201
|
Sequential emergence of colistin and rifampicin resistance in an OXA-72- producing outbreak strain of Acinetobacter baumannii. Int J Antimicrob Agents 2019; 53:669-673. [DOI: 10.1016/j.ijantimicag.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 11/24/2022]
|
202
|
Development and Multicentric Validation of a Lateral Flow Immunoassay for Rapid Detection of MCR-1-Producing Enterobacteriaceae. J Clin Microbiol 2019; 57:JCM.01454-18. [PMID: 30842227 PMCID: PMC6498016 DOI: 10.1128/jcm.01454-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
Colistin has become a last-resort antibiotic for the treatment of infections caused by highly drug-resistant Gram-negative bacteria. Moreover, it has been widely used in the livestock sector. Colistin has become a last-resort antibiotic for the treatment of infections caused by highly drug-resistant Gram-negative bacteria. Moreover, it has been widely used in the livestock sector. As a consequence, colistin resistance is emerging worldwide. Among the colistin resistance mechanisms, the spread of the plasmid-encoded colistin resistance gene mcr-1 (mostly in Escherichia coli) is of particular concern due to its increased transferability compared to that of chromosome-encoded resistance. The early detection of MCR-1-producing bacteria is essential to prevent further spread and provide appropriate antimicrobial therapy. Lateral flow immunoassays (LFIAs) were manufactured with selected monoclonal antibodies. A collection of 177 human and 121 animal enterobacterial isolates was tested in a multicentric study. One bacterial colony grown on agar plates was suspended in extraction buffer and dispensed on the cassette. Migration was allowed for 15 min, and the results were monitored by the appearance of a specific band. The positive results showed a pink line resulting in an unambiguous interpretation. All MCR-1-producing isolates were found to be positive by the LFIA, and no false-negative results were observed. Three out of four MCR-2-producing isolates were also found to be positive. Our test does not detect MCR-3-, MCR-4-, or MCR-5-producing isolates. LFIA allows the detection of MCR-1 with 100% sensitivity and 98% specificity. This test is fast, sensitive, specific, easy to use, and cost-effective and can therefore be implemented in any microbiology laboratory worldwide. LFIA is a major tool for the rapid detection and monitoring of MCR-1 producers in humans and animals.
Collapse
|
203
|
Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, Yousefi M, Asgharzadeh M, Yousefi B, Kafil HS. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist 2019; 12:965-975. [PMID: 31190901 PMCID: PMC6519339 DOI: 10.2147/idr.s199844] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Abstract
Colistin is an effective antibiotic for treatment of most multidrug-resistant Gram-negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-negative bacteria followed by an increase in resistance among Gram-negative bacteria. Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics. Some bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacteriaceae members, such as Escherichia coli, Salmonella spp., and Klebsiella spp. have an acquired resistance against colistin. However, other bacteria, including Serratia spp., Proteus spp. and Burkholderia spp. are naturally resistant to this antibiotic. In addition, clinicians should be alert to the possibility of colistin resistance among multidrug-resistant bacteria and development through mutation or adaptation mechanisms. Rapidly emerging bacterial resistance has made it harder for us to rely completely on the discovery of new antibiotics; therefore, we need to have logical approaches to use old antibiotics, such as colistin. This review presents current knowledge about the different mechanisms of colistin resistance.
Collapse
Affiliation(s)
- Zahra Aghapour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Suhad Saad Mahmood
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Asghar Tanomand
- Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
204
|
Sousa A, Makino H, Bruno V, Candido S, Nogueira B, Menezes I, Nakazato L, Dutra V. Perfil de resistência antimicrobiana de Klebsiella pneumoniae isoladas de animais domésticos e silvestres. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-10599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RESUMO Klebsiella pneumoniae é um patógeno oportunista, responsável por diversos tipos de infecções nosocomiais, e é considerado um microrganismo multirresistente. Dados na literatura que forneçam informações a respeito da resistência desse microrganismo a antimicrobianos em amostras de animais são escassos. Dessa forma, o objetivo deste trabalho foi avaliar o perfil e o seu aumento das resistências a antimicrobianos dentro da medicina veterinária. Um total de 67 isolados de K. pneumoniae, provenientes de diferentes sítios de isolamento de animais domésticos (39/67) e silvestres (28/67), foi confirmado por sequenciamento do gene 16S rRNA. O maior percentual de isolamento de K. pneumoniae foi de amostras de urina, com 16% (11/67), fezes, com 15% (10/67), e pulmão, com 13,5% (09/67). No perfil de resistência, foram testadas 11 categorias de antibióticos, sendo a maior taxa de resistência ao metronidazol 97% (65/67), à ampicilina 94% (63/67), à amoxicilina 93% (62/67), às sulfonamidas 93% (62/67), à colistina 93% (62/67) e à nitrofurantoína 88% (59/67). Aqueles que apresentaram menor taxa de resistência foram: meropenem 3% (2/67), imipenem 6% (4/67) e amicacina 16% (11/67). Todos os isolados foram considerados bactérias multirresistentes (MRD), com o índice de resistência múltipla aos antibióticos (IRMA) variando de 0,15 a 0,85 e com 60 tipos de padrões de resistência. O resultado deste estudo reforça que os animais são reservatórios de K. pneumoniae multirresistentes.
Collapse
Affiliation(s)
| | - H. Makino
- Universidade Federal de Mato Grosso, Brazil
| | | | | | | | | | | | | |
Collapse
|
205
|
Antimicrobial Susceptibility Testing for Polymyxins: Challenges, Issues, and Recommendations. J Clin Microbiol 2019; 57:JCM.01390-18. [PMID: 30541939 DOI: 10.1128/jcm.01390-18] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polymyxins, including polymyxin B and polymyxin E (colistin), are now increasingly being used worldwide to treat patients with multidrug-resistant (MDR) Gram-negative bacterial infections. This necessitates that laboratories employ an accurate and reliable method for the routine performance of polymyxin susceptibility testing. A number of reasons have accounted for the difficulties with susceptibility testing for the polymyxins, including their multicomponent composition, poor diffusion in the agar medium, adsorption to microtiter plates, the lack of a reliable susceptibility test, the lack of a specific breakpoint from professional organizations, the synergistic effect of polysorbate 80, and the development of heteroresistance. This minireview discusses such problems that impact the results of currently available susceptibility testing methods. We also provide emerging concepts on mechanisms of polymyxin resistance, including chromosomally and plasmid-mediated mcr-related resistance. Broad-range investigations on such critical issues in relation to polymyxins can be beneficial for the implementation of effective treatment against MDR Gram-negative bacterial infections.
Collapse
|
206
|
Bourrel AS, Poirel L, Royer G, Darty M, Vuillemin X, Kieffer N, Clermont O, Denamur E, Nordmann P, Decousser JW, LAFAURIE M, BERCOT B, WALEWSKI V, LESCAT M, CARBONNELLE E, OUSSER F, IDRI N, RICARD JD, LANDRAUD L, LE DORZE M, JACQUIER H, CAMBAU E, LEPEULE R, GOMART C. Colistin resistance in Parisian inpatient faecal Escherichia coli as the result of two distinct evolutionary pathways. J Antimicrob Chemother 2019; 74:1521-1530. [DOI: 10.1093/jac/dkz090] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 01/04/2023] Open
Affiliation(s)
- Anne Sophie Bourrel
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Laurent Poirel
- Laboratoire Européen Associé INSERM, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- National Reference Centre for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Guilhem Royer
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
- IAME, UMR1137 INSERM, Université Paris Diderot, Université Paris Nord, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Paris, France
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Mélanie Darty
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Xavier Vuillemin
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Nicolas Kieffer
- Laboratoire Européen Associé INSERM, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- National Reference Centre for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Olivier Clermont
- IAME, UMR1137 INSERM, Université Paris Diderot, Université Paris Nord, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Paris, France
| | - Erick Denamur
- IAME, UMR1137 INSERM, Université Paris Diderot, Université Paris Nord, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Patrice Nordmann
- Laboratoire Européen Associé INSERM, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- National Reference Centre for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Jean-Winoc Decousser
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
- IAME, UMR1137 INSERM, Université Paris Diderot, Université Paris Nord, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Poole K, Hay T, Gilmour C, Fruci M. The aminoglycoside resistance-promoting AmgRS envelope stress-responsive two-component system in Pseudomonas aeruginosa is zinc-activated and protects cells from zinc-promoted membrane damage. MICROBIOLOGY-SGM 2019; 165:563-571. [PMID: 30835196 DOI: 10.1099/mic.0.000787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exposure of wild-type (WT) Pseudomonas aeruginosa PAO1 to ZnCl2 (Zn) yielded a concentration-dependent increase in depolarization of the cytoplasmic membrane (CM), an indication that this metal is membrane-damaging. Consistent with this, Zn activated the AmgRS envelope stress-responsive two-component system (TCS) that was previously shown to be activated by and to protect P. aeruginosa from the membrane-damaging effects of aminoglycoside (AG) antibiotics. A mutant lacking amgR showed enhanced Zn-promoted CM perturbation and was Zn-sensitive, an indication that the TCS protected cells from the CM-damaging effects of this metal. In agreement with this, a mutant carrying an AmgRS-activating amgS mutation was less susceptible to Zn-promoted CM perturbation and more tolerant of elevated levels of Zn than WT. AG activation of AmgRS is known to drive expression of the AG resistance-promoting mexXY multidrug efflux operon, and while Zn similarly induced mexXY expression this was independent of AmgRS and reliant on a second TCS implicated in mexXY regulation, ParRS. MexXY did not, however, contribute to Zn resistance or protection from Zn-promoted CM damage. Despite its activation of AmgRS and induction of mexXY, Zn had a minimal impact on the AG resistance of WT P. aeruginosa although, given that Zn-tolerant AmgRS-activated amgS mutant strains are AG resistant, there is still the prospect of this metal promoting AG resistance development in this organism.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Thomas Hay
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Christie Gilmour
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Michael Fruci
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada.,Present address: London Research and Development Centre, Agriculture and Agri-Food, London, Ontario, Canada
| |
Collapse
|
208
|
Jousset AB, Bernabeu S, Bonnin RA, Creton E, Cotellon G, Sauvadet A, Naas T, Dortet L. Development and validation of a multiplex polymerase chain reaction assay for detection of the five families of plasmid-encoded colistin resistance. Int J Antimicrob Agents 2019; 53:302-309. [DOI: 10.1016/j.ijantimicag.2018.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
|
209
|
Investigation of Novel pmrB and eptA Mutations in Isogenic Acinetobacter baumannii Isolates Associated with Colistin Resistance and Increased Virulence In Vivo. Antimicrob Agents Chemother 2019; 63:AAC.01586-18. [PMID: 30617096 DOI: 10.1128/aac.01586-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Colistin resistance in Acinetobacter baumannii is of great concern and is a threat to human health. In this study, we investigate the mechanisms of colistin resistance in four isogenic pairs of A. baumannii isolates displaying an increase in colistin MICs. A mutation in pmrB was detected in each colistin-resistant isolate, three of which were novel (A28V, I232T, and ΔL9-G12). Increased expression of pmrC was shown by semi-quantitative reverse transcription-PCR (qRT-PCR) for three colistin-resistant isolates, and the addition of phosphoethanolamine (PEtN) to lipid A by PmrC was revealed by mass spectrometry. Interestingly, PEtN addition was also observed in some colistin-susceptible isolates, indicating that this resistance mechanism might be strain specific and that other factors could contribute to colistin resistance. Furthermore, the introduction of pmrAB carrying the short amino acid deletion ΔL9-G12 into a pmrAB knockout strain resulted in increased pmrC expression and lipid A modification, but colistin MICs remained unchanged, further supporting the strain specificity of this colistin resistance mechanism. Of note, a mutation in the pmrC homologue eptA and a point mutation in ISAba1 upstream of eptA were associated with colistin resistance and increased eptA expression, which is a hitherto undescribed resistance mechanism. Moreover, no cost of fitness was observed for colistin-resistant isolates, while the virulence of these isolates was increased in a Galleria mellonella infection model. Although the mutations in pmrB were associated with colistin resistance, PEtN addition appears not to be the sole factor leading to colistin resistance, indicating that the mechanism of colistin resistance is far more complex than previously suspected and is potentially strain specific.
Collapse
|
210
|
Klein K, Sonnabend MS, Frank L, Leibiger K, Franz-Wachtel M, Macek B, Trunk T, Leo JC, Autenrieth IB, Schütz M, Bohn E. Deprivation of the Periplasmic Chaperone SurA Reduces Virulence and Restores Antibiotic Susceptibility of Multidrug-Resistant Pseudomonas aeruginosa. Front Microbiol 2019; 10:100. [PMID: 30846971 PMCID: PMC6394205 DOI: 10.3389/fmicb.2019.00100] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is one of the main causative agents of nosocomial infections and the spread of multidrug-resistant strains is rising. Therefore, novel strategies for therapy are urgently required. The outer membrane composition of Gram-negative pathogens and especially of Pa restricts the efficacy of antibiotic entry into the cell and determines virulence. For efficient outer membrane protein biogenesis, the β-barrel assembly machinery (BAM) complex in the outer membrane and periplasmic chaperones like Skp and SurA are crucial. Previous studies indicated that the importance of individual proteins involved in outer membrane protein biogenesis may vary between different Gram-negative species. In addition, since multidrug-resistant Pa strains pose a serious global threat, the interference with both virulence and antibiotic resistance by disturbing outer membrane protein biogenesis might be a new strategy to cope with this challenge. Therefore, deletion mutants of the non-essential BAM complex components bamB and bamC, of the skp homolog hlpA as well as a conditional mutant of surA were investigated. The most profound effects for both traits were associated with reduced levels of SurA, characterized by increased membrane permeability, enhanced sensitivity to antibiotic treatment and attenuation of virulence in a Galleria mellonella infection model. Strikingly, the depletion of SurA in a multidrug-resistant clinical bloodstream isolate re-sensitized the strain to antibiotic treatment. From our data we conclude that SurA of Pa serves as a promising target for developing a drug that shows antiinfective activity and re-sensitizes multidrug-resistant strains to antibiotics.
Collapse
Affiliation(s)
- Kristina Klein
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Michael S. Sonnabend
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Lisa Frank
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Karolin Leibiger
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, Universität Tübingen, Tübingen, Germany
| | - Thomas Trunk
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C. Leo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ingo B. Autenrieth
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Monika Schütz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Erwin Bohn
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
211
|
Tyrrell JM, Aboklaish AF, Walsh TR, Vaara T, Vaara M. The polymyxin derivative NAB739 is synergistic with several antibiotics against polymyxin-resistant strains of Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii. Peptides 2019; 112:149-153. [PMID: 30586602 DOI: 10.1016/j.peptides.2018.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
The antibiotic crisis has reinstated polymyxins, once abandoned because of their toxicity. Now, preclinical studies have revealed better tolerated and more effective derivatives of polymyxins such as NAB739. Simultaneously, polymyxin-resistant (PMR) strains such as the mcr-1 strains have received lots of justified publicity, even though they are still very rare. Here we show that NAB739 sensitizes the PMR strains to rifampin, a classic "anti-Gram-positive" antibiotic excluded by the intact outer membrane (OM) permeability barrier, as well as to retapamulin, the surrogate of lefamulin, an antibiotic under development against Gram-positive bacteria. Polymyxin B was used as a comparator. The combination of NAB739 and rifampin was synergistic against ten out of eleven PMR strains of Escherichia coli (Fractional Synergy Indices, FICs, 0.14-0.19) and that of NAB739 and retapamulin against all the tested eleven strains (FICs 0.19-0.25). Against PMR Klebsiella pneumoniae (n = 7), the FICs were 0.13-0.27 for NAB739 + rifampin and 0.14-0.28 for NAB739+retapamulin. Against Acinetobacter baumannii (n = 2), the combination of NAB739 and rifampin had the FIC of 0.09-0.19. Furthermore, NAB739 and meropenem were synergistic (FICs 0.25-0.50) against four out of five PMR strains that were simultaneously resistant to meropenem.
Collapse
Affiliation(s)
- Jonathan M Tyrrell
- Department of Medical Microbiology and Infectious Disease, Cardiff University Medical School, Cardiff, Wales, United Kingdom
| | - Ali F Aboklaish
- Department of Medical Microbiology and Infectious Disease, Cardiff University Medical School, Cardiff, Wales, United Kingdom
| | - Timothy R Walsh
- Department of Medical Microbiology and Infectious Disease, Cardiff University Medical School, Cardiff, Wales, United Kingdom
| | - Timo Vaara
- Northern Antibiotics Ltd, FI-02150, Espoo, Finland
| | - Martti Vaara
- Northern Antibiotics Ltd, FI-02150, Espoo, Finland; Department of Bacteriology and Immunology, Helsinki University Medical School, FI-00014, Helsinki, Finland.
| |
Collapse
|
212
|
Freire MP, de Oliveira Garcia D, Cury AP, Francisco GR, Dos Santos NF, Spadão F, Bueno MFC, Camargo CH, de Paula FJ, Rossi F, Nahas WC, David-Neto E, Pierrotti LC. The role of therapy with aminoglycoside in the outcomes of kidney transplant recipients infected with polymyxin- and carbapenem-resistant Enterobacteriaceae. Eur J Clin Microbiol Infect Dis 2019; 38:755-765. [PMID: 30680569 DOI: 10.1007/s10096-019-03468-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/02/2019] [Indexed: 01/09/2023]
Abstract
Kidney transplant recipients are at risk for infections due to carbapenem-resistant Enterobacteriaceae (CRE). Polymyxin-resistant CRE (PR-CRE) infections are especially difficult to treat. The aim of this study was to characterize PR-CRE infections among kidney transplant recipients and identify risk factors for treatment failure. This retrospective cohort study involved all kidney transplant recipients with PR-CRE infection between 2013 and 2017 at our center. Minimal inhibitory concentrations for polymyxin B were determined by broth microdilution. Carbapenem-resistant genes (blaKPC, blaNDM, and blaOXA-48), aminoglycoside-resistance genes, and polymyxin-resistant gene mcr-1 were identified by polymerase chain reaction. All but one of the 47PR-CRE infections identified were due to Klebsiella pneumoniae. The most common type of infection (in 54.3%) was urinary tract infection (UTI). Monotherapy was used in 10 cases. Combined treatment regimens included double-carbapenem therapy in 19 cases, oral fosfomycin in 19, and amikacin in 13. Treatment failure occurred in 21 cases (45.7%). Clinical success was achieved 78.9% of patients who used aminoglycosides versus 37.0% of those who not used this drug (p = 0.007). Multivariate analysis showed diabetes mellitus to be a risk factor for treatment failure; amikacin use and UTI were found to be protective. Nine strains were RmtB producers. Although aminoglycosides constitute an important therapeutic option for PR-CRE infection, the emergence of aminoglycoside resistance could have a major impact on the management of CRE infection.
Collapse
Affiliation(s)
- Maristela P Freire
- Working Committee for Hospital Epidemiology and Infection Control, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil.
| | | | - Ana Paula Cury
- Microbiology Section, Central Laboratory, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil
| | | | | | - Fernanda Spadão
- Working Committee for Hospital Epidemiology and Infection Control, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil
| | | | | | - Flavio J de Paula
- Renal Transplantation Unit, Department of Urology, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil
| | - Flavia Rossi
- Microbiology Section, Central Laboratory, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil
| | - Willian C Nahas
- Renal Transplantation Unit, Department of Urology, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil
| | - Elias David-Neto
- Renal Transplantation Unit, Department of Urology, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil
| | - Ligia C Pierrotti
- Department of Infectious Diseases, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil
| |
Collapse
|
213
|
Shinohara DR, Menegucci TC, Fedrigo NH, Migliorini LB, Carrara-Marroni FE, Maria Dos Anjos M, Cardoso CL, Nishiyama SAB, Tognim MCB. Synergistic activity of polymyxin B combined with vancomycin against carbapenem-resistant and polymyxin-resistant Acinetobacter baumannii: first in vitro study. J Med Microbiol 2019; 68:309-315. [PMID: 30663954 DOI: 10.1099/jmm.0.000920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The effect of a combination of polymyxin B (PMB) and vancomycin (VAN) was assessed against six Acinetobacter baumannii clinical isolates belonging to six different clusters (three PMB-susceptible and three PMB-resistant). METHODOLOGY The synergistic effect of the PMB-VAN combination was determined with the checkerboard, time-kill, disk-diffusion and M.I.C.Evaluator assays. PMB-resistance was investigated with mcr-1 gene amplification and a mutant frequency assay. RESULTS In the checkerboard assay, all PMB-resistant isolates showed a synergistic effect. The time-kill assay demonstrated that the PMB-VAN combination had a bactericidal effect at 24 h against isolates with a high mutant rate for PMB, suggesting that this combination may block the hypermutation of some isolates. No antagonism was detected. All PMB-resistant isolates also showed synergism in the disk-diffusion test, and a significant decrease in VAN MICs in the M.I.C.Evaluator assay. CONCLUSION Our findings indicate that the PMB-VAN combination has a synergistic effect on A. baumannii, especially against PMB-resistant isolates.
Collapse
Affiliation(s)
| | | | | | | | | | - Márcia Maria Dos Anjos
- 1 Universidade Estadual de Maringá, Avenida Colombo 5790, CEP 87.020-900 Maringá, Paraná, Brazil
| | - Celso Luiz Cardoso
- 1 Universidade Estadual de Maringá, Avenida Colombo 5790, CEP 87.020-900 Maringá, Paraná, Brazil
| | | | | |
Collapse
|
214
|
Polymyxin Derivatives that Sensitize Gram-Negative Bacteria to Other Antibiotics. Molecules 2019; 24:molecules24020249. [PMID: 30641878 PMCID: PMC6359160 DOI: 10.3390/molecules24020249] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 01/11/2023] Open
Abstract
Polymyxins (polymyxin B (PMB) and polymyxin E (colistin)) are cyclic lipodecapeptide antibiotics, highly basic due to five free amino groups, and rapidly bactericidal against Gram-negative bacteria, such as the majority of Enterobacteriaceae as well as Acinetobacter baumannii and Pseudomonas aeruginosa. Their clinical use was abandoned in the 1960s because of nephrotoxicity and because better-tolerated drugs belonging to other antibiotic classes were introduced. Now, due to the global dissemination of extremely-drug resistant Gram-negative bacterial strains, polymyxins have resurged as the last-line drugs against those strains. Novel derivatives that are less toxic and/or more effective at tolerable doses are currently under preclinical development and their properties have recently been described in several extensive reviews. Other derivatives lack any direct bactericidal activity but damage the outermost permeability barrier, the outer membrane, of the target bacteria and make it more permeable to many other antibiotics. This review describes the properties of three thus far best-characterized “permeabilizer” derivatives, i.e., the classic permeabilizer polymyxin B nonapeptide (PMBN), NAB7061, and SPR741/NAB741, a compound that recently successfully passed the clinical phase 1. Also, a few other permeabilizer compounds are brought up.
Collapse
|
215
|
Brkić S, Božić D, Ćirković I. Polymyxins: Antibacterial activity, resistance mechanisms and epidemiology of plasmid mediated resistance. MEDICINSKI PODMLADAK 2019. [DOI: 10.5937/mp70-19934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
216
|
Moffatt JH, Harper M, Boyce JD. Mechanisms of Polymyxin Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:55-71. [PMID: 31364071 DOI: 10.1007/978-3-030-16373-0_5] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymyxin antibiotics are increasingly being used as last-line therapeutic options against a number of multidrug resistant bacteria. These antibiotics show strong bactericidal activity against a range of Gram-negative bacteria, but with the increased use of these antibiotics resistant strains are emerging at an alarming rate. Furthermore, some Gram-negative species, such as Neisseria meningitidis, Proteus mirabilis and Burkholderia spp., are intrinsically resistant to the action of polymyxins. Most identified polymyxin resistance mechanisms in Gram-negative bacteria involve changes to the lipopolysaccharide (LPS) structure, as polymyxins initially interact with the negatively charged lipid A component of LPS. The controlled addition of positively charged residues such as 4-amino-L-arabinose, phosphoethanolamine and/or galactosamine to LPS results in a reduced negative charge on the bacterial surface and therefore reduced interaction between the polymyxin and the LPS. Polymyxin resistant species produce LPS that intrinsically contains one or more of these additions. While the genes necessary for most of these additions are chromosomally encoded, plasmid-borne phosphoethanolamine transferases (mcr-1 to mcr-8) have recently been identified and these plasmids threaten to increase the rate of dissemination of clinically relevant colistin resistance. Uniquely, Acinetobacter baumannii can also become highly resistant to polymyxins via spontaneous mutations in the lipid A biosynthesis genes lpxA, lpxC or lpxD such that they produce no LPS or lipid A. A range of other non-LPS-dependent polymyxin resistance mechanisms has also been identified in bacteria, but these generally result in only low levels of resistance. These include increased anionic capsular polysaccharide production in Klebsiella pneumoniae, expression of efflux systems such as MtrCDE in N. meningitidis, and altered expression of outer membrane proteins in a small number of species.
Collapse
Affiliation(s)
- Jennifer H Moffatt
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia
| | - Marina Harper
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia
| | - John D Boyce
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia. .,Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia.
| |
Collapse
|
217
|
Larrouy-Maumus G. Lipids as Biomarkers of Cancer and Bacterial Infections. Curr Med Chem 2019; 26:1924-1932. [PMID: 30182838 DOI: 10.2174/0929867325666180904120029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
Lipids are ubiquitous molecules, known to play important roles in various cellular processes. Alterations to the lipidome can therefore be used as a read-out of the signs of disease, highlighting the importance to consider lipids as biomarkers in addition of nucleic acid and proteins. Lipids are among the primary structural and functional constituents of biological tissues, especially cell membranes. Along with membrane formation, lipids play also a crucial role in cell signalling, inflammation and energy storage. It was shown recently that lipid metabolism disorders play an important role in carcinogenesis and development. As well, the role of lipids in disease is particularly relevant for bacterial infections, during which several lipid bacterial virulence factors are recognized by the human innate immune response, such as lipopolysaccharide in Gram-negative bacteria, lipoteichoic acid in Gram-positive bacteria, and lipoglycans in mycobacteria. Compared to nucleic acids and proteins, a complete analysis of the lipidome, which is the comprehensive characterization of different lipid families, is usually very challenging due to the heterogeneity of lipid classes and their intrinsic physicoproperties caused by variations in the constituents of each class. Understanding the chemical diversity of lipids is therefore crucial to understanding their biological relevance and, as a consequence, their use as potential biomarkers for non-infectious and infectious diseases. This mini-review exposes the current knowledge and limitations of the use of lipids as biomarkers of the top global killers which are cancer and bacterial infections.
Collapse
Affiliation(s)
- Gerald Larrouy-Maumus
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
218
|
Zhao Y, Meng Q, Lai Y, Wang L, Zhou D, Dou C, Gu Y, Nie C, Wei Y, Cheng W. Structural and mechanistic insights into polymyxin resistance mediated by EptC originating from Escherichia coli. FEBS J 2018; 286:750-764. [PMID: 30537137 DOI: 10.1111/febs.14719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 02/05/2023]
Abstract
Gram-negative bacteria defend against the toxicity of polymyxins by modifying their outer membrane lipopolysaccharide (LPS). This modification mainly occurs through the addition of cationic molecules such as phosphoethanolamine (PEA). EcEptC is a PEA transferase from Escherichia coli (E. coli). However, unlike its homologs CjEptC (Campylobacter jejuni) and MCR-1, EcEptC is unable to mediate polymyxin resistance when overexpressed in E. coli. Here, we report crystal structures of the C-terminal putative catalytic domain (EcEptCΔN, 205-577 aa) of EcEptC in apo and Zn2+ -bound states at 2.10 and 2.60 Å, respectively. EcEptCΔN is arranged into an α-β-α fold and equipped with the zinc ion in a conserved mode. Coupled with isothermal titration calorimetry (ITC) data, we provide insights into the mechanism by which EcEptC recognizes Zn2+ . Furthermore, structure comparison analysis indicated that disulfide bonds, which play a key role in polymyxin resistance, were absent in EcEptCΔN. Supported by structural and biochemical evidence, we reveal mechanistic implications for disulfide bonds in PEA transferase-mediated polymyxin resistance. Significantly, because the structural effects exhibited by disulfide bonds are absent in EcEptC, it is impossible for this protein to participate in polymyxin resistance in E. coli. DATABASE: Structural data are available in the PDB under the accession numbers 6A82 and 6A83. ENZYME: EC 2.7.8.43.
Collapse
Affiliation(s)
- Yanqun Zhao
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qiang Meng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yujie Lai
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Li Wang
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Dan Zhou
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chao Dou
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yijun Gu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Pudong District, Shanghai, China
| | - Chunlai Nie
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuquan Wei
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Pathophysiology, the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
219
|
Comparison of the Superpolymyxin and ChromID Colistin R Screening Media for the Detection of Colistin-Resistant Enterobacteriaceae from Spiked Rectal Swabs. Antimicrob Agents Chemother 2018; 63:AAC.01618-18. [PMID: 30323032 DOI: 10.1128/aac.01618-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/08/2018] [Indexed: 11/20/2022] Open
Abstract
The dissemination of carbapenemase-producing Enterobacteriaceae (CPE) has led to the increased use of colistin, which has resulted in the emergence of colistin-resistant Enterobacteriaceae worldwide. One of the most threatening scenarios is the dissemination of colistin resistance in CPE, particularly the plasmid-encoded resistance element MCR. Thus, it has now become mandatory to possess reliable media to screen for colistin-resistant Gram-negative bacterial isolates, especially Enterobacteriaceae In this study, we evaluated the performances of the Superpolymyxin medium (ELITechGroup) and the ChromID Colistin R medium (bioMérieux) to screen for colistin-resistant Enterobacteriaceae from spiked rectal swabs. Stool samples were spiked with a total of 94 enterobacterial isolates (Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Enterobacter cloacae), including 53 colistin-resistant isolates. ESwabs (Copan Diagnostics) were then inoculated with those spiked fecal suspensions, and culture proceeded as recommended by both manufacturers. The sensitivity of detection of colistin-resistant Enterobacteriaceae was 86.8% (95% confidence interval [95% CI] = 74.0% to 94.0%) using both the Superpolymyxin medium and the ChromID Colistin R plates. Surprisingly, the isolates that were not detected were not the same for both media. The specificities were high for both media, at 97.9% (95% CI = 87.3% to 99.9%) for the Superpolymyxin medium and 100% (95% CI = 90.4% to 100%) for the ChromID Colistin R medium. Both commercially available media, ChromID Colistin R and Superpolymyxin, provide useful tools to screen for colistin-resistant Enterobacteriaceae from patient samples (rectal swabs) regardless of the level and mechanism of colistin resistance.
Collapse
|
220
|
Zhang H, Zhao D, Quan J, Hua X, Yu Y. mcr-1 facilitated selection of high-level colistin-resistant mutants in Escherichia coli. Clin Microbiol Infect 2018; 25:517.e1-517.e4. [PMID: 30557703 DOI: 10.1016/j.cmi.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The mcr-1 gene is the first reported plasmid-mediated colistin resistance gene. It has caused worldwide concern about the colistin resistance in Gram-negative bacteria. The aim of this research was to study the impact of mcr-1 on the selection of high-level colistin resistance (HLCR) mutations in Escherichia coli and Klebsiella pneumoniae. METHODS We detected the HLCR mutation rates of Enterobacteriaceae strains (K. pneumoniae XH209, KP10, and E. coli Q3, ATCC 25922) and their transformants harbouring the mcr-1 gene. Further analysis of the HLCR mutants was conducted by sequencing, plasmid elimination experiment, and real-time quantitative PCR. RESULTS For XH209, mean mutation rate of XH209-pMCR was 1.7 (95% confidence interval (CI) 0.76-2.54) × 10-8, while XH209 and XH209-pCR2.1 showed mutation rates of 2.0 (95% CI, 1.32-2.67) × 10-8 and 2.3 (95% CI 1.47-3.13) × 10-8. For KP10 and its derived strains KP10-pCR2.1, KP10-pMCR, the mutation rates were 3.5 (95% CI 0.77-6.13) × 10-8, 4.8 (95% CI 0.69-8.94) × 10-8 and 4.2 (95% CI 0.95-7.54) × 10-8 respectively. The mutation rates of E. coli strains Q3-pMCR and ATCC25922-pMCR were 3.4 (95% CI 0.19-7.47) × 10-8 and 1.54 (95% CI 0.27-2.8) × 10-9, which were significantly higher than their corresponding non-mcr-1-carrying strains (p < 0.05). CONCLUSIONS Beside the knowledge that mcr-1 mediates low-level colistin resistance, this gene also facilitates selection of HLCR mutants in E. coli, but does not affect K. pneumoniae.
Collapse
Affiliation(s)
- H Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - D Zhao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - J Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - X Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Y Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
221
|
Bardet L, Rolain JM. Development of New Tools to Detect Colistin-Resistance among Enterobacteriaceae Strains. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2018; 2018:3095249. [PMID: 30631384 PMCID: PMC6305056 DOI: 10.1155/2018/3095249] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022]
Abstract
The recent discovery of the plasmid-mediated mcr-1 gene conferring resistance to colistin is of clinical concern. The worldwide screening of this resistance mechanism among samples of different origins has highlighted the urgent need to improve the detection of colistin-resistant isolates in clinical microbiology laboratories. Currently, phenotypic methods used to detect colistin resistance are not necessarily suitable as the main characteristic of the mcr genes is the low level of resistance that they confer, close to the clinical breakpoint recommended jointly by the CLSI and EUCAST expert systems (S ≤ 2 mg/L and R > 2 mg/L). In this context, susceptibility testing recommendations for polymyxins have evolved and are becoming difficult to implement in routine laboratory work. The large number of mechanisms and genes involved in colistin resistance limits the access to rapid detection by molecular biology. It is therefore necessary to implement well-defined protocols using specific tools to detect all colistin-resistant bacteria. This review aims to summarize the current clinical microbiology diagnosis techniques and their ability to detect all colistin resistance mechanisms and describe new tools specifically developed to assess plasmid-mediated colistin resistance. Phenotyping, susceptibility testing, and genotyping methods are presented, including an update on recent studies related to the development of specific techniques.
Collapse
Affiliation(s)
- Lucie Bardet
- Aix-Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
222
|
Wang J, Huang XY, Xia YB, Guo ZW, Ma ZB, Yi MY, Lv LC, Lu PL, Yan JC, Huang JW, Zeng ZL, Liu JH. Clonal Spread of Escherichia coli ST93 Carrying mcr-1-Harboring IncN1-IncHI2/ST3 Plasmid Among Companion Animals, China. Front Microbiol 2018; 9:2989. [PMID: 30564223 PMCID: PMC6288184 DOI: 10.3389/fmicb.2018.02989] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to investigate the occurrence of plasmid-mediated colistin resistance gene mcr-1 in Enterobacteriaceae isolates from companion animals in Guangzhou, China. Enterobacteriaceae isolated from 180 samples collected from cats and dogs were screened for mcr-1 by PCR and sequencing. MCR-1-producing isolates were further characterized by multilocus sequence typing and pulsed-field gel electrophoresis (PFGE). Plasmid characterization was performed by conjugation, replicon typing, S1-PFGE, and Southern blot hybridization. Plasmid pHN6DS2 as a representative IncN1-IncHI2/ST3 plasmid from ST93 E. coli was fully sequenced. pHN6DS2-like plasmids were screened by PCR-mapping and sequencing. The mcr-1 gene was detected in 6.25% (8/128) Escherichia coli isolates, of which, five belonged to E. coli ST93 and had identical PFGE patterns, resistance profiles and resistance genes. mcr-1 genes were located on ∼244.4 kb plasmids (n = 6), ∼70 kb plasmids, and ∼60 kb plasmids, respectively. Among them, five mcr-1-carrying plasmids were successfully transferred to recipient by conjugation experiments, and were classified as IncN1-IncHI2/ST3 (∼244.4 kb, n = 4, all obtained from E. coli ST93), and IncI2 (∼70 kb, n = 1), respectively. Plasmid pHN6DS2 contained a typical IncHI2-type backbone, with IncN1 segment (ΔrepA-Iterons I-gshB-ΔIS1294) inserted into the multiresistance region, and was similar to other mcr-1-carrying IncHI2/ST3 plasmids from Enterobacteriaceae isolates of various origins in China. The remaining five mcr-1-bearing plasmids with sizes of ∼244.4 kb were identified to be pHN6DS2-like plasmids. In conclusion, clonal spread of ST93 E. coli isolates was occurred in companion animals in Guangzhou, China.
Collapse
Affiliation(s)
- Jing Wang
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Xin-Yi Huang
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Ying-Bi Xia
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Ze-Wen Guo
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Zhen-Bao Ma
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Meng-Ying Yi
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Lu-Chao Lv
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Pei-Lan Lu
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jie-Cong Yan
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jia-Wei Huang
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Zhen-Ling Zeng
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
223
|
Dortet L, Bonnin RA, Pennisi I, Gauthier L, Jousset AB, Dabos L, Furniss RCD, Mavridou DAI, Bogaerts P, Glupczynski Y, Potron A, Plesiat P, Beyrouthy R, Robin F, Bonnet R, Naas T, Filloux A, Larrouy-Maumus G. Rapid detection and discrimination of chromosome- and MCR-plasmid-mediated resistance to polymyxins by MALDI-TOF MS in Escherichia coli: the MALDIxin test. J Antimicrob Chemother 2018; 73:3359-3367. [PMID: 30184212 DOI: 10.1093/jac/dky330] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Background Polymyxins are currently considered a last-resort treatment for infections caused by MDR Gram-negative bacteria. Recently, the emergence of carbapenemase-producing Enterobacteriaceae has accelerated the use of polymyxins in the clinic, resulting in an increase in polymyxin-resistant bacteria. Polymyxin resistance arises through modification of lipid A, such as the addition of phosphoethanolamine (pETN). The underlying mechanisms involve numerous chromosome-encoded genes or, more worryingly, a plasmid-encoded pETN transferase named MCR. Currently, detection of polymyxin resistance is difficult and time consuming. Objectives To develop a rapid diagnostic test that can identify polymyxin resistance and at the same time differentiate between chromosome- and plasmid-encoded resistances. Methods We developed a MALDI-TOF MS-based method, named the MALDIxin test, which allows the detection of polymyxin resistance-related modifications to lipid A (i.e. pETN addition), on intact bacteria, in <15 min. Results Using a characterized collection of polymyxin-susceptible and -resistant Escherichia coli, we demonstrated that our method is able to identify polymyxin-resistant isolates in 15 min whilst simultaneously discriminating between chromosome- and plasmid-encoded resistance. We validated the MALDIxin test on different media, using fresh and aged colonies and show that it successfully detects all MCR-1 producers in a blindly analysed set of carbapenemase-producing E. coli strains. Conclusions The MALDIxin test is an accurate, rapid, cost-effective and scalable method that represents a major advance in the diagnosis of polymyxin resistance by directly assessing lipid A modifications in intact bacteria.
Collapse
Affiliation(s)
- Laurent Dortet
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.,Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, Paris Saclay University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Remy A Bonnin
- EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, Paris Saclay University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Ivana Pennisi
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Lauraine Gauthier
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, Paris Saclay University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Agnès B Jousset
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, Paris Saclay University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Laura Dabos
- EA7361 'Structure, dynamic, function and expression of broad spectrum ß-lactamases', Paris-Sud University, Paris Saclay University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Despoina A I Mavridou
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Pierre Bogaerts
- Laboratory of Clinical Microbiology, Belgian National Reference Center for Monitoring Antimicrobial Resistance in Gram-negative Bacteria, CHU UCL Namur, Yvoir, Belgium
| | - Youri Glupczynski
- Laboratory of Clinical Microbiology, Belgian National Reference Center for Monitoring Antimicrobial Resistance in Gram-negative Bacteria, CHU UCL Namur, Yvoir, Belgium
| | - Anais Potron
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Bacteriology Unit, University Hospital of Besançon, Besançon, France
| | - Patrick Plesiat
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Bacteriology Unit, University Hospital of Besançon, Besançon, France
| | - Racha Beyrouthy
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Bacteriology Unit, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Frédéric Robin
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Bacteriology Unit, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Bacteriology Unit, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Thierry Naas
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, Paris Saclay University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
224
|
Dortet L, Potron A, Bonnin RA, Plesiat P, Naas T, Filloux A, Larrouy-Maumus G. Rapid detection of colistin resistance in Acinetobacter baumannii using MALDI-TOF-based lipidomics on intact bacteria. Sci Rep 2018; 8:16910. [PMID: 30442963 PMCID: PMC6237936 DOI: 10.1038/s41598-018-35041-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
With the dissemination of extremely drug resistant bacteria, colistin is now considered as the last-resort therapy for the treatment of infection caused by Gram-negative bacilli (including carbapenemase producers). Unfortunately, the increase use of colistin has resulted in the emergence of resistance as well. In A. baumannii, colistin resistance is mostly caused by the addition of phosphoethanolamine to the lipid A through the action of a phosphoethanolamine transferase chromosomally-encoded by the pmrC gene, which is regulated by the two-component system PmrA/PmrB. In A. baumannii clinical isolate the main resistance mechanism to colistin involves mutations in pmrA, pmrB or pmrC genes leading to the overexpression of pmrC. Although, rapid detection of resistance is one of the key issues to improve the treatment of infected patient, detection of colistin resistance in A. baumannii still relies on MIC determination through microdilution, which is time-consuming (16-24 h). Here, we evaluated the performance of a recently described MALDI-TOF-based assay, the MALDIxin test, which allows the rapid detection of colistin resistance-related modifications to lipid A (i.e phosphoethanolamine addition). This test accurately detected all colistin-resistant A. baumannii isolates in less than 15 minutes, directly on intact bacteria with a very limited sample preparation prior MALDI-TOF analysis.
Collapse
Affiliation(s)
- Laurent Dortet
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
- Department of Bacteriology- Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Paris-Sud University, LabEx Lermit, Faculty of Medecine, Le Kremlin-Bicêtre, France.
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.
| | - Anais Potron
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
- Bacteriology unit, University hospital of Besançon, Besançon, France
| | - Rémy A Bonnin
- Department of Bacteriology- Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Paris-Sud University, LabEx Lermit, Faculty of Medecine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Patrick Plesiat
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
- Bacteriology unit, University hospital of Besançon, Besançon, France
| | - Thierry Naas
- Department of Bacteriology- Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Paris-Sud University, LabEx Lermit, Faculty of Medecine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
225
|
Prevalence of antibiotic-resistant organisms in Canadian Hospitals. Comparison of point-prevalence survey results from 2010, 2012, and 2016. Infect Control Hosp Epidemiol 2018; 40:53-59. [PMID: 30394232 DOI: 10.1017/ice.2018.279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Point-prevalence surveys for infection or colonization with methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae (CREs), and for Clostridium difficile infection (CDI) were conducted in Canadian hospitals in 2010 and 2012 to better understanding changes in the epidemiology of antimicrobial-resistant organisms (AROs), which is crucial for public health and care management. METHODS A third survey of the same AROs in adult inpatients in Canadian hospitals with ≥50 beds was performed in February 2016. Data on participating hospitals and patient cases were obtained using standard criteria and case definitions. Associations between ARO prevalence and institutional characteristics were assessed using logistic regression models. RESULTS In total, 160 hospitals from 9 of the 10 provinces with 35,018 adult inpatients participated in the survey. Median prevalence per 100 inpatients was 4.1 for MRSA, 0.8 for VRE, 1.1 for CDI, 0.8 for ESBLs, and 0 for CREs. No significant change occurred compared to 2012. CREs were reported from 24 hospitals (15%) in 2016 compared to 10 hospitals (7%) in 2012. Routine universal or targeted admission screening for VRE decreased from 94% in 2010 to 74% in 2016. Targeted screening for MRSA on admission was associated with a lower prevalence of MRSA infection. Large hospitals (>500 beds) had higher prevalences of CDI. CONCLUSION This survey provides national prevalence rates for AROs in Canadian hospitals. Changes in infection control and prevention policies might lead to changes in the epidemiology of AROs and our capacity to detect them.
Collapse
|
226
|
Yang J, Tang Q, Qi T, Chen J, Ji Y, Tang Y, Wang Z, Song W, Xun J, Liu L, Shen Y, Zhang R, Lu H. Characteristics and Outcomes of Acinetobacter baumannii Infections in Patients with HIV: A Matched Case-Control Study. Sci Rep 2018; 8:15617. [PMID: 30353067 PMCID: PMC6199303 DOI: 10.1038/s41598-018-33753-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/06/2018] [Indexed: 11/23/2022] Open
Abstract
Acinetobacter baumannii (AB) infection is an increasing global threaten to hospitalized patients, especially those with impaired immune function. Still, few studies addressed the disease burdens and outcomes of AB infection in HIV patients. We aimed to describe characteristics and outcomes of AB infections in patients with HIV, measure the impact of AB infection on 28-day mortality in HIV patients, as well as assess the predictors of 28-day survival among HIV patients with AB pneumonia. A retrospective study with HIV/AB co-infected patients was conducted at Shanghai Public Health Clinical Center (SPHCC), China. Patients with AB pneumonia were further analyzed for predictors of mortality, as well as an additional 1:1 case-control study to determine the fatality of AB pneumonia compared with pneumonia of other pathogens. We found the incidence of AB infection was 17.4 cases per 100 person-years among all hospitalized HIV patients. Hospital mortality rate was 37.5% (21/56). There was a higher 28-day mortality rate in HIV patients with pneumonia due to AB than other pathogens (34% vs 16%, P = 0.03). APACHE II score was independently associated with 28-day survival by multivariate logistic regression (P = 0.031). Our findings indicate that AB infection is incident and can be fatal in HIV seropositive population. AB infection is an independent risk factor of mortality in patients with HIV and pneumonia. A lower APACHE II score on admission predicts a higher 28-day survival rate among HIV/AB co-infected patients.
Collapse
Affiliation(s)
- Junyang Yang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Tang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tangkai Qi
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yongjia Ji
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenyan Wang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Song
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jingna Xun
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. .,Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. .,Department of Infectious Disease, Huashan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
227
|
Apostolakos I, Piccirillo A. A review on the current situation and challenges of colistin resistance in poultry production. Avian Pathol 2018; 47:546-558. [DOI: 10.1080/03079457.2018.1524573] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ilias Apostolakos
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
228
|
Cannatelli A, Principato S, Colavecchio OL, Pallecchi L, Rossolini GM. Synergistic Activity of Colistin in Combination With Resveratrol Against Colistin-Resistant Gram-Negative Pathogens. Front Microbiol 2018; 9:1808. [PMID: 30131787 PMCID: PMC6091244 DOI: 10.3389/fmicb.2018.01808] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Objectives: In this study, we investigated the antimicrobial activity of resveratrol in combination with colistin, a last-resort agent for the treatment of severe infections caused by multidrug resistant Gram-negative pathogens. Methods: The synergistic activity and the bactericidal activity of colistin in combination with resveratrol was investigated by checkerboard assays and time-kill assays, respectively. A total of 21 strains were investigated, including 16 strains of different species (Klebsiella pneumoniae, n = 6, Escherichia coli, n = 6; Citrobacter braakii, n = 1; Stenotrophomonas malthophilia, n = 1; Enterobacter cloaceae, n = 1; Acinetobacter baumannii, n = 1) with acquired colistin resistance, three colistin-susceptible K. pneumoniae precursors, and two strains of intrinsically colistin-resistant species (Serratia marcescens, n = 1; Proteus mirabilis, n = 1). Mechanisms of acquired colistin resistance included chromosomal mutations (i.e., mgrB, pmrAB) and plasmid genes (mcr-1, mcr-1.2). Results: Resveratrol did not show any significant intrinsic antimicrobial activity. Overall, a relevant synergistic antimicrobial activity of resveratrol in combination with colistin was observed with all tested strains, except for the three colistin-susceptible K. pneumoniae strains, and for two mcr-1-positive E. coli strains. In time-kill assays, performed with 15 selected strains, the combination of colistin 2 mg/L plus resveratrol 128 mg/L was bactericidal with 11 strains, and bacteriostatic for the remaining ones. Conclusions: Resveratrol was found to potentiate colistin activity against a wide panel of colistin-resistant strains, regardless of species and resistance mechanisms, which would deserve further investigation for potential clinical applications.
Collapse
Affiliation(s)
- Antonio Cannatelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Silvia Principato
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Olga L. Colavecchio
- SOD Genetic Diagnostic, Florence Careggi University Hospital, Florence, Italy
| | - Lucia Pallecchi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| |
Collapse
|
229
|
Evolution and Comparative Genomics of F33:A-:B- Plasmids Carrying blaCTX-M-55 or blaCTX-M-65 in Escherichia coli and Klebsiella pneumoniae Isolated from Animals, Food Products, and Humans in China. mSphere 2018; 3:3/4/e00137-18. [PMID: 30021873 PMCID: PMC6052338 DOI: 10.1128/msphere.00137-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A−:B− plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A−:B− plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A−:B− plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes. To understand the underlying evolution process of F33:A−:B− plasmids among Enterobacteriaceae isolates of various origins in China, the complete sequences of 17 blaCTX-M-harboring F33:A−:B− plasmids obtained from Escherichia coli and Klebsiella pneumoniae isolates from different sources (animals, animal-derived food, and human clinics) in China were determined. F33:A−:B− plasmids shared similar plasmid backbones comprising replication, leading, and conjugative transfer regions and differed by the numbers of repeats in yddA and traD and by the presence of group II intron, except that pHNAH9 lacked a large segment of the leading and transfer regions. The variable regions of F33:A−B− plasmids were distinct and were inserted downstream of the addiction system pemI/pemK, identified as the integration hot spot among F33:A−B− plasmids. The variable region contained resistance genes and mobile elements or contained segments from other types of plasmids, such as IncI1, IncN1, and IncX1. Three plasmids encoding CTX-M-65 were very similar to our previously described pHN7A8 plasmid. Four CTX-M-55-producing plasmids contained multidrug resistance regions related to that of F2:A−B− plasmid pHK23a from Hong Kong. Five plasmids with IncN and/or IncX replication regions and IncI1-backbone fragments had variable regions related to those of pE80 and p42-2. The remaining five plasmids with IncN replicons and an IncI1 segment also possessed closely related variable regions. The diversity in variable regions was presumably associated with rearrangements, insertions, and/or deletions mediated by mobile elements, such as IS26 and IS1294. IMPORTANCE Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A−:B− plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A−:B− plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A−:B− plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes.
Collapse
|
230
|
Esposito EP, Cervoni M, Bernardo M, Crivaro V, Cuccurullo S, Imperi F, Zarrilli R. Molecular Epidemiology and Virulence Profiles of Colistin-Resistant Klebsiella pneumoniae Blood Isolates From the Hospital Agency "Ospedale dei Colli," Naples, Italy. Front Microbiol 2018; 9:1463. [PMID: 30061868 PMCID: PMC6054975 DOI: 10.3389/fmicb.2018.01463] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Resistance to colistin is increasingly reported in Klebsiella pneumoniae clinical isolates. The aim of this study was to analyze the molecular epidemiology and virulence profiles of 25 colistin-resistant K. pneumoniae blood isolates from the Hospital Agency “Ospedale dei Colli,” Naples, Italy, during 2015 and 2016. Colistin MIC values of isolates ranged from 4 to 256 mg/L. The inactivation of the mgrB gene, encoding a negative regulator of the PhoQ/PhoP signaling system, was the most frequent mechanism of colistin resistance found in 22 out of 25 isolates. Of these, 10 isolates assigned to ST512 and PFGE types A and A4 showed identical frameshift mutation and premature termination of mgrB gene; 4 isolates assigned to ST258 and PFGE types A1 showed non-sense, frameshift mutation, and premature termination; 3 and 1 isolates assigned to ST258 and PFGE A2 and ST512 and PFGE A3, respectively, had insertional inactivation of mgrB gene due to IS5-like mobile element; 2 isolates assigned to ST101 and 1 to ST392 had missense mutations in the mgrB gene, 1 isolate assigned to ST45 showed insertional inactivation of mgrB gene due to IS903-like mobile element. phoQ missense mutations were found in 2 isolates assigned to ST629 and ST101, respectively, which also showed a missense mutation in pmrA gene. The mcr-1-2-3-4 genes were not detected in any isolate. Colistin-resistant K. pneumoniae isolates showed variable virulence profiles in Galleria mellonella infection assays, with the infectivity of two isolates assigned to ST45 and ST629 being significantly higher than that of all other strains (P < 0.001). Interestingly, colistin MIC values proved to make a significant contribution at predicting lethal doses values (LD50 and LD90) of studied isolates in G. mellonella. Our data show that MgrB inactivation is a common mechanism of colistin resistance among K. pneumoniae in our clinical setting. The presence of identical mutations/insertions in isolates of the same ST and PFGE profile suggests the occurrence of clonal expansion and cross-transmission. Although virulence profiles differ among isolates irrespective of their genotypes, our results suggest that high colistin MIC could predict lower infectivity capability of the isolates.
Collapse
Affiliation(s)
- Eliana P Esposito
- Department of Public Health, University of Naples "Federico II,", Naples, Italy
| | - Matteo Cervoni
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Mariano Bernardo
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Valeria Crivaro
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Susanna Cuccurullo
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Francesco Imperi
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples "Federico II,", Naples, Italy.,Centro di Ingegneria Genetica (CEINGE) Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
231
|
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, designated by the World Health Organization as a critical priority for development of new therapeutics due to high levels of intrinsic and acquired antibiotic resistance. Other challenges include its versatility (it can persist in the environment and most strains are capable of causing disease in compromised hosts), robust efflux mechanisms that limit drug penetration, and the propensity to form antimicrobial-tolerant biofilms. Novel therapeutics in development to prevent or treat P. aeruginosa infections include vaccines, biologics such as antimicrobial peptides and therapeutic antibodies, virulence inhibitors, antimicrobials with novel targets, antibody-drug conjugates, resistance inhibitor-antibiotic or antibiotic-potentiator combinations, and bacteriophages or phage-derived lysins.
Collapse
Affiliation(s)
- Lori L. Burrows
- Department of Biochemistry & Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, 4H18 Health Sciences Centre, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
232
|
Yokota SI, Hakamada H, Yamamoto S, Sato T, Shiraishi T, Shinagawa M, Takahashi S. Release of large amounts of lipopolysaccharides from Pseudomonas aeruginosa cells reduces their susceptibility to colistin. Int J Antimicrob Agents 2018; 51:888-896. [PMID: 29432867 DOI: 10.1016/j.ijantimicag.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/10/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Pseudomonas aeruginosa is an important etiological agent of opportunistic infections. Injectable colistin is available as a last-line treatment option for multidrug-resistant P. aeruginosa infections. When cells were inoculated at a high number, colistin-susceptible P. aeruginosa grew on agar medium containing colistin at a concentration 10-fold higher than the minimum inhibitory concentration without acquiring colistin resistance. This study examined the responsible mechanism for growth in the presence of a high concentration of colistin. Cell wash fluid derived from P. aeruginosa efficiently reduced colistin antimicrobial activity. This reduction was mediated by lipopolysaccharide (LPS) in the wash fluid. Extracellular LPS inhibited colistin activity more effectively than cell-bound LPS in fixed cells. Cell wash fluids from Escherichia coli and Acinetobacter baumannii also reduced colistin activity; however, they were less potent than those from P. aeruginosa. The amount of LPS in cell wash fluid from P. aeruginosa was approximately 10-fold higher than that in fluid from E. coli or A. baumannii. In conclusion, cell-free LPS derived from bacterial cells inhibited the antimicrobial activity of colistin, and this effect was greatest for P. aeruginosa. Thus, large amounts of broken and dead cells of P. aeruginosa at infection foci will reduce the effectiveness of colistin, even against cells that have not yet acquired resistance.
Collapse
Affiliation(s)
- Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Hiroshi Hakamada
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaaki Shinagawa
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Satoshi Takahashi
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan; Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
233
|
Lima WG, Alves MC, Cruz WS, Paiva MC. Chromosomally encoded and plasmid-mediated polymyxins resistance in Acinetobacter baumannii: a huge public health threat. Eur J Clin Microbiol Infect Dis 2018; 37:1009-1019. [PMID: 29524060 DOI: 10.1007/s10096-018-3223-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
Acinetobacter baumannii is an opportunistic pathogen associated with nosocomial and community infections of great clinical relevance. Its ability to rapidly develop resistance to antimicrobials, especially carbapenems, has re-boosted the prescription and use of polymyxins. However, the emergence of strains resistant to these antimicrobials is becoming a critical issue in several regions of the world because very few of currently available antibiotics are effective in these cases. This review summarizes the most up-to-date knowledge about chromosomally encoded and plasmid-mediated polymyxins resistance in A. baumannii. Different mechanisms are employed by A. baumannii to overcome the antibacterial effects of polymyxins. Modification of the outer membrane through phosphoethanolamine addition, loss of lipopolysaccharide, symmetric rupture, metabolic changes affecting osmoprotective amino acids, and overexpression of efflux pumps are involved in this process. Several genetic elements modulate these mechanisms, but only three of them have been described so far in A. baumannii clinical isolates such as mutations in pmrCAB, lpxACD, and lpsB. Elucidation of genotypic profiles and resistance mechanisms are necessary for control and fight against resistance to polymyxins in A. baumannii, thereby protecting this class for future treatment.
Collapse
Affiliation(s)
- William Gustavo Lima
- Laboratory of Medical Microbiology, Central-West Campus Dona Lindu, Federal University of São João del-Rei, Rua Sebastião Gonçalves Coelho, 400, Divinopolis, Minas Gerais, 35501-293, Brazil.
| | - Mara Cristina Alves
- Laboratory of Laboratorial Diagnostic and Clinical Microbiology, Central-West Campus Dona Lindu, Federal University of São João del-Rei, Divinopolis, MG, Brazil
| | - Waleska Stephanie Cruz
- Laboratory of Molecular and Celular Biology, Alto Paraopeba Campus, Federal University of São João del-Rei, Ouro Branco, MG, Brazil
| | - Magna Cristina Paiva
- Laboratory of Laboratorial Diagnostic and Clinical Microbiology, Central-West Campus Dona Lindu, Federal University of São João del-Rei, Divinopolis, MG, Brazil
| |
Collapse
|
234
|
Machado D, Antunes J, Simões A, Perdigão J, Couto I, McCusker M, Martins M, Portugal I, Pacheco T, Batista J, Toscano C, Viveiros M. Contribution of efflux to colistin heteroresistance in a multidrug resistant Acinetobacter baumannii clinical isolate. J Med Microbiol 2018; 67:740-749. [DOI: 10.1099/jmm.0.000741] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Jéssica Antunes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Ana Simões
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
- Present address: Instituto Nacional de Investigação Agrária e Veterinária, I.P, Lisboa, Portugal
| | - João Perdigão
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Couto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Matthew McCusker
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| | - Marta Martins
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Isabel Portugal
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Pacheco
- Serviço de Patologia Clínica, Laboratório de Microbiologia Clínica e Biologia Molecular – Hospital de Egas Moniz – Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Judite Batista
- Serviço de Patologia Clínica, Laboratório de Microbiologia Clínica e Biologia Molecular – Hospital de Egas Moniz – Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Cristina Toscano
- Serviço de Patologia Clínica, Laboratório de Microbiologia Clínica e Biologia Molecular – Hospital de Egas Moniz – Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| |
Collapse
|
235
|
Jiménez-Guerra G, Heras-Cañas V, Gutiérrez-Soto M, Del Pilar Aznarte-Padial M, Expósito-Ruiz M, Navarro-Marí JM, Gutiérrez-Fernández J. Urinary tract infection by Acinetobacter baumannii and Pseudomonas aeruginosa: evolution of antimicrobial resistance and therapeutic alternatives. J Med Microbiol 2018; 67:790-797. [PMID: 29693543 DOI: 10.1099/jmm.0.000742] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose. Acinetobacter baumannii and Pseudomonas aeruginosa are responsible for numerous nosocomial infections. The objective of this study was to determine the development of their susceptibility to ten antibiotics and the antibiotic consumption of patients with suspicion of urinary tract infection (UTI).Methodology. A retrospective study was conducted on the susceptibility profiles of A. baumannii and P. aeruginosa isolates from 749 urine samples gathered between January 2013 and December 2016, and on the consumption of imipenem, meropenem and piperacillin-tazobactam between 2014 and 2016.Results. Hospital patients were the source of 82 (91.1 %) of the 90 A. baumannii isolates detected and 555 (84.2 %) of the 659 P. aeruginosa isolates. Globally, the lowest percentage susceptibility values were found for fosfomycin, aztreonam and ciprofloxacin, while colistin continued to be the most active antibiotic in vitro. In 2016, the susceptibility of A. baumannii to carbapenem and piperacillin-tazobactam decreased to very low values, while the susceptibility of P. aeruginosa to carbapenem remained stable but its susceptibility to piperacillin-tazobactam decreased. There was a marked increase in the consumption of piperacillin-tazobactam.Conclusion. In our setting, it is no longer possible to use carbapenems and piperacillin-tazobactam for empirical treatment of UTI due to A. baumannii or to use piperacillin-tazobactam for empirical treatment of UTI due to P. aeruginosa. Colistin was found to be the most active antibiotic in vitro. There was a marked increase in the consumption of piperacillin-tazobactam.
Collapse
Affiliation(s)
- Gemma Jiménez-Guerra
- Laboratorio de Microbiología, Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Victor Heras-Cañas
- Laboratorio de Microbiología, Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | | | | | - Manuela Expósito-Ruiz
- Unidad de Metodología de la Investigación y Bioestadística. Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - José María Navarro-Marí
- Laboratorio de Microbiología, Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - José Gutiérrez-Fernández
- Laboratorio de Microbiología, Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Granada-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| |
Collapse
|
236
|
Lupo A, Haenni M, Madec JY. Antimicrobial Resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0007-2017. [PMID: 30101740 PMCID: PMC11633584 DOI: 10.1128/microbiolspec.arba-0007-2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 01/05/2023] Open
Abstract
The nonfermenting bacteria belonging to Acinetobacter spp. and Pseudomonas spp. are capable of colonizing both humans and animals and can also be opportunistic pathogens. More specifically, the species Acinetobacter baumannii and Pseudomonas aeruginosa have been recurrently reported as multidrug-resistant and even pandrug-resistant in clinical isolates. Both species were categorized among the ESKAPE pathogens, ESKAPE standing for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter species. These six pathogens are the major cause of nosocomial infections in the United States and are a threat all over the world because of their capacity to become increasingly resistant to all available antibiotics. A. baumannii and P. aeruginosa are both intrinsically resistant to many antibiotics due to complementary mechanisms, the main ones being the low permeability of their outer membrane, the production of the AmpC beta-lactamase, and the production of several efflux systems belonging to the resistance-nodulation-cell division family. In addition, they are both capable of acquiring multiple resistance determinants, such as beta-lactamases or carbapenemases. Even if such enzymes have rarely been identified in bacteria of animal origin, they may sooner or later spread to this reservoir. The goal of this article is to give an overview of the resistance phenotypes described in these pathogens and to provide a comprehensive analysis of all data that have been reported on Acinetobacter spp. and Pseudomonas spp. from animal hosts.
Collapse
Affiliation(s)
- Agnese Lupo
- Université de Lyon-ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- Université de Lyon-ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Jean-Yves Madec
- Université de Lyon-ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| |
Collapse
|
237
|
Rousham E, Unicomb L, Wood P, Smith M, Asaduzzaman M, Islam MA. Spatial and temporal variation in the community prevalence of antibiotic resistance in Bangladesh: an integrated surveillance study protocol. BMJ Open 2018; 8:e023158. [PMID: 29705771 PMCID: PMC5931287 DOI: 10.1136/bmjopen-2018-023158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Increasing antibiotic resistance (ABR) in low-income and middle-income countries such as Bangladesh presents a major health threat. However, assessing the scale of the health risk is problematic in the absence of reliable data on the community prevalence of antibiotic-resistant bacteria. We describe the protocol for a small-scale integrated surveillance programme that aims to quantify the prevalence of colonisation with antibiotic-resistant bacteria and concentrations of antibiotic-resistant genes from a 'One Health' perspective. The holistic assessment of ABR in humans, animals and within the environment in urban and rural Bangladesh will generate comprehensive data to inform human health risk. METHODS AND ANALYSIS The study design focuses on three exposure-relevant sites where there is enhanced potential for transmission of ABR between humans, animals and the environment: (1) rural poultry-owning households, (2) commercial poultry farms and (3) urban live-bird markets. The comparison of ABR prevalence in human groups with high and low exposure to farming and poultry will enable us to test the hypothesis that ABR bacteria and genes from the environment and food-producing animals are potential sources of transmission to humans. Escherichia coli is used as an ABR indicator organism due to its widespread environmental presence and colonisation in both the human and animal gastrointestinal tract. ETHICS AND DISSEMINATION The study has been approved by the Institutional Review Board of the International Centre for Diarrhoeal Disease Research, Bangladesh, and Loughborough University Ethics Committee. Data for the project will be stored on the open access repository of the Centre for Ecology and Hydrology, Natural Environment Research Council. The results of this study will be published in peer-reviewed journals and presented at national and international conferences.
Collapse
Affiliation(s)
- Emily Rousham
- Centre for Global Health and Human Development, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Leanne Unicomb
- Environmental Intervention Unit, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Paul Wood
- Department of Geography, School of Social, Political and Geographical Sciences, Loughborough University, Loughborough, UK
| | - Michael Smith
- Water, Engineering and Development Centre, School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, UK
| | - Muhammad Asaduzzaman
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammad Aminul Islam
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
238
|
Hobby CR, Herndon JL, Morrow CA, Peters RE, Symes SJK, Giles DK. Exogenous fatty acids alter phospholipid composition, membrane permeability, capacity for biofilm formation, and antimicrobial peptide susceptibility in Klebsiella pneumoniae. Microbiologyopen 2018; 8:e00635. [PMID: 29701307 PMCID: PMC6391273 DOI: 10.1002/mbo3.635] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/20/2018] [Accepted: 03/05/2018] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae represents a major threat to human health due to a combination of its nosocomial emergence and a propensity for acquiring antibiotic resistance. Dissemination of the bacteria from its native intestinal location creates severe, complicated infections that are particularly problematic in healthcare settings. Thus, there is an urgency for identifying novel treatment regimens as the incidence of highly antibiotic‐resistant bacteria rises. Recent findings have highlighted the ability of some Gram‐negative bacteria to utilize exogenous fatty acids in ways that modify membrane phospholipids and influence virulence phenotypes, such as biofilm formation and antibiotic resistance. This study explores the ability of K. pneumoniae to assimilate and respond to exogenous fatty acids. The combination of thin‐layer chromatography liquid chromatography‐mass spectrometry confirmed adoption of numerous exogenous polyunsaturated fatty acids (PUFAs) into the phospholipid species of K. pneumoniae. Membrane permeability was variably affected as determined by two dye uptake assays. Furthermore, the availability of many PUFAs lowered the MICs to the antimicrobial peptides polymyxin B and colistin. Biofilm formation was significantly affected depending upon the supplemented fatty acid.
Collapse
Affiliation(s)
- Chelsea R Hobby
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Joshua L Herndon
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Colton A Morrow
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Rachel E Peters
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Steven J K Symes
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - David K Giles
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| |
Collapse
|
239
|
Srijan A, Margulieux KR, Ruekit S, Snesrud E, Maybank R, Serichantalergs O, Kormanee R, Sukhchat P, Sriyabhaya J, Hinkle M, Crawford JM, McGann P, Swierczewski BE. Genomic Characterization of Nonclonal mcr-1-Positive Multidrug-Resistant Klebsiella pneumoniae from Clinical Samples in Thailand. Microb Drug Resist 2018; 24:403-410. [PMID: 29688801 PMCID: PMC5946733 DOI: 10.1089/mdr.2017.0400] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multidrug-resistant Klebsiella pneumoniae strains are one of the most prevalent causes of nosocomial infections and pose an increasingly dangerous public health threat. The lack of remaining treatment options has resulted in the utilization of older drug classes, including colistin. As a drug of last resort, the discovery of plasmid-mediated colistin resistance by mcr-1 denotes the potential development of pandrug-resistant bacterial pathogens. To address the emergence of the mcr-1 gene, 118 gram-negative Enterobacteriaceae isolated from clinical samples collected at Queen Sirikit Naval Hospital in Chonburi, Thailand were screened for colistin resistance using automated antimicrobial susceptibility testing and conventional PCR screening. Two K. pneumoniae strains, QS17-0029 and QS17-0161, were positive for mcr-1, and both isolates were sequenced to closure using short- and long-read whole-genome sequencing. QS17-0029 carried 16 antibiotic resistance genes in addition to mcr-1, including 2 carbapenemases, blaNDM-1 and blaOXA-232. QS17-0161 carried 13 antibiotic resistance genes in addition to mcr-1, including the extended-spectrum β-lactamase blaCTX-M-55. Both isolates carried multiple plasmids, but mcr-1 was located alone on highly similar 33.9 Kb IncX4 plasmids in both isolates. The IncX4 plasmid shared considerable homology to other mcr-1-containing IncX4 plasmids. This is the first report of a clinical K. pneumoniae strain from Thailand carrying mcr-1 as well as the first strain to simultaneously carry mcr-1 and multiple carbapenemase genes (QS17-0029). The identification and characterization of these isolates serves to highlight the urgent need for continued surveillance and intervention in Southeast Asia, where extensively drug-resistant pathogens are being increasingly identified in hospital-associated infections.
Collapse
Affiliation(s)
- Apichai Srijan
- 1 Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences , Bangkok, Thailand
| | - Katie R Margulieux
- 1 Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences , Bangkok, Thailand
| | - Sirigade Ruekit
- 1 Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences , Bangkok, Thailand
| | - Erik Snesrud
- 2 The Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Rosslyn Maybank
- 2 The Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Oralak Serichantalergs
- 1 Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences , Bangkok, Thailand
| | | | | | | | - Mary Hinkle
- 2 The Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - John M Crawford
- 1 Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences , Bangkok, Thailand
| | - Patrick McGann
- 2 The Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Brett E Swierczewski
- 1 Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences , Bangkok, Thailand
| |
Collapse
|
240
|
López-Causapé C, Cabot G, Del Barrio-Tofiño E, Oliver A. The Versatile Mutational Resistome of Pseudomonas aeruginosa. Front Microbiol 2018; 9:685. [PMID: 29681898 PMCID: PMC5897538 DOI: 10.3389/fmicb.2018.00685] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022] Open
Abstract
One of the most striking features of Pseudomonas aeruginosa is its outstanding capacity for developing antimicrobial resistance to nearly all available antipseudomonal agents through the selection of chromosomal mutations, leading to the failure of the treatment of severe hospital-acquired or chronic infections. Recent whole-genome sequencing (WGS) data obtained from in vitro assays on the evolution of antibiotic resistance, in vivo monitoring of antimicrobial resistance development, analysis of sequential cystic fibrosis isolates, and characterization of widespread epidemic high-risk clones have provided new insights into the evolutionary dynamics and mechanisms of P. aeruginosa antibiotic resistance, thus motivating this review. Indeed, the analysis of the WGS mutational resistome has proven to be useful for understanding the evolutionary dynamics of classical resistance pathways and to describe new mechanisms for the majority of antipseudomonal classes, including β-lactams, aminoglycosides, fluoroquinolones, or polymixins. Beyond addressing a relevant scientific question, the analysis of the P. aeruginosa mutational resistome is expected to be useful, together with the analysis of the horizontally-acquired resistance determinants, for establishing the antibiotic resistance genotype, which should correlate with the antibiotic resistance phenotype and as such, it should be useful for the design of therapeutic strategies and for monitoring the efficacy of administered antibiotic treatments. However, further experimental research and new bioinformatics tools are still needed to overcome the interpretation limitations imposed by the complex interactions (including those leading to collateral resistance or susceptibility) between the 100s of genes involved in the mutational resistome, as well as the frequent difficulties for differentiating relevant mutations from simple natural polymorphisms.
Collapse
Affiliation(s)
- Carla López-Causapé
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Gabriel Cabot
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Ester Del Barrio-Tofiño
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
241
|
Clinical Validation of SensiTest Colistin, a Broth Microdilution-Based Method To Evaluate Colistin MICs. J Clin Microbiol 2018; 56:JCM.01523-17. [PMID: 29343542 DOI: 10.1128/jcm.01523-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
The global spread of multidrug-resistant Gram-negative bacteria has led to the return of colistin for treating severe infections. Recently, different plasmid-mediated genes conferring resistance to this drug were described and reported worldwide. International committees (EUCAST/CLSI) reevaluated inconsistencies surrounding colistin antimicrobial susceptibility testing (AST), concluding that broth microdilution (BMD) should serve as the reference method for AST. The development of an accurate, reproducible commercial test based on BMD is therefore highly desirable. SensiTest Colistin (STC), a BMD-based compact 4-test panel containing the lyophilized antibiotic in 7 2-fold dilutions (0.25 to 16 μg/ml) was here compared with the EUCAST-CLSI standard reference method (BMD) and, for some isolates, with the automated Phoenix 100 system (PHX). A total of 353 bacterial strains were evaluated by two different laboratories; 137 isolates were resistant to colistin (19 were intrinsically resistant, 83 harbored the mcr-1 gene). Essential agreement (EA) between STC and BMD was obtained for 339 out of the 353 strains tested (96.0%). Overall categorical agreement was obtained for 349 out of the 353 strains analyzed (98.9%). Two major errors (MEs; 0.93%) and two very major errors (VMEs; 1.46%) were documented. STC appeared to be a simple but highly reliable test with good reproducibility even with panels stored at room temperature or at 35°C. Moreover, STC showed a good performance with strains carrying the mcr-1 gene, with a 98.8% EA. As the secondary endpoint of our study, VMEs for PHX were documented for 6 isolates (10%).
Collapse
|
242
|
Sherry N, Howden B. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam – epidemiology, laboratory detection and treatment implications. Expert Rev Anti Infect Ther 2018. [DOI: 10.1080/14787210.2018.1453807] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Norelle Sherry
- Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
| | - Benjamin Howden
- Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
| |
Collapse
|
243
|
Skariyachan S, Manjunath M, Bachappanavar N. Screening of potential lead molecules against prioritised targets of multi-drug-resistant-Acinetobacter baumannii - insights from molecular docking, molecular dynamic simulations and in vitro assays. J Biomol Struct Dyn 2018. [PMID: 29529934 DOI: 10.1080/07391102.2018.1451387] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii, an opportunistic pathogen, has become multi-drug resistant (MDR) to major classes of antibacterial and poses grave threat to public health. The current study focused to screen novel phytotherapeutics against prioritised targets of Acinetobacter baumannii by computational investigation. Fourteen potential drug targets were screened based on their functional role in various biosynthetic pathways and the 3D structures of 9 targets were retrieved from Protein Data Bank and others were computationally predicted. By extensive literature survey, 104 molecules from 48 herbal sources were screened and subjected to virtual screening. Ten clinical isolates of A. baumannii were tested for antibiotic susceptibility towards clinafloxacin, imipenem and polymyxin-E. Computational screening suggested that Ajmalicine ((19α)-16, 17-didehydro-19-methyloxayohimban-16-carboxylic acid methyl ester from Rauwolfia serpentina), Strictamin (Akuammilan-17-oic acid methyl ester from Alstonia scholaris) and Limonin (7, 16-dioxo-7, 16-dideoxylimondiol from Citrus sps) exhibited promising binding towards multiple drug targets of A. baumannii in comparison with the binding between standard drugs and their targets. Limonin displayed promising binding potential (binding energy -9.8 kcal/mol) towards diaminopimelate epimerase (DapF) and UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). Ajmalicine and Strictamin demonstrated good binding potential (-9.5, -8.5 kcal/mol, respectively) towards MurA and shikimate dehydrogenase (-7.8 kcal/mol). Molecular dynamic simulations further validated the docking results. In vitro assay suggested that the tested isolates exhibited resistance to clinafloxacin, imipenem and polymyxin-E and the herbal preparations (crude extract) demonstrated a significant antibacterial potential (p ≤ .05). The study suggests that the aforementioned lead candidates and targets can be used for structure-based drug screening towards MDR A. baumannii.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India.,b Visvesvaraya Technological University , Belagavi , India
| | - Meghna Manjunath
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India.,b Visvesvaraya Technological University , Belagavi , India
| | - Nikhil Bachappanavar
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India.,b Visvesvaraya Technological University , Belagavi , India
| |
Collapse
|
244
|
A Rapid and Semi-Quantitative Gold Nanoparticles Based Strip Sensor for Polymyxin B Sulfate Residues. NANOMATERIALS 2018; 8:nano8030144. [PMID: 29510541 PMCID: PMC5869635 DOI: 10.3390/nano8030144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/02/2022]
Abstract
Increasing attention is now being directed to the utilization of polymyxin B (PMB) as a last-line treatment for life-threatening infections caused by multidrug resistant Gram-negative bacteria. Unfortunately, polymyxins resistance is also increasingly reported, leaving a serious threat to human health. Therefore, the establishment of rapid detection methods for PMB residues is highly essential to ensure public health. In this study, two monoclonal antibodies (mAb; 2A2 and 3C6) were obtained using PMB-bovine serum albumin as the immunogen and PMB-ovalbumin as the coating antigen, which were prepared with N-(γ-maleimidobutyryloxy) succinimide ester and glutaraldehyde as cross-linking agents, respectively. Through an indirect competitive enzyme-linked immunosorbent assay, resultant two mAbs were compared and the results indicated that 3C6 showed higher sensitivity with a half maximum inhibition concentration of 13.13 ng/mL. Based on 3C6, a gold nanoparticles (AuNPs)-based immunochromatographic test (ICT) strip was then established, the mechanism of which is that free PMB competes with the fixed coating antigen to combine with mAb labeled by AuNPs. Using ICT strip to detect milk and animal feed samples revealed the visible detection limits were 25 ng/mL and 500 μg/kg, respectively and the cutoff limits were 100 ng/mL and 1000 μg/kg, respectively. The ICT strip provides results within 15 min, facilitating rapid and semi-quantitative analysis of PMB residues in milk and animal feed.
Collapse
|
245
|
Hernández M, Quijada NM, Lorente LLU, de Frutos M, Rodríguez-Lázaro D, Eiros JM. Infrequent isolation of extensively drug-resistant (XDR) Klebsiella pneumoniae resistant to colistin in Spain. Int J Antimicrob Agents 2018; 51:531-533. [DOI: 10.1016/j.ijantimicag.2017.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/22/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
|
246
|
Vaara M. New polymyxin derivatives that display improved efficacy in animal infection models as compared to polymyxin B and colistin. Med Res Rev 2018; 38:1661-1673. [PMID: 29485690 DOI: 10.1002/med.21494] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 01/01/2023]
Abstract
Polymyxin B and colistin (polymyxin E) are bactericidal pentacationic lipopeptides that act specifically on Gram-negative bacteria, first by disrupting their outermost permeability barrier, the outer membrane (OM), and then damaging the cytoplasmic membrane. The discovery of both polymyxin B and colistin was published independently by three laboratories as early as in 1947. They were subsequently used in intravenous therapy. Unfortunately, they also exhibit significant and dose-limiting nephrotoxicity. Therefore, polymyxins were reserved as agents of last-line defense. The emergence of extremely multiresistant strains has now forced clinicians to reinstate polymyxins in the therapy of severe infections. However, the current dosage regimens lead to insufficient drug concentrations in serum and clinicians have been advised to use larger doses, which further increases the risk of nephrotoxicity. Very recently, the interest in developing better tolerated and more effective polymyxins has grown. This review focuses on describing four development programs that have yielded novel derivatives that are more effective than the old polymyxins in animal infection models. Compounds from three programs are superior to the old polymyxins in the rodent lung infection model with Acinetobacter baumannii and/or Pseudomonas aeruginosa. One of them is also more effective than polymyxin B in A. baumannii mouse thigh infection. The fourth program includes compounds that are approximately tenfold more effective in Escherichia coli murine pyelonephritis than polymyxin B.
Collapse
Affiliation(s)
- Martti Vaara
- Northern Antibiotics Ltd., Espoo, Finland.,Department of Bacteriology and Immunology, Helsinki University Medical School, Helsinki, Finland
| |
Collapse
|
247
|
Aminoarabinosylation of Lipid A Is Critical for the Development of Colistin Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.01820-17. [PMID: 29263076 DOI: 10.1128/aac.01820-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid A aminoarabinosylation is invariably associated with colistin resistance in Pseudomonas aeruginosa; however, the existence of alternative aminoarabinosylation-independent colistin resistance mechanisms in this bacterium has remained elusive. By combining reverse genetics with experimental evolution assays, we demonstrate that a functional lipid A aminoarabinosylation pathway is critical for the acquisition of colistin resistance in reference and clinical P. aeruginosa isolates. This highlights lipid A aminoarabinosylation as a promising target for the design of colistin adjuvants against P. aeruginosa.
Collapse
|
248
|
Singhal L, Sharma M, Verma S, Kaur R, Britto XB, Kumar SM, Ray P, Gautam V. Comparative Evaluation of Broth Microdilution with Polystyrene and Glass-Coated Plates, Agar Dilution, E-Test, Vitek, and Disk Diffusion for Susceptibility Testing of Colistin and Polymyxin B on Carbapenem-Resistant Clinical Isolates of Acinetobacter baumannii. Microb Drug Resist 2018; 24:1082-1088. [PMID: 29406804 DOI: 10.1089/mdr.2017.0251] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION With the increasing threat of multidrug-resistant organisms, such as Acinetobacter baumannii, the polymyxin class of drugs (colistin and polymyxin B) has become popular in clinical practice. A better understanding of antimicrobial susceptibility testing methods for colistin and polymyxin B is needed for optimal patient management. MATERIALS AND METHODS Forty-two carbapenem-resistant A. baumannii isolates were subjected to susceptibility testing for colistin and polymyxin B using the following methods: broth microdilution (BMD) (glass-coated plates [BMD-Gs] and polystyrene plates [BMD-Ps]), agar dilution (AD), E-test®, Vitek®, and disk diffusion. Using BMD as the gold standard, comparative analysis between different methods was carried out. RESULTS With BMD-Gs as reference, reliability was high for BMD-Ps and moderate for AD and Vitek for both the drugs. Similar results were obtained when the BMD-P was used as reference, but drug-polystyrene interaction was observed. CONCLUSION Different susceptibility testing methods for polymyxins show great variation in their results and BMD using glass-coated plates can be considered the best candidate for gold standard.
Collapse
Affiliation(s)
- Lipika Singhal
- 1 Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research , Chandigarh, India .,2 Department of Microbiology, GMCH , Chandigarh, India
| | - Megha Sharma
- 1 Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research , Chandigarh, India
| | - Salony Verma
- 1 Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research , Chandigarh, India
| | - Ramanpreet Kaur
- 1 Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research , Chandigarh, India
| | - Xavier Basil Britto
- 3 Department of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp , Antwerp, Belgium
| | - Surbhi Malhotra Kumar
- 3 Department of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp , Antwerp, Belgium
| | - Pallab Ray
- 1 Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research , Chandigarh, India
| | - Vikas Gautam
- 1 Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research , Chandigarh, India
| |
Collapse
|
249
|
MacNair CR, Stokes JM, Carfrae LA, Fiebig-Comyn AA, Coombes BK, Mulvey MR, Brown ED. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat Commun 2018; 9:458. [PMID: 29386620 PMCID: PMC5792607 DOI: 10.1038/s41467-018-02875-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Plasmid-borne colistin resistance mediated by mcr-1 may contribute to the dissemination of pan-resistant Gram-negative bacteria. Here, we show that mcr-1 confers resistance to colistin-induced lysis and bacterial cell death, but provides minimal protection from the ability of colistin to disrupt the Gram-negative outer membrane. Indeed, for colistin-resistant strains of Enterobacteriaceae expressing plasmid-borne mcr-1, clinically relevant concentrations of colistin potentiate the action of antibiotics that, by themselves, are not active against Gram-negative bacteria. The result is that several antibiotics, in combination with colistin, display growth-inhibition at levels below their corresponding clinical breakpoints. Furthermore, colistin and clarithromycin combination therapy displays efficacy against mcr-1-positive Klebsiella pneumoniae in murine thigh and bacteremia infection models at clinically relevant doses. Altogether, these data suggest that the use of colistin in combination with antibiotics that are typically active against Gram-positive bacteria poses a viable therapeutic alternative for highly drug-resistant Gram-negative pathogens expressing mcr-1.
Collapse
Affiliation(s)
- Craig R MacNair
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3ZS, Canada
| | - Jonathan M Stokes
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3ZS, Canada
| | - Lindsey A Carfrae
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3ZS, Canada
| | - Aline A Fiebig-Comyn
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3ZS, Canada
| | - Brian K Coombes
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3ZS, Canada
| | - Michael R Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Eric D Brown
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3ZS, Canada.
| |
Collapse
|
250
|
Genomic Insights into Colistin-Resistant Klebsiella pneumoniae from a Tunisian Teaching Hospital. Antimicrob Agents Chemother 2018; 62:AAC.01601-17. [PMID: 29229634 DOI: 10.1128/aac.01601-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022] Open
Abstract
The emergence of colistin-resistant Klebsiella pneumoniae (CoRKp) is a public health concern, since this antibiotic has become the last line of treatment for infections caused by multidrug-resistant (MDR) Gram negatives. In this study, we have investigated the molecular basis of colistin resistance in 13 MDR K. pneumoniae strains isolated from 12 patients in a teaching hospital in Sousse, Tunisia. Whole-genome sequencing (WGS) was used to decipher the molecular mechanism of colistin resistance and to identify the resistome of these CoRKp isolates. It revealed a genome of ca. 5.5 Mbp in size with a G+C content of 57%, corresponding to that commonly observed for K. pneumoniae These isolates belonged to the 5 different sequence types (ST11, ST15, ST101, ST147, and ST392), and their resistome was composed of acquired β-lactamases, including extended-spectrum beta-lactamase and carbapenemase genes (blaCTX-M-15, blaOXA-204, blaOXA-48, and blaNDM-1 genes), aminoglycoside resistance genes [aac(6')Ib-cr, aph(3″)-Ib, aph(6)-Id, and aac(3)-IIa], and fosfomycin (fosA), fluoroquinolone (qnr-like), chloramphenicol, trimethoprim, and tetracycline resistance genes. All of the isolates were identified as having a mutated mgrB gene. Mapping reads with reference sequences of the most common genes involved in colistin resistance revealed several modifications in mgrB, pmr, and pho operons (deletions, insertions, and substitutions) likely affecting the function of these proteins. It is worth noting that among the 12 patients, 10 were treated with colistin before the isolation of CoRKp No plasmid encoding mcr-1 to mcr-5 genes was found in these isolates. This study corresponds to the first molecular characterization of a collection of CoRKp strains in Tunisia and highlights that the small-transmembrane protein MgrB is a main mechanism for colistin resistance in K. pneumoniae.
Collapse
|