tribute sheep were detected via gas chromatography and ion mobility spectrometry (GC-IMS), and their fingerprints were established. The result of meat quality revealed that the shear force, the contents of protein, essential amino acid (EAA), non-essential amino acid (NEAA), and n-6/n-3 ratio of Dongxiang tribute mutton were better than the other three breeds. Membership functions were calculated for 10 physical and chemical indexes of mutton quality, and the comprehensive membership function values of the four breeds in order of highest to lowest mutton quality were Tibetan sheep (0.76) > Dongxiang tribute sheep (0.49) > Hu sheep (0.46) > Ujumqin sheep (0.33). Thirty volatile compounds were identified via GC-IMS: seven alcohols, eight aldehydes, five ketones, two esters, two phenols, one ether, one furan, one acid, two hydrocarbons, and one pyrazine. Ketones, aldehydes, and alcohols were the main volatile compounds forming the flavor of Dongxiang tribute sheep mutton. The reliability of the results was validated by PCA (principal component analysis) and similarity analyses. Our results provide reference value for consumers of mutton in China.
Collapse
Affiliation(s)
- Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianye Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bin Xi
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Quality Safety Risk Assessment of Animal Products, Ministry of Agriculture, Lanzhou, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xianyu Meng
- Dongxiang Autonomous County Animal Husbandry Development Center, Linxia, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yaqin Gao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Quality Safety Risk Assessment of Animal Products, Ministry of Agriculture, Lanzhou, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoping Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
245
|
Li H, Wu Q, Liu Q, Jin L, Chen B, Li C, Xiao J, Shen Y. Volatile Flavor Compounds of Pugionium cornutum (L.) Gaertn. Before and After Different Dehydration Treatments. Front Nutr 2022; 9:884086. [PMID: 35586736 PMCID: PMC9108931 DOI: 10.3389/fnut.2022.884086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Pugionium cornutum (L.) Gaertn (also Pugionium) is a special Mongolian vegetable, belonging to the Cruciferous family, growing in arid and semi-arid areas of northern China, with a unique flavor and potential health benefits. This article aims to describe the profile of volatile flavor compounds in fresh and different dehydrated samples, establish the fingerprint, and identify the characteristic compounds. The fresh Pugionium sample and 3 kinds of dehydrated samples were analyzed. Headspace/gas chromatography-ion migration spectrometry (HS/GC-IMS) and solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) were used for identification and relative quantification. HS/GC-IMS identified 78 compounds, whereas SPME/GC-MS identified 53 compounds. Principal component analysis (PCA), clustering analysis, and partial least squares discriminant analysis (PLS-DA) were used as appropriate to investigate variations in volatile compounds among Pugionium samples and identify distinctive compounds. The first two principal components described 76.5% and 69.5% of the variance of the data from HS/GC-IMS and SPME/GC-MS, respectively. By clustering analysis, 4 kinds of Pugionium samples could be classified into four independent groups. The similarity between fresh Pugionium and natural dehydration Pugionium was higher than the other two dehydrated samples, indicating that natural dehydration can better preserve the flavor of Pugionium. Most aldehydes and alcohols increased following different dehydration procedures, whereas esters decreased, and the dehydrated Pugionium samples have more harmonious and less pungent aroma than the fresh Pugionium. PLS-DA model analysis revealed that the marker compounds (VIP scores > 1) discriminating the flavor of the four samples for HS/GC-IMS and SPME/GC-MS were 24 and 15 compounds, respectively, such as 2-phenylethyl isothiocyanate, 1-butene-4-isothiocyanate and other isothiocyanates, 2-propanone, nonanal, gamma-butyrolactone, 2,3-butanediol, 3-methyl-2-butenenitrile, and pentanal. Analysis of volatile compounds might be useful for monitoring the quality of Pugionium and guiding the cooking methods and processing technologies. More study is required to discover if the various volatile flavor compounds have biological or physiological impacts on nutrition.
Collapse
Affiliation(s)
- Haoyu Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, China
| | - Qian Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Qiannan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
- *Correspondence: Cong Li
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
- Yehua Shen
| |
Collapse
|
246
|
An HS-GC-IMS analysis of volatile flavor compounds in brown rice flour and brown rice noodles produced using different methods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
247
|
Zhao T, Cao Z, Yu J, Weng X, Benjakul S, Guidi A, Ying X, Ma L, Xiao G, Deng S. Gas-phase ion migration spectrum analysis of the volatile flavors of large yellow croaker oil after different storage periods. Curr Res Food Sci 2022; 5:813-822. [PMID: 35592694 PMCID: PMC9110977 DOI: 10.1016/j.crfs.2022.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022] Open
Abstract
The large yellow croaker, a species of fish found in the northwestern Pacific, is favored by consumers because of its prevalence in saltwater bodies, golden yellow abdomen, high calcium content, high protein, high fat content, and a flavor that originates from its lipids and volatile components. Volatile organic compounds significantly affect the aroma of food. In this work, electronic nose and headspace gas chromatography-ion mobility spectrometry were applied to analyze the flavor differences in fish oil durations. Through electronic nose system analysis, sensors W1C, W3S, W6S, and W2S directly affected fish oil flavor, and their flavor components were different. Gas chromatography-ion mobility spectrometry identified 26 volatile components (19 aldehydes, 3 ketones, 2 alcohols, 1 furan, and 1 olefin). (E,E)-2,4-hexadienal (D), (E,E)-2,4-hexadienal (M), 2,4-heptadienal (M), (E)-2-octenal, 2-propanone, 2-heptanone (M), 3-pentanone (D), and 1-octen-3-ol were the key flavor components of the fish oil. In conclusion, the combination of GC-IMS and PCA can identify the differences in flavor changes of large yellow croaker oil during 0–120 days storage. After 60 days storage, the types and signals of 2-propanone, 2-heptanone (M) components increase significantly. When 120 days storage, at this time, (E,E)-2,4-hexadienal (D), (E,E)-2,4-hexadienal (M), 2,4-heptadienal (M), (E)-2-octenal,(E)-2-octenal significantly. It has become the main flavor substance of fish oil. In summary, as the storage period increases, the components increase, and the oxidizing substances will increase, resulting in the deterioration of fish oil. The oxidation state of Large yellow croaker oil in different storage periods was investigated. The volatile compounds of Large yellow croaker oil were studied by GC-IMS. The effects of storage period on the composition of large yellow croaker oil samples were tested. We believe GC-IMS will play a crucial role in controlling the flavor of fish oil.
Collapse
Affiliation(s)
- Tengfei Zhao
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhongqi Cao
- Sinopec Dalian Research Institute of Petroleum and Petrochemicals, Dalian Lioaning, 116045, China
| | - Jin Yu
- Longyou Aquaculture Development Center, Agricultural and Rural Bureau of Longyou County, Quzhou, 324000, China
| | - Xudong Weng
- Longyou Aquaculture Development Center, Agricultural and Rural Bureau of Longyou County, Quzhou, 324000, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry. Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Alessandra Guidi
- Department of Agriculture, Food and Environment (DAFE), Pisa University, Via Del Borghetto, 80, 56124, Pisa, Italy
| | - Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Longyou Aquaculture Development Center, Agricultural and Rural Bureau of Longyou County, Quzhou, 324000, China
- Corresponding author. No.1 Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang province, 316022, PR China.
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Corresponding author. No.24 Dongsha Road, Haizhu District, Guangzhou, Guangdong province, 510225, PR China.
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
248
|
Carlin S, Piergiovanni M, Pittari E, Tiziana Lisanti M, Moio L, Piombino P, Marangon M, Curioni A, Rolle L, Rio Segade S, Versari A, Ricci A, Paola Parpinello G, Luzzini G, Ugliano M, Perenzoni D, Vrhovsek U, Mattivi F. The contribution of varietal thiols in the diverse aroma of Italian monovarietal white wines. Food Res Int 2022; 157:111404. [DOI: 10.1016/j.foodres.2022.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/14/2022] [Accepted: 05/21/2022] [Indexed: 11/25/2022]
|
249
|
Bi J, Li Y, Yang Z, Lin Z, Chen F, Liu S, Li C. Effect of different cooking times on the fat flavor compounds of pork belly. J Food Biochem 2022; 46:e14184. [DOI: 10.1111/jfbc.14184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Jicai Bi
- Food Science and Engineering Post‐doctoral Research Station Henan University of Technology Zhengzhou China
- School of Food Science and Engineering Hainan University Haikou China
- School of Food Science and Technology Henan Institute of Science and Technology Xinxiang China
- Post‐doctoral Research Base & School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Yang Li
- School of Food Science and Technology Henan Institute of Science and Technology Xinxiang China
| | - Zhen Yang
- School of Food Science and Technology Henan Institute of Science and Technology Xinxiang China
| | - Zeyuan Lin
- School of Food Science and Technology Henan Institute of Science and Technology Xinxiang China
| | - Fusheng Chen
- Food Science and Engineering Post‐doctoral Research Station Henan University of Technology Zhengzhou China
| | - Sixin Liu
- School of Food Science and Engineering Hainan University Haikou China
| | - Congfa Li
- School of Food Science and Engineering Hainan University Haikou China
| |
Collapse
|
250
|
Lin H, Jiang H, Adade SYSS, Kang W, Xue Z, Zareef M, Chen Q. Overview of advanced technologies for volatile organic compounds measurement in food quality and safety. Crit Rev Food Sci Nutr 2022; 63:8226-8248. [PMID: 35357234 DOI: 10.1080/10408398.2022.2056573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food quality and nutrition have received much attention in recent decades, thanks to changes in consumer behavior and gradual increases in food consumption. The demand for high-quality food necessitates stringent quality assurance and process control measures. As a result, appropriate analytical tools are required to assess the quality of food and food products. VOCs analysis techniques may meet these needs because they are nondestructive, convenient to use, require little or no sample preparation, and are environmentally friendly. In this article, the main VOCs released from various foods during transportation, storage, and processing were reviewed. The principles of the most common VOCs analysis techniques, such as electronic nose, colorimetric sensor array, migration spectrum, infrared and laser spectroscopy, were discussed, as well as the most recent research in the field of food quality and safety evaluation. In particular, we described data processing algorithms and data analysis captured by these techniques in detail. Finally, the challenges and opportunities of these VOCs analysis techniques in food quality analysis were discussed, as well as future development trends and prospects of this field.
Collapse
Affiliation(s)
- Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| | - Hao Jiang
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| | | | - Wencui Kang
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Jiangsu, P. R. China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| |
Collapse
|