201
|
Alexa T, Marza A, Voloseniuc T, Tamba B. Enhanced analgesic effects of tramadol and common trace element coadministration in mice. J Neurosci Res 2015; 93:1534-41. [PMID: 26078209 DOI: 10.1002/jnr.23609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 01/22/2023]
Abstract
Chronic pain is managed mostly by the daily administration of analgesics. Tramadol is one of the most commonly used drugs, marketed in combination with coanalgesics for enhanced effect. Trace elements are frequent ingredients in dietary supplements and may enhance tramadol's analgesic effect either through synergic mechanisms or through analgesic effects of their own. Swiss Weber male mice were divided into nine groups and were treated with a combination of the trace elements Mg, Mn, and Zn in three different doses and a fixed dose of tramadol. Two groups served as positive (tramadol alone) and negative (saline) controls. Nociceptive assessment by tail-flick (TF) and hot-plate (HP) tests was performed at baseline and at 15, 30, 45, and 60 min after intraperitoneal administration. Response latencies were recorded and compared with the aid of ANOVA testing. All three trace elements enhanced tramadol's analgesic effect, as assessed by TF and HP test latencies. Coadministration of these trace elements led to an increase of approximately 30% in the average pain inhibition compared with the tramadol-alone group. The most effective doses were 0.6 mg/kg b.w. for Zn, 75 mg/kg b.w. for Mg, and 7.2 mg/kg b.w. for Mn. Associating trace elements such as Zn, Mg, and Mn with the standard administration of tramadol increases the drug's analgesic effect, most likely a consequence of their synergic action. These findings impact current analgesic treatment because the addition of these trace elements may reduce the tramadol dose required to obtain analgesia.
Collapse
Affiliation(s)
- Teodora Alexa
- Centre for the Study and Therapy of Pain, University of Medicine and Pharmacy "Gr. T. Popa," Iaşi, Romania.,Regional Institute of Oncology Iaşi, Romania
| | - Aurelia Marza
- Centre for the Study and Therapy of Pain, University of Medicine and Pharmacy "Gr. T. Popa," Iaşi, Romania
| | - Tudor Voloseniuc
- Centre for the Study and Therapy of Pain, University of Medicine and Pharmacy "Gr. T. Popa," Iaşi, Romania
| | - Bogdan Tamba
- Centre for the Study and Therapy of Pain, University of Medicine and Pharmacy "Gr. T. Popa," Iaşi, Romania.,A&B Pharm Corporation, Roman, Romania
| |
Collapse
|
202
|
Dimovasili C, Aschner M, Plaitakis A, Zaganas I. Differential interaction of hGDH1 and hGDH2 with manganese: Implications for metabolism and toxicity. Neurochem Int 2015; 88:60-5. [PMID: 25837286 DOI: 10.1016/j.neuint.2015.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
Manganese (Mn) is an essential trace element that serves as co-factor for many important mammalian enzymes. In humans, the importance of this cation is highlighted by the fact that low levels of Mn cause developmental and metabolic abnormalities and, on the other hand, chronic exposure to excessive amounts of Mn is characterized by neurotoxicity, possibly mediated by perturbation of astrocytic mitochondrial energy metabolism. Here we sought to study the effect of Mn on the two human glutamate dehydrogenases (hGDH1 and hGDH2, respectively), key mitochondrial enzymes involved in numerous cellular processes, including mitochondrial metabolism, glutamate homeostasis and neurotransmission, and cell signaling. Our studies showed that, compared to magnesium (Mg) and calcium (Ca), Mn exerted a significant inhibitory effect on both human isoenzymes with hGDH2 being more sensitive than hGDH1, especially under conditions of low ADP levels. Specifically, in the presence of 0.25 mM ADP, the Mn IC50 was 1.14 ± 0.02 mM and 1.54 ± 0.08 mM for hGDH2 and for hGDH1, respectively (p = 0.0001). Increasing Mn levels potentiated this differential effect, with 3 mM Mn inhibiting hGDH2 by 96.5% and hGDH1 by 70.2%. At 1 mM ADP, the Mn IC50 was 1.84 ± 0.02 mM and 2.04 ± 0.07 mM (p = 0.01) for hGDH2 and hGDH1, respectively, with 3 mM Mn inhibiting hGDH2 by 93.6% and hGDH1 by 70.9%. These results were due to the sigmoidal inhibitory curve of Mn that was more pronounced for hGDH2 than for hGDH1. Indeed, at 0.25 mM, the Hill coefficient value was higher for hGDH2 (3.42 ± 0.20) than for hGDH1 (1.94 ± 0.25; p = 0.0002) indicating that interaction of Mn with hGDH2 was substantially more co-operative than for hGDH1. These findings, showing an enhanced sensitivity of the hGDH2 isoenzyme to Mn, especially at low ADP levels, might be of pathophysiological relevance under conditions of Mn neurotoxicity.
Collapse
Affiliation(s)
- Christina Dimovasili
- Neurology Laboratory, School of Health Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andreas Plaitakis
- Neurology Laboratory, School of Health Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Zaganas
- Neurology Laboratory, School of Health Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
203
|
Chellan P, Sadler PJ. The elements of life and medicines. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140182. [PMID: 25666066 PMCID: PMC4342972 DOI: 10.1098/rsta.2014.0182] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Which elements are essential for human life? Here we make an element-by-element journey through the periodic table and attempt to assess whether elements are essential or not, and if they are, whether there is a relevant code for them in the human genome. There are many difficulties such as the human biochemistry of several so-called essential elements is not well understood, and it is not clear how we should classify elements that are involved in the destruction of invading microorganisms, or elements which are essential for microorganisms with which we live in symbiosis. In general, genes do not code for the elements themselves, but for specific chemical species, i.e. for the element, its oxidation state, type and number of coordinated ligands, and the coordination geometry. Today, the biological periodic table is in a position somewhat similar to Mendeleev's chemical periodic table of 1869: there are gaps and we need to do more research to fill them. The periodic table also offers potential for novel therapeutic and diagnostic agents, based on not only essential elements, but also non-essential elements, and on radionuclides. Although the potential for inorganic chemistry in medicine was realized more than 2000 years ago, this area of research is still in its infancy. Future advances in the design of inorganic drugs require more knowledge of their mechanism of action, including target sites and metabolism. Temporal speciation of elements in their biological environments at the atomic level is a major challenge, for which new methods are urgently needed.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
204
|
Xu B, Liu W, Deng Y, Yang TY, Feng S, Xu ZF. Inhibition of calpain prevents manganese-induced cell injury and alpha-synuclein oligomerization in organotypic brain slice cultures. PLoS One 2015; 10:e0119205. [PMID: 25756858 PMCID: PMC4355489 DOI: 10.1371/journal.pone.0119205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/11/2015] [Indexed: 12/02/2022] Open
Abstract
Overexposure to manganese has been known to promote alpha-synuclein oligomerization and enhance cellular toxicity. However, the exact mechanism of Mn-induced alpha-synuclein oligomerization is unclear. To explore whether alpha-synuclein oligomerization was associated with the cleavage of alpha-synuclein by calpain, we made a rat brain slice model of manganism and pretreated slices with calpain inhibitor II, a cell-permeable peptide that restricts the activity of calpain. After slices were treated with 400 μM Mn for 24 h, there were significant increases in the percentage of apoptotic cells, lactate dehydrogenase release, intracellular [Ca2+]i, calpain activity, and the mRNA and protein expression of calpain 1 and alpha-synuclein. Moreover, the number of C- and N-terminal fragments of alpha-synuclein and the amount of alpha-synuclein oligomerization also increased. These results also showed that calpain inhibitor II pretreatment could reduce Mn-induced nerve cell injury and alpha-synuclein oligomerization. Additionally, there was a significant decrease in the number of C- and N-terminal fragments of alpha-synuclein in calpain inhibitor II-pretreated slices. These findings revealed that Mn induced the cleavage of alpha-synuclein protein via overactivation of calpain and subsequent alpha-synuclein oligomerization in cultured slices. Moreover, the cleavage of alpha-synuclein by calpain 1 is an important signaling event in Mn-induced alpha-synuclein oligomerization.
Collapse
Affiliation(s)
- Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
- * E-mail:
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Tian-Yao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Shu Feng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Zhao-Fa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
205
|
Zeliger HI, Lipinski B. Physiochemical basis of human degenerative disease. Interdiscip Toxicol 2015; 8:15-21. [PMID: 27486355 PMCID: PMC4961921 DOI: 10.1515/intox-2015-0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 11/16/2022] Open
Abstract
The onset of human degenerative diseases in humans, including type 2 diabetes, cardiovascular disease, neurological disorders, neurodevelopmental disease and neurodegenerative disease has been shown to be related to exposures to persistent organic pollutants, including polychlorinated biphenyls, chlorinated pesticides, polybrominated diphenyl ethers and others, as well as to polynuclear aromatic hydrocarbons, phthalates, bisphenol-A and other aromatic lipophilic species. The onset of these diseases has also been related to exposures to transition metal ions. A physiochemical mechanism for the onset of degenerative environmental disease dependent upon exposure to a combination of lipophilic aromatic hydrocarbons and transition metal ions is proposed here. The findings reported here also, for the first time, explain why aromatic hydrocarbons exhibit greater toxicity than aliphatic hydrocarbons of equal carbon numbers.
Collapse
Affiliation(s)
| | - Boguslaw Lipinski
- Harvard Medical School, Joslin Diabetes Center, Boston, Massachusetts, USA
| |
Collapse
|
206
|
N-acetylcysteineamide protects against manganese-induced toxicity in SHSY5Y cell line. Brain Res 2015; 1608:157-66. [PMID: 25681547 DOI: 10.1016/j.brainres.2015.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/21/2022]
Abstract
Manganese (Mn) is an essential trace element required for normal cellular functioning. However, overexposure of Mn can be neurotoxic resulting in the development of manganism, a syndrome that resembles Parkinson׳s disease. Although the pathogenetic basis of this disorder is unclear, several studies indicate that it is mainly associated with oxidative stress and mitochondrial energy failure. Therefore, this study is focused on (1) investigating the oxidative effects of Mn on neuroblastoma cells (SHSY5Y) and (2) elucidating whether a novel thiol antioxidant, N-acetylcysteineamide (NACA), provides any protection against Mn-induced neurotoxicity. Reactive oxygen species (ROS) were highly elevated after the exposure, indicating that mechanisms that induce oxidative stress were involved. Measures of oxidative stress parameters, such as glutathione (GSH), malondialdehyde (MDA), and activities of glutathione reductase (GR) and glutathione peroxidase (GPx) were altered in the Mn-treated groups. Loss of mitochondrial membrane potential, as assessed by flow cytometry and decreased levels of ATP, indicated that cytotoxicity was mediated through mitochondrial dysfunction. However, pretreatment with NACA protected against Mn-induced toxicity by inhibiting lipid peroxidation, scavenging ROS, and preserving intracellular GSH and mitochondrial membrane potential. NACA can potentially be developed into a promising therapeutic option for Mn-induced neurotoxicity. This article is part of a Special Issue entitled SI: Metals in neurodegeneration.
Collapse
|
207
|
Richards RM, Gómez I, Otazo-Sánchez EM, Prieto F, Hernández-Ávila J, Linares G, González CA, Gordillo AJ, Villagómez R. High Mn2+Uptake by a New Polyvinyl Alcohol Derivative: Isotherm Model Analysis. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2014.950278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
208
|
Kim G, Lee HS, Seok Bang J, Kim B, Ko D, Yang M. A current review for biological monitoring of manganese with exposure, susceptibility, and response biomarkers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:229-54. [PMID: 26023759 DOI: 10.1080/10590501.2015.1030530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
People can be easily exposed to manganese (Mn), the twelfth most abundant element, through various exposure routes. However, overexposure to Mn causes manganism, a motor syndrome similar to Parkinson disease, via interference of the several neurotransmitter systems, particularly the dopaminergic system in areas. At cellular levels, Mn preferentially accumulates in mitochondria and increases the generation of reactive oxygen species, which changes expression and activity of manganoproteins. Many studies have provided invaluable insights into the causes, effects, and mechanisms of the Mn-induced neurotoxicity. To regulate Mn exposure, many countries have performed biological monitoring of Mn with three major biomarkers: exposure, susceptibility, and response biomarkers. In this study, we review current statuses of Mn exposure via various exposure routes including food, high susceptible population, effects of genetic polymorphisms of metabolic enzymes or transporters (CYP2D6, PARK9, SLC30A10, etc.), alterations of the Mn-responsive proteins (i.e., glutamine synthetase, Mn-SOD, metallothioneins, and divalent metal trnsporter1), and epigenetic changes due to the Mn exposure. To minimize the effects of Mn exposure, further biological monitoring of Mn should be done with more sensitive and selective biomarkers.
Collapse
Affiliation(s)
- Gyuri Kim
- a Research Center for Cell Fate Control, Department of Toxicology, College of Pharmacy, Sookmyung Women's University , Seoul , Republic of Korea
| | | | | | | | | | | |
Collapse
|
209
|
Baker MG, Simpson CD, Sheppard L, Stover B, Morton J, Cocker J, Seixas N. Variance components of short-term biomarkers of manganese exposure in an inception cohort of welding trainees. J Trace Elem Med Biol 2015; 29:123-9. [PMID: 24916793 PMCID: PMC4241381 DOI: 10.1016/j.jtemb.2014.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 01/18/2023]
Abstract
Various biomarkers of exposure have been explored as a way to quantitatively estimate an internal dose of manganese (Mn) exposure, but given the tight regulation of Mn in the body, inter-individual variability in baseline Mn levels, and variability in timing between exposure and uptake into various biological tissues, identification of a valuable and useful biomarker for Mn exposure has been elusive. Thus, a mixed model estimating variance components using restricted maximum likelihood was used to assess the within- and between-subject variance components in whole blood, plasma, and urine (MnB, MnP, and MnU, respectively) in a group of nine newly-exposed apprentice welders, on whom baseline and subsequent longitudinal samples were taken over a three month period. In MnB, the majority of variance was found to be between subjects (94%), while in MnP and MnU the majority of variance was found to be within subjects (79% and 99%, respectively), even when controlling for timing of sample. While blood seemed to exhibit a homeostatic control of Mn, plasma and urine, with the majority of the variance within subjects, did not. Results presented here demonstrate the importance of repeat measure or longitudinal study designs when assessing biomarkers of Mn, and the spurious associations that could result from cross-sectional analyses.
Collapse
Affiliation(s)
- Marissa G Baker
- Department of Environmental and Occupational Health Sciences, University of Washington, 1959 Pacific St., Seattle, WA 98195, USA.
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, University of Washington, 1959 Pacific St., Seattle, WA 98195, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, 1959 Pacific St., Seattle, WA 98195, USA; Department of Biostatistics, University of Washington, 1705 NE Pacific St., Seattle, WA 98195, USA
| | - Bert Stover
- Department of Environmental and Occupational Health Sciences, University of Washington, 1959 Pacific St., Seattle, WA 98195, USA; Department of Health Services, University of Washington, 1959 Pacific St., Seattle, WA 98195, USA
| | - Jackie Morton
- Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| | - John Cocker
- Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| | - Noah Seixas
- Department of Environmental and Occupational Health Sciences, University of Washington, 1959 Pacific St., Seattle, WA 98195, USA
| |
Collapse
|
210
|
Lopes da Fonseca T, Outeiro TF. ATP13A2 and Alpha-synuclein: a Metal Taste in Autophagy. Exp Neurobiol 2014; 23:314-23. [PMID: 25548531 PMCID: PMC4276802 DOI: 10.5607/en.2014.23.4.314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/15/2023] Open
Abstract
Parkinson's Disease (PD) is a complex and multifactorial disorder of both idiopathic and genetic origin. Thus far, more than 20 genes have been linked to familial forms of PD. Two of these genes encode for ATP13A2 and alpha-synuclein (asyn), proteins that seem to be members of a common network in both physiological and disease conditions. Thus, two different hypotheses have emerged supporting a role of ATP13A2 and asyn in metal homeostasis or in autophagy. Interestingly, an appealing theory might combine these two cellular pathways. Here we review the novel findings in the interaction between these two proteins and debate the exciting roads still ahead.
Collapse
Affiliation(s)
- Tomás Lopes da Fonseca
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37073 Göttingen, Germany. ; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Tiago Fleming Outeiro
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37073 Göttingen, Germany. ; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
211
|
Jena S, Sahu L, Ray DK, Mishra SK, Chand PK. PIXE-based quantification of health-proactive trace elements in genetically transformed roots of a multi-medicinal plant, Sida acuta Burm.f. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
212
|
Bakthavatsalam S, Das Sharma S, Sonawane M, Thirumalai V, Datta A. A zebrafish model of manganism reveals reversible and treatable symptoms that are independent of neurotoxicity. Dis Model Mech 2014; 7:1239-51. [PMID: 25261567 PMCID: PMC4213728 DOI: 10.1242/dmm.016683] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Manganese (manganese ion; referred to as Mn) is essential for neuronal function, yet it is toxic at high concentrations. Environmental and occupational exposure to high concentrations of Mn causes manganism, a well-defined movement disorder in humans, with symptoms resembling Parkinson's disease (PD). However, manganism is distinct from PD and the neural basis of its pathology is poorly understood. To address this issue, we generated a zebrafish model of manganism by incubating larvae in rearing medium containing Mn. We find that Mn-treated zebrafish larvae exhibit specific postural and locomotor defects. Larvae begin to float on their sides, show a curved spine and swim in circles. We discovered that treatment with Mn causes postural defects by interfering with mechanotransduction at the neuromasts. Furthermore, we find that the circling locomotion could be caused by long-duration bursting in the motor neurons, which can lead to long-duration tail bends in the Mn-treated larvae. Mn-treated larvae also exhibited fewer startle movements. Additionally, we show that the intensity of tyrosine hydroxylase immunoreactivity is reversibly reduced after Mn-treatment. This led us to propose that reduced dopamine neuromodulation drives the changes in startle movements. To test this, when we supplied an external source of dopamine to Mn-treated larvae, the larvae exhibited a normal number of startle swims. Taken together, these results indicate that Mn interferes with neuronal function at the sensory, motor and modulatory levels, and open avenues for therapeutically targeted studies on the zebrafish model of manganism.
Collapse
Affiliation(s)
- Subha Bakthavatsalam
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai-400005, India
| | - Shreya Das Sharma
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore-560065, India
| | - Mahendra Sonawane
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai-400005, India
| | - Vatsala Thirumalai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore-560065, India.
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai-400005, India.
| |
Collapse
|
213
|
Aitken R, Finnie J, Muscio L, Whiting S, Connaughton H, Kuczera L, Rothkirch T, De Iuliis G. Potential importance of transition metals in the induction of DNA damage by sperm preparation media. Hum Reprod 2014; 29:2136-47. [DOI: 10.1093/humrep/deu204] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
214
|
Deng Y, Jiao C, Mi C, Xu B, Li Y, Wang F, Liu W, Xu Z. Melatonin inhibits manganese-induced motor dysfunction and neuronal loss in mice: involvement of oxidative stress and dopaminergic neurodegeneration. Mol Neurobiol 2014; 51:68-88. [PMID: 24969583 DOI: 10.1007/s12035-014-8789-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Excessive manganese (Mn) induces oxidative stress and dopaminergic neurodegeneration. However, the relationship between them during Mn neurotoxicity has not been clarified. The purpose of this study was to investigate the probable role of melatonin (MLT) against Mn-induced motor dysfunction and neuronal loss as a result of antagonizing oxidative stress and dopaminergic neurodegeneration. Mice were randomly divided into five groups as follows: control, MnCl2, low MLT + MnCl2, median MLT + MnCl2, and high MLT + MnCl2. Administration of MnCl2 (50 mg/kg) for 2 weeks significantly induced hypokinesis, dopaminergic neurons degeneration and loss, neuronal ultrastructural damage, and apoptosis in the substantia nigra and the striatum. These conditions were caused in part by the overproduction of reactive oxygen species, malondialdehyde accumulation, and dysfunction of the nonenzymatic (GSH) and enzymatic (GSH-Px, superoxide dismutase, quinone oxidoreductase 1, glutathione S-transferase, and glutathione reductase) antioxidative defense systems. Mn-induced neuron degeneration, astrocytes, and microglia activation contribute to the changes of oxidative stress markers. Dopamine (DA) depletion and downregulation of DA transporter and receptors were also found after Mn administration, this might also trigger motor dysfunction and neurons loss. Pretreatment with MLT prevented Mn-induced oxidative stress and dopaminergic neurodegeneration and inhibited the interaction between them. As a result, pretreatment with MLT significantly alleviated Mn-induced motor dysfunction and neuronal loss. In conclusion, Mn treatment resulted in motor dysfunction and neuronal loss, possibly involving an interaction between oxidative stress and dopaminergic neurodegeneration in the substantia nigra and the striatum. Pretreatment with MLT attenuated Mn-induced neurotoxicity by means of its antioxidant properties and promotion of the DA system.
Collapse
Affiliation(s)
- Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, North 2nd Road 92, Heping ward, Shenyang, Liaoning, 110001, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Loréal O, Cavey T, Bardou-Jacquet E, Guggenbuhl P, Ropert M, Brissot P. Iron, hepcidin, and the metal connection. Front Pharmacol 2014; 5:128. [PMID: 24926268 PMCID: PMC4045255 DOI: 10.3389/fphar.2014.00128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/13/2014] [Indexed: 12/20/2022] Open
Abstract
Identification of new players in iron metabolism, such as hepcidin, which regulates ferroportin and divalent metal transporter 1 expression, has improved our knowledge of iron metabolism and iron-related diseases. However, from both experimental data and clinical findings, "iron-related proteins" appear to also be involved in the metabolism of other metals, especially divalent cations. Reports have demonstrated that some metals may affect, directly or indirectly, the expression of proteins involved in iron metabolism. Throughout their lives, individuals are exposed to various metals during personal and/or occupational activities. Therefore, better knowledge of the connections between iron and other metals could improve our understanding of iron-related diseases, especially the variability in phenotypic expression, as well as a variety of diseases in which iron metabolism is secondarily affected. Controlling the metabolism of other metals could represent a promising innovative therapeutic approach.
Collapse
Affiliation(s)
- Olivier Loréal
- INSERM UMR 991, Iron and the Liver Team Rennes, France ; Faculty of Medicine, University of Rennes1 Rennes, France ; CHU Pontchaillou, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital-Rennes Rennes, France
| | - Thibault Cavey
- INSERM UMR 991, Iron and the Liver Team Rennes, France ; Faculty of Medicine, University of Rennes1 Rennes, France ; Biochemistry and Enzymology Laboratory, Centre Hospitalier Universitaire Rennes, France
| | - Edouard Bardou-Jacquet
- INSERM UMR 991, Iron and the Liver Team Rennes, France ; Faculty of Medicine, University of Rennes1 Rennes, France ; CHU Pontchaillou, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital-Rennes Rennes, France
| | - Pascal Guggenbuhl
- INSERM UMR 991, Iron and the Liver Team Rennes, France ; Faculty of Medicine, University of Rennes1 Rennes, France ; Department of Rheumatology, Centre Hospitalier Universitaire Rennes, France
| | - Martine Ropert
- INSERM UMR 991, Iron and the Liver Team Rennes, France ; CHU Pontchaillou, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital-Rennes Rennes, France ; Biochemistry and Enzymology Laboratory, Centre Hospitalier Universitaire Rennes, France
| | - Pierre Brissot
- INSERM UMR 991, Iron and the Liver Team Rennes, France ; Faculty of Medicine, University of Rennes1 Rennes, France ; CHU Pontchaillou, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital-Rennes Rennes, France
| |
Collapse
|
216
|
Upregulation of mitochondrial protease HtrA2/Omi contributes to manganese-induced neuronal apoptosis in rat brain striatum. Neuroscience 2014; 268:169-79. [DOI: 10.1016/j.neuroscience.2014.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 11/22/2022]
|
217
|
Alpha-Synuclein Oligomerization in Manganese-Induced Nerve Cell Injury in Brain Slices: A Role of NO-Mediated S-Nitrosylation of Protein Disulfide Isomerase. Mol Neurobiol 2014; 50:1098-110. [DOI: 10.1007/s12035-014-8711-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/09/2014] [Indexed: 12/14/2022]
|
218
|
Iweala E, Olugbuyiro J, Durodola B, Fubara-Man D, Okoli A. Metal Contamination Of Foods and Drinks Consumed in Ota, Nigeria. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/rjet.2014.92.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
219
|
Yang X, Bao Y, Fu H, Li L, Ren T, Yu X. Selenium protects neonates against neurotoxicity from prenatal exposure to manganese. PLoS One 2014; 9:e86611. [PMID: 24466170 PMCID: PMC3899298 DOI: 10.1371/journal.pone.0086611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/13/2013] [Indexed: 12/11/2022] Open
Abstract
Manganese (Mn) exposure can affect brain development. Whether Selenium (Se) can protect neonates against neurotoxicity from Mn exposure remains unclear. We investigated this issue in 933 mother-newborn pairs in Shanghai, China, from 2008 through 2009. Umbilical cord serum concentrations of Mn and Se were measured and Neonatal Behavioral Neurological Assessment (NBNA) tests were conducted. The scores <37 were defined as the low NBNA. The median concentrations of cord serum Mn and Se were 4.0 µg/L and 63.1 µg/L, respectively. After adjusting for potential confounders, the interaction between Se and Mn was observed. Cord blood Mn levels had different effects on NBNA scores stratified by different cord blood Se levels. With Se
Collapse
Affiliation(s)
- Xin Yang
- MOE-Shanghai Key Lab of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YiXiao Bao
- Department of Pediatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - HuanHuan Fu
- MOE-Shanghai Key Lab of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - LuanLuan Li
- MOE-Shanghai Key Lab of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - TianHong Ren
- MOE-Shanghai Key Lab of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XiaoDan Yu
- MOE-Shanghai Key Lab of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
220
|
Socha AL, Guerinot ML. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:106. [PMID: 24744764 PMCID: PMC3978347 DOI: 10.3389/fpls.2014.00106] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis.
Collapse
Affiliation(s)
- Amanda L. Socha
- *Correspondence: Amanda L. Socha, Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03766, USA e-mail:
| | | |
Collapse
|
221
|
Carmona A, Roudeau S, Perrin L, Veronesi G, Ortega R. Environmental manganese compounds accumulate as Mn(ii) within the Golgi apparatus of dopamine cells: relationship between speciation, subcellular distribution, and cytotoxicity. Metallomics 2014; 6:822-32. [DOI: 10.1039/c4mt00012a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
222
|
Wollenhaupt SGN, Soares AT, Salgueiro WG, Noremberg S, Reis G, Viana C, Gubert P, Soares FA, Affeldt RF, Lüdtke DS, Santos FW, Denardin CC, Aschner M, Avila DS. Seleno- and telluro-xylofuranosides attenuate Mn-induced toxicity in C. elegans via the DAF-16/FOXO pathway. Food Chem Toxicol 2013; 64:192-9. [PMID: 24296137 DOI: 10.1016/j.fct.2013.11.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/04/2013] [Accepted: 11/22/2013] [Indexed: 01/12/2023]
Abstract
Organochalcogens are promising pharmacological agents that possess significant biological activities. Nevertheless, because of the complexity of mammalian models, it has been difficult to determine the molecular pathways and specific proteins that are modulated in response to treatments with these compounds. The nematode worm Caenorhabditis elegans is an alternative experimental model that affords easy genetic manipulations, green fluorescent protein tagging and in vivo live analysis of toxicity. Abundant evidence points to oxidative stress in mediating manganese (Mn)-induced toxicity. In this study we challenged worms with Mn, and investigated the efficacy of inedited selenium- and tellurium-xylofuranosides in reversing and/or protecting the worms from Mn-induced toxicity. In addition, we investigated their putative mechanism of action. First, we determined the lethal dose 50% (LD50) and the effects of the xylofuranosides on various toxic parameters. This was followed by studies on the ability of xylofuranosides to afford protection against Mn-induced toxicity. Both Se- and Te-xylofuranosides increased the expression of superoxide dismutase (SOD-3). Furthermore, we observed that the xylofuranosides induced nuclear translocation of the transcription factor DAF-16/FOXO, which in the worm is known to regulate stress responsiveness, aging and metabolism. These findings suggest that xylofuranosides attenuate toxicity Mn-induced, by regulating the DAF-16/FOXO signaling pathway.
Collapse
Affiliation(s)
- Suzi G N Wollenhaupt
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Ana Thalita Soares
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Willian G Salgueiro
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Simone Noremberg
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Gabriel Reis
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Carine Viana
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Priscila Gubert
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Felix A Soares
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Ricardo F Affeldt
- Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Francielli W Santos
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Cristiane C Denardin
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Michael Aschner
- Division of Clinical Pharmacology and Pediatric Toxicology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Daiana S Avila
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil.
| |
Collapse
|
223
|
In vitro manganese exposure disrupts MAPK signaling pathways in striatal and hippocampal slices from immature rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:769295. [PMID: 24324973 PMCID: PMC3845707 DOI: 10.1155/2013/769295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms mediating manganese (Mn)-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs) and tyrosine hydroxylase (TH) could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old). The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl₂; 10-1,000 μM) caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK) 1/2, as well as c-Jun N-terminal kinase (JNK) 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3) in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain.
Collapse
|
224
|
Martinez-Finley EJ, Caito S, Slaughter JC, Aschner M. The Role of skn-1 in methylmercury-induced latent dopaminergic neurodegeneration. Neurochem Res 2013; 38:2650-60. [PMID: 24194349 DOI: 10.1007/s11064-013-1183-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/09/2013] [Accepted: 10/17/2013] [Indexed: 02/07/2023]
Abstract
Mercury (Hg) is a persistent environmental bioaccumulative metal, with developmental exposure to methylmercury (MeHg) resulting in long-term health effects. We examined the impact of early-life exposure to MeHg and knockdown of skn-1 on dopaminergic (DAergic) neurodegeneration in the nematode Caenorhabditis elegans. SKN-1, a the major stress-activated cytoprotective transcription factors, promotes the transcription of enzymes that scavenge free radicals, synthesizes glutathione and catalyzes reactions that increase xenobiotic excretion. Deletions or mutations in this gene suppress stress resistance. Thus, we hypothesized that the extent of MeHg's toxicity is dependent on intact skn-1 response; therefore skn-1 knockout (KO) worms would show heightened sensitivity to MeHg-induced toxicity compared to wildtype worms. In this study we identified the impact of early-life MeHg exposure on Hg content, stress reactivity and DAergic neurodegeneration in wildtype, and skn-1KO C. elegans. Hg content, measured by Inductively Coupled Plasma Mass Spectrometry, showed no strain-dependent differences. Reactive oxygen species generation was dramatically increased in skn-1KO compared to wildtype worms. Structural integrity of DAergic neurons was microscopically assessed by visualization of fluorescently-labeled neurons, and revealed loss of neurons in skn-1KO and MeHg exposed worms compared to wildtype controls. Dopamine levels detected by High-performance liquid chromatography, were decreased in response to MeHg exposure and decreased in skn-1KO worms, and functional behavioral assays showed similar findings. Combined, these studies suggest that knockdown of skn-1 in the nematode increases DAergic sensitivity to MeHg exposure following a period of latency.
Collapse
Affiliation(s)
- Ebany J Martinez-Finley
- Division of Pediatric Toxicology and Clinical Pharmacology, Vanderbilt University Medical Center, 11425 MRB IV, 2215-B Garland Ave., Nashville, TN, 37232-0414, USA
| | | | | | | |
Collapse
|
225
|
Affiliation(s)
- Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Henry Jay Forman
- University of California, Merced, Merced, California 95343, USA; Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
226
|
Abstract
Manganese (Mn) is an essential trace metal that is pivotal for normal cell function and metabolism. Its homeostasis is tightly regulated; however, the mechanisms of Mn homeostasis are poorly characterized. While a number of proteins such as the divalent metal transporter 1, the transferrin/transferrin receptor complex, the ZIP family metal transporters ZIP-8 and ZIP-14, the secretory pathway calcium ATPases SPCA1 and SPCA2, ATP13A2, and ferroportin have been suggested to play a role in Mn transport, the degree that each of them contributes to Mn homeostasis has still to be determined. The recent discovery of SLC30A10 as a crucial Mn transporter in humans has shed further light on our understanding of Mn transport across the cell. Although essential, Mn is toxic at high concentrations. Mn neurotoxicity has been attributed to impaired dopaminergic (DAergic), glutamatergic and GABAergic transmission, mitochondrial dysfunction, oxidative stress, and neuroinflammation. As a result of preferential accumulation of Mn in the DAergic cells of the basal ganglia, particularly the globus pallidus, Mn toxicity causes extrapyramidal motor dysfunction. Firstly described as "manganism" in miners during the nineteenth century, this movement disorder resembles Parkinson's disease characterized by hypokinesia and postural instability. To date, a variety of acquired causes of brain Mn accumulation can be distinguished from an autosomal recessively inherited disorder of Mn metabolism caused by mutations in the SLC30A10 gene. Both, acquired and inherited hypermanganesemia, lead to Mn deposition in the basal ganglia associated with pathognomonic magnetic resonance imaging appearances of hyperintense basal ganglia on T1-weighted images. Current treatment strategies for Mn toxicity combine chelation therapy to reduce the body Mn load and iron (Fe) supplementation to reduce Mn binding to proteins that interact with both Mn and Fe. This chapter summarizes our current understanding of Mn homeostasis and the mechanisms of Mn toxicity and highlights the clinical disorders associated with Mn neurotoxicity.
Collapse
Affiliation(s)
- Karin Tuschl
- Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London, United Kingdom.
| | | | | |
Collapse
|