201
|
Minniti G, Niyazi M, Alongi F, Navarria P, Belka C. Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol 2021; 16:36. [PMID: 33602305 PMCID: PMC7890828 DOI: 10.1186/s13014-021-01767-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Despite aggressive management consisting of maximal safe surgical resection followed by external beam radiation therapy (60 Gy/30 fractions) with concomitant and adjuvant temozolomide, approximately 90% of WHO grade IV gliomas (glioblastomas, GBM) will recur locally within 2 years. For patients with recurrent GBM, no standard of care exists. Thanks to the continuous improvement in radiation science and technology, reirradiation has emerged as feasible approach for patients with brain tumors. Using stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT), either hypofractionated or conventionally fractionated schedules, several studies have suggested survival benefits following reirradiation of patients with recurrent GBM; however, there are still questions to be answered about the efficacy and toxicity associated with a second course of radiation. We provide a clinical overview on current status and recent advances in reirradiation of GBM, addressing relevant clinical questions such as the appropriate patient selection and radiation technique, optimal dose fractionation, reirradiation tolerance of the brain and the risk of radiation necrosis.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico le Scotte, 53100, Siena, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, VR, Italy
| | - Piera Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, MI, Italy
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
202
|
Nguyen TK, Sahgal A, Detsky J, Atenafu EG, Myrehaug S, Tseng CL, Husain Z, Heyn C, Maralani P, Ruschin M, Perry J, Soliman H. Predictors of leptomeningeal disease following hypofractionated stereotactic radiotherapy for intact and resected brain metastases. Neuro Oncol 2021; 22:84-93. [PMID: 31412120 DOI: 10.1093/neuonc/noz144] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The objective was to evaluate the risk and predictors of developing leptomeningeal disease (LMD) in patients with brain metastases treated with 5-fraction hypofractionated stereotactic radiotherapy (HSRT). METHODS Patients treated with HSRT for intact brain metastases and/or surgical cavities were reviewed from a prospectively maintained database. Radiographic patterns of LMD were classified as focal classical, diffuse classical, focal nodular, and diffuse nodular. RESULTS HSRT was delivered, most commonly 30 Gy in 5 fractions, to 320 intracranial lesions (57% intact and 43% surgical cavities) in 235 patients. The median follow-up was 13.4 months (range, 0.8 to 60 mo). LMD developed in 19% of patients with a 1-year LMD rate of 12%. From the diagnosis of LMD, the median overall survival (OS) was 3.8 months (range, 2-20.8 mo). The most common LMD pattern was diffuse nodular (44%). No difference in OS was observed between LMD patterns (P = 0.203). Multivariable analysis identified surgical cavities at significantly higher risk of LMD compared with intact lesions (odds ratio [OR] = 2.30, 95% CI: 1.24, 4.29, P = 0.008). For cavities, radiosensitive tumors (OR = 2.35, 95% CI: 1.04, 5.35, P = 0.041) predicted for LMD, while, for intact metastases, patients receiving treatment with targeted agents or immunotherapy (TA/I) were at lower risk (OR = 0.178, 95% CI: 0.04, 0.79, P = 0.023). CONCLUSIONS Patients who had a brain metastasis resected were at an increased risk of LMD. OS was poor despite treatment of LMD, and no differences in OS based on the pattern of LMD was observed. Treatment with TA/I was observed to be protective against LMD and requires further study.
Collapse
Affiliation(s)
- Timothy K Nguyen
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zain Husain
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chris Heyn
- Department of Neuroradiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Pejman Maralani
- Department of Neuroradiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James Perry
- Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
203
|
Dahshan BA, Weir JS, Bice RP, Renz P, Cifarelli DT, Poplawski L, Hack J, Vargo JA, Cifarelli CP. Dose homogeneity analysis of adjuvant radiation treatment in surgically resected brain metastases: Comparison of IORT, SRS, and IMRT indices. Brachytherapy 2021; 20:426-432. [PMID: 33454200 DOI: 10.1016/j.brachy.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Although surgery remains a treatment option for symptomatic brain metastases, the need for adjuvant radiation after surgery is widely accepted as standard. Despite a multitude of randomized trials aimed at identifying the ideal radiation treatment plan for surgically resected metastases, the development of new delivery regiments necessitates a periodic re-evaluation of dosimetric performance/outcome. Here, we compare the homogeneity index (HI) across three platforms: single-session stereotactic radiosurgery (SRS), multisession stereotactic radiotherapy, and intraoperative radiotherapy (IORT). METHODS AND MATERIALS Patients treated with IORT after surgical resection of brain metastases were identified and dosimetric parameters collected from the dose-volume histograms based on the development of conformal plans for adjuvant radiation using Gamma Knife-SRS (GK-SRS), linear accelerator based intensity-modulated radiation therapy, and IORT. HIs were calculated using four established methods and compared across platforms within the patient cohort. Statistical analyses were performed using analysis of variance. RESULTS The mean maximal doses for the GK-SRS and IMRT plans were 30 Gy and 29 Gy with margin prescription doses of 16 Gy and 24 Gy, respectively. The IORT dose was 30 Gy to the applicator surface. HIs varied based on calculation methods, but maintained consistency when comparing across platforms with IORT having the lower mean HI value (0.56; 95% confidence interval (CI) 0.55-0.60) in single-fraction treatment, compared with GK-SRS (0.77; 95% CI 0.76-0.80). The mean multisession IMRT HI was lower than both single-fraction treatment modalities at 0.41 (95% CI 0.40-0.42). CONCLUSIONS When using the HI as the primary dosimetric parameter for adjuvant radiation plans after surgical resection of brain metastases IORT offers improved dose homogeneity compared with GK-SRS in single-fraction treatment, whereas fractionated LINAC-based IMRT was superior with respect to the HI in comparison among all three methods.
Collapse
Affiliation(s)
- Basem A Dahshan
- Department of Radiation Oncology, West Virginia University, Morgantown, WV
| | - Joshua S Weir
- Department of Radiation Oncology, West Virginia University, Morgantown, WV
| | - Robert P Bice
- Department of Radiation Oncology, West Virginia University, Morgantown, WV
| | - Paul Renz
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA
| | | | - Linda Poplawski
- Department of Radiation Oncology, West Virginia University, Morgantown, WV
| | - Joshua Hack
- Department of Radiation Oncology, West Virginia University, Morgantown, WV
| | - John A Vargo
- Department of Radiation Oncology, UPMC, Pittsburgh, PA
| | - Christopher P Cifarelli
- Department of Radiation Oncology, West Virginia University, Morgantown, WV; Department of Neurosurgery, West Virginia University, Morgantown, WV.
| |
Collapse
|
204
|
Lehrer EJ, Prabhu AV, Sindhu KK, Lazarev S, Ruiz-Garcia H, Peterson JL, Beltran C, Furutani K, Schlesinger D, Sheehan JP, Trifiletti DM. Proton and Heavy Particle Intracranial Radiosurgery. Biomedicines 2021; 9:31. [PMID: 33401613 PMCID: PMC7823941 DOI: 10.3390/biomedicines9010031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
Stereotactic radiosurgery (SRS) involves the delivery of a highly conformal ablative dose of radiation to both benign and malignant targets. This has traditionally been accomplished in a single fraction; however, fractionated approaches involving five or fewer treatments have been delivered for larger lesions, as well as lesions in close proximity to radiosensitive structures. The clinical utilization of SRS has overwhelmingly involved photon-based sources via dedicated radiosurgery platforms (e.g., Gamma Knife® and Cyberknife®) or specialized linear accelerators. While photon-based methods have been shown to be highly effective, advancements are sought for improved dose precision, treatment duration, and radiobiologic effect, among others, particularly in the setting of repeat irradiation. Particle-based techniques (e.g., protons and carbon ions) may improve many of these shortcomings. Specifically, the presence of a Bragg Peak with particle therapy at target depth allows for marked minimization of distal dose delivery, thus mitigating the risk of toxicity to organs at risk. Carbon ions also exhibit a higher linear energy transfer than photons and protons, allowing for greater relative biological effectiveness. While the data are limited, utilization of proton radiosurgery in the setting of brain metastases has been shown to demonstrate 1-year local control rates >90%, which are comparable to that of photon-based radiosurgery. Prospective studies are needed to further validate the safety and efficacy of this treatment modality. We aim to provide a comprehensive overview of clinical evidence in the use of particle therapy-based radiosurgery.
Collapse
Affiliation(s)
- Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (E.J.L.); (K.K.S.); (S.L.)
| | - Arpan V. Prabhu
- Department of Radiation Oncology, UAMS Winthrop P. Rockefeller Cancer Institute University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Kunal K. Sindhu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (E.J.L.); (K.K.S.); (S.L.)
| | - Stanislav Lazarev
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (E.J.L.); (K.K.S.); (S.L.)
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| | - Jennifer L. Peterson
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| | - Keith Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| | - David Schlesinger
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA 22903, USA; (D.S.); (J.P.S.)
| | - Jason P. Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA 22903, USA; (D.S.); (J.P.S.)
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| |
Collapse
|
205
|
Samanci Y, Sisman U, Altintas A, Sarioglu S, Sharifi S, Atasoy Aİ, Bolukbasi Y, Peker S. Hypofractionated frameless gamma knife radiosurgery for large metastatic brain tumors. Clin Exp Metastasis 2021; 38:31-46. [PMID: 33389335 DOI: 10.1007/s10585-020-10068-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/29/2020] [Indexed: 12/30/2022]
Abstract
Hypofractionated stereotactic radiosurgery has become an alternative for metastatic brain tumors (METs). We aimed to analyze the efficacy and safety of frameless hypofractionated Gamma Knife radiosurgery (hfGKRS) in the management of unresected, large METs. All patients who were managed with hfGKRS for unresected, large METs (> 4 cm3) between June 2017 and June 2020 at a single center were reviewed in this retrospective study. Local control (LC), progression-free survival (PFS), overall survival (OS), and toxicities were investigated. A total of 58 patients and 76 METs with regular follow-up were analyzed. LC rate was 98.5% at six months, 96.0% at one year, and 90.6% at 2 years during a median follow-up of 12 months (range, 2-37). The log-rank test indicated no difference in the distribution of LC for any clinical or treatment variable. PFS was 86.7% at 6 months, 66.6% at 1 year, and 58.5% at 2 years. OS was 81% at 6 months, 63.6% at one year, and 50.7% at 2 years. On the log-rank test, clinical parameters such as control status of primary cancer, presence of extracranial metastases, RTOG-RPA class, GPA group, and ds-GPA group were significantly associated with PFS and OS. Patients presented with grade 1 (19.0%), grade 2 (3.5%) and grade 3 (5.2%) side effects. Radiation necrosis was not observed in any patients. Our current results suggest that frameless hfGKRS for unresected, large METs is a rational alternative in selected patients with promising results.
Collapse
Affiliation(s)
- Yavuz Samanci
- Department of Neurosurgery, Koç University Hospital, Istanbul, Turkey
| | - Uluman Sisman
- School of Medicine, Koç University, Istanbul, Turkey
| | | | | | | | - Ali İhsan Atasoy
- Department of Radiation Oncology, Koç University Hospital, Istanbul, Turkey
| | - Yasemin Bolukbasi
- Department of Radiation Oncology, School of Medicine, Koç University, Istanbul, Turkey
| | - Selcuk Peker
- Department of Neurosurgery, School of Medicine, Koç University, Davutpasa Caddesi No:4, 34010, Zeytinburnu/İstanbul, Turkey.
| |
Collapse
|
206
|
Diamond BH, Jairam V, Zuberi S, Li JY, Marquis TJ, Rutter CE, Park HS. Linear accelerator-based single-fraction stereotactic radiosurgery versus hypofractionated stereotactic radiotherapy for intact and resected brain metastases up to 3 cm: A multi-institutional retrospective analysis. JOURNAL OF RADIOSURGERY AND SBRT 2021; 7:179-187. [PMID: 33898081 PMCID: PMC8055233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Single-fraction stereotactic radiosurgery (SF-SRS) is typically used to provide local control of brain metastases. Recently, hypofractionated stereotactic radiotherapy (HF-SRT) has been utilized for large brain metastases. Data comparing these two modalities are limited for brain metastases ≤3 cm. METHODS Patients with brain metastases receiving linear accelerator-based SF-SRS or HF-SRT were identified at three institutions. Local progression-free survival (LPFS), intracranial progression-free survival (ICPFS), overall survival (OS), and radionecrosis-free survival (RNFS) were determined from time of treatment. RESULTS 108 patients (76 intact, 32 resected) with 184 brain metastases (142 intact, 42 resected) were included. There were no significant differences between SF-SRS and HF-SRT for intact metastases in 1-year LPFS (62.8% vs. 58.5%, p=0.631), ICPFS (56.9% vs. 55.3%, p=0.300), and OS (71.6% vs. 70.6%, p=0.096), or for resected metastases in 1-year LPFS (67.3% vs. 57.8%, p=0.288), ICPFS (64.8% vs. 57%, p=0.291), and OS (64.8% vs. 66.1%, p=0.603). There were also no significant differences in 1-year RNFS between SF-SRS and HF-SRT (92% vs. 92%, p=0.325). CONCLUSIONS There were no significant differences in LPFS, ICPFS, OS, and RNFS between SF-SRS and HF-SRT for brain metastases ≤3 cm suggesting SF-SRS may be preferred due to similar outcomes and reduced number of fractions.
Collapse
Affiliation(s)
- Brett H. Diamond
- Tufts University School of Medicine, Department of Radiation Oncology, Boston, MA 02111, USA
| | - Vikram Jairam
- Yale School of Medicine, Department of Therapeutic Radiology, New Haven, CT 06511, USA
| | - Shaharyar Zuberi
- University of Connecticut School of Medicine, Department of Radiation Oncology, Farmington, CT 06032, USA
| | - Jessie Y. Li
- Yale School of Medicine, Department of Therapeutic Radiology, New Haven, CT 06511, USA
| | - Timothy J. Marquis
- Yale School of Medicine, Department of Medicine, New Haven, CT 06511, USA
| | - Charles E. Rutter
- University of Connecticut School of Medicine, Department of Radiation Oncology, Farmington, CT 06032, USA
- Hartford HealthCare, Department of Radiation Oncology, Hartford, CT 06106, USA
| | - Henry S. Park
- Tufts University School of Medicine, Department of Radiation Oncology, Boston, MA 02111, USA
| |
Collapse
|
207
|
Redmond KJ, Gui C, Benedict S, Milano MT, Grimm J, Vargo JA, Soltys SG, Yorke E, Jackson A, El Naqa I, Marks LB, Xue J, Heron DE, Kleinberg LR. Tumor Control Probability of Radiosurgery and Fractionated Stereotactic Radiosurgery for Brain Metastases. Int J Radiat Oncol Biol Phys 2020; 110:53-67. [PMID: 33390244 DOI: 10.1016/j.ijrobp.2020.10.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE As part of the American Association of Physicists in Medicine Working Group on Stereotactic Body Radiotherapy, tumor control probability (TCP) after stereotactic radiosurgery (SRS) and fractionated stereotactic radiosurgery (fSRS) for brain metastases was modeled based on pooled dosimetric and clinical data from published English-language literature. METHODS AND MATERIALS PubMed-indexed studies published between January 1995 and September 2017 were used to evaluate dosimetric and clinical predictors of TCP after SRS or fSRS for brain metastases. Eligible studies had ≥10 patients and included detailed dose-fractionation data with corresponding ≥1-year local control (LC) data, typically evaluated as a >20% increase in diameter of the targeted lesion using the pre-SRS diameter as a reference. RESULTS Of 2951 potentially eligible manuscripts, 56 included sufficient dose-volume data for analyses. Accepting that necrosis and pseudoprogression can complicate the assessment of LC, for tumors ≤20 mm, single-fraction doses of 18 and 24 Gy corresponded with >85% and 95% 1-year LC rates, respectively. For tumors 21 to 30 mm, an 18 Gy single-fraction dose was associated with 75% LC. For tumors 31 to 40 mm, a 15 Gy single-fraction dose yielded ∼69% LC. For 3- to 5-fraction fSRS using doses in the range of 27 to 35 Gy, 80% 1-year LC has been achieved for tumors of 21 to 40 mm in diameter. CONCLUSIONS TCP for SRS and fSRS are presented. For small lesions ≤20 mm, single doses of ≈18 Gy appear generally associated with excellent rates of LC; for melanoma, higher doses seem warranted. For larger lesions >20 mm, local control rates appear to be ≈ 70% to 75% with usual doses of 15 to 18 Gy, and in this setting, fSRS regimens should be considered. Greater consistency in reporting of dosimetric and LC data is needed to facilitate future pooled analyses. As systemic and biologic therapies evolve, updated analyses will be needed to further assess the necessity, efficacy, and toxicity of SRS and fSRS.
Collapse
Affiliation(s)
- Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Chengcheng Gui
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stanley Benedict
- Department of Radiation Oncology, University of California at Davis Comprehensive Cancer Center, Sacramento, California
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Medical Center, Danville, Pennsylvania
| | - J Austin Vargo
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Ellen Yorke
- Medical Physics Department, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Medical Physics Department, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Issam El Naqa
- Department of Machine Learning and Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Lawrence B Marks
- Department of Radiation Oncology and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill
| | - Jinyu Xue
- Department of Radiation Oncology, New York University, New York, New York
| | - Dwight E Heron
- Department of Radiation Oncology, Bon Secours Mercy Health System, Youngstown, Ohio
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
208
|
Gutschenritter T, Venur VA, Combs SE, Vellayappan B, Patel AP, Foote M, Redmond KJ, Wang TJC, Sahgal A, Chao ST, Suh JH, Chang EL, Ellenbogen RG, Lo SS. The Judicious Use of Stereotactic Radiosurgery and Hypofractionated Stereotactic Radiotherapy in the Management of Large Brain Metastases. Cancers (Basel) 2020; 13:cancers13010070. [PMID: 33383817 PMCID: PMC7795798 DOI: 10.3390/cancers13010070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Brain metastases are the most common cause of cancerous brain tumors in adults. Large brain metastases are an especially difficult clinical scenario as patients often have debilitating symptoms from these tumors, and large tumors are more difficult to control with traditional single treatment radiation regimens alone or after surgery. Hypofractionated stereotactic radiotherapy is a novel way to deliver the higher doses of radiation to control large tumors either after surgery (most common), alone (common), or potentially before surgery (uncommon). Herein, we describe how delivering high doses over three or five treatments may improve tumor control and decrease complication rates compared to more traditional single treatment regimens for brain metastases larger than 2 cm in maximum dimension. Abstract Brain metastases are the most common intracranial malignant tumor in adults and are a cause of significant morbidity and mortality for cancer patients. Large brain metastases, defined as tumors with a maximum dimension >2 cm, present a unique clinical challenge for the delivery of stereotactic radiosurgery (SRS) as patients often present with neurologic symptoms that require expeditious treatment that must also be balanced against the potential consequences of surgery and radiation therapy—namely, leptomeningeal disease (LMD) and radionecrosis (RN). Hypofractionated stereotactic radiotherapy (HSRT) and pre-operative SRS have emerged as novel treatment techniques to help improve local control rates and reduce rates of RN and LMD for this patient population commonly managed with post-operative SRS. Recent literature suggests that pre-operative SRS can potentially half the risk of LMD compared to post-operative SRS and that HSRT can improve risk of RN to less than 10% while improving local control when meeting the appropriate goals for biologically effective dose (BED) and dose-volume constraints. We recommend a 3- or 5-fraction regimen in lieu of SRS delivering 15 Gy or less for large metastases or resection cavities. We provide a table comparing the BED of commonly used SRS and HSRT regimens, and provide an algorithm to help guide the management of these challenging clinical scenarios.
Collapse
Affiliation(s)
- Tyler Gutschenritter
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA;
| | - Vyshak A. Venur
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA;
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany;
- Institute for Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Balamurugan Vellayappan
- Department of Radiation Oncology, National University Cancer Institute, Singapore 119074, Singapore;
| | - Anoop P. Patel
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA; (A.P.P.); (R.G.E.)
| | - Matthew Foote
- Department of Radiation Oncology, Princess Alexandra Hospital, University of Queensland, ICON Cancer Care, Brisbane 4072, Australia;
| | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, MD 21093, USA;
| | - Tony J. C. Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
| | - Samuel T. Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; (S.T.C.); (J.H.S.)
| | - John H. Suh
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; (S.T.C.); (J.H.S.)
| | - Eric L. Chang
- Department of Radiation Oncology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA;
| | - Richard G. Ellenbogen
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA; (A.P.P.); (R.G.E.)
| | - Simon S. Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA;
- Correspondence: ; Tel.: +1-206-598-4100
| |
Collapse
|
209
|
Andruska N, Kennedy WR, Bonestroo L, Anderson R, Huang Y, Robinson CG, Abraham C, Tsien C, Knutson N, Rich KM, Spencer C, Huang J. Dosimetric predictors of symptomatic radiation necrosis after five-fraction radiosurgery for brain metastases. Radiother Oncol 2020; 156:181-187. [PMID: 33310010 DOI: 10.1016/j.radonc.2020.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 12/01/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND To identify factors predictive of developing symptomatic radiation necrosis (sRN) among patients with either intact or resected brain metastases undergoing five-fraction stereotactic radiosurgery (5fSRS). METHODS Multi-institutional retrospective review of 117 brain metastases from 83 patients treated with 5fSRS. The cumulative incidence of sRN and predictors of sRN were calculated using Gray's competing risks and Cox regression. RESULTS The median dose of 5fSRS was 30 Gy (range: 25-40), and 21 lesions (18%) had prior SRS. After a median follow-up of 10.3 months (range: 3-52), the cumulative sRN incidence was 15%, with a median time to sRN of 6.9 months (range: 1.8-31.7). sRN incidence was significantly higher among the lesions treated with prior SRS: hazard ratio (HR): 7.48 [95% confidence interval: 2.57-21.8]. Among lesions without prior SRS, higher volume of uninvolved brain receiving 25 Gy (BrainV25; HR: 1.07 [1.02-1.12]) and 30 Gy (BrainV30; HR: 1.07 [1.01-1.33]) were the most significant factors associated with sRN. Similar results were also observed among the patients with prior SRS. For lesions without prior SRS, BrainV25 > 16 cm3 (HR: 11.7 [1.47-93.3]) and BrainV30 > 10 cm3 (HR: 7.08 [1.52-33.0]) were associated with significantly higher risk of sRN. At two years, the sRN incidence was 21% if violating either dosimetric threshold and 2% if violating neither (p = .007). CONCLUSION BrainV25 and BrainV30 are significant dosimetric predictors of sRN of brain metastases treated with 5fSRS. In the absence of prior SRS, maintaining BrainV25Gy < 16 cm3 and BrainV30Gy < 10 cm3 may minimize sRN risk.
Collapse
Affiliation(s)
- Neal Andruska
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA.
| | - William R Kennedy
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA
| | - Liberty Bonestroo
- Delbert Day Cancer Institute, Phelps County Regional Medical Center, Rolla, USA
| | - Rebecca Anderson
- Delbert Day Cancer Institute, Phelps County Regional Medical Center, Rolla, USA
| | - Yi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA
| | - Christopher Abraham
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA
| | - Christina Tsien
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA
| | - Nels Knutson
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA
| | - Keith M Rich
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, USA
| | - Christopher Spencer
- Delbert Day Cancer Institute, Phelps County Regional Medical Center, Rolla, USA
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, USA.
| |
Collapse
|
210
|
Combs SE, Baumert BG, Bendszus M, Bozzao A, Brada M, Fariselli L, Fiorentino A, Ganswindt U, Grosu AL, Lagerwaard FL, Niyazi M, Nyholm T, Paddick I, Weber DC, Belka C, Minniti G. ESTRO ACROP guideline for target volume delineation of skull base tumors. Radiother Oncol 2020; 156:80-94. [PMID: 33309848 DOI: 10.1016/j.radonc.2020.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE For skull base tumors, target definition is the key to safe high-dose treatments because surrounding normal tissues are very sensitive to radiation. In the present work we established a joint ESTRO ACROP guideline for the target volume definition of skull base tumors. MATERIAL AND METHODS A comprehensive literature search was conducted in PubMed using various combinations of the following medical subjects headings (MeSH) and free-text words: "radiation therapy" or "stereotactic radiosurgery" or "proton therapy" or "particle beam therapy" and "skull base neoplasms" "pituitary neoplasms", "meningioma", "craniopharyngioma", "chordoma", "chondrosarcoma", "acoustic neuroma/vestibular schwannoma", "organs at risk", "gross tumor volume", "clinical tumor volume", "planning tumor volume", "target volume", "target delineation", "dose constraints". The ACROP committee identified sixteen European experts in close interaction with the ESTRO clinical committee who analyzed and discussed the body of evidence concerning target delineation. RESULTS All experts agree that magnetic resonance (MR) images with high three-dimensional spatial accuracy and tissue-contrast definition, both T2-weighted and volumetric T1-weighted sequences, are required to improve target delineation. In detail, several key issues were identified and discussed: i) radiation techniques and immobilization, ii) imaging techniques and target delineation, and iii) technical aspects of radiation treatments including planning techniques and dose-fractionation schedules. Specific target delineation issues with regard to different skull base tumors, including pituitary adenomas, meningiomas, craniopharyngiomas, acoustic neuromas, chordomas and chondrosarcomas are presented. CONCLUSIONS This ESTRO ACROP guideline achieved detailed recommendations on target volume definition for skull base tumors, as well as comprehensive advice about imaging modalities and radiation techniques.
Collapse
Affiliation(s)
- Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Munich, Germany; German Cancer Consortium (DKTK) Partner Site (DKTK), Munich, Germany
| | - Brigitta G Baumert
- Institute of Radiation Oncology, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Germany
| | - Alessandro Bozzao
- Dipartimento NESMOS, Università Sapienza Roma, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Michael Brada
- Department of Radiation Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
| | - Laura Fariselli
- Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alba Fiorentino
- Radiation Oncology Department, General Regional Hospital F. Miulli, Acquaviva delle fonti, Italy
| | - Ute Ganswindt
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anca L Grosu
- Department of Radiation Oncology, Medical Faculty, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| | - Frank L Lagerwaard
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, The Netherlands
| | - Maximilian Niyazi
- German Cancer Consortium (DKTK) Partner Site (DKTK), Munich, Germany; Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Tufve Nyholm
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Ian Paddick
- Queen Square Radiosurgery Centre, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | | | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
211
|
Significant correlation between gross tumor volume (GTV) D98% and local control in multifraction stereotactic radiotherapy (MF-SRT) for unresected brain metastases. Radiother Oncol 2020; 154:260-268. [PMID: 33245944 DOI: 10.1016/j.radonc.2020.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Stereotactic radiotherapy (SRT) should be applied with a biologically effective dose with an α/β of 12 (BED12) ≥ 40 Gy to reach a 1-year local control (LC) ≥ 70%. The aims of this retrospective study were to report a series of 81 unresected large brain metastases treated with Linac-based multifraction SRT according to the ICRU 91 and to identify predictive factors associated with LC. METHODS Included in this study were the first 81 brain metastases (BM) consecutively treated with Linac-based volumetric modulated arc therapy (VMAT) multifraction SRT from 2017 to 2019. The prescribed dose was 33 Gy for the GTV and 23.1 Gy (70% isodose line) for the PTV in 3 fractions (3f). Mean BM largest diameter and GTV were 25.1 mm and 7.2 cc respectively. Mean follow-up was 10.2 months. RESULTS LC was 79.7% and 69.7% at 1 and 2 years respectively. Significant predictive factors of LC were GTV D98% (HR = 0.84, CI 95% = 0.75-0.95, p = 0.004) and adenocarcinoma as the histological type (HR = 0.29, CI 95% = 0.09-0.96, p = 0.042) in univariate and multivariate analysis. A threshold of 29 Gy for GTV D98% was significantly correlated to LC (1-year LC = 91.9% for GTV D98% ≥ 29 Gy vs 69.6% for GTV D98% < 29 Gy (p = 0.030)), corresponding to a BED12 = 52.4 Gy. No tumor progression was observed for a BED12 ≥ 53.4 Gy, corresponding to a GTV D98% ≥ 20 Gy /1f and GTV D98% ≥ 29.4 Gy 3f. Median OS was 15 months. Symptomatic radionecrosis occurred in 4.9% of cases. CONCLUSION The GTV D98% is a strong reproducible significant predictive factor of LC for brain SRT. Dose prescription should lead to a GTV BED12 98% ≥ 52.4-53.4 Gy to significantly improve LC, corresponding to respectively a GTV D98% ≥ 19.7-20 Gy/1f and 29-29.4 Gy/3f.
Collapse
|
212
|
Brun L, Dupic G, Chassin V, Chautard E, Moreau J, Dedieu V, Khalil T, Verrelle P, Lapeyre M, Biau J. Hypofractionated stereotactic radiotherapy for large brain metastases: Optimizing the dosimetric parameters. Cancer Radiother 2020; 25:1-7. [PMID: 33257109 DOI: 10.1016/j.canrad.2020.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE Stereotactic radiotherapy plays a major role in the treatment of brain metastases (BM). We aimed to compare the dosimetric results of four plans for hypofractionated stereotactic radiotherapy (HFSRT) for large brain metastases. MATERIAL AND METHODS Ten patients treated with upfront NovalisTx® non-coplanar multiple dynamic conformal arcs (DCA) HFSRT for≥25mm diameter single BM were included. Three other volumetric modulated arc therapy (VMAT) treatment plans were evaluated: with coplanar arcs (Eclipse®, Varian, VMATcEclipse®), with coplanar and non-coplanar arcs (VMATncEclipse®), and with non-coplanar arcs (Elements Cranial SRS®, Brainlab, VMATncElements®). The marginal dose prescribed for the PTV was 23.1Gy (isodose 70%) in three fractions. The mean GTV was 27mm3. RESULTS Better conformity indices were found with all VMAT techniques compared to DCA (1.05 vs 1.28, P<0.05). Better gradient indices were found with VMATncElements® and DCA (2.43 vs 3.02, P<0.001). High-dose delivery in healthy brain was lower with all VMAT techniques compared to DCA (5.6 to 6.3 cc vs 9.4 cc, P<0.001). Low-dose delivery (V5Gy) was lower with VMATncEclipse® or VMATncElements® than with DCA (81 or 94 cc vs 110 cc, P=0.02). CONCLUSIONS NovalisTx® VMAT HFSRT for≥25mm diameter brain metastases provides the best dosimetric compromise in terms of target coverage, sparing of healthy brain tissue and low-dose delivery compared to DCA.
Collapse
Affiliation(s)
- L Brun
- Department of radiation oncology, Jean-Perrin center, 63011 Clermont-Ferrand, France
| | - G Dupic
- Department of radiation oncology, Jean-Perrin center, 63011 Clermont-Ferrand, France.
| | - V Chassin
- Department of medical physics, Jean-Perrin center, Clermont-Ferrand, France
| | - E Chautard
- Clermont Auvergne university, INSERM, U1240 IMoST, 63000 Clermont-Ferrand, France; Department of pathology, Clermont Auvergne university, Jean-Perrin center, 63011 Clermont-Ferrand, France
| | - J Moreau
- Department of radiation oncology, Jean-Perrin center, 63011 Clermont-Ferrand, France
| | - V Dedieu
- Department of medical physics, Jean-Perrin center, Clermont-Ferrand, France
| | - T Khalil
- Department of neurosurgery, Clermont-Ferrand hospital, 63003 Clermont-Ferrand, France
| | - P Verrelle
- Department of radiation oncology, Jean-Perrin center, 63011 Clermont-Ferrand, France
| | - M Lapeyre
- Department of radiation oncology, Jean-Perrin center, 63011 Clermont-Ferrand, France
| | - J Biau
- Department of radiation oncology, Jean-Perrin center, 63011 Clermont-Ferrand, France; Clermont Auvergne university, INSERM, U1240 IMoST, 63000 Clermont-Ferrand, France
| |
Collapse
|
213
|
Chan M, Ferguson D, Ni Mhurchu E, Yuan R, Gondara L, McKenzie M, Olson R, Thiessen B, Lalani N, Ma R, Nichol A. Patients with pretreatment leukoencephalopathy and older patients have more cognitive decline after whole brain radiotherapy. Radiat Oncol 2020; 15:271. [PMID: 33239056 PMCID: PMC7687765 DOI: 10.1186/s13014-020-01717-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose To investigate predictors of cognitive decline after whole brain radiotherapy (WBRT) for brain metastases. Methods A secondary analysis of a phase 2 clinical trial was conducted in patients who received stereotactic radiosurgery for 1–10 brain metastases and WBRT (NCT01046123). The Montreal Cognitive Assessment (MoCA) was performed at baseline and every 3 months after WBRT. Baseline T2-weighted fluid attenuation inversion recovery magnetic resonance imaging was independently assessed by two neuroradiologists for the presence of white matter hyperintensities (WMH) using the Fazekas visual rating scale. WMH were also manually segmented for volumetric analysis. Univariable and multivariable logistic regression were used to test the association between baseline variables and MoCA score decline.
Results Forty-six patients survived ≥ 3 months after treatment. Age (OR 1.12 (1.04–1.21), p < 0.01), baseline WMH volume (OR 1.20, 95% CI 1.06–1.52, p = 0.02) and baseline Fazekas score ≥ 3/6 (OR 6.4, 95% CI 1.7–24.7, p < 0.01) were predictive of MoCA score decline. In multivariable analysis, age was the only significant predictor of MoCA decline. However, all three patients with pre-treatment leukoencephalopathy (Fazekas score = 6/6) had notable adverse outcomes due to cognitive impairment: one required full-time home nursing support and two were institutionalized. Conclusion A greater decline in cognition after WBRT was observed in older patients and patients with a higher baseline WMH burden. Although this study is small and hypothesis-generating, we propose that radiation oncologists should exercise caution in prescribing WBRT if leukoencephalopathy is present on pre-treatment imaging. Trial Registration: clinicaltrials.gov identifier NCT01046123. First posted January 11, 2010. https://clinicaltrials.gov/ct2/show/NCT01046123
Collapse
Affiliation(s)
- Matthew Chan
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Radiation Oncology, BC Cancer - Vancouver, 600 West 10th Ave, Vancouver, BC, V5Z 4E6, Canada
| | - David Ferguson
- Department of Radiology, BC Cancer - Vancouver, Vancouver, BC, Canada
| | - Elaine Ni Mhurchu
- Department of Radiology, BC Cancer - Vancouver, Vancouver, BC, Canada
| | - Ren Yuan
- Department of Radiology, BC Cancer - Vancouver, Vancouver, BC, Canada
| | - Lovedeep Gondara
- Department of Population Oncology, BC Cancer - Vancouver Centre, Vancouver, BC, Canada
| | - Michael McKenzie
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Radiation Oncology, BC Cancer - Vancouver, 600 West 10th Ave, Vancouver, BC, V5Z 4E6, Canada
| | - Robert Olson
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Radiation Oncology, BC Cancer - Prince George, Prince George, BC, Canada
| | - Brian Thiessen
- Department of Medical Oncology, BC Cancer - Vancouver, Vancouver, BC, Canada
| | - Nafisha Lalani
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Radiation Oncology, BC Cancer - Vancouver, 600 West 10th Ave, Vancouver, BC, V5Z 4E6, Canada
| | - Roy Ma
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Radiation Oncology, BC Cancer - Vancouver, 600 West 10th Ave, Vancouver, BC, V5Z 4E6, Canada
| | - Alan Nichol
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. .,Department of Radiation Oncology, BC Cancer - Vancouver, 600 West 10th Ave, Vancouver, BC, V5Z 4E6, Canada.
| |
Collapse
|
214
|
Nakaji P, Smith K, Youssef E, Thomas T, Pinnaduwage D, Rogers L, Wallstrom G, Brachman D. Resection and Surgically Targeted Radiation Therapy for the Treatment of Larger Recurrent or Newly Diagnosed Brain Metastasis: Results From a Prospective Trial. Cureus 2020; 12:e11570. [PMID: 33224684 PMCID: PMC7678759 DOI: 10.7759/cureus.11570] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction Achieving durable local control (LC) for larger (e.g., >2-3 cm) brain metastasis whether newly diagnosed or recurrent remains problematic. Resection (R) alone is typically insufficient and adding radiation therapy (RT) still results in a 12-month recurrence rate of 20% or more in many series. Hypothesizing that R plus immediate radiation utilizing brachytherapy may improve outcomes for this cohort of patients, we designed and prospectively evaluated a permanently implanted surgically targeted radiation therapy (STaRT) device consisting of cesium-131 (Cs-131) seeds positioned within a collagen carrier (GammaTile, GT Medical Technologies, Tempe, AZ). The device was designed to prevent direct source-to-brain contact and maintain inter-source spacing after closure. Methods This was a subgroup analysis of a cohort of patients with either recurrent or previously untreated brain metastases enrolled in a prospective, multi-histology single-arm trial (ClinicalTrials.gov, NCT#03088579), conducted between February 2013 and February 2018, of resection and tumor bed brachytherapy with Cs-131 containing permanently implanted collagen tiles to deliver 60 Gray (Gy) at .5 cm depth. No additional local therapy was given without progression. Results A total of 16 metastases in 11 patients were treated; 12 tumors were recurrent and four were previously untreated. The median preoperative maximum diameter was 3.2 cm (range: 1.9-5.1 cm). Histology was seven breasts, six lungs, and three sarcomas. The median age was 60 years (range: 41-80 years); the Karnofsky Performance Status (KPS) was 70 (range: 70-90). The cohort consisted of seven females and four males. The mean time for implantation completion was five minutes. The median overall survival (OS) was 9.3 months. At a median radiographic follow-up of 9.5 months' treatment, site progression was found in 1/16 (6%) at 10.9 months, and the median treatment site time-to-progression (TTP) has not been reached [95% confidence interval (CI): >10.9 months]. At 12 months, the Kaplan-Meier (K-M) estimates for LC after R+STaRT for all tumors was 83%; for previously untreated tumors, LC at 12 months was 100% and for recurrent tumors, it was 80%. Two tumor beds (12.5%) experienced radiation brain changes: one had grade two and the other grade three. No surgical adverse events occurred. Conclusion In this single-arm precommercial study, R+STaRT demonstrated excellent safety and LC in this cohort. The device has recently received FDA clearance for use in newly diagnosed and recurrent brain metastasis, and randomized clinical trials vs. standard of care treatments in both settings are scheduled to open in 2020.
Collapse
Affiliation(s)
- Peter Nakaji
- Neurological Surgery, Barrow Neurological Institute, Phoenix, USA
- Neurological Surgery, Banner University Medical Center Phoenix/University of Arizona College of Medicine, Phoenix, USA
| | - Kris Smith
- Neurological Surgery, Barrow Neurological Institute, Phoenix, USA
| | - Emad Youssef
- Radiation Oncology, Barrow Neurological Institute, Phoenix, USA
| | - Theresa Thomas
- Radiation Oncology, St. Joseph's Hospital and Medical Center, Phoenix, USA
| | | | - Leland Rogers
- Radiation Oncology, Barrow Neurological Institute, Phoenix, USA
| | | | - David Brachman
- Radiation Oncology, GT Medical Technologies, Tempe, USA
- Radiation Oncology, Barrow Neurological Institute, Phoenix, USA
| |
Collapse
|
215
|
Nabors LB, Portnow J, Ahluwalia M, Baehring J, Brem H, Brem S, Butowski N, Campian JL, Clark SW, Fabiano AJ, Forsyth P, Hattangadi-Gluth J, Holdhoff M, Horbinski C, Junck L, Kaley T, Kumthekar P, Loeffler JS, Mrugala MM, Nagpal S, Pandey M, Parney I, Peters K, Puduvalli VK, Robins I, Rockhill J, Rusthoven C, Shonka N, Shrieve DC, Swinnen LJ, Weiss S, Wen PY, Willmarth NE, Bergman MA, Darlow SD. Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18:1537-1570. [PMID: 33152694 DOI: 10.6004/jnccn.2020.0052] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of adult CNS cancers ranging from noninvasive and surgically curable pilocytic astrocytomas to metastatic brain disease. The involvement of an interdisciplinary team, including neurosurgeons, radiation therapists, oncologists, neurologists, and neuroradiologists, is a key factor in the appropriate management of CNS cancers. Integrated histopathologic and molecular characterization of brain tumors such as gliomas should be standard practice. This article describes NCCN Guidelines recommendations for WHO grade I, II, III, and IV gliomas. Treatment of brain metastases, the most common intracranial tumors in adults, is also described.
Collapse
Affiliation(s)
| | | | - Manmeet Ahluwalia
- 3Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | - Henry Brem
- 5The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Steven Brem
- 6Abramson Cancer Center at the University of Pennsylvania
| | | | - Jian L Campian
- 8Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | | | | | - Craig Horbinski
- 13Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | - Larry Junck
- 14University of Michigan Rogel Cancer Center
| | | | - Priya Kumthekar
- 13Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | - Manjari Pandey
- 19St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | | | | | - Vinay K Puduvalli
- 21The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Ian Robins
- 22University of Wisconsin Carbone Cancer Center
| | - Jason Rockhill
- 23Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | | | | | - Lode J Swinnen
- 5The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | | |
Collapse
|
216
|
Chen H, Louie A, Higginson D, Palma D, Colaco R, Sahgal A. Stereotactic Radiosurgery and Stereotactic Body Radiotherapy in the Management of Oligometastatic Disease. Clin Oncol (R Coll Radiol) 2020; 32:713-727. [DOI: 10.1016/j.clon.2020.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/05/2020] [Accepted: 06/26/2020] [Indexed: 01/29/2023]
|
217
|
Sayan M, Şahin B, Mustafayev TZ, Kefelioğlu EŞS, Vergalasova I, Gupta A, Balmuk A, Güngör G, Ohri N, Weiner J, Karaarslan E, Özyar E, Atalar B. Risk of symptomatic radiation necrosis in patients treated with stereotactic radiosurgery for brain metastases. Neurocirugia (Astur) 2020; 32:S1130-1473(20)30111-1. [PMID: 33082103 DOI: 10.1016/j.neucir.2020.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTIO Stereotactic radiosurgery (SRS) is a treatment option in the initial management of patients with brain metastases. While its efficacy has been demonstrated in several prior studies, treatment-related complications, particularly symptomatic radiation necrosis (RN), remains as an obstacle for wider implementation of this treatment modality. We thus examined risk factors associated with the development of symptomatic RN in patients treated with SRS for brain metastases. PATIENTS AND METHODS We performed a retrospective review of our institutional database to identify patients with brain metastases treated with SRS. Diagnosis of symptomatic RN was determined by appearance on serial MRIs, MR spectroscopy, requirement of therapy, and the development of new neurological complaints without evidence of disease progression. RESULTS We identified 323 brain metastases treated with SRS in 170 patients from 2009 to 2018. Thirteen patients (4%) experienced symptomatic RN after treatment of 23 (7%) lesions. After SRS, the median time to symptomatic RN was 8.3 months. Patients with symptomatic RN had a larger mean target volume (p<0.0001), and thus larger V100% (p<0.0001), V50% (p<0.0001), V12Gy (p<0.0001), and V10Gy (p=0.0002), compared to the rest of the cohort. Single-fraction treatment (p=0.0025) and diabetes (p=0.019) were also significantly associated with symptomatic RN. CONCLUSION SRS is an effective treatment option for patients with brain metastases; however, a subset of patients may develop symptomatic RN. We found that patients with larger tumor size, larger plan V100%, V50%, V12Gy, or V10Gy, who received single-fraction SRS, or who had diabetes were all at higher risk of symptomatic RN.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| | - Bilgehan Şahin
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Teuta Zoto Mustafayev
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | | | - Irina Vergalasova
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Apar Gupta
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Aykut Balmuk
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Görkem Güngör
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Nisha Ohri
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Joseph Weiner
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Ercan Karaarslan
- Department of Radiology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Enis Özyar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Banu Atalar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
218
|
Abstract
Brain metastases (BM) are the most common intracranial neoplasm and represent a major clinical challenge across many medical disciplines. The incidence of BM is increasing, largely due to improvements in primary disease therapeutics conferring greater systemic control, and advancements in neuroimaging techniques and availability leading to earlier diagnosis. In recent years, the landscape of BM treatment has changed significantly with the advent of personalized targeted chemotherapies and immunotherapy, the adoption of focal radiotherapy (RT) for higher intracranial disease burden, and the implementation of new surgical strategies. The increasing permutations of options available for the treatment of patients diagnosed with BM necessitate coordinated care by a multidisciplinary team. This review discusses the current treatment regimens for BM as well as examines the salient features of a modern multidisciplinary approach.
Collapse
|
219
|
Putz F, Weissmann T, Oft D, Schmidt MA, Roesch J, Siavooshhaghighi H, Filimonova I, Schmitter C, Mengling V, Bert C, Frey B, Lettmaier S, Distel LV, Semrau S, Fietkau R. FSRT vs. SRS in Brain Metastases-Differences in Local Control and Radiation Necrosis-A Volumetric Study. Front Oncol 2020; 10:559193. [PMID: 33102223 PMCID: PMC7554610 DOI: 10.3389/fonc.2020.559193] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background: While the role of stereotactic radiotherapy for brain metastases is increasing, evidence on the comparative efficacy and safety of fractionated stereotactic radiotherapy (FSRT) and single-session radiosurgery (SRS) is scarce. Methods: Longitudinal volumetric analysis was performed in a consecutive cohort of 120 patients and 190 brain metastases (>0.065 cm3 in volume / > ~5 mm in diameter) treated exclusively with FSRT (n = 98) and SRS (n = 92), respectively. A total of 972 tumor segmentations was used, averaging 5.1 time points per metastasis. Progression was defined using a volumetric extension of the RANO-BM criteria. Local control and radionecrosis were compared for lesions treated with FSRT and SRS, respectively. Results: Metastases treated with FSRT were significantly larger at baseline (mean, 4.66 vs. 0.40 cm3, p < 0.001). Biologically effective dose (BED) for metastases (α/β = 12, linear-quadratic-cubic model) was significantly associated with local control, whereas BED for normal brain (α/β = 2, linear-quadratic model) was significantly associated with radionecrosis. Median time to local progression was 22.9 months in the FSRT group compared to 14.5 months in the SRS group (p = 0.022). Overall radionecrosis rate at 12 months was 3.4% for FSRT and 14.8% for SRS (p = 0.010). Radionecrosis °IV requiring resection with histologic proof of radiation necrosis also was significantly reduced in the FSRT group (FSRT 0.0% vs. SRS 3.9%, p = 0.041). In multivariate analysis, FSRT was associated with reduced risk of progression (HR 0.47, p = 0.015) and reduced risk of radionecrosis (HR 0.18, p = 0.045). Conclusions: This volumetric study provides initial evidence that the improvements in therapeutic ratio expected for FSRT in larger brain metastases, might equally extend into the domain of smaller metastases, traditionally less considered for fractionated treatment. FSRT might constitute an important tool to further increase local control and reduce radionecrosis risk in stereotactic radiotherapy for brain metastases, that should be assessed in randomized intervention trials.
Collapse
Affiliation(s)
- Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Oft
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manuel Alexander Schmidt
- Department of Neuroradiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Roesch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hadi Siavooshhaghighi
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Irina Filimonova
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Charlotte Schmitter
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Mengling
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Lettmaier
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luitpold Valentin Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Semrau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
220
|
Risk of radiation necrosis after hypofractionated stereotactic radiotherapy (HFSRT) for brain metastases: a single center retrospective study. J Neurooncol 2020; 149:447-453. [DOI: 10.1007/s11060-020-03628-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/18/2020] [Indexed: 01/11/2023]
|
221
|
Perlow HK, Dibs K, Liu K, Jiang W, Rajappa P, Blakaj DM, Palmer J, Raval RR. Whole-Brain Radiation Therapy Versus Stereotactic Radiosurgery for Cerebral Metastases. Neurosurg Clin N Am 2020; 31:565-573. [PMID: 32921352 DOI: 10.1016/j.nec.2020.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Whole-brain radiation therapy (WBRT) was frequently used to treat brain metastases in the past. Stereotactic radiosurgery (SRS) is now generally preferred to WBRT for patients with limited brain metastases. SRS can also be used to treat extensive brain metastases (>10-15 metastases), and clinical trials are currently comparing WBRT with SRS for extensive disease. SRS may allow for an increased risk of radiation necrosis or leptomeningeal disease dissemination after treatment. Preoperative SRS and multifraction radiotherapy decrease the risk of these side effects and may soon become standard of care. Combining SRS with immune checkpoint inhibitors may improve patient outcomes.
Collapse
Affiliation(s)
- Haley K Perlow
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA
| | - Khaled Dibs
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA
| | - Kevin Liu
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA
| | - William Jiang
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA
| | - Prajwal Rajappa
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA; Department of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Dukagjin M Blakaj
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA
| | - Joshua Palmer
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA
| | - Raju R Raval
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA.
| |
Collapse
|
222
|
Milano MT, Grimm J, Niemierko A, Soltys SG, Moiseenko V, Redmond KJ, Yorke E, Sahgal A, Xue J, Mahadevan A, Muacevic A, Marks LB, Kleinberg LR. Single- and Multifraction Stereotactic Radiosurgery Dose/Volume Tolerances of the Brain. Int J Radiat Oncol Biol Phys 2020; 110:68-86. [PMID: 32921513 DOI: 10.1016/j.ijrobp.2020.08.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE As part of the American Association of Physicists in Medicine Working Group on Stereotactic Body Radiotherapy investigating normal tissue complication probability (NTCP) after hypofractionated radiation therapy, data from published reports (PubMed indexed 1995-2018) were pooled to identify dosimetric and clinical predictors of radiation-induced brain toxicity after single-fraction stereotactic radiosurgery (SRS) or fractionated stereotactic radiosurgery (fSRS). METHODS AND MATERIALS Eligible studies provided NTCPs for the endpoints of radionecrosis, edema, or symptoms after cranial SRS/fSRS and quantitative dose-volume metrics. Studies of patients with only glioma, meningioma, vestibular schwannoma, or brainstem targets were excluded. The data summary and analyses focused on arteriovenous malformations (AVM) and brain metastases. RESULTS Data from 51 reports are summarized. There was wide variability in reported rates of radionecrosis. Available data for SRS/fSRS for brain metastases were more amenable to NTCP modeling than AVM data. In the setting of brain metastases, SRS/fSRS-associated radionecrosis can be difficult to differentiate from tumor progression. For single-fraction SRS to brain metastases, tissue volumes (including target volumes) receiving 12 Gy (V12) of 5 cm3, 10 cm3, or >15 cm3 were associated with risks of symptomatic radionecrosis of approximately 10%, 15%, and 20%, respectively. SRS for AVM was associated with modestly lower rates of symptomatic radionecrosis for equivalent V12. For brain metastases, brain plus target volume V20 (3-fractions) or V24 (5-fractions) <20 cm3 was associated with <10% risk of any necrosis or edema, and <4% risk of radionecrosis requiring resection. CONCLUSIONS The risk of radionecrosis after SRS and fSRS can be modeled as a function of dose and volume treated. The use of fSRS appears to reduce risks of radionecrosis for larger treatment volumes relative to SRS. More standardized dosimetric and toxicity reporting is needed to facilitate future pooled analyses that can refine predictive models of brain toxicity risks.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York.
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York City, New York
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Jinyu Xue
- Department of Radiation Oncology, NYU Langone Medical Center, New York City, NY
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | | | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
223
|
Kim KH, Kong DS, Cho KR, Lee MH, Choi JW, Seol HJ, Kim ST, Nam DH, Lee JI. Outcome evaluation of patients treated with fractionated Gamma Knife radiosurgery for large (> 3 cm) brain metastases: a dose-escalation study. J Neurosurg 2020; 133:675-684. [PMID: 31419791 DOI: 10.3171/2019.5.jns19222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/21/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Fractionated Gamma Knife radiosurgery (GKS) represents a feasible option for patients with large brain metastases (BM). However, the dose-fractionation scheme balanced between local control and radiation-induced toxicity remains unclear. Therefore, the authors conducted a dose-escalation study using fractionated GKS as the primary treatment for large (> 3 cm) BM. METHODS The exclusion criteria were more than 3 lesions, evidence of leptomeningeal disease, metastatic melanoma, poor general condition, and previously treated lesions. Patients were randomized to receive 24, 27, or 30 Gy in 3 fractions (8, 9, or 10 Gy per fraction, respectively). The primary endpoint was the development of radiation necrosis assessed by a neuroradiologist blinded to the study. The secondary endpoints included the local progression-free survival (PFS) rate, change in tumor volume, development of distant intracranial progression, and overall survival. RESULTS Between September 2016 and April 2018, 60 patients were eligible for the study, with 46 patients (15, 17, and 14 patients in the 8-, 9-, and 10-Gy groups, respectively) available for analysis. The median follow-up duration was 9.6 months (range 2.5-25.1 months). The 6-month estimated cumulative incidence of radiation necrosis was 0% in the 8-Gy group, 13% (95% confidence interval [CI] 0%-29%) in the 9-Gy group, and 37% (95% CI 1%-58%) in the 10-Gy group. Being in the 10-Gy group was a significant risk factor for the development of radiation necrosis (p = 0.047; hazard ratio [HR] 7.2, 95% CI 1.1-51.4). The 12-month local PFS rates were 65%, 80%, and 75% in the 8-, 9-, and 10-Gy groups, respectively. Being in the 8-Gy group was a risk factor for local treatment failure (p = 0.037; HR 2.5, 95% CI 1.1-29.6). The mean volume change from baseline was a 47.5% decrease in this cohort. Distant intracranial progression and overall survival did not differ among the 3 groups. CONCLUSIONS In this dose-escalation study, 27 Gy in 3 fractions appeared to be a relevant regimen of fractionated GKS for large BM because 30 Gy in 3 fractions resulted in unacceptable toxicities and 24 Gy in 3 fractions was associated with local treatment failure.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- 1Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon; and
| | | | | | | | | | | | - Sung Tae Kim
- 3Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
224
|
Pasquier D, Mouttet Audouard R, Martinage G, Lacornerie T, Mirabel X, Lartigau E. [Place and modalities of postoperative radiotherapy in the management of cerebral metastases]. Cancer Radiother 2020; 24:477-481. [PMID: 32828667 DOI: 10.1016/j.canrad.2020.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 11/17/2022]
Abstract
Metastases are the most common brain tumors. After surgery, stereotactic radiotherapy (SRT) of the resection cavity is the standard of care. Data from two randomized trials indicate that SRT to the surgical bed is an effective treatment in reducing local failure as compared with observation, while reducing the risk of cognitive deterioration and maintaining quality of life as compared with whole brain radiation therapy. Local control appears higher after hypofractionated SRT compared to single-fraction SRT. Several questions such as target volumes, the optimal regimen in particular for large tumor bed, strategies to reduce the risk of lepto-meningeal recurrence, and the treatment sequence still need to be answered.
Collapse
Affiliation(s)
- D Pasquier
- Département universitaire de radiothérapie, centre Oscar-Lambret, 3, rue Frédéric-Combemale, 59000 Lille, France; Centre de recherche en informatique, signal et automatique de Lille, CRIStAL UMR 9189, université de Lille, bâtiment Esprit, avenue Henri-Poincaré, 59655 Villeneuve-d'Ascq, France.
| | - R Mouttet Audouard
- Département universitaire de radiothérapie, centre Oscar-Lambret, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - G Martinage
- Département universitaire de radiothérapie, centre Oscar-Lambret, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - T Lacornerie
- Service de physique médicale, centre Oscar-Lambret, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - X Mirabel
- Département universitaire de radiothérapie, centre Oscar-Lambret, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - E Lartigau
- Département universitaire de radiothérapie, centre Oscar-Lambret, 3, rue Frédéric-Combemale, 59000 Lille, France; Centre de recherche en informatique, signal et automatique de Lille, CRIStAL UMR 9189, université de Lille, bâtiment Esprit, avenue Henri-Poincaré, 59655 Villeneuve-d'Ascq, France
| |
Collapse
|
225
|
Taylor M, Williams J, Gleason JF. Effects of Multileaf Collimator Design and Function When Using an Optimized Dynamic Conformal Arc Approach for Stereotactic Radiosurgery Treatment of Multiple Brain Metastases With a Single Isocenter: A Planning Study. Cureus 2020; 12:e9833. [PMID: 32832305 PMCID: PMC7437117 DOI: 10.7759/cureus.9833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Stereotactic radiosurgery (SRS) or fractionated SRS (fSRS) are effective options for the treatment of brain metastases. When treating multiple metastases with a linear accelerator-based approach, a single isocenter allows for efficient treatment delivery. In this study, we present our findings comparing dosimetric parameters of Brainlab (Munich, Germany) Elements™ Multiple Brain Mets SRS (MME) software (version 1.5 versus version 2.0) for a variety of scenarios and patients. The impact of multileaf collimator design and function on plan quality within the software was also evaluated. Materials and methods Twenty previously treated patients with a total of 58 lesions (from one to seven lesions each) were replanned with an updated version of the multiple brain Mets software solution. For each plan, the mean conformity index (CI), mean gradient index (GI), the volume of normal brain receiving 12 Gy (V12), and mean brain dose were evaluated. Additionally, all v2.0 plans were further evaluated with jaw tracking for by Elekta (Stockholm, Sweden) and HD120™ multileaf collimator by Varian Medical Systems (Palo Alto, USA). Results The new software version demonstrated improvements for CI, GI and V12 (p <0.01). For the Elekta Agility™ multileaf collimator, jaw tracking improved all dosimetric parameters except for CI (p =0.178) and mean brain dose (p =0.93). For the Varian with HD120 multileaf collimator, all parameters improved. Conclusions The software enhancements in v2.0 of the software provided improvements in planning efficiency and dosimetric parameters. Differences in multileaf collimator design may provide an additional incremental benefit in a subset of clinical scenarios.
Collapse
Affiliation(s)
| | | | - John F Gleason
- Radiation Oncology, Alliance Cancer Care, Huntsville, USA
| |
Collapse
|
226
|
Napolitano M, Ranieri A, Maniscalco GT, Riccardi F, De Dominicis G, Caiazzo P. Brain Radionecrosis After Adjuvant Radiation Therapy for a Primary Intracerebral Undifferentiated Sarcoma. World Neurosurg 2020; 143:285-288. [PMID: 32763370 DOI: 10.1016/j.wneu.2020.07.174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Primary intracranial sarcomas of the central nervous system are rare tumors. They mainly arise from intracranial mesenchymal tissue present in the meninges and can occur at any age. Sometimes osteosarcoma can involve the skull rather than long body bones. In this latter case it is the more common subtype. Surgery, when possible, is a mandatory option often associated with radiation therapy (RT) and chemotherapy. Brain radionecrosis (BRN) is commonly observed due to the growing use of radiosurgery and higher cumulative doses of radiation therapy. The combination of perfusion magnetic resonance imaging and 18fluoro-deoxy-glucose positron emission tomography can help to differentiate tumor progression from radiation injury. Steroids, anticoagulants, and bevacizumab usually control BRN. However, BRN can also have an unfavorable course. CASE DESCRIPTION Here, we present a case of a 60-year-old male who underwent surgery for a brain tumor. The examination showed a primary undifferentiated high-grade sarcoma. Adjuvant RT was given with a total dose of 60 Gy. Six months later, the patient underwent a second surgery that revealed a BRN progressing despite different pharmacologic attempts. CONCLUSIONS Primary intracranial sarcomas of the central nervous system are less prevalent among older adults with respect to the younger population. The use of RT alone or combined with chemotherapy is aimed at prolonging survival. However, it is not clearly defined if adjuvant treatments affect this parameter in older patients. RT should be carefully discussed owing to its potential severe neurologic toxicity. Indeed, a BRN can have a significant impact on quality of life and lead to death in certain cases.
Collapse
Affiliation(s)
- Massimo Napolitano
- Neurology Division, Neuro-Oncology Service, Cardarelli Hospital, Naples, Italy.
| | - Angelo Ranieri
- Neurology Division, Neuro-Oncology Service, Cardarelli Hospital, Naples, Italy
| | | | | | | | | |
Collapse
|
227
|
Sands JM, Daly ME, Lee EQ. Neurologic complications of lung cancer. Cancer 2020; 126:4455-4465. [PMID: 33460079 DOI: 10.1002/cncr.32772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/07/2022]
Abstract
Lung cancer and its associated treatments can cause various neurologic complications, including brain and leptomeningeal metastases, epidural spinal cord compression, cerebrovascular events, and treatment-related neurotoxicities. Lung cancer care has significantly changed in the last 5 to 10 years, with novel therapies that have affected aspects of neurologic complication management. Herein, the authors review the potential neurologic complications of lung cancer, including important clinical and therapeutic aspects of care.
Collapse
Affiliation(s)
| | - Megan E Daly
- Department of Radiation Oncology, University of California, Davis, Sacramento, California
| | | |
Collapse
|
228
|
Matsuda R, Tamamoto T, Sugimoto T, Hontsu S, Yamaki K, Miura S, Takeshima Y, Tamura K, Yamada S, Nishimura F, Nakagawa I, Motoyama Y, Park YS, Nakase H, Hasegawa M. Linac-based fractionated stereotactic radiotherapy with a micro-multileaf collimator for large brain metastasis unsuitable for surgical resection. JOURNAL OF RADIATION RESEARCH 2020; 61:546-553. [PMID: 32548618 PMCID: PMC7336818 DOI: 10.1093/jrr/rraa038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/27/2020] [Indexed: 05/21/2023]
Abstract
The aim of this study was to assess clinical outcomes using linac-based, fractionated, stereotactic radiotherapy (fSRT) with a micro-multileaf collimator for large brain metastasis (LBM) unsuitable for surgical resection. Between January 2009 and October 2018 we treated 21 patients with LBM using linac-based fSRT. LBM was defined as a tumor with ≥30 mm maximal diameter in gadolinium-enhanced magnetic resonance images. LBMs originated from the lung (n = 17, 81%), ovary (n = 2, 9.5%), rectum (n = 1, 4.8%) and esophagus (n = 1, 4.8%). The median pretreatment Karnofsky performance status was 50 (range: 50-80). Recursive partition analysis (RPA) was as follows: Classes 2 and 3 were 7 and 14 patients, respectively. The median follow-up was 5 months (range: 1-86 months). The range of tumor volume was 8.7-26.5 cm3 (median: 17.1 cm3). All patients were basically treated with 35Gy in 5 fractions, except in three cases. The progression-free survival was 3.0 months. The median survival time was 7.0 months. There was no permanent radiation injury in any of the patients. Radiation-caused central nervous system necrosis, according to the Common Terminology Criteria for Adverse Events version 4.0, occurred in one patient (grade 3). One patients received bevacizumab for radiation necrosis. Two patients underwent additional surgical resection due to local progression and cyst formation. For patients with LBM unsuitable for surgical resection, linac-based fSRT is a promising therapeutic alternative.
Collapse
Affiliation(s)
- Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Tetsuro Tamamoto
- Department of Radiation Oncology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
- Corresponding author. Department of Radiation Oncology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan. Tel: +81-744-22-3051; Fax: +81-744-29-0818;
| | - Tadashi Sugimoto
- Department of Neurosurgery, Osaka General Medical Center, 3-1-56 Mandaihigashi, Sumiyoshi-ku, Osaka, Osaka 558-8558, Japan
| | - Shigeto Hontsu
- Department of Respiratory medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Kaori Yamaki
- Department of Radiation Oncology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Sachiko Miura
- Department of Radiation Oncology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Yasuhiro Takeshima
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Kentaro Tamura
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Yasushi Motoyama
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Young-Su Park
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
229
|
Stereotactic Radiotherapy for Brain Metastases: Imaging Tools and Dosimetric Predictive Factors for Radionecrosis. J Pers Med 2020; 10:jpm10030059. [PMID: 32635476 PMCID: PMC7565332 DOI: 10.3390/jpm10030059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022] Open
Abstract
Radionecrosis (RN) is the most important side effect after stereotactic radiotherapy (SRT) for brain metastases, with a reported incidence ranging from 3% to 24%. To date, there are no unanimously accepted criteria for iconographic diagnosis of RN, as well as no definitive dose-constraints correlated with the onset of this late effect. We reviewed the current literature and gave an overview report on imaging options for the diagnosis of RN and on dosimetric parameters correlated with the onset of RN. We performed a PubMed literature search according to the preferred reporting items and meta-analysis (PRISMA) guidelines, and identified articles published within the last ten years, up to 31 December 2019. When analyzing data on diagnostic tools, perfusion magnetic resonance imaging (MRI) seems to be very useful allowing evaluation of the blood flow in the lesion using the relative cerebral blood volume (rCBV) and blood vessel integrity using relative peak weight (rPH). It is necessary to combine morphological with functional imaging in order to match information about lesion morphology, metabolism and blood-flow. Eventually, serial imaging follow-up is needed. Regarding dosimetric parameters, in radiosurgery (SRS) V12 < 8 cm3 and V10 < 10.5 cm3 of normal brain are the most reliable prognostic factors, whereas in hypo-fractionated stereotactic radiotherapy (HSRT) V18 and V21 are considered the main predictive independent risk factors of RN.
Collapse
|
230
|
Lee MH, Kim KH, Cho KR, Choi JW, Kong DS, Seol HJ, Nam DH, Lee JI. Volumetric changes of intracranial metastases during the course of fractionated stereotactic radiosurgery and significance of adaptive planning. J Neurosurg 2020; 133:129-134. [PMID: 31151111 DOI: 10.3171/2019.3.jns183130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Fractionated Gamma Knife surgery (FGKS) has recently been used to treat large brain metastases. However, little is known about specific volume changes of lesions during the course of treatment. The authors investigated short-term volume changes of metastatic lesions during FGKS. METHODS The authors analyzed 33 patients with 40 lesions who underwent FGKS for intracranial metastases of non-small-cell lung cancer (NSCLC; 25 patients with 32 lesions) and breast cancer (8 patients with 8 lesions). FGKS was performed in 3-5 fractions. Baseline MRI was performed before the first fraction. MRI was repeated after 1 or 2 fractions. Adaptive planning was executed based on new images. The median prescription dose was 8 Gy (range 6-10 Gy) with a 50% isodose line. RESULTS On follow-up MRI, 18 of 40 lesions (45.0%) showed decreased tumor volumes (TVs). A significant difference was observed between baseline (median 15.8 cm3) and follow-up (median 14.2 cm3) volumes (p < 0.001). A conformity index was significantly decreased when it was assumed that adaptive planning was not implemented, from baseline (mean 0.96) to follow-up (mean 0.90, p < 0.001). The average reduction rate was 1.5% per day. The median follow-up duration was 29.5 weeks (range 9-94 weeks). During the follow-up period, local recurrence occurred in 5 lesions. CONCLUSIONS The TV showed changes with a high dose of radiation during the course of FGKS. Volumetric change caused a significant difference in the clinical parameters. It is expected that adaptive planning would be helpful in the case of radiosensitive tumors such as NSCLCs or breast cancer to ensure an adequate dose to the target area and reduce unnecessary exposure of normal tissue to radiation.
Collapse
Affiliation(s)
- Min Ho Lee
- 1Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
- 2Department of Neurosurgery, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu; and
| | - Kyung Hwan Kim
- 1Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
- 3Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kyung Rae Cho
- 1Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Jung Won Choi
- 1Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Doo-Sik Kong
- 1Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Ho Jun Seol
- 1Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Do-Hyun Nam
- 1Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Jung-Il Lee
- 1Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| |
Collapse
|
231
|
Neurologic Complications of Cranial Radiation Therapy and Strategies to Prevent or Reduce Radiation Toxicity. Curr Neurol Neurosci Rep 2020; 20:34. [DOI: 10.1007/s11910-020-01051-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
232
|
Post-operative stereotactic radiosurgery of brain metastases: A single-center retrospective review of clinical outcomes. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396919000268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAim:We sought to retrospectively report our outcomes using post-operative stereotactic radiosurgery (SRS)/stereotactic radiotherapy (SRT) in place of whole-brain radiation therapy (WBRT) following resection of brain metastases from our hospital-based community practice.Materials and Methods:A retrospective review of 23 patients who underwent post-operative SRS at our single institution from 2013 to 2017 was undertaken. Patient records, treatment plans and diagnostic images were reviewed. Local failure, distant intracranial failure and overall survival were studied. Categorical variables were analyzed using Fisher’s exact tests. Continuous variables were analyzed using Mann–Whitney tests. The Kaplan–Meier method was used to estimate survival times.Results:16 (70%) were single-fraction SRS, whereas the remaining 7 patients received a five-fraction treatment course. The median single-fraction dose was 16 Gy (range, 16–18). The median total dose for fractionated treatments was 25 Gy (range, 25–35). Overall survival at 6 and 12 months was 95 and 67%, respectively. Comparison of SRS versus SRT local control rates at 6 and 12 months revealed control rates of 92 and 78% versus 29 and 14%, respectively. Every patient with dural/pial involvement at the time of surgery had distant intracranial failure at the 12-month follow-up.Findings:Single-fraction frameless SRS proved to be an effective modality with excellent local control rates. However, the five-fraction SRT course was associated with an increased rate of local recurrence. Dural/pial involvement may portend a high risk for distant intracranial disease; therefore, it may be prudent to consider alternative approaches in these cases.
Collapse
|
233
|
Remick JS, Kowalski E, Khairnar R, Sun K, Morse E, Cherng HRR, Poirier Y, Lamichhane N, Becker SJ, Chen S, Patel AN, Kwok Y, Nichols E, Mohindra P, Woodworth GF, Regine WF, Mishra MV. A multi-center analysis of single-fraction versus hypofractionated stereotactic radiosurgery for the treatment of brain metastasis. Radiat Oncol 2020; 15:128. [PMID: 32466775 PMCID: PMC7257186 DOI: 10.1186/s13014-020-01522-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Hypofractionated-SRS (HF-SRS) may allow for improved local control and a reduced risk of radiation necrosis compared to single-fraction-SRS (SF-SRS). However, data comparing these two treatment approaches are limited. The purpose of this study was to compare clinical outcomes between SF-SRS versus HF-SRS across our multi-center academic network. Methods Patients treated with SF-SRS or HF-SRS for brain metastasis from 2013 to 2018 across 5 radiation oncology centers were retrospectively reviewed. SF-SRS dosing was standardized, whereas HF-SRS dosing regimens were variable. The co-primary endpoints of local control and radiation necrosis were estimated using the Kaplan Meier method. Multivariate analysis using Cox proportional hazards modeling was performed to evaluate the impact of select independent variables on the outcomes of interest. Propensity score adjustments were used to reduce the effects confounding variables. To assess dose response for HF-SRS, Biologic Effective Dose (BED) assuming an α/β of 10 (BED10) was used as a surrogate for total dose. Results One-hundred and fifty six patients with 335 brain metastasis treated with SF-SRS (n = 222 lesions) or HF-SRS (n = 113 lesions) were included. Prior whole brain radiation was given in 33% (n = 74) and 34% (n = 38) of lesions treated with SF-SRS and HF-SRS, respectively (p = 0.30). After a median follow up time of 12 months in each cohort, the adjusted 1-year rate of local control and incidence of radiation necrosis was 91% (95% CI 86–96%) and 85% (95% CI 75–95%) (p = 0.26) and 10% (95% CI 5–15%) and 7% (95% CI 0.1–14%) (p = 0.73) for SF-SRS and HF-SRS, respectively. For lesions > 2 cm, the adjusted 1 year local control was 97% (95% CI 84–100%) for SF-SRS and 64% (95% CI 43–85%) for HF-SRS (p = 0.06). On multivariate analysis, SRS fractionation was not associated with local control and only size ≤2 cm was associated with a decreased risk of developing radiation necrosis (HR 0.21; 95% CI 0.07–0.58, p < 0.01). For HF-SRS, 1 year local control was 100% for lesions treated with a BED10 ≥ 50 compared to 77% (95% CI 65–88%) for lesions that received a BED10 < 50 (p = 0.09). Conclusions In this comparison study of dose fractionation for the treatment of brain metastases, there was no difference in local control or radiation necrosis between HF-SRS and SF-SRS. For HF-SRS, a BED10 ≥ 50 may improve local control.
Collapse
Affiliation(s)
- Jill S Remick
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Emily Kowalski
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Rahul Khairnar
- Department of Pharmaceutical Health Services Research, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Kai Sun
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily Morse
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hua-Ren R Cherng
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stewart J Becker
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shifeng Chen
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Akshar N Patel
- Chesapeake Oncology Hematology Associates, Glen Bernie, MD, USA
| | - Young Kwok
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth Nichols
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pranshu Mohindra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William F Regine
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark V Mishra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
234
|
Han EY, Wang H, Luo D, Li J, Wang X. Dosimetric comparison of fractionated radiosurgery plans using frameless Gamma Knife ICON and CyberKnife systems with linear accelerator-based radiosurgery plans for multiple large brain metastases. J Neurosurg 2020; 132:1473-1479. [PMID: 30952125 DOI: 10.3171/2019.1.jns182769] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/14/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE For patients with multiple large brain metastases with at least 1 target volume larger than 10 cm3, multifractionated stereotactic radiosurgery (MF-SRS) has commonly been delivered with a linear accelerator (LINAC). Recent advances of Gamma Knife (GK) units with kilovolt cone-beam CT and CyberKnife (CK) units with multileaf collimators also make them attractive choices. The purpose of this study was to compare the dosimetry of MF-SRS plans deliverable on GK, CK, and LINAC and to discuss related clinical issues. METHODS Ten patients with 2 or more large brain metastases who had been treated with MF-SRS on LINAC were identified. The median planning target volume was 18.31 cm3 (mean 21.31 cm3, range 3.42-49.97 cm3), and the median prescribed dose was 27.0 Gy (mean 26.7 Gy, range 21-30 Gy), administered in 3 to 5 fractions. Clinical LINAC treatment plans were generated using inverse planning with intensity modulation on a Pinnacle treatment planning system (version 9.10) for the Varian TrueBeam STx system. GK and CK planning were retrospectively performed using Leksell GammaPlan version 10.1 and Accuray Precision version 1.1.0.0 for the CK M6 system. Tumor coverage, Paddick conformity index (CI), gradient index (GI), and normal brain tissue receiving 4, 12, and 20 Gy were used to compare plan quality. Net beam-on time and approximate planning time were also collected for all cases. RESULTS Plans from all 3 modalities satisfied clinical requirements in target coverage and normal tissue sparing. The mean CI was comparable (0.79, 0.78, and 0.76) for the GK, CK, and LINAC plans. The mean GI was 3.1 for both the GK and the CK plans, whereas the mean GI of the LINAC plans was 4.1. The lower GI of the GK and CK plans would have resulted in significantly lower normal brain volumes receiving a medium or high dose. On average, GK and CK plans spared the normal brain volume receiving at least 12 Gy and 20 Gy by approximately 20% in comparison with the LINAC plans. However, the mean beam-on time of GK (∼ 64 minutes assuming a dose rate of 2.5 Gy/minute) plans was significantly longer than that of CK (∼ 31 minutes) or LINAC (∼ 4 minutes) plans. CONCLUSIONS All 3 modalities are capable of treating multiple large brain lesions with MF-SRS. GK has the most flexible workflow and excellent dosimetry, but could be limited by the treatment time. CK has dosimetry comparable to that of GK with a consistent treatment time of approximately 30 minutes. LINAC has a much shorter treatment time, but residual rotational error could be a concern.
Collapse
Affiliation(s)
| | - He Wang
- Departments of1Radiation Physics and
| | | | - Jing Li
- 2Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xin Wang
- Departments of1Radiation Physics and
| |
Collapse
|
235
|
Shi DD, Arnaout O, Bi WL, Buchbinder EI, Cagney DN, Insco ML, Liu D, Schoenfeld JD, Aizer AA. Severe Radiation Necrosis Refractory to Surgical Resection in Patients with Melanoma and Brain Metastases Managed with Ipilimumab/Nivolumab and Brain-Directed Stereotactic Radiation Therapy. World Neurosurg 2020; 139:226-231. [PMID: 32330622 DOI: 10.1016/j.wneu.2020.04.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND The use of targeted therapies and immune checkpoint inhibitors has drastically changed the management of patients with melanoma and brain metastases. Specifically, combination therapy with ipilimumab, a cytotoxic T-lymphocyte antigen 4 inhibitor, and nivolumab, a programmed cell death protein 1 inhibitor, has become a preferred systemic therapy option for patients with melanoma and asymptomatic brain metastases. However, the efficacy and toxicity profile of these agents in combination with brain-directed radiation therapy is not well described. CASE DESCRIPTION In this case series, we highlight a series of patients with melanoma demonstrating severe radiation necrosis immediately refractory to surgical resection following brain-directed stereotactic radiation therapy with concurrent ipilimumab and nivolumab. Three patients described in this series each received stereotactic radiation therapy to a dose of 30 Gy in 5 fractions to a melanoma brain metastasis. These areas developed radiographic evidence of necrosis, which was managed surgically and progressed immediately and rapidly after resection. Re-resection, bevacizumab, steroids, and/or discontinuation of nivolumab was used to mitigate further necrosis with varying efficacy. CONCLUSIONS Patients with metastatic melanoma receiving brain-directed radiation therapy with concurrent ipilimumab and nivolumab are at risk for developing severe, surgically refractory radiation necrosis and should be closely followed clinically and with imaging. The exact mechanism for such severe necrosis is unknown, and future studies are needed to better understand this pathophysiology and identify optimal treatment strategies.
Collapse
Affiliation(s)
- Diana D Shi
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenya L Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth I Buchbinder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel N Cagney
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megan L Insco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan D Schoenfeld
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayal A Aizer
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
236
|
Mengue L, Bertaut A, Ngo Mbus L, Doré M, Ayadi M, Clément-Colmou K, Claude L, Carrie C, Laude C, Tanguy R, Blanc J, Sunyach MP. Brain metastases treated with hypofractionated stereotactic radiotherapy: 8 years experience after Cyberknife installation. Radiat Oncol 2020; 15:82. [PMID: 32303236 PMCID: PMC7164358 DOI: 10.1186/s13014-020-01517-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/19/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hypofractionated stereotactic radiotherapy (HFSRT) is indicated for large brain metastases (BM) or proximity to critical organs (brainstem, chiasm, optic nerves, hippocampus). The primary aim of this study was to assess factors influencing BM local control after HFSRT. Then the effect of surgery plus HFSRT was compared with exclusive HFSRT on oncologic outcomes, including overall survival. MATERIALS AND METHODS Retrospective study conducted in Léon Bérard Cancer Center, included patients over 18 years-old with BM, secondary to a tumor proven by histology and treated by HFSRT alone or after surgery. Three different dose-fractionation schedules were compared: 27 Gy (3 × 9 Gy), 30 Gy (5 × 6 Gy) and 35 Gy (5 × 7 Gy), prescribed on isodose 80%. Primary endpoint were local control (LC). Secondary endpoints were overall survival (OS) and radionecrosis (RN) rate. RESULTS A total of 389 patients and 400 BM with regular MRI follow-up were analyzed. There was no statistical difference between the different dose-fractionations. On multivariate analysis, surgery (p = 0.049) and size (< 2.5 cm) (p = 0.01) were independent factors improving LC. The 12 months LC was 87.02% in the group Surgery plus HFSRT group vs 73.53% at 12 months in the group HFSRT. OS was 61.43% at 12 months in the group Surgery plus HFSRT group vs 50.13% at 12 months in the group HFSRT (p < 0.0085). Prior surgery (OR = 1.86; p = 0.0028) and sex (OR = 1.4; p = 0.0139) control of primary tumor (OR = 0.671, p = 0.0069) and KPS < 70 (OR = 0.769, p = 0.0094) were independently predictive of OS. The RN rate was 5% and all patients concerned were symptomatic. CONCLUSIONS This study suggests that HFSRT is an efficient and well-tolerated treatment. The optimal dose-fractionation remains difficult to determine. Smaller size and surgery are correlated to LC. These results evidence the importance of surgery for larger BM (> 2.5 cm) with a poorer prognosis. Multidisciplinary committees and prospective studies are necessary to validate these observations.
Collapse
Affiliation(s)
- Laurence Mengue
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France.
| | - Aurélie Bertaut
- Methodology and Biostatistics Unit, Centre Georges François Leclerc, Dijon, France
| | - Louise Ngo Mbus
- Department of Medecine, Hôpital d'Aurillac, Aurillac, France
| | - Mélanie Doré
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes, France
| | - Myriam Ayadi
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France
| | - Karen Clément-Colmou
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes, France
| | - Line Claude
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France
| | - Christian Carrie
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France
| | - Cécile Laude
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France
| | - Ronan Tanguy
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France
| | - Julie Blanc
- Methodology and Biostatistics Unit, Centre Georges François Leclerc, Dijon, France
| | | |
Collapse
|
237
|
Khattab MH, Sherry AD, Whitaker R, Wharton DM, Weaver KD, Chambless LB, Cmelak AJ, Attia A. A Retrospective Cohort Study of Longitudinal Audiologic Assessment in Single and Fractionated Stereotactic Radiosurgery for Vestibular Schwannoma. Neurosurgery 2020; 85:E1078-E1083. [PMID: 31215628 DOI: 10.1093/neuros/nyz219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/18/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Fractionated stereotactic radiosurgery (SRS) for vestibular schwannomas (VS) has been theorized to allow for tumor control with higher rates of hearing preservation in selected patients with useful hearing. However, there is a paucity of literature with formal audiologic measures of hearing preservation to support the standard use of fractionated SRS in VS. We hypothesized that fractionation would diminish the amount of hearing damage. OBJECTIVE To evaluate the relationship between audiologic performance and SRS fractionation scheme. METHODS We performed an IRB-approved retrospective review of patients treated with 1, 3, or 5 fraction SRS for VS at our institution from 1998 to 2016. Pre- and post-SRS audiograms with speech awareness threshold (SAT) in treated and contralateral ears were obtained. Contralateral ear measurements were used for hearing normalization to account for presbycusis. RESULTS Fifty-six patients with median audiologic follow-up 2.0 yr (mean 2.66 yr, min-max 0.50-9.45 yr) were included. Patients treated with single fractionation had a significantly worsened SAT (dB) compared to patients treated with 5 fractions (P = .008) and compared to all multifraction patients (P = .009) at 12 to 24 mo follow-up. CONCLUSION This retrospective analysis supports the use of fractionated SRS to preserve hearing in patients with VS. SAT can be used as an objective metric of hearing response to radiosurgery.
Collapse
Affiliation(s)
- Mohamed H Khattab
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Ryan Whitaker
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David M Wharton
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kyle D Weaver
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lola B Chambless
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anthony J Cmelak
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Albert Attia
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
238
|
Zhang L, Hu Y, Chen W, Tian Y, Xie Y, Chen J. Pre-stereotactic radiosurgery neutrophil-to-lymphocyte ratio is a predictor of the prognosis for brain metastases. J Neurooncol 2020; 147:691-700. [PMID: 32253715 DOI: 10.1007/s11060-020-03477-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE The neutrophil-to-lymphocyte ratio (NLR) has been reported to relate to the prognosis of various cancers. The aim of this study was to elucidate the efficiency of pre-treatment NLR as a predictor of outcomes of brain metastasis underwent gamma knife radiosurgery (GKRS). METHODS We analyzed 195 cases with brain metastasis underwent GKRS at our institution between January 2015 and April 2018. Patients' clinical and radiographic data were collected. RESULTS We identified 458 brain metastases in 195 patients. Optimal dichotomous cutoff values of NLR determined by receiver operating characteristic analysis for local control, distant control and overall survival (OS) were 2.48, 2.74 and 3.13, respectively. The actuarial local control rates of patients with high NLR were 87.4% at 6 months and 76.1% at 12 months, whereas that of patients with low NLR were 94.2% at 6 months and 88.3% at 12 months (P = 0.001). The actuarial distant control rates of patients with high NLR were 31.4% at 6 months and 18.9% at 12 months, whereas that of patients with low NLR were 58.5% at 6 months and 31.3% at 12 months (P = 0.001). The median OS of patients with high and low NLR were 10.0 months and 14.5 months, respectively (P = 0.001). Multivariate analysis demonstrates that high NLR independently predicts local failure (hazard ratio [HR], 2.281; P = 0.003), distant brain failure (HR 1.775; P = 0.002) and poorer overall survival (HR 1.494; P = 0.034). CONCLUSION The pre-SRS NLR, a systemic inflammatory marker for treatment response, inversely predicts local control, distant control and OS in patients with brain metastasis.
Collapse
Affiliation(s)
- Lifeng Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yanjia Hu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Wei Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yuan Tian
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yuebin Xie
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Jing Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| |
Collapse
|
239
|
Soliman H, Myrehaug S, Tseng CL, Ruschin M, Hashmi A, Mainprize T, Spears J, Das S, Yang V, da Costa L, Maralani P, Heyn C, Atenafu EG, Sahgal A. Image-Guided, Linac-Based, Surgical Cavity-Hypofractionated Stereotactic Radiotherapy in 5 Daily Fractions for Brain Metastases. Neurosurgery 2020; 85:E860-E869. [PMID: 31173150 DOI: 10.1093/neuros/nyz162] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/18/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cavity stereotactic radiotherapy has emerged as a standard option following resection of brain metastases. However, the optimal approach with either single-fraction or hypofractionated stereotactic radiotherapy (HSRT) remains a significant question. OBJECTIVE To report outcomes for 5-fraction HSRT to the surgical cavity, based on contouring according to a recently reported international consensus guideline. METHODS Patients treated with cavity HSRT were identified from a prospective institutional database. Local brain control (LC), distant brain failure (DBF), leptomeningeal disease (LMD), and overall survival rates were determined. Univariate and multivariable analyses were performed on potential predictive factors. RESULTS One hundred thirty-seven cavities in 122 patients were treated at a median total dose of 30 Gy (range, 25-35 Gy). The median follow-up was 16 mo (range, 1-60 mo). Nonsmall cell lung cancer was the most common histology (44%), followed by breast cancer (21%). In 57% of surgical cavities, the preoperative tumor diameter was >3 cm. One-year LC, DBF, LMD, and overall survival rates were 84%, 45%, 22%, and 62%, respectively. Multivariable analyses identified colorectal (hazard ratio [HR] 4.1, P = .0066) and melanoma (HR 2.4, P = .012) metastases as predictors of local recurrence; preoperative tumor diameter >2 cm (HR 8.9, P = .012) and absence of targeted therapy (HR 4.4, P = .03) as predictors of DBF; and breast cancer histology (HR 2.1, P = .05) and subtotal resection (HR 2.6, P = .009) as predictors of LMD. Symptomatic radiation necrosis was observed in 7 patients (6%). CONCLUSION High rates of LC were observed following this 5-fraction HSRT regimen. Superiority as compared to single-fraction SRS requires a randomized trial.
Collapse
Affiliation(s)
- Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Ahmed Hashmi
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Todd Mainprize
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Julian Spears
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Sunit Das
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Victor Yang
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Leodante da Costa
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Pejman Maralani
- Neuroradiology Division, Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Chris Heyn
- Neuroradiology Division, Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
240
|
Challenges in the treatment of breast cancer brain metastases: evidence, unresolved questions, and a practical algorithm. Clin Transl Oncol 2020; 22:1698-1709. [PMID: 32207041 DOI: 10.1007/s12094-020-02333-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/01/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is the leading cause of brain metastases in women. Large randomized clinical trials that have evaluated local therapies in patients with brain metastases include patients with brain metastases from a variety of cancer types. The incidence of brain metastases in the breast cancer population continues to grow, which is, aside from the rising breast cancer incidence, mainly attributable to improvements in systemic therapies leading to more durable control of extracranial metastatic disease and prolonged survival. The management of breast cancer brain metastases remains challenging, even more so with the continued advancement of local and highly effective systemic therapies. For most patients, a metastases-directed initial approach (i.e., radiation, surgery) represents the most appropriate initial therapy. Treatment should be based on multidisciplinary team discussions and a shared decision with the patients taking into account the risks and benefits of each therapeutic modality with the goal of prolonging survival while maintaining quality of life. In this narrative review, a multidisciplinary group of experts will address challenging questions in the context of current scientific literature and propose a therapeutic algorithm for breast cancer patients with brain metastases.
Collapse
|
241
|
Loo M, Pin Y, Thierry A, Clavier JB. Single-fraction radiosurgery versus fractionated stereotactic radiotherapy in patients with brain metastases: a comparative study. Clin Exp Metastasis 2020; 37:425-434. [PMID: 32185576 DOI: 10.1007/s10585-020-10031-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
To compare the local control and brain radionecrosis in patients with brain metastasis primarily treated by single-fraction radiosurgery (SRS) or hypofractionated stereotactic radiotherapy (HFSRT). Between January 2012 and December 2017, 179 patients with only 1-3 brain metastases (total: 287) primarily treated by SRS (14 Gy) or HFSRT (23.1 Gy in 3 fractions of 7.7 Gy, every other day) were retrospectively analyzed in a single center. Follow-up imaging data were available in 152 patients with 246 lesions. The corresponding Biological Effective Dose (BED) were 33.6 Gy and 40.9 Gy respectively for SRS and HFSRT group, assuming an α/β of 10 Gy. Local control (LC) and risk of radionecrosis (RN) were calculated by the Kaplan-Meier method. The actuarial local control rates at 6 and 12 months were 94% and 88.1% in SRS group, and 87.6% and 78.4%, in HFSRT group (p = 0.06), respectively. Only the total volume of edema was associated with worse LC (p = 0.01, HR 1.02, 95% CI [1.004-1.03]) in multivariate analysis. Brain radionecrosis occurred in 1 lesion in SRS group and 9 in HFSRT group. Median time to necrosis was 5.5 months (range 1-9). Only the volume of GTV was associated with RN (p = 0.02, HR 1.09, 95% CI [1.01-1.18]) in multivariate analysis. Multi-fraction SRT dose of 23.31 Gy in 3 fractions has similar efficacy to single-fraction SRT dose of 14 Gy in patients with brain metastases. A slightly higher occurrence of radionecrosis appeared in HFSRT group.
Collapse
Affiliation(s)
- Maxime Loo
- Radiotherapy Department, Centre Paul Strauss, Strasbourg Cedex, 67065, France.
| | - Yvan Pin
- Radiotherapy Department, Centre Paul Strauss, Strasbourg Cedex, 67065, France
| | - Alicia Thierry
- Public Health and Statistics Department, Centre Paul Strauss, Strasbourg Cedex, 67065, France
| | | |
Collapse
|
242
|
Koide Y, Tomita N, Adachi S, Tanaka H, Tachibana H, Kodaira T. Retrospective analysis of hypofractionated stereotactic radiotherapy for tumors larger than 2 cm. NAGOYA JOURNAL OF MEDICAL SCIENCE 2020; 81:397-406. [PMID: 31579330 PMCID: PMC6728199 DOI: 10.18999/nagjms.81.3.397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereotactic radiosurgery for large brain metastases (BM) not amenable to surgical resection is associated with limited local control and neurotoxicity, while hypofractionated stereotactic radiotherapy (HFSRT) has emerged as a promising option. We retrospectively evaluated 61 patients with BM larger than 2 cm in the maximum diameter, who were treated with HFSRT (mainly 35 Gy/5 fractions) in our center between 2006–2016, focusing on the effect of BM size on outcomes. Eligible patients were divided according to the maximum BM diameter (group A [23 patients]: ≥3 cm, group B [22 patients]: <3 cm) to assess the relationship between tumor size and prognosis or safety. The primary outcome was the local control rate (LCR), and secondary outcomes were the response rate (RR), brain progression-free survival (BPFS), median survival time (MST), and radionecrosis (RN). Univariate and multivariate analyses for LCR were conducted using Cox’s proportional hazards model. In the 45 eligible patients (58 lesions) enrolled in this study, the RR was 86.4% with an overall LCR of 64.7% at 12 months (67.1% for group A and 61.5% for group B [p = 0.45]). The median BPFS and MST were 11.6 and 14.2 months, respectively. Univariate analyses revealed that female patients and gynecological cancer patients had poorer LCR, but they were not significantly independent prognostic factors (p = 0.06, 0.09, respectively). Two patients (4.4%) experienced RN that was detected more than 4 years after HFSRT. We conclude that HFSRT is safe for large BM but further studies are needed to determine optimal doses and fractions.
Collapse
Affiliation(s)
- Yutaro Koide
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Chikusa-ku, Nagoya, Japan
| | - Natsuo Tomita
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Chikusa-ku, Nagoya, Japan
| | - Sou Adachi
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Chikusa-ku, Nagoya, Japan
| | - Hiroshi Tanaka
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Chikusa-ku, Nagoya, Japan
| | - Hiroyuki Tachibana
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Chikusa-ku, Nagoya, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
243
|
Hettal L, Stefani A, Salleron J, Courrech F, Behm-Ansmant I, Constans JM, Gauchotte G, Vogin G. Radiomics Method for the Differential Diagnosis of Radionecrosis Versus Progression after Fractionated Stereotactic Body Radiotherapy for Brain Oligometastasis. Radiat Res 2020; 193:471-480. [PMID: 32160109 DOI: 10.1667/rr15517.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stereotactic radiotherapy (SRT) is recommended for treatment of brain oligometastasis (BoM) in patients with controlled primary disease. Where contrast enhancement enlargement occurs during follow-up, distinguishing between radionecrosis and progression presents a critical challenge. Without pathological confirmation, decision-making may be inappropriate and delayed. Quantitative imaging features extracted from routinely performed examinations are of interest in potentially addressing this problem. We explored the added value of the radiomics method for the differential diagnosis of these two entities. Twenty patients who received SRT for BoM, from any primary location, were included (8 radionecrosis, 12 progressions, pathologically confirmed). We assessed the clinical relevance of 1,766 radiomics features, extracted using IBEX software, from the first T1-weighted postcontrast magnetic resonance imaging (MRI) after SRT showing a lesion modification. We evaluated seven feature-selection methods and 12 classification methods in terms of respective predictive performance. The classification accuracy was measured using Cohen's kappa after leave-one-out cross-validation. In this work, the best predictive power reached was a Cohen's kappa of 0.68 (overall accuracy of 85%), expressing a strong agreement between the algorithm prediction and the histological gold standard. Prediction accuracy was 75% for radionecrosis, and 91% for progression. The area under a curve reached 0.83 using a bagging algorithm trained with the chi-square score features set. These findings indicated that the radiomics method is able to discriminate radionecrosis from progression in an accurate, early and noninvasive way. This promising study is a proof of concept, preceding a larger prospective study for defining a robust model to support decision-making in BoM. In summary, distinguishing between radionecrosis and progression is challenging without pathology. We built a classification model based on imaging data and machine learning. Using this model, we were able predict progression and radionecrosis in, respectively, 91% and 75% of cases.
Collapse
Affiliation(s)
- Liza Hettal
- CNRS UMR 7365 IMoPA, Université de Lorraine, Biopôle, Vandoeuvre-Lès-Nancy, France
| | - Anais Stefani
- Département de Radiothérapie, Institut de Cancérologie de Lorraine, Vandoeuvre-Les-Nancy, France
| | - Julia Salleron
- Département de Cellule Data-biostatistiques, Institut de Cancérologie de Lorraine, Université de Lorraine, Vandoeuvrelès-Nancy, France
| | - Florent Courrech
- Département de Radiothérapie, Institut de Cancérologie de Lorraine, Vandoeuvre-Les-Nancy, France
| | | | | | - Guillaume Gauchotte
- Département d' Anatomie et Cytologie Pathologiques, CHRU Nancy, France.,Département d' INSERM U1256, Université de Lorraine, Nancy, France
| | - Guillaume Vogin
- CNRS UMR 7365 IMoPA, Université de Lorraine, Biopôle, Vandoeuvre-Lès-Nancy, France.,Département de Radiothérapie, Institut de Cancérologie de Lorraine, Vandoeuvre-Les-Nancy, France
| |
Collapse
|
244
|
Faruqi S, Ruschin M, Soliman H, Myrehaug S, Zeng KL, Husain Z, Atenafu E, Tseng CL, Das S, Perry J, Maralani P, Heyn C, Mainprize T, Sahgal A. Adverse Radiation Effect After Hypofractionated Stereotactic Radiosurgery in 5 Daily Fractions for Surgical Cavities and Intact Brain Metastases. Int J Radiat Oncol Biol Phys 2020; 106:772-779. [DOI: 10.1016/j.ijrobp.2019.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/05/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022]
|
245
|
Shi S, Sandhu N, Jin MC, Wang E, Jaoude JA, Schofield K, Zhang C, Liu E, Gibbs IC, Hancock SL, Chang SD, Li G, Hayden-Gephart M, Adler JR, Soltys SG, Pollom EL. Stereotactic Radiosurgery for Resected Brain Metastases: Single-Institutional Experience of Over 500 Cavities. Int J Radiat Oncol Biol Phys 2020; 106:764-771. [DOI: 10.1016/j.ijrobp.2019.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023]
|
246
|
Islam M, Cooray G, Benmakhlouf H, Hatiboglu M, Sinclair G. Integrating navigated transcranial magnetic stimulation motor mapping in hypofractionated and single-dose gamma knife radiosurgery: A two-patient case series and a review of literature. Surg Neurol Int 2020; 11:29. [PMID: 32257555 PMCID: PMC7110065 DOI: 10.25259/sni_406_2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background: The aim of the study was to demonstrate the feasibility of integrating navigated transcranial magnetic stimulation (nTMS) in preoperative gamma knife radiosurgery (GKRS) planning of motor eloquent brain tumors. Case Description: The first case was a 53-year-old female patient with metastatic breast cancer who developed focal epileptic seizures and weakness of the left hand. The magnetic resonance imaging (MRI) scan demonstrated a 30 mm metastasis neighboring the right precentral gyrus and central sulcus. The lesion was treated with adaptive hypofractionated GKRS following preoperative nTMS-based motor mapping. Subsequent follow-up imaging (up to 12 months) revealed next to complete tumor ablation without toxicity. The second case involved a previously healthy 73-year-old male who similarly developed new left-handed weakness. A subsequent MRI demonstrated a 26 mm metastatic lesion, located in the right postcentral gyrus and 5 mm from the hand motor area. The extracranial screening revealed a likely primary lung adenocarcinoma. The patient underwent preoperative nTMS motor mapping prior to treatment. Perilesional edema was noted 6 months postradiosurgery; nevertheless, long- term tumor control was demonstrated. Both patients experienced motor function normalization shortly after treatment, continuing to final follow-up. Conclusion: Integrating preoperative nTMS motor mapping in treatment planning allowed us to reduce dose distributions to perilesional motor fibers while achieving salvage of motor function, lasting seizure freedom, and tumor control. These initial data along with our review of the available literature suggest that nTMS can be of significant assistance in brain radiosurgery. Prospective studies including larger number of patients are still warranted.
Collapse
Affiliation(s)
- Mominul Islam
- Clinical Neuroscience, Karolinska Institute, İstanbul, Turkey
| | - Gerald Cooray
- Clinical Neuroscience, Karolinska Institute, İstanbul, Turkey
| | - Hamza Benmakhlouf
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, İstanbul, Turkey
| | - Mustafa Hatiboglu
- Department of Neurosurgery, Beykoz Institute of Life Science and Biotechnology, Bezmialem Vakif University, İstanbul, Turkey
| | - Georges Sinclair
- Department of Neurosurgery, Beykoz Institute of Life Science and Biotechnology, Bezmialem Vakif University, İstanbul, Turkey.,Department of Oncology, Royal Berkshire NHS Foundation Trust, Reading, Berkshire.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
247
|
Zhang S, Yang R, Shi C, Li J, Zhuang H, Tian S, Wang J. Noncoplanar VMAT for Brain Metastases: A Plan Quality and Delivery Efficiency Comparison With Coplanar VMAT, IMRT, and CyberKnife. Technol Cancer Res Treat 2020; 18:1533033819871621. [PMID: 31451059 PMCID: PMC6710677 DOI: 10.1177/1533033819871621] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: To compare plan quality and delivery efficiency of noncoplanar volumetric modulated arc therapy with coplanar volumetric modulated arc therapy, intensity-modulated radiation therapy, and CyberKnife for multiple brain metastases. Methods: For 15 patients with multiple brain metastases, noncoplanar volumetric modulated arc therapy, coplanar volumetric modulated arc therapy, intensity-modulated radiation therapy, and CyberKnife plans with a prescription dose of 30 Gy in 3 fractions were generated. Noncoplanar volumetric modulated arc therapy and coplanar volumetric modulated arc therapy plans consisted of 4 noncoplanar arcs and 2 full coplanar arcs, respectively. Intensity-modulated radiation therapy plans consisted of 7 coplanar fields. CyberKnife plans used skull tracking to ensure accurate position. All plans were generated to cover 95% target volume with prescription dose. Gradient index, conformity index, normal brain tissue volume (V3Gy − V24Gy), monitor units, and beam on time were evaluated. Results: Gradient index was the lowest for CyberKnife (3.49 ± 0.65), followed by noncoplanar volumetric modulated arc therapy (4.21 ± 1.38), coplanar volumetric modulated arc therapy (4.87 ± 1.35), and intensity-modulated radiation therapy (5.36 ± 1.98). Conformity index was the largest for noncoplanar volumetric modulated arc therapy (0.87 ± 0.03), followed by coplanar volumetric modulated arc therapy (0.86 ± 0.04), CyberKnife (0.86 ± 0.07), and intensity-modulated radiation therapy (0.85 ± 0.05). Normal brain tissue volume at high-to-moderate dose spreads (V24Gy − V9Gy) was significantly reduced in noncoplanar volumetric modulated arc therapy over that of intensity-modulated radiation therapy and coplanar volumetric modulated arc therapy. Normal brain tissue volume for noncoplanar volumetric modulated arc therapy was comparable with noncoplanar volumetric modulated arc therapy at high-dose level (V24Gy − V15Gy) and larger than CyberKnife at moderate-to-low dose level (V12Gy − V3Gy). Monitor units was highest for CyberKnife (28 733.59 ± 7197.85), followed by intensity-modulated radiation therapy (4128.40 ± 1185.38), noncoplanar volumetric modulated arc therapy (3105.20 ± 371.23), and coplanar volumetric modulated arc therapy (2997.27 ± 446.84). Beam on time was longest for CyberKnife (30.25 ± 7.32 minutes), followed by intensity-modulated radiation therapy (2.95 ± 0.85 minutes), noncoplanar volumetric modulated arc therapy (2.61 ± 0.07 minutes), and coplanar volumetric modulated arc therapy (2.30 ± 0.23 minutes). Conclusion: For brain metastases far away from organs-at-risk, noncoplanar volumetric modulated arc therapy generated more rapid dose falloff and higher conformity compared to intensity-modulated radiation therapy and coplanar volumetric modulated arc therapy. Noncoplanar volumetric modulated arc therapy provided a comparable dose falloff with CyberKnife at high-dose level and a slower dose falloff than CyberKnife at moderate-to-low dose level. Noncoplanar volumetric modulated arc therapy plans had less monitor units and shorter beam on time than CyberKnife plans.
Collapse
Affiliation(s)
- Shuming Zhang
- 1 Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Ruijie Yang
- 1 Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Chengyu Shi
- 2 Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Jiaqi Li
- 1 Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hongqing Zhuang
- 1 Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Suqing Tian
- 1 Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- 1 Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
248
|
Minniti G, Capone L, Nardiello B, El Gawhary R, Raza G, Scaringi C, Bianciardi F, Gentile P, Paolini S. Neurological outcome and memory performance in patients with 10 or more brain metastases treated with frameless linear accelerator (LINAC)-based stereotactic radiosurgery. J Neurooncol 2020; 148:47-55. [DOI: 10.1007/s11060-020-03442-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/20/2020] [Indexed: 01/10/2023]
|
249
|
Abstract
Brain metastases are a very common manifestation of cancer that have historically been approached as a single disease entity given the uniform association with poor clinical outcomes. Fortunately, our understanding of the biology and molecular underpinnings of brain metastases has greatly improved, resulting in more sophisticated prognostic models and multiple patient-related and disease-specific treatment paradigms. In addition, the therapeutic armamentarium has expanded from whole-brain radiotherapy and surgery to include stereotactic radiosurgery, targeted therapies and immunotherapies, which are often used sequentially or in combination. Advances in neuroimaging have provided additional opportunities to accurately screen for intracranial disease at initial cancer diagnosis, target intracranial lesions with precision during treatment and help differentiate the effects of treatment from disease progression by incorporating functional imaging. Given the numerous available treatment options for patients with brain metastases, a multidisciplinary approach is strongly recommended to personalize the treatment of each patient in an effort to improve the therapeutic ratio. Given the ongoing controversies regarding the optimal sequencing of the available and expanding treatment options for patients with brain metastases, enrolment in clinical trials is essential to advance our understanding of this complex and common disease. In this Review, we describe the key features of diagnosis, risk stratification and modern paradigms in the treatment and management of patients with brain metastases and provide speculation on future research directions.
Collapse
|
250
|
Lehrer EJ, McGee HM, Sheehan JP, Trifiletti DM. Integration of immuno-oncology with stereotactic radiosurgery in the management of brain metastases. J Neurooncol 2020; 151:75-84. [PMID: 32052355 DOI: 10.1007/s11060-020-03427-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 02/08/2020] [Indexed: 12/25/2022]
Abstract
AIM Brain metastases traditionally carried a poor prognosis with treatment being a combination of surgery, whole-brain radiation therapy, and glucocorticoids; however, this treatment paradigm carried a significant amount of morbidity. In recent years, stereotactic radiosurgery (SRS), which involves the delivery of a highly conformal dose of radiation over a single session, has been shown to be an effective alternative to WBRT with excellent rates of local control and improved quality of life; however, a survival benefit has not been demonstrated. Recent developments have challenged the traditional view of the central nervous system being "immunologically privileged" which has led to a greater focus on treating these patients with systemic therapies. Immune checkpoint inhibitors (ICI) have been shown to improve survival in multiple malignancies. As a result, there has been increased utilization in combining these therapies in this setting. METHODS We conducted a literature search of medical databases (e.g. PubMed) for articles involving the use of immune checkpoint inhibitors and stereotactic radiosurgery in managing brain metastases. RESULTS Published evidence utilizing SRS and ICI is largely limited to single institution and retrospective in nature with the most common histology being melanoma. CONCLUSION Combination therapy with SRS and ICI appears to improve survival in patients with brain metastases. The available data are largely retrospective; therefore, ongoing and planned prospective studies are needed to further validate these findings.
Collapse
Affiliation(s)
- Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine At Mount Sinai, 1184 5th Avenue, 1st floor, New York, NY, USA.
| | - Heather M McGee
- Department of Radiation Oncology, Icahn School of Medicine At Mount Sinai, 1184 5th Avenue, 1st floor, New York, NY, USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| | - Daniel M Trifiletti
- Departments of Radiation Oncology and Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|