201
|
Roberts G, Almqvist C, Boyle R, Crane J, Hogan SP, Marsland B, Saglani S, Woodfolk JA. Developments in the mechanisms of allergy in 2018 through the eyes of Clinical and Experimental Allergy, Part I. Clin Exp Allergy 2020; 49:1541-1549. [PMID: 31833127 DOI: 10.1111/cea.13532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the first of two linked articles, we describe the development in the mechanisms underlying allergy as described by Clinical & Experimental Allergy and other journals in 2018. Experimental models of allergic disease, basic mechanisms and clinical mechanisms are all covered.
Collapse
Affiliation(s)
- Graham Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - Julian Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - Simon P Hogan
- Department of Pathology, Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ben Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Vic., Australia
| | - Segal Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Judith A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
202
|
Delemarre T, Holtappels G, De Ruyck N, Zhang N, Nauwynck H, Bachert C, Gevaert E. A substantial neutrophilic inflammation as regular part of severe type 2 chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2020; 147:179-188.e2. [PMID: 32949587 DOI: 10.1016/j.jaci.2020.08.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is generally associated with severe type 2 immune reactions in the white population. However, recent findings suggest an additional role for neutrophils in severe type 2 inflammation. OBJECTIVE This study aimed to characterize the neutrophilic inflammation in CRSwNP and its relation to eosinophilic inflammation in severe type 2 immune reactions. METHODS The presence and activation of neutrophils and eosinophils was analyzed in CRS without NP and CRSwNP by measuring cell and activation markers via immunohistochemistry, immunofluorescence, Luminex assay, ELISA, UniCAP, fluorescence-activated cell sorting, and PCR. Differential neutrophil migration was assessed via Boyden-chamber assay and neutrophil survival was analyzed via flow cytometry. RESULTS Both CRS without NP and CRSwNP displayed variable degrees of eosinophilic and neutrophilic inflammation, with a profound neutrophilic infiltration and activation in type 2 CRSwNP, associated with eosinophil extracellular traps cell death and Charcot-Leyden crystals, but independent of IL-17. Neutrophil extracellular traps cell death in CRSwNP was associated with bacterial colonization, however, neutrophils were less prone to undergo neutrophil extracellular traps cell death in the tissue of patients with severe type 2 CRSwNP. Neutrophils did not show increased migration nor survival in the CRSwNP environment in vitro. CONCLUSIONS This study demonstrated a severe neutrophilic inflammation associated with severe eosinophilic type 2 inflammatory CRSwNP, the role of which needs further study.
Collapse
Affiliation(s)
- Tim Delemarre
- Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Gabriele Holtappels
- Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Natalie De Ruyck
- Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Nan Zhang
- Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium; Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| | - Elien Gevaert
- Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
203
|
Ma R, Ortiz Serrano TP, Davis J, Prigge AD, Ridge KM. The cGAS-STING pathway: The role of self-DNA sensing in inflammatory lung disease. FASEB J 2020; 34:13156-13170. [PMID: 32860267 PMCID: PMC8121456 DOI: 10.1096/fj.202001607r] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
The presence of DNA in the cytosol is usually a sign of microbial infections, which alerts the host innate immune system to mount a defense response. Cyclic GMP-AMP synthase (cGAS) is a critical cytosolic DNA sensor that elicits robust innate immune responses through the production of the second messenger, cyclic GMP-AMP (cGAMP), which binds and activates stimulator of interferon genes (STING). However, cGAS binds to DNA irrespective of DNA sequence, therefore, self-DNA leaked from the nucleus or mitochondria can also serve as a cGAS ligand to activate this pathway and trigger extensive inflammatory responses. Dysregulation of the cGAS-STING pathway is responsible for a broad array of inflammatory and autoimmune diseases. Recently, evidence has shown that self-DNA release and cGAS-STING pathway over-activation can drive lung disease, making this pathway a promising therapeutic target for inflammatory lung disease. Here, we review recent advances on the cGAS-STING pathway governing self-DNA sensing, highlighting its role in pulmonary disease.
Collapse
Affiliation(s)
- Ruihua Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tatiana P Ortiz Serrano
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Davis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew D Prigge
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
204
|
Chen S, Yao L, Huang P, He Q, Guan H, Luo Y, Zou Z, Wei S, Peng G, Yan J, Chen R, Zhang Q, Tao A. Blockade of the NLRP3/Caspase-1 Axis Ameliorates Airway Neutrophilic Inflammation in a Toluene Diisocyanate-Induced Murine Asthma Model. Toxicol Sci 2020; 170:462-475. [PMID: 31070765 DOI: 10.1093/toxsci/kfz099] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Multiple studies have addressed the vital role of Nod-like receptor protein 3(NLRP3)/caspase-1/IL-1β signaling in asthma. Yet, the role of NLRP3/caspase-1 in toluene diisocyanate (TDI)-induced asthma is still obscure. The aim of this study is to investigate the role of the NLRP3/caspase-1 axis in TDI-induced asthma. Using an established murine model of TDI-induced asthma as described previously, we gave the asthmatic mice a highly selective NLRP3 inhibitor, MCC950, as well as the specific caspase-1 inhibitors VX-765 and Ac-YVAD-CHO for therapeutic purposes. Airway resistance was measured and bronchoalveolar lavage fluid was analyzed. Lungs were examined by histology, immunohistochemistry, Western blotting, and flow cytometry. TDI exposure elevated the expression of NLRP3 and caspase-1 that was coupled with increased airway hyperresponsiveness (AHR), neutrophil-dominated cell infiltration, pronounced goblet cell metaplasia, extensive collagen deposition, and increased TH2/TH17 responses. Both VX-765 and Ac-YVAD-CHO effectively inhibited the activation of caspase-1 in TDI-asthmatic mice that was accompanied by dramatic attenuation of AHR, airway inflammation, and airway remodeling, in addition to a decreased TH2 response and lower levels of IL-18 and IL-1β. MCC950 blocked the activation of NLRP3 and downregulated protein expression of caspase-1, IL-1β, and IL-18 in TDI-exposed mice. Furthermore, MCC950 remarkably alleviated AHR, airway inflammation, airway remodeling, and significantly suppressed TH2/TH17 responses. These findings suggested that blockade of the NLRP3/caspase-1 axis effectively prevents the progression of TDI-induced asthma and could be used as therapeutic targets for asthmatics.
Collapse
Affiliation(s)
- Shuyu Chen
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University
| | - Lihong Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University
| | - Peikai Huang
- State Key Laboratory of Respiratory Diseases, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Qiaoling He
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University
| | - Hongbing Guan
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Yiqin Luo
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University
| | - Zehong Zou
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University
| | - Shushan Wei
- State Key Laboratory of Respiratory Diseases, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Guoyou Peng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University
| | - Jie Yan
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University
| | - Rongchang Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University
| | - Qingling Zhang
- State Key Laboratory of Respiratory Diseases, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Ailin Tao
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China.,Center for Immunology, Inflammation & Immune-Mediated Disease, Guangzhou Medical University
| |
Collapse
|
205
|
Ricciardolo FLM, Carriero V, Bullone M. MicroRNAs as Biomarkers in Corticosteroid-Resistant/Neutrophilic Asthma: Still a Long Way to Go! Am J Respir Crit Care Med 2020; 202:4-6. [PMID: 32352833 PMCID: PMC7328323 DOI: 10.1164/rccm.202004-1216ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Vitina Carriero
- Department of Clinical and Biological SciencesUniversity of TurinTurin, Italyand
| | - Michela Bullone
- Department of Veterinary SciencesUniversity of TurinTurin, Italy
| |
Collapse
|
206
|
Papanicolaou A, Wang H, Satzke C, Vlahos R, Wilson N, Bozinovski S. Novel Therapies for Pneumonia-Associated Severe Asthma Phenotypes. Trends Mol Med 2020; 26:1047-1058. [PMID: 32828703 DOI: 10.1016/j.molmed.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
Distinct asthma phenotypes are emerging from well-defined cohort studies and appear to be associated with a history of pneumonia. Asthmatics are more susceptible to infections caused by Streptococcus pneumoniae; however, the mechanisms that underlie defective immunity to this pathogen are still being elucidated. Here, we discuss how alternatively activated macrophages (AAMs) in asthmatics are defective in bacterial phagocytosis and how respiratory viruses disrupt essential host immunity to cause bacterial dispersion deeper into the lungs. We also describe how respiratory pathogens instigate neutrophilic inflammation and amplify type-2 inflammation in asthmatics. Finally, we propose novel dual-acting strategies including granulocyte-colony-stimulating factor receptor (G-CSFR) antagonism and specialised pro-resolving mediators (SPMs) to suppress type-2 and neutrophilic inflammation without compromising pathogen clearance.
Collapse
Affiliation(s)
- Angelica Papanicolaou
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Hao Wang
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Catherine Satzke
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Ross Vlahos
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Steven Bozinovski
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
207
|
Corren J. New Targeted Therapies for Uncontrolled Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:1394-1403. [PMID: 31076057 DOI: 10.1016/j.jaip.2019.03.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Mechanistic studies have improved our understanding of molecular and cellular components involved in asthma and our ability to treat severe patients. An mAb directed against IgE (omalizumab) has become an established add-on therapy for patients with uncontrolled allergic asthma and mAbs specific for IL-5 (reslizumab, mepolizumab), IL-5R (benralizumab), and IL-4R (dupilumab) have been approved as add-on treatments for uncontrolled eosinophilic (type 2) asthma. While these medications have proven highly effective, some patients with severe allergic and/or eosinophilic asthma, as well as most patients with severe non-type-2 disease, have poorly controlled disease. Agents that have recently been evaluated in clinical trials include an antibody directed against thymic stromal lymphopoietin, small molecule antagonists to the chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) and the receptor for stem cell factor on mast cells (KIT), and a DNA enzyme directed at GATA3. Antibodies to IL-33 and its receptor, ST2, are being evaluated in ongoing clinical studies. In addition, a number of antagonists directed against other potential targets are under consideration for future trials, including IL-25, IL-6, TNF-like ligand 1A, CD6, and activated cell adhesion molecule (ALCAM). Clinical data from ongoing and future trials will be important in determining whether these new medications will offer benefits in place of or in addition to existing therapies for asthma.
Collapse
MESH Headings
- Activated-Leukocyte Cell Adhesion Molecule/immunology
- Anti-Asthmatic Agents/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Asthma/drug therapy
- Asthma/immunology
- Asthma/physiopathology
- Cytokines/antagonists & inhibitors
- Cytokines/immunology
- DNA, Catalytic/therapeutic use
- Eosinophils/immunology
- GATA3 Transcription Factor
- Humans
- Imatinib Mesylate/therapeutic use
- Indoleacetic Acids/therapeutic use
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/immunology
- Interleukin-6/immunology
- Lymphocytes/immunology
- Mast Cells/immunology
- Molecular Targeted Therapy
- Omalizumab/therapeutic use
- Proto-Oncogene Proteins c-kit/antagonists & inhibitors
- Proto-Oncogene Proteins c-kit/immunology
- Pyridines/therapeutic use
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/immunology
- Receptors, Interleukin-17/antagonists & inhibitors
- Receptors, Interleukin-17/immunology
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/immunology
- Ribonucleases/therapeutic use
- Th2 Cells/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 15/antagonists & inhibitors
- Tumor Necrosis Factor Ligand Superfamily Member 15/immunology
Collapse
Affiliation(s)
- Jonathan Corren
- Departments of Medicine and Pediatrics, Division of Allergy and Clinical Immunology, David Geffen School of Medicine at UCLA, Los Angeles, Calif.
| |
Collapse
|
208
|
FitzGerald JM, Tran TN, Alacqua M, Altraja A, Backer V, Bjermer L, Bjornsdottir U, Bourdin A, Brusselle G, Bulathsinhala L, Busby J, Canonica GW, Carter V, Chaudhry I, Cho YS, Christoff G, Cosio BG, Costello RW, Eleangovan N, Gibson PG, Heaney LG, Heffler E, Hew M, Hosseini N, Iwanaga T, Jackson DJ, Jones R, Koh MS, Le T, Lehtimäki L, Ludviksdottir D, Maitland-van der Zee AH, Menzies-Gow A, Murray RB, Papadopoulos NG, Perez-de-Llano L, Peters M, Pfeffer PE, Popov TA, Porsbjerg CM, Price CA, Rhee CK, Sadatsafavi M, Tohda Y, Wang E, Wechsler ME, Zangrilli J, Price DB. International severe asthma registry (ISAR): protocol for a global registry. BMC Med Res Methodol 2020; 20:212. [PMID: 32819285 PMCID: PMC7439682 DOI: 10.1186/s12874-020-01065-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background Severe asthma exerts a disproportionately heavy burden on patients and health care. Due to the heterogeneity of the severe asthma population, many patients need to be evaluated to understand the clinical features and outcomes of severe asthma in order to facilitate personalised and targeted care. The International Severe Asthma Registry (ISAR) is a multi-country registry project initiated to aid in this endeavour. Methods ISAR is a multi-disciplinary initiative benefitting from the combined experience of the ISAR Steering Committee (ISC; comprising 47 clinicians and researchers across 29 countries, who have a special interest and/or experience in severe asthma management or establishment and maintenance of severe asthma registries) in collaboration with scientists and experts in database management and communication. Patients (≥18 years old) receiving treatment according to the 2018 definitions of the Global Initiative for Asthma (GINA) Step 5 or uncontrolled on GINA Step 4 treatment will be included. Data will be collected on a core set of 95 variables identified using the Delphi method. Participating registries will agree to provide access to and share standardised anonymous patient-level data with ISAR. ISAR is a registered data source on the European Network of Centres for Pharmacoepidemiology and Pharmacovigilance. ISAR’s collaborators include Optimum Patient Care, the Respiratory Effectiveness Group (REG) and AstraZeneca. ISAR is overseen by the ISC, REG, the Anonymised Data Ethics & Protocol Transparency Committee and the ISAR operational committee, ensuring the conduct of ethical, clinically relevant research that brings value to all key stakeholders. Conclusions ISAR aims to offer a rich source of real-life data for scientific research to understand and improve disease burden, treatment patterns and patient outcomes in severe asthma. Furthermore, the registry will provide an international platform for research collaboration in respiratory medicine, with the overarching aim of improving primary and secondary care of adults with severe asthma globally.
Collapse
Affiliation(s)
| | | | | | - Alan Altraja
- Department of Pulmonary Medicine, University of Tartu and Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Vibeke Backer
- Center of Physical Activity Research, Rigshospitalet and Copenhagen University, Copenhagen, Denmark
| | - Leif Bjermer
- Department of Respiratory Medicine & Allergology, Skåne University Hospital, Lund, Sweden
| | | | - Arnaud Bourdin
- Department of Respiratory Diseases, Montpellier University Hospitals, Hopital Arnaud de Villeneuve and PhyMed Exp (INSERM U 1046, CNRS UMR9214), Universite de Montpellier, Montpellier, France
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Departments of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - John Busby
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Giorgio W Canonica
- Personalized Medicine Asthma & Allergy Clinic, Humanitas University & Research Hospital, Milan, Italy.,SANI-Severe Asthma Network Italy, Milan, Italy
| | | | | | - You Sook Cho
- Division of Allergy, Department of Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - George Christoff
- Faculty of Public Health, Medical University - Sofia, Sofia, Bulgaria
| | - Borja G Cosio
- Son Espases University Hospital-IdISBa-Ciberes, Mallorca, Spain
| | - Richard W Costello
- Clinical Research Centre, Smurfit Building Beaumont Hospital and Department of Respiratory Medicine, RCSI, Dublin, Ireland
| | | | - Peter G Gibson
- Australasian Severe Asthma Network, Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia.,Department of Respiratory and Sleep Medicine, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, Australia
| | - Liam G Heaney
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Enrico Heffler
- Personalized Medicine Asthma & Allergy Clinic, Humanitas University & Research Hospital, Milan, Italy.,SANI-Severe Asthma Network Italy, Milan, Italy
| | - Mark Hew
- Alfred Health & Monash University, Melbourne, Australia
| | | | - Takashi Iwanaga
- Department of Respiratory Medicine & Allergology, Faculty of Medicine, Kindai University Hospital, Ōsakasayama, Japan
| | - David J Jackson
- Guy's & St Thomas' NHS Trust and King's College London, London, UK
| | - Rupert Jones
- Faculty of Medicine & Dentistry, University of Plymouth, Plymouth, UK
| | - Mariko S Koh
- Department of Respiratory & Critical Care Medicine, Singapore General Hospital and Duke-National University Singapore Medical School, Singapore, Singapore
| | - Thao Le
- Optimum Patient Care, Cambridge, UK
| | - Lauri Lehtimäki
- Allergy Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Dora Ludviksdottir
- Department of Respiratory Medicine, Faculty of Medicine, Landspitali University Hospital and University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | - Paul E Pfeffer
- UK Severe Asthma Network, Barts Health NHS Trust and Queen Mary University of London, London, UK
| | - Todor A Popov
- University Hospital "Sv. Ivan Rilski", Sofia, Bulgaria
| | | | | | - Chin K Rhee
- The Catholic University of Korea, Seoul, South Korea
| | - Mohsen Sadatsafavi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Yuji Tohda
- Department of Respiratory Medicine & Allergology, Faculty of Medicine, Kindai University Hospital, Ōsakasayama, Japan
| | - Eileen Wang
- Division of Allergy & Clinical Immunology, Department of Medicine, National Jewish Health and Division of Allergy & Clinical Immunology, Department of Internal Medicine, University of Colorado Hospital, Denver and Aurora, CO, USA
| | - Michael E Wechsler
- Division of Pulmonary, Critical Care and Sleep Medicine, Asthma Program, National Jewish Health, Denver, USA
| | | | - David B Price
- Optimum Patient Care, Cambridge, UK. .,Observational and Pragmatic Research Institute, Singapore, Singapore. .,Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
209
|
Leija-Martínez JJ, Huang F, Del-Río-Navarro BE, Sanchéz-Muñoz F, Muñoz-Hernández O, Giacoman-Martínez A, Hall-Mondragon MS, Espinosa-Velazquez D. IL-17A and TNF-α as potential biomarkers for acute respiratory distress syndrome and mortality in patients with obesity and COVID-19. Med Hypotheses 2020; 144:109935. [PMID: 32795834 PMCID: PMC7413092 DOI: 10.1016/j.mehy.2020.109935] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) was declared a pandemic and international health emergency by the World Health Organization. Patients with obesity with COVID-19 are 7 times more likely to need invasive mechanical ventilation than are patients without obesity (OR 7.36; 95% CI: 1.63–33.14, p = 0.021). Acute respiratory distress syndrome (ARDS) is one of the main causes of death related to COVID-19 and is triggered by a cytokine storm that damages the respiratory epithelium. Interleukins that cause the chronic low-grade inflammatory state of obesity, such as interleukin (IL)-1β, IL-6, monocyte chemoattractant peptide (MCP)-1, and, in particular, IL-17A and tumour necrosis factor alpha (TNF-α), also play very important roles in lung damage in ARDS. Therefore, obesity is associated with an immune state favourable to a cytokine storm. Our hypothesis is that serum concentrations of TNF-α and IL-17A are more elevated in patients with obesity and COVID-19, and consequently, they have a greater probability of developing ARDS and death. The immunobiology of IL-17A and TNF-α opens a new fascinating field of research for COVID-19.
Collapse
Affiliation(s)
- José J Leija-Martínez
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Fengyang Huang
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico.
| | - Blanca E Del-Río-Navarro
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy Clinical Immunology, Mexico City, Mexico
| | - Fausto Sanchéz-Muñoz
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Onofre Muñoz-Hernández
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico
| | - Abraham Giacoman-Martínez
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Margareth S Hall-Mondragon
- Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy Clinical Immunology, Mexico City, Mexico
| | - Dario Espinosa-Velazquez
- Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy Clinical Immunology, Mexico City, Mexico
| |
Collapse
|
210
|
Backman H, Jansson SA, Stridsman C, Eriksson B, Hedman L, Eklund BM, Sandström T, Lindberg A, Lundbäck B, Rönmark E. Severe asthma-A population study perspective. Clin Exp Allergy 2020; 49:819-828. [PMID: 30817038 DOI: 10.1111/cea.13378] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Severe asthma is a considerable challenge for patients, health-care professionals and society. Few studies have estimated the prevalence of severe asthma according to modern definitions of which none based on a population study. OBJECTIVE To describe characteristics and estimate the prevalence of severe asthma in a large adult population-based asthma cohort followed for 10-28 years. METHODS N = 1006 subjects with asthma participated in a follow-up during 2012-14, when 830 (mean age 59 years, 56% women) still had current asthma. Severe asthma was defined according to three internationally well-known criteria: the ATS workshop definition from 2000 used in the US Severe Asthma Research Programme (SARP), the 2014 ATS/ERS Task force definition and the GINA 2017. All subjects with severe asthma according to any of these criteria were undergoing respiratory specialist care and were also contacted by telephone to verify treatment adherence. RESULTS The prevalence of severe asthma according to the three definitions was 3.6% (US SARP), 4.8% (ERS/ATS Taskforce), and 6.1% (GINA) among subjects with current asthma. Although all were using high ICS doses and other maintenance treatment, >90% did not have controlled asthma according to the asthma control test. Severe asthma was related to age >50 years, nasal polyposis, impaired lung function, sensitization to aspergillus, and tended to be more common in women. Further, neutrophils in blood significantly discriminated severe asthma from other asthma. CONCLUSIONS AND CLINICAL RELEVANCE Severe asthma differed significantly from other asthma in terms of demographic, clinical and inflammatory characteristics, results suggesting possibilities for improved treatment regimens of severe asthma. The prevalence of severe asthma in this asthma cohort was 4%-6%, corresponding to approximately 0.5% of the general population.
Collapse
Affiliation(s)
- Helena Backman
- Section of Sustainable Health, The OLIN Unit, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Sven-Arne Jansson
- Section of Sustainable Health, The OLIN Unit, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Caroline Stridsman
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| | - Berne Eriksson
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Deparment of Internal Medicine, Central County Hospital of Halland, Halmstad, Sweden
| | - Linnea Hedman
- Section of Sustainable Health, The OLIN Unit, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Britt-Marie Eklund
- Section of Sustainable Health, The OLIN Unit, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Thomas Sandström
- Section of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anne Lindberg
- Section of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bo Lundbäck
- Section of Sustainable Health, The OLIN Unit, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Eva Rönmark
- Section of Sustainable Health, The OLIN Unit, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
211
|
Nikolaou V, Massaro S, Fakhimi M, Stergioulas L, Price D. COPD phenotypes and machine learning cluster analysis: A systematic review and future research agenda. Respir Med 2020; 171:106093. [PMID: 32745966 DOI: 10.1016/j.rmed.2020.106093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a highly heterogeneous condition projected to become the third leading cause of death worldwide by 2030. To better characterize this condition, clinicians have classified patients sharing certain symptomatic characteristics, such as symptom intensity and history of exacerbations, into distinct phenotypes. In recent years, the growing use of machine learning algorithms, and cluster analysis in particular, has promised to advance this classification through the integration of additional patient characteristics, including comorbidities, biomarkers, and genomic information. This combination would allow researchers to more reliably identify new COPD phenotypes, as well as better characterize existing ones, with the aim of improving diagnosis and developing novel treatments. Here, we systematically review the last decade of research progress, which uses cluster analysis to identify COPD phenotypes. Collectively, we provide a systematized account of the extant evidence, describe the strengths and weaknesses of the main methods used, identify gaps in the literature, and suggest recommendations for future research.
Collapse
Affiliation(s)
- Vasilis Nikolaou
- Surrey Business School, University of Surrey, Guildford, GU2 7HX, UK.
| | - Sebastiano Massaro
- Surrey Business School, University of Surrey, Guildford, GU2 7HX, UK; The Organizational Neuroscience Laboratory, London, WC1N 3AX, UK
| | - Masoud Fakhimi
- Surrey Business School, University of Surrey, Guildford, GU2 7HX, UK
| | | | - David Price
- Observational and Pragmatic Research Institute, Singapore, Singapore; Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
212
|
Ray A, Camiolo M, Fitzpatrick A, Gauthier M, Wenzel SE. Are We Meeting the Promise of Endotypes and Precision Medicine in Asthma? Physiol Rev 2020; 100:983-1017. [PMID: 31917651 PMCID: PMC7474260 DOI: 10.1152/physrev.00023.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
While the term asthma has long been known to describe heterogeneous groupings of patients, only recently have data evolved which enable a molecular understanding of the clinical differences. The evolution of transcriptomics (and other 'omics platforms) and improved statistical analyses in combination with large clinical cohorts opened the door for molecular characterization of pathobiologic processes associated with a range of asthma patients. When linked with data from animal models and clinical trials of targeted biologic therapies, emerging distinctions arose between patients with and without elevations in type 2 immune and inflammatory pathways, leading to the confirmation of a broad categorization of type 2-Hi asthma. Differences in the ratios, sources, and location of type 2 cytokines and their relation to additional immune pathway activation appear to distinguish several different (sub)molecular phenotypes, and perhaps endotypes of type 2-Hi asthma, which respond differently to broad and targeted anti-inflammatory therapies. Asthma in the absence of type 2 inflammation is much less well defined, without clear biomarkers, but is generally linked with poor responses to corticosteroids. Integration of "big data" from large cohorts, over time, using machine learning approaches, combined with validation and iterative learning in animal (and human) model systems is needed to identify the biomarkers and tightly defined molecular phenotypes/endotypes required to fulfill the promise of precision medicine.
Collapse
Affiliation(s)
- Anuradha Ray
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Matthew Camiolo
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Anne Fitzpatrick
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Marc Gauthier
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
213
|
Pajno GB, Castagnoli R, Arasi S, Licari A, Caminiti L, Marseglia GL. Pediatric use of omalizumab for allergic asthma. Expert Opin Biol Ther 2020; 20:695-703. [PMID: 32241196 DOI: 10.1080/14712598.2020.1751115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Severe pediatric asthma is associated with significant morbidity as well as with a high economic burden. It represents a heterogeneous disease with multiple clinical phenotypes. Currently, physicians are facing the challenge to provide a 'personalized medicine approach', which is tailored to the diverse pathomechanisms underlying clinical presentations. Three main endotypes of airway inflammation have been described in children with severe asthma. While neutrophilic and paucigranulocytic inflammatory patterns are quite uncommon in childhood, type Th2 inflammation asthma with elevated IgE is the most prevalent in pediatric asthma. Considering the pivotal role of IgE in type Th2 inflammation asthma, the blockade of IgE using anti-IgE therapy represents a potent therapeutic option for severe pediatric asthma in children. AREAS COVERED This review aims to focus on the role of omalizumab as a treatment option in pediatric patients (aged six years and above) with severe allergic asthma. EXPERT OPINION The clinical efficacy and safety of omalizumab for the treatment of pediatric asthma is well documented in clinical trials and observational studies. Further studies are still required to characterize the potential benefit of anti-IgE therapy in airway remodeling, identify additional biomarkers of clinical response and address current unmet needs, including the limit on omalizumab use in children younger than six years.
Collapse
Affiliation(s)
| | - Riccardo Castagnoli
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia, Italy
| | - Stefania Arasi
- Pediatric Allergology Unit, Bambino Gesù Hospital (IRCCS) , Rome, Italy
| | - Amelia Licari
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia, Italy
| | - Lucia Caminiti
- Department of Pediatrics, Allergy Unit, University of Messina , Messina, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia, Italy
| |
Collapse
|
214
|
Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets 2020; 24:777-792. [PMID: 32567399 DOI: 10.1080/14728222.2020.1783242] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Thymic stromal lymphopoietin (TSLP), an epithelial cytokine (alarmin), is a central regulator of the immune response to inhaled environmental insults such as allergens, viruses and pollutants, initiating a cascade of downstream inflammation. There is compelling evidence that TSLP plays a major role in the pathology of asthma, and therapies that aim to block its activity are in development. AREAS COVERED We review studies conducted in humans and human cells, largely published in PubMed January 2010-October 2019, that investigated the innate and adaptive immune mechanisms of TSLP in asthma relevant to type 2-driven (eosinophilic/allergic) inflammation and non-type 2-driven (non-eosinophilic/non-allergic) inflammation, and the role of TSLP as a mediator between immune cells and structural cells in the airway. Clinical data from studies evaluating TSLP blockade are also discussed. EXPERT OPINION The position of TSLP at the top of the inflammatory cascade makes it a promising therapeutic target in asthma. Systemic anti-TSLP monoclonal antibody therapy with tezepelumab has yielded positive results in clinical trials to date, reducing exacerbations and biomarkers of inflammation in patients across the spectrum of inflammatory endotypes. Inhaled anti-TSLP is an alternative route currently under evaluation. The long-term safety and efficacy of TSLP blockade need to be evaluated.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University , Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University , Hamilton, Ontario, Canada
| | | | - Janet M Griffiths
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D , Gaithersburg, MD, USA
| |
Collapse
|
215
|
Côté A, Godbout K, Boulet LP. The management of severe asthma in 2020. Biochem Pharmacol 2020; 179:114112. [PMID: 32598948 DOI: 10.1016/j.bcp.2020.114112] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways affecting more than 300 million patients worldwide. The disease can be of various severity ranging from very mild to severe. The severe form of the disease only affects about 5% of patients but is responsible for a large component of the overall disease burden and results in about half of direct asthma-related costs. This led to important investments in research, which allowed better understanding of its pathophysiology and the development of new therapeutic strategies. Despite those breakthroughs, recent guidelines still emphasize the need to distinguish uncontrolled or difficult-to-control asthma from severe asthma. Indeed, a significant number of patients referred to severe asthma clinics are non-severe uncontrolled patients. However, the basics of asthma management such as ensuring that the patient has the right diagnosis, recognition of contributing comorbidities, avoidance of exposure to sensitizing agents in allergic individuals, regular assessment of control, and patient education should not be forgotten. The major improvements in pathophysiology arose from the evidences that asthma is of heterogeneous nature. Such heterogeneity has been particularly studied in severe asthma, leading to the recognition of more homogeneous groups referred to as phenotypes. Appropriate phenotyping of individual patients allows enforcing more specific treatment plans for patients, which is a step toward precision medicine. The high morbidity and socioeconomic burden of severe asthma has led to the development of optimized therapeutic strategies in addition to the commercialization of new drugs. Many of these have targeted the eosinophilic component of inflammatory asthma phenotypes while there is still a need to develop new therapies for non-eosinophilic asthma. When asthma is not controlled by optimal therapy, including a high-dose of inhaled corticosteroid (ICS) and a long-acting beta-agonist (LABA), a long acting anticholinergic agent can be added and if insufficient, a variety of biologic agents is now available in many countries. When biologics are not an option, thermoplasty and macrolides have also become available. Despite many recent breakthroughs in severe asthma, much research needs to be done. Improvement in availability of targeted asthma medications and asthma prevention should be top priorities.
Collapse
Affiliation(s)
- Andréanne Côté
- Quebec Heart and Lung Institute, Laval University, Canada
| | | | | |
Collapse
|
216
|
Association Between Inflammatory Pathways and Phenotypes of Pulmonary Dysfunction Using Cluster Analysis in Persons Living With HIV and HIV-Uninfected Individuals. J Acquir Immune Defic Syndr 2020; 83:189-196. [PMID: 31929407 DOI: 10.1097/qai.0000000000002234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Persons living with HIV (PLWH) are at risk of developing different phenotypes of chronic lung disease, including chronic obstructive pulmonary disease. Mechanisms underlying these phenotypes are unclear. OBJECTIVE To identify clusters of peripheral inflammatory mediators associated with pulmonary function to determine inflammatory pathways and phenotypes of chronic obstructive pulmonary disease in PLWH and HIV-uninfected individuals. METHODS Study participants were PLWH and HIV-uninfected individuals enrolled in the Pittsburgh HIV Lung Cohort. Pulmonary function tests were performed for all participants. Chest computed tomographic scans were performed in a subset of PLWH. Plasma levels of 19 inflammatory mediators were measured by Luminex or ELISA. Clusters were identified based on the expression pattern of inflammatory mediators in PLWH and HIV-uninfected individuals, and the relationships among clinical parameters were evaluated within clusters by using cluster and network analyses. RESULTS In PLWH, we identified a distinct cluster with higher levels of Th1, Th2, and Th17 inflammatory mediators with increased complexity of these mediators and inferred presence of pathogenic Th17 cell types. Individuals in this cluster had worse airway obstruction and more radiographic emphysema. In HIV-uninfected individuals, a cluster with high-grade systemic inflammation also had worse diffusing capacity for carbon monoxide. CONCLUSIONS Inflammatory pathways associated with pulmonary dysfunction in PLWH suggest multifaceted immune dysregulation involved in different phenotypes of pulmonary dysfunction with a potential specific contribution of the Th17 pathway to airway obstruction in PLWH. Identification of these associations may help in development of treatments that could alter the course of the disease.
Collapse
|
217
|
Tanaka A, Sato H, Akimoto K, Matsunaga T, Sagara H. Spontaneous sputum discriminates inflammatory phenotypes in patients with asthma. Ann Allergy Asthma Immunol 2020; 126:54-60.e1. [PMID: 32553777 DOI: 10.1016/j.anai.2020.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Eosinophils in induced sputum are not only a useful biomarker for diagnosing asthma but are also associated with severe asthma. However, little is known about the association between eosinophils in spontaneous sputum and asthma severity. OBJECTIVE To investigate whether spontaneous sputum eosinophils are related to severe asthma in adult patients with asthma. METHODS We conducted a retrospective cross-sectional study on 86 people with asthma whose spontaneous sputa were successfully collected. Patients were classified into 4 phenotypes according to the eosinophil and neutrophil levels in spontaneous sputum. We determined the association between inflammatory phenotypes and severe asthma. Moreover, we also compared asthma severity among the phenotypes classified according to blood eosinophils and spontaneous sputum eosinophils. RESULTS Asthma phenotypes were as follows: paucigranulocytic, 30.2%; neutrophilic, 18.6%; eosinophilic, 32.6%; and mixed, 18.6%. People with eosinophilic asthma had the highest blood eosinophils, total immunoglobulin E (IgE), and fractional exhaled nitric oxide among the 4 phenotypes. Significant differences were observed in asthma severity between the phenotypes (P = .019). In particular, 57.2% and 56.2% of patients had severe eosinophilic asthma and mixed asthma, respectively. The logistic regression analysis revealed that spontaneous sputum eosinophilia represented the strongest association with severe asthma among the inflammatory variables. Finally, more patients with severe asthma were included in the phenotype with spontaneous sputum eosinophils greater than 3% and blood eosinophils less than or equal to 300/μL and in the phenotype with spontaneous sputum eosinophils greater than 3% and blood eosinophils greater than 300/μL. CONCLUSION Spontaneous sputum can provide helpful information on airway inflammatory phenotyping in patients with asthma.
Collapse
Affiliation(s)
- Akihiko Tanaka
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan.
| | - Hiroki Sato
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Kaho Akimoto
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Tomohiro Matsunaga
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Hironori Sagara
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
218
|
Steinke JW, Lawrence MG, Teague WG, Braciale TJ, Patrie JT, Borish L. Bronchoalveolar lavage cytokine patterns in children with severe neutrophilic and paucigranulocytic asthma. J Allergy Clin Immunol 2020; 147:686-693.e3. [PMID: 32526308 DOI: 10.1016/j.jaci.2020.05.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Asthma is a complex heterogeneous disease occurring in adults and children that is characterized by distinct inflammatory patterns. While numerous studies have been performed in adults, little is known regarding the heterogeneity of severe asthma in children, particularly inflammatory signatures involving the air spaces. OBJECTIVE We sought to determine the relationship of bronchoalveolar lavage (BAL) cytokine/chemokine expression patterns in children with severe therapy-resistant asthma stratified according to neutrophilic versus nonneutrophilic BAL inflammatory cell patterns. METHODS Children with severe asthma with inadequate symptom control despite therapy underwent diagnostic bronchoscopy and BAL. Inflammatory cytokine/chemokine concentrations were determined using a multiplex protein bead assay. RESULTS Analysis of BAL constituents with an unbiased clustering approach revealed distinct cytokine/chemokine patterns, and these aligned with pathways associated with type 2 innate lymphoid cells, monocytes, neutrophil trafficking, and T effector cells. All cytokines examined (n = 27) with 1 exception (vascular endothelial growth factor) were overexpressed with BAL neutrophilia compared with nonneutrophilic asthma, and this was confirmed in a cross-validation analysis. Cytokines specifically responsible for Th17 (IL-17, IL-6, G-CSF) and Th1 differentiation and expression (IL-12, TNF-α, IFN-γ) were enhanced in the neutrophilic cohorts. Neutrophilic groups were also characterized by higher prevalence of bacterial and viral pathogens; however, cytokine expression patterns manifested independently of pathogen expression. CONCLUSIONS The results demonstrate that children with refractory asthma and neutrophilic inflammation had a BAL cytokine pattern consistent with a mixed Th17/Th1/Th2 response. In contrast, nonneutrophilic asthma presented independently of cytokine overexpression.
Collapse
Affiliation(s)
- John W Steinke
- Division of Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va; Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Va
| | - Monica G Lawrence
- Division of Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - W Gerald Teague
- Child Health Research Center, Division of Respiratory Medicine, Allergy, and Immunology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va
| | - Thomas J Braciale
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Va
| | - James T Patrie
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Va
| | - Larry Borish
- Division of Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va; Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Va; Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Va.
| |
Collapse
|
219
|
Horne E, Tibble H, Sheikh A, Tsanas A. Challenges of Clustering Multimodal Clinical Data: Review of Applications in Asthma Subtyping. JMIR Med Inform 2020; 8:e16452. [PMID: 32463370 PMCID: PMC7290450 DOI: 10.2196/16452] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 12/27/2022] Open
Abstract
Background In the current era of personalized medicine, there is increasing interest in understanding the heterogeneity in disease populations. Cluster analysis is a method commonly used to identify subtypes in heterogeneous disease populations. The clinical data used in such applications are typically multimodal, which can make the application of traditional cluster analysis methods challenging. Objective This study aimed to review the research literature on the application of clustering multimodal clinical data to identify asthma subtypes. We assessed common problems and shortcomings in the application of cluster analysis methods in determining asthma subtypes, such that they can be brought to the attention of the research community and avoided in future studies. Methods We searched PubMed and Scopus bibliographic databases with terms related to cluster analysis and asthma to identify studies that applied dissimilarity-based cluster analysis methods. We recorded the analytic methods used in each study at each step of the cluster analysis process. Results Our literature search identified 63 studies that applied cluster analysis to multimodal clinical data to identify asthma subtypes. The features fed into the cluster algorithms were of a mixed type in 47 (75%) studies and continuous in 12 (19%), and the feature type was unclear in the remaining 4 (6%) studies. A total of 23 (37%) studies used hierarchical clustering with Ward linkage, and 22 (35%) studies used k-means clustering. Of these 45 studies, 39 had mixed-type features, but only 5 specified dissimilarity measures that could handle mixed-type features. A further 9 (14%) studies used a preclustering step to create small clusters to feed on a hierarchical method. The original sample sizes in these 9 studies ranged from 84 to 349. The remaining studies used hierarchical clustering with other linkages (n=3), medoid-based methods (n=3), spectral clustering (n=1), and multiple kernel k-means clustering (n=1), and in 1 study, the methods were unclear. Of 63 studies, 54 (86%) explained the methods used to determine the number of clusters, 24 (38%) studies tested the quality of their cluster solution, and 11 (17%) studies tested the stability of their solution. Reporting of the cluster analysis was generally poor in terms of the methods employed and their justification. Conclusions This review highlights common issues in the application of cluster analysis to multimodal clinical data to identify asthma subtypes. Some of these issues were related to the multimodal nature of the data, but many were more general issues in the application of cluster analysis. Although cluster analysis may be a useful tool for investigating disease subtypes, we recommend that future studies carefully consider the implications of clustering multimodal data, the cluster analysis process itself, and the reporting of methods to facilitate replication and interpretation of findings.
Collapse
Affiliation(s)
- Elsie Horne
- Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Holly Tibble
- Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Aziz Sheikh
- Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Athanasios Tsanas
- Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
220
|
Putcha N, Fawzy A, Matsui EC, Liu MC, Bowler RP, Woodruff PG, O'Neal WK, Comellas AP, Han MK, Dransfield MT, Wells JM, Lugogo N, Gao L, Talbot CC, Hoffman EA, Cooper CB, Paulin LM, Kanner RE, Criner G, Ortega VE, Barr RG, Krishnan JA, Martinez FJ, Drummond MB, Wise RA, Diette GB, Hersh CP, Hansel NN. Clinical Phenotypes of Atopy and Asthma in COPD: A Meta-analysis of SPIROMICS and COPDGene. Chest 2020; 158:2333-2345. [PMID: 32450244 DOI: 10.1016/j.chest.2020.04.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Little is known about the concordance of atopy with asthma COPD overlap. Among individuals with COPD, a better understanding of the phenotypes characterized by asthma overlap and atopy is needed to better target therapies. RESEARCH QUESTION What is the overlap between atopy and asthma status among individuals with COPD, and how are categories defined by the presence of atopy and asthma status associated with clinical and radiologic phenotypes and outcomes in the Genetic Epidemiology of COPD Study (COPDGene) and Subpopulation and Intermediate Outcome Measures in COPD Study (SPIROMICS)? STUDY DESIGN AND METHODS Four hundred three individuals with COPD from SPIROMICS and 696 individuals from COPDGene with data about specific IgEs to 10 common allergens and mixes (simultaneous assessment of combination of allergens in similar category) were included. Comparison groups were defined by atopic and asthma status (neither, atopy alone, atopic asthma, nonatopic asthma, with atopy defined as any positive specific IgE (≥0.35 KU/L) to any of the 10 allergens or mixes and asthma defined as self-report of doctor-diagnosed current asthma). Multivariable regression analyses (linear, logistic, and zero inflated negative binomial where appropriate) adjusted for age, sex, race, lung function, smoking status, pack-years smoked, and use of inhaled corticosteroids were used to determine characteristics of groups and relationship with outcomes (exacerbations, clinical outcomes, CT metrics) separately in COPDGene and SPIROMICS, and then adjusted results were combined using meta-analysis. RESULTS The prevalence of atopy was 35% and 36% in COPD subjects from SPIROMICS and COPDGene, respectively, and less than 50% overlap was seen between atopic status with asthma in both cohorts. In meta-analysis, individuals with nonatopic asthma had the most impaired symptom scores (effect size for St. George's Respiratory Questionnaire total score, 4.2; 95% CI, 0.4-7.9; effect size for COPD Assessment Test score, 2.8; 95% CI, 0.089-5.4), highest risk for exacerbations (incidence rate ratio, 1.41; 95% CI, 1.05-1.88) compared with the group without atopy or asthma. Those with atopy and atopic asthma were not at increased risk for adverse outcomes. INTERPRETATION Asthma and atopy had incomplete overlap among former and current smokers with COPD in COPDGene and SPIROMICS. Nonatopic asthma was associated with adverse outcomes and exacerbation risk in COPD, whereas groups having atopy alone and atopic asthma had less risk.
Collapse
Affiliation(s)
- Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Ashraf Fawzy
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth C Matsui
- Departments of Population Health and Pediatrics, Dell Medical School at the University of Texas at Austin, Austin, TX
| | - Mark C Liu
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Russ P Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care and Sleep, University of California San Francisco, San Francisco, CA
| | - Wanda K O'Neal
- University of North Carolina Marsico Lung Institute, Chapel Hill, NC
| | - Alejandro P Comellas
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, IA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Mark T Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, University of Alabama Birmingham Lung Health Center, and Birmingham Veterans' Affairs Medical Center
| | - J Michael Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, University of Alabama Birmingham Lung Health Center, and Birmingham Veterans' Affairs Medical Center
| | - Njira Lugogo
- Division of Pulmonary and Critical Care Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Li Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD
| | - C Conover Talbot
- The Johns Hopkins School of Medicine Institute for Basic Biomedical Sciences, Baltimore, MD
| | - Eric A Hoffman
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, IA
| | - Christopher B Cooper
- Division of Pulmonary and Critical Care, University of California Los Angeles, Los Angeles, CA
| | - Laura M Paulin
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center/Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Richard E Kanner
- Division of Pulmonary and Critical Care, University of Utah School of Medicine, Salt Lake City, UT
| | - Gerard Criner
- Department of Pulmonary, Temple University Philadelphia, PA
| | - Victor E Ortega
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - R Graham Barr
- Division of General Internal Medicine, Columbia University Medical Center, New York, NY
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL
| | | | - M Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Robert A Wise
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gregory B Diette
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
221
|
Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne) 2020; 7:191. [PMID: 32509793 PMCID: PMC7253669 DOI: 10.3389/fmed.2020.00191] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is an inflammatory disease of the airways that may result from exposure to allergens or other environmental irritants, resulting in bronchoconstriction, wheezing, and shortness of breath. The structural changes of the airways associated with asthma, broadly referred to as airway remodeling, is a pathological feature of chronic asthma that contributes to the clinical manifestations of the disease. Airway remodeling in asthma constitutes cellular and extracellular matrix changes in the large and small airways, epithelial cell apoptosis, airway smooth muscle cell proliferation, and fibroblast activation. These pathological changes in the airway are orchestrated by crosstalk of different cell types within the airway wall and submucosa. Environmental exposures to dust, chemicals, and cigarette smoke can initiate the cascade of pro-inflammatory responses that trigger airway remodeling through paracrine signaling and mechanostimulatory cues that drive airway remodeling. In this review, we explore three integrated and dynamic processes in airway remodeling: (1) initiation by epithelial cells; (2) amplification by immune cells; and (3) mesenchymal effector functions. Furthermore, we explore the role of inflammaging in the dysregulated and persistent inflammatory response that perpetuates airway remodeling in elderly asthmatics.
Collapse
Affiliation(s)
- Kenneth P Hough
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Miranda L Curtiss
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Trevor J Blain
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rui-Ming Liu
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer Trevor
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessy S Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
222
|
Wu D, Gu B, Qian Y, Sun Y, Chen Y, Mao ZD, Shi YJ, Zhang Q. Long non-coding RNA growth arrest specific-5: a potential biomarker for early diagnosis of severe asthma. J Thorac Dis 2020; 12:1960-1971. [PMID: 32642099 PMCID: PMC7330345 DOI: 10.21037/jtd-20-213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The diagnosis of severe asthma (SA) is difficult due to a necessary long-term treatment history currently, while there are few studies on biomarkers in the diagnosis of SA. Long non-coding RNA (lncRNA) growth arrest specific-5 (GAS5) has the potential of playing this role because its binding with glucocorticoid receptor (GR). The purpose of this article is to explore the possibility of lncRNA GAS5 acting as a biomarker for early diagnosis of severe asthma (SA). Methods Peripheral blood was obtained from healthy volunteers, patients with non-severe asthma (nSA) and SA, and peripheral blood mononuclear cells (PBMCs) were separated. Twenty-four female BALB/c mice (aged 6 weeks) were randomly and averagely divided into 3 groups, i.e., control group, asthma group and dexamethasone group. The mice were sensitized and challenged with ovalbumin (OVA) and lipopolysaccharide (LPS) to establish a murine model of steroid-insensitive asthma. Human bronchial epithelial cells (HBECs) were cultured, transfected with miR-9 mimics, JNK1 inhibitor and treated with interleukin (IL)-2 + IL-4 and dexamethasone. Western blot was used to detect glucocorticoid receptor phosphorylation at serine 226 (GRser226), and quantitative real-time PCR was used to detect GAS5 level. Results The level of GAS5 in PBMCs from nSA group elevated 20-fold higher after dexamethasone treatment in vitro, while it reduced 15-fold lower in SA group (P<0.001). The expression of GRser226 in PBMCs from SA group was significantly higher than that from control group and nSA group after dexamethasone treatment (P<0.001). In the lung tissue of mice, the GAS5 level of dexamethasone group was lower than that of asthma group (P<0.001) and control group (P<0.05). Both treatment with IL-2 + IL-4 and transfection of miR-9 mimics could increase the expression of GRser226 in HBECs (P<0.001). The GAS5 level in HBECs after IL-2 + IL-4 + Dexamethasone treatment was lower than that in HBECs only treated with IL-2 + IL-4 (P<0.001). Similarly, dexamethasone treatment also decreased the level of GAS5 in HBECs transfected with miR-9 mimics (P<0.05). Moreover, transfecting with JNK1 inhibitor could reverse the expression of GAS5 in HBECs transfected with miR-9 mimics and treated with dexamethasone. However, the level of GAS5 in HBECs interfered with IL-2 + IL-4 + Dexamethasone was not affected by JNK1 inhibitor. Conclusions The expression of GAS5 is different in PBMCs between nSA and SA, and is affected by glucocorticoids treatment, which is due to GRser226 phosphorylation. GAS5 can be used as a potential biomarker for diagnosis of severe asthma by comparing GAS5 level in PBMCs from patients before and after glucocorticoids treatment in vitro.
Collapse
Affiliation(s)
- Di Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Bin Gu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yun Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yi Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zheng-Dao Mao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yu-Jia Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
223
|
Ambrocio-Ortiz E, Galicia-Negrete G, Pérez-Rubio G, Escobar-Morales AJ, Abarca-Rojano E, Del Angel-Pablo AD, Castillejos-López MDJ, Falfán-Valencia R. Single Nucleotide and Copy-Number Variants in IL4 and IL13 Are Not Associated with Asthma Susceptibility or Inflammatory Markers: A Case-Control Study in a Mexican-Mestizo Population. Diagnostics (Basel) 2020; 10:E273. [PMID: 32366038 PMCID: PMC7277638 DOI: 10.3390/diagnostics10050273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Asthma is a complex and chronic inflammatory airway disease. Asthma's etiology is unknown; however, genetic and environmental factors could affect disease susceptibility. We designed a case-control study aimed to evaluate the role of single-nucleotide polymorphisms (SNP), and copy-number variants (CNV) in the IL4 and IL13 genes in asthma susceptibility and their participation in plasma cytokine levels depending on genotypes Methods: We include 486 subjects, divided into asthma patients (AP, n = 141) and clinically healthy subjects (CHS, n = 345). We genotyped three SNP, two in the IL4 and two in the IL13 gene; also, two CNVs in IL4. The IL-4, IL-13 and IgE plasma levels were quantified. RESULTS Biomass-burning smoke exposure was higher in the AP group compared to CHS (47.5% vs. 20.9%; p < 0.01, OR = 3.4). No statistical differences were found in the genetic association analysis. In both CNV, we only found the common allele. For the analysis of IL-4, IL-13, and IgE measures stratified by genotypes, no significant association or correlation was found. CONCLUSION In the Mexican-mestizo population, SNPs neither CNVs in IL4 nor IL13 are associated with asthma susceptibility or involved serum cytokine levels. Biomass-burning smoke is a risk factor in asthma susceptibility.
Collapse
Affiliation(s)
- Enrique Ambrocio-Ortiz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Sección XVI, Mexico City 14080, Mexico; (E.A.-O.); (G.G.-N.); (G.P.-R.); (A.J.E.-M.); (A.D.D.A.-P.)
| | - Gustavo Galicia-Negrete
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Sección XVI, Mexico City 14080, Mexico; (E.A.-O.); (G.G.-N.); (G.P.-R.); (A.J.E.-M.); (A.D.D.A.-P.)
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Sección XVI, Mexico City 14080, Mexico; (E.A.-O.); (G.G.-N.); (G.P.-R.); (A.J.E.-M.); (A.D.D.A.-P.)
| | - Areli J. Escobar-Morales
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Sección XVI, Mexico City 14080, Mexico; (E.A.-O.); (G.G.-N.); (G.P.-R.); (A.J.E.-M.); (A.D.D.A.-P.)
| | - Edgar Abarca-Rojano
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomas, Mexico City 11340, Mexico;
| | - Alma D. Del Angel-Pablo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Sección XVI, Mexico City 14080, Mexico; (E.A.-O.); (G.G.-N.); (G.P.-R.); (A.J.E.-M.); (A.D.D.A.-P.)
| | - Manuel D. J. Castillejos-López
- Epidemiological Surveillance Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Sección XVI, Mexico City 14080, Mexico;
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Sección XVI, Mexico City 14080, Mexico; (E.A.-O.); (G.G.-N.); (G.P.-R.); (A.J.E.-M.); (A.D.D.A.-P.)
| |
Collapse
|
224
|
Abdel-Aziz MI, Brinkman P, Vijverberg SJH, Neerincx AH, Riley JH, Bates S, Hashimoto S, Kermani NZ, Chung KF, Djukanovic R, Dahlén SE, Adcock IM, Howarth PH, Sterk PJ, Kraneveld AD, Maitland-van der Zee AH. Sputum microbiome profiles identify severe asthma phenotypes of relative stability at 12 to 18 months. J Allergy Clin Immunol 2020; 147:123-134. [PMID: 32353491 DOI: 10.1016/j.jaci.2020.04.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Asthma is a heterogeneous disease characterized by distinct phenotypes with associated microbial dysbiosis. OBJECTIVES Our aim was to identify severe asthma phenotypes based on sputum microbiome profiles and assess their stability after 12 to 18 months. A further aim was to evaluate clusters' robustness after inclusion of an independent cohort of patients with mild-to-moderate asthma. METHODS In this longitudinal multicenter cohort study, sputum samples were collected for microbiome profiling from a subset of the Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes adult patient cohort at baseline and after 12 to 18 months of follow-up. Unsupervised hierarchical clustering was performed by using the Bray-Curtis β-diversity measure of microbial profiles. For internal validation, partitioning around medoids, consensus cluster distribution, bootstrapping, and topological data analysis were applied. Follow-up samples were studied to evaluate within-patient clustering stability in patients with severe asthma. Cluster robustness was evaluated by using an independent cohort of patients with mild-to-moderate asthma. RESULTS Data were available for 100 subjects with severe asthma (median age 55 years; 42% males). Two microbiome-driven clusters were identified; they were characterized by differences in asthma onset, smoking status, residential locations, percentage of blood and/or sputum neutrophils and macrophages, lung spirometry results, and concurrent asthma medications (all P values < .05). The cluster 2 patients displayed a commensal-deficient bacterial profile that was associated with worse asthma outcomes than those of the cluster 1 patients. Longitudinal clusters revealed high relative stability after 12 to 18 months in those with severe asthma. Further inclusion of an independent cohort of 24 patients with mild-to-moderate asthma was consistent with the clustering assignments. CONCLUSION Unbiased microbiome-driven clustering revealed 2 distinct robust phenotypes of severe asthma that exhibited relative overtime stability. This suggests that the sputum microbiome may serve as a biomarker for better characterizing asthma phenotypes.
Collapse
Affiliation(s)
- Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne H Neerincx
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John H Riley
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Stewart Bates
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Simone Hashimoto
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Sven-Erik Dahlén
- Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Peter H Howarth
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
225
|
Han XA, Jie HY, Wang JH, Zhang XM, Wang J, Yu CX, Zhang JL, He J, Chen JQ, Lai KF, Sun EW. Necrostatin-1 Ameliorates Neutrophilic Inflammation in Asthma by Suppressing MLKL Phosphorylation to Inhibiting NETs Release. Front Immunol 2020; 11:666. [PMID: 32391007 PMCID: PMC7194114 DOI: 10.3389/fimmu.2020.00666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 11/26/2022] Open
Abstract
Neutrophilic inflammation occurs during asthma exacerbation, and especially, in patients with steroid-refractory asthma, but the underlying mechanisms are poorly understood. Recently, a significant accumulation of neutrophil extracellular traps (NETs) in the airways of neutrophilic asthma has been documented, suggesting that NETs may play an important role in the pathogenesis. In this study, we firstly demonstrated that NETs could induce human airway epithelial cell damage in vitro. In a mouse asthmatic model of neutrophil-dominated airway inflammation, we found that NETs were markedly increased in bronchoalveolar lavage (BAL), and the formation of NETs exacerbated the airway inflammation. Additionally, a small-molecule drug necrostatin-1 (Nec-1) shown to inhibit NETs formation was found to alleviate the neutrophil-dominated airway inflammation. Nec-1 reduced total protein concentration, myeloperoxidase activity, and the levels of inflammatory cytokines in BAL. Finally, further experiments proved that the inhibition of Nec-1 on NETs formation might be related to its ability to inhibiting mixed lineage kinase domain-like (MLKL) phosphorylation and perforation. Together, these results document that NETs are closely associated with the pathogenesis of neutrophilic asthma and inhibition of the formation of NETs by Nec-1 may be a new therapeutic strategy to ameliorate neutrophil-dominated airway inflammation.
Collapse
Affiliation(s)
- X A Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - H Y Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - J H Wang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - X M Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Respiration, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - C X Yu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - J L Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - J He
- Department of Rheumatology and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - J Q Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - K F Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical College, Guangzhou, China
| | - E W Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
226
|
Soma T, Uchida Y, Hoshino Y, Katayama K, Kobayashi T, Nakagome K, Nagata M. Relationship between airway inflammation and airflow limitation in elderly asthmatics. Asia Pac Allergy 2020; 10:e17. [PMID: 32411582 PMCID: PMC7203439 DOI: 10.5415/apallergy.2020.10.e17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 11/04/2022] Open
Abstract
Background The prevalence of asthma in elderly population has been increasing. Previous studies have demonstrated clinical characteristics of elderly asthmatics (EA). However, little is known regarding the influence of immunological change on the physiological status of EA. Objective We investigated the relationship between inflammatory mediators and the pulmonary function (PF) of EA. Methods Eligible adult asthmatics recruited from the Allergy Center of Saitama Medical University Hospital were classified into a non-EA group (<40 years old, n = 15) and an EA group (≥60 years old, n = 43). Sputum induction and PF tests were performed. Concentrations of an eosinophil-derived neurotoxin (EDN) and neutrophil elastase (NE) in sputum supernatants were measured by enzyme-linked immunosorbent assay and a fluorometric assay using a commercial assay kit, respectively. Cell counts and EDN and NE concentrations in sputum were compared between the 2 groups. The association among those parameters and PF were analyzed in each group. Results The EA group had a significantly higher severe asthmatics proportion (p = 0.01), a lower current smokers proportion (p = 0.002), lower sensitization rate to aeroallergens (p = 0.012), several PFs deterioration (p < 0.0001) and lower total IgE levels (p = 0.001) than the non-EA group. Sputum neutrophil counts and NE concentrations were significantly higher in the EA group than those in the non-EA group (median neutrophil: 4.11 vs. 2.74 ×105/mL, p = 0.03; NE: 2.0 vs.1.6 µg/mL, p < 0.05, respectively), whereas sputum eosinophil counts and EDN concentrations were not. Sputum EDN concentrations were significantly positively correlated with sputum neutrophil counts (r = 0.39, p = 0.031) and NE concentrations (r = 0.57, p < 0.0001) only in the EA group. Eosinophil-related parameters were negatively correlated with several PFs in the 2 groups. Neutrophil-related parameters were negatively correlated with PFs only in the non-EA group. Conclusion This study determines that in EA, persistent active eosinophilic airway inflammation is accompanied by advanced neutrophilic inflammation, which may contribute to deteriorated PF. This distinct airway inflammation may increase the severity of asthma in EA.
Collapse
Affiliation(s)
- Tomoyuki Soma
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University Hospital, Saitama, Japan
| | - Yoshitaka Uchida
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University Hospital, Saitama, Japan
| | - Yuki Hoshino
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University Hospital, Saitama, Japan
| | - Kazuki Katayama
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University Hospital, Saitama, Japan
| | - Takehito Kobayashi
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Department of General Internal Medicine, Saitama Medical University, Saitama, Japan
| | - Kazuyuki Nakagome
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University Hospital, Saitama, Japan
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University Hospital, Saitama, Japan
| |
Collapse
|
227
|
Darwesh MAS, Abd Alhaleem IS, Al-Obaidy MWS. The Correlation Between Asthma Severity and Neutrophil to Lymphocyte Ratio. EUROPEAN JOURNAL OF MEDICAL AND HEALTH SCIENCES 2020; 2. [DOI: 10.24018/ejmed.2020.2.2.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Background—The prognosis is essential in management and follows up of asthmatic patients. Neutrophil to lymphocyte ratio is considered as the common prognostic marker for many diseases especially the asthma.
Aim of study—To assess the relationship between asthma severity and neutrophil to lymphocyte ratio in comparison to healthy controls.
Patients and methods—This study is a cross sectional study conducted in Respiratory Consultancy Clinic in Baghdad Teaching Hospital in Medical City during the period from 1st of October, 2018 to 31st of March, 2019 on sample of 50 asthmatic patients and 50 healthy controls. The diagnosis of asthma was confirmed by the supervisor through clinical symptoms, signs, spirometery with reversibility test (according to GINA guideline.).
Results—A highly significant difference was observed between asthmatic cases and controls regarding age (p<0.001). A significant association was observed between obesity and asthmatic cases (p=0.001). There was a highly significant association between high neutrophil/lymphocyte ratio and asthmatic cases (p<0.001). The neutrophil/lymphocyte ratio was significantly increased with advanced age, females, severe and uncontrolled asthma.
Conclusions—The neutrophil to lymphocyte ratio is useful biomarker in assessment of asthma severity.
Collapse
|
228
|
Nasal cytology with emphasis on mast cells can improve the diagnosis and treatment of chronic rhinosinusitis. Chin Med J (Engl) 2020; 132:2237-2241. [PMID: 31425355 PMCID: PMC6797148 DOI: 10.1097/cm9.0000000000000387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: Chronic rhinosinusitis (CRS) involves inflammation of the nasal and para-nasal mucosa. Due to its heterogeneous nature, unknown pathogenesis, and high recurrence rate, effective treatment is difficult. Nasal cytology is presently not a part of the routine diagnosis or treatment decision for CRS. Data sources: A literature search was performed for published papers in English between January 1990 and June 2019 using MEDLINE. Study selection: Terms used were chronic rhinosinusitis, eosinophils, etiology, immunopathology, inflammation, mast cells, nasal cytology, polyps, and treatment. Both reviews and original articles were collected and studied. Results: There is no standard nasal fluid, mucus sampling, or staining techniques for identifying inflammatory cell types. Results were divergent from different countries. Moreover, the main focus of these papers on the cells in nasal washings was eosinophils, with infrequent mentioning of other cell types that may imply different etiology and pathology. The heterogeneous cell profile of CRS and the role of mast cells have been unappreciated due to the lack of specific immunohistochemical technique or study of its unique mediators. Conclusions: Nasal cytology could help distinguish the type and the activation state of inflammatory cells. Thus it can help in providing a clearer picture of CRS pathogenesis, identifying different patient groups, and developing effective treatments.
Collapse
|
229
|
FEV 1 decline in relation to blood eosinophils and neutrophils in a population-based asthma cohort. World Allergy Organ J 2020; 13:100110. [PMID: 32206161 PMCID: PMC7082214 DOI: 10.1016/j.waojou.2020.100110] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/13/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background The relationship between lung function decline and eosinophils and neutrophils has important therapeutic implications among asthmatics, but it has rarely been studied in large cohort studies. Objective The aim is to study the relationship between blood eosinophils and neutrophils and FEV1 decline in a long-term follow-up of a population-based adult asthma cohort. Methods In 2012–2014, an adult asthma cohort was invited to a follow-up including spirometry, blood sampling, and structured interviews, and n = 892 participated (55% women, mean age 59 y, 32–92 y). Blood eosinophils, neutrophils and FEV 1 decline were analyzed both as continuous variables and divided into categories with different cut-offs. Regression models adjusted for smoking, exposure to vapors, gas, dust, or fumes (VGDF), use of inhaled and oral corticosteroids, and other possible confounders were utilized to analyze the relationship between eosinophils and neutrophils at follow-up and FEV1 decline. Results The mean follow-up time was 18 years, and the mean FEV 1 decline was 27 ml/year. The annual FEV1 decline was related to higher levels of both blood eosinophils and neutrophils at follow-up, but only the association with eosinophils remained when adjusted for confounders. Further, the association between FEV1 decline and eosinophils was stronger among those using ICS. With EOS <0.3 × 109/L as reference, a more rapid decline in FEV1 was independently related to EOS ≥0.4 × 109/L in adjusted analyses. Conclusions and clinical relevance Besides emphasizing the importance of smoking cessation and reduction of other harmful exposures, our real-world results indicate that there is an independent relationship between blood eosinophils and FEV1 decline among adults with asthma.
Collapse
Key Words
- ANOVA, Analysis of variance
- ATS, American Thoracic Society
- Asthma
- BMI, Body mass index
- Cohort
- ECRHS, European Community Respiratory Health Survey
- EOS, Eosinophils
- ERS, European Respiratory Society
- Eosinophils
- FEV1
- FEV1, Forced Expiratory Volume in 1 s
- FEV1pp, FEV1 percent of predicted
- FVC, Forced Expiratory Volume
- GLI, Global Lung function Initiative
- ICS, Inhaled corticosteroids
- IgE, Immunoglobulin E
- L, Liters
- Ml, Milliliters
- N, Number
- NEU, Neutrophils
- Neutrophils
- OCS, Oral corticosteroids
- OLIN, Obstructive Lung Disease in Northern Sweden
- OLS, Ordinary Least Squares
- VGDF, Vapors, gas, dust or fumes
Collapse
|
230
|
Abstract
PURPOSE OF REVIEW Children with poor asthma control despite maximal maintenance therapy have problematic severe asthma (PSA). A step-wise approach including objective adherence monitoring and a detailed multidisciplinary team assessment to identify modifiable factors contributing to poor control is needed prior to considering therapy escalation. Pathophysiological phenotyping in those with true severe therapy-resistant asthma (STRA) and the current array of add-on therapies will be discussed. RECENT FINDINGS Adherence monitoring using electronic devices has shown that only 20-30% of children with PSA have STRA and need additional therapies. Omalizumab and mepolizumab are licensed for children with STRA aged 6 years and older. Although robust safety and efficacy data, with reduced exacerbations, are available for omalizumab, biomarkers predicting response to treatment are lacking. Paediatric safety data are available for mepolizumab, but efficacy data are unknown for those aged 6-11 years and minimal for those 12 years and older. A sub-group of children with STRA have neutrophilia, but the clinical significance and contribution to disease severity remains uncertain. SUMMARY Most children with PSA have steroid sensitive disease which improves with adherence to maintenance inhaled corticosteroids. Add-on therapies are only needed for the minority with STRA. Paediatric efficacy data of novel biologics and biomarkers that identify the optimal add-on for each child are lacking. If we are to progress toward individualized therapy for STRA, pragmatic clinical trials of biologics in accurately phenotyped children are needed.
Collapse
|
231
|
Abstract
PURPOSE OF REVIEW The aim of this review is to emphasize the role of neutrophils in patients with occupational asthma. This review facilitates a better understanding, accurate diagnosis, and proper management of asthmatic reactions provoked at the workplace. RECENT FINDINGS Increased recruitment and infiltration of neutrophils are found in patients with occupational asthma. Activated neutrophils release several mediators including pro-inflammatory cytokines and extracellular traps, leading to stimulation of airway epithelium and other inflammatory cells. SUMMARY New insights into neutrophils in the pathogenesis of occupational asthma may provide a novel approach to the individual patient with occupational asthma.
Collapse
|
232
|
Wu J, Zhong W, Zhang H, Yin Y. Mammalian Target of Rapamycin Signaling Enhances Ovalbumin-Induced Neutrophilic Airway Inflammation by Promoting Th17 Cell Polarization in Murine Noneosinophilic Asthma Model. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2020; 33:25-32. [PMID: 33406024 DOI: 10.1089/ped.2019.1088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: T helper 17 (Th17) is regarded as key immune cell in the pathogenesis of noneosinophilic asthma (NEA) due to the recruitment of neutrophils into the airways. The mammalian target of rapamycin (mTOR) is an important signaling molecule that plays a critical role in immune regulation. This study focused on mTOR signaling pathway in the regulation of Th17-mediated neutrophilic airway inflammation. Methods: Ovalbumin (OVA) T cell receptor transgenic DO11.10 mice (DO11.10 mice) were used to establish NEA model, and few mice received specific mTORC1 inhibitor rapamycin (RAPA) before intranasal administration of OVA. The severity of airway inflammation was determined by differential cell counts in bronchoalveolar lavage (BAL) fluids and histopathologic lung analysis. The levels of various cytokines in BAL fluids and lung tissues were measured. To determine the role of mTORC1 signaling in Th17 differentiation, naive T cells from wild-type (WT) and TSC1 knockout (KO) mice were cultured in Th17 skewing condition with or without RAPA in vitro and the production of IL-17A was compared. Results: Treatment with RAPA markedly attenuated OVA-induced neutrophilic airway inflammation in DO11.10 mice. Also the production of IL-17A was inhibited without affecting the production of interferon-γ (IFN-γ) and IL-4 in lungs. Furthermore, RAPA suppressed differentiation of Th17 cells in vitro, whereas enhanced activity of mTORC1 promoted Th17 cell differentiation and increased the expression of Th17-related transcription factors RORγt and RORα. Conclusion: These results suggested that mTOR promoted Th17 cell polarization and enhanced OVA-induced neutrophilic airway inflammation in experimental NEA.
Collapse
Affiliation(s)
- Jinhong Wu
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenwei Zhong
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Yin
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
233
|
Succar EF, Li P, Ely KA, Chowdhury NI, Chandra RK, Turner JH. Neutrophils are underrecognized contributors to inflammatory burden and quality of life in chronic rhinosinusitis. Allergy 2020; 75:713-716. [PMID: 31583712 DOI: 10.1111/all.14071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Eric F. Succar
- Department of Otolaryngology‐Head and Neck Surgery Vanderbilt University School of Medicine Nashville TN
| | - Ping Li
- Department of Otolaryngology‐Head and Neck Surgery Vanderbilt University School of Medicine Nashville TN
| | - Kim A. Ely
- Department of Pathology, Microbiology, and Immunology Vanderbilt University School of Medicine Nashville TN
| | - Naweed I. Chowdhury
- Department of Otolaryngology‐Head and Neck Surgery Vanderbilt University School of Medicine Nashville TN
| | - Rakesh K. Chandra
- Department of Otolaryngology‐Head and Neck Surgery Vanderbilt University School of Medicine Nashville TN
| | - Justin H. Turner
- Department of Otolaryngology‐Head and Neck Surgery Vanderbilt University School of Medicine Nashville TN
| |
Collapse
|
234
|
Hossain FMA, Park SO, Kim HJ, Eo JC, Choi JY, Uyangaa E, Kim B, Kim K, Eo SK. CCR5 attenuates neutrophilic airway inflammation exacerbated by infection with rhinovirus. Cell Immunol 2020; 351:104066. [PMID: 32089258 DOI: 10.1016/j.cellimm.2020.104066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/13/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Human rhinovirus (hRV) is the most common cause of asthma exacerbation characterized by clinical and pathophysiological heterogeneity. Steroid-sensitive, Th2 type-eosinophilic asthma has been somewhat studied, but hRV-induced neutrophilic asthma exacerbation is poorly understood. Here, CCR5 was found to play a role in attenuating neutrophilic airway inflammation in hRV-induced asthma exacerbation using chicken ovalbumin (OVA)-based model. CCR5 deficiency resulted in exacerbated neutrophilic asthmatic responses in airways following hRV infection. CCR5-deficient mice showed enhanced mucus expression and altered expression of tight junction proteins in lung tissues. CCR5-deficient mice were also manifested with influx of CD45+CD11b+Siglec-F+Gr-1+ neutrophils, along with enhanced production of IL-17A, IFN-γ, IL-6, IL-1β cytokines in inflamed tissues. In contrast, CCR5-deficient mice elicited down-regulation of Th2-related cytokine proteins following hRV infection. More interestingly, the lack of CCR5 altered the equilibrium of CD4+FoxP3+ Tregs and IL-17+CD4+ Th17 in inflamed tissues. CCR5-deficient mice showed increased frequency and absolute number of IL-17-producing CD4+ Th17 cells in lung tissues compared to wild-type mice, whereas the reduced infiltration of CD4+FoxP3+ Treg cells was observed. CCR5 deficiency resulted in the skewed production of Th17 and Th1 cytokines in lymph nodes and lungs upon OVA stimulation. Likewise, CCR5-deficient mice showed enhanced expression of Th17-inducing cytokines (IL-1β, IL-6, and TNF-α) in lung tissues. These results imply that CCR5 deficiency facilitates Th17 airway inflammation during hRV-induced asthma exacerbation, along with suppressing Th2 responses. Furthermore, our results suggest that CCR5 attenuates hRV-induced neutrophilic airway inflammation through conserving the equilibrium of CD4+Foxp3+ Treg cells and IL-17+CD4+ Th17 cells in hRV-induced asthma exacerbation.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea; Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Hyo Jin Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Jun Cheol Eo
- Division of Biotechnology, College of Environmental & Biosource Science, Jeonbuk National University, Iksan 54596, South Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea.
| |
Collapse
|
235
|
Bourdin A, Adcock I, Berger P, Bonniaud P, Chanson P, Chenivesse C, de Blic J, Deschildre A, Devillier P, Devouassoux G, Didier A, Garcia G, Magnan A, Martinat Y, Perez T, Roche N, Taillé C, Val P, Chanez P. How can we minimise the use of regular oral corticosteroids in asthma? Eur Respir Rev 2020; 29:29/155/190085. [PMID: 32024721 PMCID: PMC9488989 DOI: 10.1183/16000617.0085-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Options to achieve oral corticosteroid (OCS)-sparing have been triggering increasing interest since the 1970s because of the side-effects of OCSs, and this has now become achievable with biologics. The Société de Pneumologie de Langue Française workshop on OCSs aimed to conduct a comprehensive review of the basics for OCS use in asthma and issue key research questions. Pharmacology and definition of regular use were reviewed by the first working group (WG1). WG2 examined whether regular OCS use is associated with T2 endotype. WG3 reported on the specificities of the paediatric area. Key “research statement proposals” were suggested by WG4. It was found that the benefits of regular OCS use in asthma outside episodes of exacerbations are poorly supported by the existing evidence. However, complete OCS elimination couldn’t be achieved in any available studies for all patients and the panel felt that it was too early to conclude that regular OCS use could be declared criminal. Repeated or prolonged need for OCS beyond 1 g·year−1 should indicate the need for referral to secondary/tertiary care. A strategic sequential plan aiming at reducing overall exposure to OCS in severe asthma was then held as a conclusion of the workshop. A yearly cumulative OCS dose above 1 g should be considered unacceptable in severe asthma and should make the case for referralhttp://bit.ly/34GAYLX
Collapse
Affiliation(s)
- Arnaud Bourdin
- Service des Maladies Respirartoires, CHU Arnaud de Villeneuve, University of Montpellier, Montpellier, France
| | - Ian Adcock
- Thoracic Medicine, Imperial College London, London, UK
| | - Patrick Berger
- Centre de Recherche Cardiothoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| | | | | | - Cécile Chenivesse
- Centre Hospitalier Regional Universitaire de Lille, Lille, France.,Universite de Lille II, Lille, France
| | - Jacques de Blic
- Pediatric Respiratory Diseases, Necker-Enfants Malades Hospitals, Paris, France
| | | | | | - Gilles Devouassoux
- Pneumologie, Hopital de la Croix-Rousse, HCL, Lyon, France.,Université Claude Bernard lyon1 et INSERM U851, Lyon, France
| | | | | | | | | | - Thierry Perez
- Respiratory, Hopital Calmette, CHRU Lille, Lille, France.,Lung function, Hôpital Calmette, CHRU Lille, Lille, France
| | | | - Camille Taillé
- Service de Pneumologie, Hopital Bichat - Claude-Bernard, Paris, France
| | | | | |
Collapse
|
236
|
Baseline sputum eosinophil + neutrophil subgroups' clinical characteristics and longitudinal trajectories for NHLBI Severe Asthma Research Program (SARP 3) cohort. J Allergy Clin Immunol 2020; 146:222-226. [PMID: 32032631 DOI: 10.1016/j.jaci.2020.01.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/23/2022]
|
237
|
Sze E, Bhalla A, Nair P. Mechanisms and therapeutic strategies for non-T2 asthma. Allergy 2020; 75:311-325. [PMID: 31309578 DOI: 10.1111/all.13985] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022]
Abstract
Non-T2 asthma is traditionally defined as asthma without features of T2 asthma. The definition is arbitrary and is generally based on the presence of neutrophils in sputum, or the absence (or normal levels) of eosinophils or other T2 markers in sputum (paucigranulocytic), airway biopsies or in blood. This definition may be imprecise as we gain more knowledge from applying transcriptomics and proteomics to blood and airway samples. The prevalence of non-T2 asthma is also difficult to estimate as most studies are cross-sectional and influenced by concomitant treatment with glucocorticosteroids, and by the presence of recognized or unrecognized airway infections. No specific therapies have shown any clinical benefits in patients with asthma that is associated with a non-T2 inflammatory process. It remains to be seen if such an endotype truly exists and to identify treatments to target that endotype. Meanwhile, identifying intense airway neutrophilia as an indicator of airway infection and airway hyperresponsiveness as an indicator of smooth muscle dysfunction, and treating them appropriately, and not increasing glucocorticosteroids in patients who do not have obvious T2 inflammation, seem reasonable.
Collapse
Affiliation(s)
- Eric Sze
- New Territories West Cluster Tuen Mun Hospital Tuen Mun Hong Kong
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| | - Anurag Bhalla
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| | - Parameswaran Nair
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| |
Collapse
|
238
|
Three Major Efforts to Phenotype Asthma: Severe Asthma Research Program, Asthma Disease Endotyping for Personalized Therapeutics, and Unbiased Biomarkers for the Prediction of Respiratory Disease Outcome. Clin Chest Med 2020; 40:13-28. [PMID: 30691708 DOI: 10.1016/j.ccm.2018.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The SARP, ADEPT, and U-BIOPRED programs are all significant efforts in characterizing asthma and reporting clusters that will assist in designing personalized therapies for asthma, and especially severe asthma. Key aspects of the design of these programs are summarized and major findings are reported in this review.
Collapse
|
239
|
Ramadan AA, Gaffin JM, Israel E, Phipatanakul W. Asthma and Corticosteroid Responses in Childhood and Adult Asthma. Clin Chest Med 2020; 40:163-177. [PMID: 30691710 DOI: 10.1016/j.ccm.2018.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Corticosteroids are the most effective treatment for asthma; inhaled corticosteroids (ICSs) are the first-line treatment for children and adults with persistent symptoms. ICSs are associated with significant improvements in lung function. The anti-inflammatory effects of corticosteroids are mediated by both genomic and nongenomic factors. Variation in the response to corticosteroids has been observed. Patient characteristics, biomarkers, and genetic features may be used to predict response to ICSs. The existence of multiple mechanisms underlying glucocorticoid insensitivity raises the possibility that this might indeed reflect different diseases with a common phenotype.
Collapse
Affiliation(s)
- Amira Ali Ramadan
- Division of Allergy and Immunology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Beth Israel Deaconess Center, Cardiovascular institute, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Jonathan M Gaffin
- Division of Respiratory Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Elliot Israel
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Brigham and Women's Hospital, 15 Francis Street, Boston, MA 02115, USA
| | - Wanda Phipatanakul
- Division of Allergy and Immunology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
240
|
Abstract
PURPOSE OF REVIEW Recent advances in both murine models and clinical research of neutrophilic asthma are improving our understanding on the etiology and pathophysiology of this enigmatic endotype of asthma. We here aim at providing an overview of our current and latest insights on the pathophysiology and treatment of neutrophilic asthma. RECENT FINDINGS Activation of the NLRP3 inflammasome pathway with increased IL-1β has been demonstrated in various studies involving patients with asthma. It has been suggested that type 3 innate lymphoid cells are implicated in the inflammatory cascade leading to neutrophilic inflammation. The role of neutrophil extracellular traps is only at the start of being understood and might be an attractive novel therapeutic target. A diverse panel of nonallergic stimuli, such as cigarette smoke, intensive exercise, cold air or saturated fatty acids, have been linked with neutrophilic airway inflammation. Azithromycin treatment could reduce asthma exacerbations and quality of life in patients with persistent asthma. SUMMARY Research of the last few years has accelerated our insights in mechanisms underlying neutrophilic asthma. This is in stark contrast with the lack of efficacy of different therapies targeting neutrophil chemotaxis and/or signalling cascade, such as IL-17A or CXCR2. Macrolide therapy might be a useful add-on therapy for patients with persistent asthma.
Collapse
|
241
|
What Are Those Neutrophils Doing in Severe Asthma Anyway? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:526-528. [PMID: 30717870 DOI: 10.1016/j.jaip.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
|
242
|
Müllerová H, Cockle SM, Gunsoy NB, Nelsen LM, Albers FC. Clinical characteristics and burden of illness among adolescent and adult patients with severe asthma by asthma control: the IDEAL study. J Asthma 2020; 58:459-470. [PMID: 31874051 DOI: 10.1080/02770903.2019.1708095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Severe asthma (SA) can be uncontrolled despite guideline-directed treatment. We described SA characteristics and identified factors associated with uncontrolled disease and frequent exacerbations. METHODS Post hoc analysis of the observational IDEAL study (201722/NCT02293265) included patients with SA aged ≥12 years receiving high-dose inhaled corticosteroids plus additional controller(s) for ≥12 months. Uncontrolled SA was defined by Asthma Control Questionnaire (ACQ)-5 scores ≥1.5 or ≥1 exacerbations (prior year), and further stratified by exacerbation frequency (no/infrequent [0-1] vs frequent [≥2]; prior year); associated factors were determined using multivariate logistic regression. RESULTS Of 670 patients with SA, 540 (81%) were uncontrolled (ACQ-5 scores ≥1.5: 80%; ≥1 exacerbations [prior year]: 71%). Uncontrolled patients had lower lung function and worse health-related quality of life (HRQoL) than controlled patients; 197/540 (37%) experienced frequent exacerbations (prior year). Worse St George's Respiratory Questionnaire (SGRQ) total score, comorbid sinusitis, or eczema were significantly associated with uncontrolled SA; younger age, never smoker status, exacerbation requiring hospitalization (previous year), worse SGRQ symptom score, comorbid nasal polyps, COPD, or osteoporosis were significantly associated with uncontrolled SA with frequent exacerbations. CONCLUSIONS In IDEAL, one-fifth of patients with SA were controlled, based on symptoms. Uncontrolled, exacerbating SA was associated with specific comorbidities, frequent exacerbations, a lower lung function, and compromised HRQoL, although inference from this analysis is limited by the selective cross-sectional nature of the cohort. Nonetheless, these data highlight the need for more effective precision treatments in this population.
Collapse
Affiliation(s)
- Hana Müllerová
- Real World Evidence, GSK, Stockley Park, Uxbridge, Middlesex, UK
| | - Sarah M Cockle
- Value Evidence and Outcomes, GSK House, Brentford, Middlesex, UK
| | - Necdet B Gunsoy
- Value Evidence and Outcomes, GSK, Stockley Park, Uxbridge, Middlesex, UK
| | | | - Frank C Albers
- Respiratory Medical Franchise, GSK, Research Triangle Park, NC, USA
| |
Collapse
|
243
|
Tang HHF, Sly PD, Holt PG, Holt KE, Inouye M. Systems biology and big data in asthma and allergy: recent discoveries and emerging challenges. Eur Respir J 2020; 55:13993003.00844-2019. [PMID: 31619470 DOI: 10.1183/13993003.00844-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Asthma is a common condition caused by immune and respiratory dysfunction, and it is often linked to allergy. A systems perspective may prove helpful in unravelling the complexity of asthma and allergy. Our aim is to give an overview of systems biology approaches used in allergy and asthma research. Specifically, we describe recent "omic"-level findings, and examine how these findings have been systematically integrated to generate further insight.Current research suggests that allergy is driven by genetic and epigenetic factors, in concert with environmental factors such as microbiome and diet, leading to early-life disturbance in immunological development and disruption of balance within key immuno-inflammatory pathways. Variation in inherited susceptibility and exposures causes heterogeneity in manifestations of asthma and other allergic diseases. Machine learning approaches are being used to explore this heterogeneity, and to probe the pathophysiological patterns or "endotypes" that correlate with subphenotypes of asthma and allergy. Mathematical models are being built based on genomic, transcriptomic and proteomic data to predict or discriminate disease phenotypes, and to describe the biomolecular networks behind asthma.The use of systems biology in allergy and asthma research is rapidly growing, and has so far yielded fruitful results. However, the scale and multidisciplinary nature of this research means that it is accompanied by new challenges. Ultimately, it is hoped that systems medicine, with its integration of omics data into clinical practice, can pave the way to more precise, personalised and effective management of asthma.
Collapse
Affiliation(s)
- Howard H F Tang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia .,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Patrick G Holt
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Kathryn E Holt
- Dept of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia.,London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia.,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia.,The Alan Turing Institute, London, UK
| |
Collapse
|
244
|
Sánchez-Ovando S, Baines KJ, Barker D, Wark PA, Simpson JL. Six gene and TH2 signature expression in endobronchial biopsies of participants with asthma. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:40-49. [PMID: 31903716 PMCID: PMC7016845 DOI: 10.1002/iid3.282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/08/2019] [Accepted: 12/15/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Both the six gene signature (6GS: CPA3, DNASE1L3, CLC, IL1B, ALPL, and CXCR2) and T-helper 2 signature (TH2S: CLCA1, SERPINB2, and POSTN) are proposed as biomarkers in the identification of inflammatory phenotypes of asthma in induced sputum and epithelial brushings, respectively. The aim of this study was to explore patterns of gene expression of known signatures, 6GS and TH2S in endobronchial biopsies. METHODS This was an exploratory cross-sectional study of gene expression in endobronchial biopsies of 55 adults with asthma and 9 healthy controls (HC). The expression of the 6GS and TH2S was determined by quantitative polymerase chain reaction. Correlations with clinical and cellular characteristics were performed, and receiver operating characteristic was utilized to assess signatures' ability to predict asthma from HC and inflammatory phenotypes. RESULTS Gene expression of DNASE1L3 (P = .045) was upregulated in asthma compared with HC, and IL1B (P = .017) was upregulated in neutrophilic asthma compared with non-neutrophilic asthma. In asthma, the expression of CPA3 was negatively associated with ICS daily dose (r = -.339; P = .011), IL1B expression was positively associated with bronchial lavage fluid (BLF) total cell count (r = .340; P = .013) and both CLC and POSTN expression were associated with lymphocytes percentage in BLF (r = -.355, P = .009; r = -.300, P = .025, respectively). Both 6GS (area under curve [AUC] = 86.3%; P = .017) and TH2S (AUC = 72.7%; P = .037) could significantly predict asthma from HC. In addition, 6GS can identify neutrophilic (AUC = 93.2%; P = .005) and TH2S identifies eosinophilic (AUC = 62.7%; P = .033) asthma. CONCLUSIONS AND CLINICAL RELEVANCE There was increased expression of DNASE1L3 in asthma and IL1B in neutrophilic asthma. These results show similar upregulated patterns of expression in two genes of the 6GS in endobronchial biopsies, previously identified in sputum. The upregulation of DNASE1L3 and IL1B suggests that common mechanisms may be at play throughout the airway.
Collapse
Affiliation(s)
- Stephany Sánchez-Ovando
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, University of Newcastle, New South Wales, Australia
| | - Katherine J Baines
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, University of Newcastle, New South Wales, Australia
| | - Daniel Barker
- Faculty of Health and Medicine, University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, University of Newcastle, New South Wales, Australia.,Respiratory and Sleep Medicine, John Hunter Hospital, New South Wales, Australia
| | - Jodie L Simpson
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, University of Newcastle, New South Wales, Australia
| |
Collapse
|
245
|
Bagnasco D, Passalacqua G, Caminati M, Heffler E, Menzella F, De Ferrari L, Riccio AM, Folli C, Canonica GW. Evolving phenotypes to endotypes: is precision medicine achievable in asthma? Expert Rev Respir Med 2020; 14:163-172. [PMID: 31899999 DOI: 10.1080/17476348.2020.1703675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: The development of biologic molecules led to a drastic change in the therapeutic approach to asthma. With the prospect of acting on different pathophysiological mechanisms of the disease, the idea of precision medicine was developed, in which a single molecule is able to modify a specific triggering mechanism. Thus, it seemed limiting to stop at the distinction of patients phenotypes and the concept of endotypes became more relevant in the therapeutic approach.Areas covered: This review deepened the topic of precision medicine through the transition from phenotyping to endotyping. We performed a review of the literature, preferring articles quoted in Medline and published in journals with an impact factor. Results showed that it is fundamental to take into consideration the role of biomarkers and the related therapies currently available for precision medicine.Expert opinion: The possible overlap of patients in different phenotypes requires a more precise classification, which considers endotypization. With the development of biological drugs able to modify and modulate some pathophysiological mechanisms of the disease, the theoretical concept of endotyping becomes practical, allowing the clinician to choose the specific mechanism to 'attack' in order to control the disease.
Collapse
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Marco Caminati
- Asthma Center and Allergy Unit, Verona University and General Hospital, Verona, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Personalized Medicine, Asthma and Allergy - Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova- IRCCS, Reggio Emilia, Italy
| | - Laura De Ferrari
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Anna Maria Riccio
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Chiara Folli
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Personalized Medicine, Asthma and Allergy - Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| |
Collapse
|
246
|
Licari A, Castagnoli R, Manca E, Votto M, Michev A, Marseglia GL. Towards Precision Medicine in Pediatric Severe Asthma: An Update on Current and Emerging Biomarkers. CURRENT RESPIRATORY MEDICINE REVIEWS 2020. [DOI: 10.2174/1573398x15666190423150227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pediatric severe asthma is actually considered a rare disease with a heterogeneous nature.
Recent cohort studies focusing on children with severe asthma identified different clinical
presentations (phenotypes) and underlying pathophysiological mechanisms (endotypes). Phenotyping
and endotyping asthma represent the current approach to patients with severe asthma and consist in
characterizing objectively measurable and non-invasive indicators (biomarkers) capable of orienting
diagnosis, management and personalized treatment, as advocated by the Precision Medicine
approach. The aim of this review is to provide a practical overview of current and emerging
biomarkers in pediatric severe asthma.
Collapse
Affiliation(s)
- Amelia Licari
- Department of Pediatrics, University of Pavia, Pavia, Italy
| | | | - Enrica Manca
- Department of Pediatrics, “Casa del Sollievo e della Sofferenza” Scientific Institute, University of Foggia, Foggia, Italy
| | - Martina Votto
- Department of Pediatrics, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
247
|
Jacquet A, Robinson C. Proteolytic, lipidergic and polysaccharide molecular recognition shape innate responses to house dust mite allergens. Allergy 2020; 75:33-53. [PMID: 31166610 DOI: 10.1111/all.13940] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/05/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
House dust mites (HDMs) are sources of an extensive repertoire of allergens responsible for a range of allergic conditions. Technological advances have accelerated the identification of these allergens and characterized their putative roles within HDMs. Understanding their functional bioactivities is illuminating how they interact with the immune system to cause disease and how interrelations between them are essential to maximize allergic responses. Two types of allergen bioactivity, namely proteolysis and peptidolipid/lipid binding, elicit IgE and stimulate bystander responses to unrelated allergens. Much of this influence arises from Toll-like receptor (TLR) 4 or TLR2 signalling and, in the case of protease allergens, the activation of additional pleiotropic effectors with strong disease linkage. Of related interest is the interaction of HDM allergens with common components of the house dust matrix, through either their binding to allergens or their autonomous modulation of immune receptors. Herein, we provide a contemporary view of how proteolysis, lipid-binding activity and interactions with polysaccharides and polysaccharide molecular recognition systems coordinate the principal responses which underlie allergy. The power of the catalytically competent group 1 HDM protease allergen component is demonstrated by a review of disclosures surrounding the efficacy of novel inhibitors produced by structure-based design.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC) Chulalongkorn University Bangkok Thailand
| | - Clive Robinson
- Institute for Infection and Immunity St George's, University of London London UK
| |
Collapse
|
248
|
Park SC, Kim H, Bak Y, Shim D, Kwon KW, Kim CH, Yoon JH, Shin SJ. An Alternative Dendritic Cell-Induced Murine Model of Asthma Exhibiting a Robust Th2/Th17-Skewed Response. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:537-555. [PMID: 32141265 PMCID: PMC7061158 DOI: 10.4168/aair.2020.12.3.537] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Simple and reliable animal models of human diseases contribute to the understanding of disease pathogenesis as well as the development of therapeutic interventions. Although several murine models to mimic human asthma have been established, most of them require anesthesia, resulting in variability among test individuals, and do not mimic asthmatic responses accompanied by T-helper (Th) 17 and neutrophils. As dendritic cells (DCs) are known to play an important role in initiating and maintaining asthmatic inflammation, we developed an asthma model via adoptive transfer of allergen-loaded DCs. METHODS Ovalbumin (OVA)-loaded bone marrow-derived DCs (BMDCs) (OVA-BMDCs) were injected intravenously 3 times into non-anesthetized C57BL/6 mice after intraperitoneal OVA-sensitization. RESULTS OVA-BMDC-transferred mice developed severe asthmatic immune responses when compared with mice receiving conventional OVA challenge intranasally. Notably, remarkable increases in systemic immunoglobulin (Ig) E and IgG1 responses, Th2/Th17-associated cytokines (interleukin [IL]-5, IL-13 and IL-17), Th2/Th17-skewed T-cell responses, and cellular components, including eosinophils, neutrophils, and goblet cells, were observed in the lungs of OVA-BMDC-transferred mice. Moreover, the asthmatic immune responses and severity of inflammation were correlated with the number of OVA-BMDCs transferred, indicating that the disease severity and asthma type may be adjusted according to the experimental purpose by this method. Furthermore, this model exhibited less variation among the test individuals than the conventional model. In addition, this DCs-based asthma model was partially resistant to steroid treatment. CONCLUSIONS A reliable murine model of asthma by intravenous (i.v.) transfer of OVA-BMDCs was successfully established without anesthesia. This model more accurately reflects heterogeneous human asthma, exhibiting a robust Th2/Th17-skewed response and eosinophilic/neutrophilic infiltration with good reproducibility and low variation among individuals. This model will be useful for understanding the pathogenesis of asthma and would serve as an alternative tool for immunological studies on the function of DCs, T-cell responses and new drugs.
Collapse
Affiliation(s)
- Sang Chul Park
- Department of Otorhinolaryngology-Head and Neck surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Hongmin Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yeeun Bak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Dahee Shim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea.,Department of Life Science, Research Institute for Natural Sciences, Hanyang University College of Natural Sciences, Seoul, Korea
| | - Kee Woong Kwon
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea.,Global Research Laboratory for Allergic Airway Diseases, Seoul, Korea.
| | - Sung Jae Shin
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Global Research Laboratory for Allergic Airway Diseases, Seoul, Korea.,Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
249
|
Villeneuve T, Guilleminault L. [Asthma and obesity in adults]. Rev Mal Respir 2019; 37:60-74. [PMID: 31866123 DOI: 10.1016/j.rmr.2019.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Asthma is a chronic inflammatory airway disorder characterized by a multitude of phenotypes. Epidemiological studies show an increase in asthma prevalence in obese patients regardless of age. The association of asthma and obesity is now considered as a phenotype with its own clinical, biological and functional characteristics. Regarding the pathophysiology of asthma and obesity, numerous factors such as nutrition, genetic predisposition, microbiome, ventilatory mechanics and the role of adipose tissue have been identified to explain the heterogeneous characteristics of patients with asthma and obesity. In adult patients with asthma and obesity, respiratory symptoms are particularly prominent and atopy and eosinophilic inflammation is uncommon compared to normal weight asthma patients. Obese asthma patients experience more hospitalizations and use more rescue medications than normal weight asthmatics. Management of asthma in obese patients is complex because these patients have less response to the usual anti-asthmatic treatments. Weight loss through caloric restriction combined with exercise is the main intervention to obtain improvement of asthma outcomes. Bariatric surgery is an invasive procedure with interesting results.
Collapse
Affiliation(s)
- T Villeneuve
- Pôles des voies respiratoires, hôpital Larrey, CHU de Toulouse, 24, chemin de Pouvourville, TSA 30030, 31059 Toulouse cedex 9, France
| | - L Guilleminault
- Pôles des voies respiratoires, hôpital Larrey, CHU de Toulouse, 24, chemin de Pouvourville, TSA 30030, 31059 Toulouse cedex 9, France; Centre de physiopathologie de Toulouse Purpan (CPTP-U1043, Inserm, équipe 12), UPS, Toulouse, France.
| |
Collapse
|
250
|
Pal K, Feng X, Steinke JW, Burdick MD, Shim YM, Sung SS, Teague WG, Borish L. Leukotriene A4 Hydrolase Activation and Leukotriene B4 Production by Eosinophils in Severe Asthma. Am J Respir Cell Mol Biol 2019; 60:413-419. [PMID: 30352167 DOI: 10.1165/rcmb.2018-0175oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Asthma is associated with the overproduction of leukotrienes (LTs), including LTB4. Patients with severe asthma can be highly responsive to 5-lipoxygenase (5-LO) inhibition, which blocks production of both the cysteinyl LTs and LTB4. Production of LTB4 has traditionally been ascribed to neutrophils, mononuclear phagocytes, and epithelial cells, and acts as a chemoattractant for inflammatory cells associated with asthma. The source of LTB4 is unclear, especially in eosinophilic asthma. We speculated that the benefit of 5-LO inhibition could be mediated in part by inhibition of eosinophil-derived LTB4. LTB4 concentrations were assayed in BAL fluid from patients with severe asthma characterized by isolated neutrophilic, eosinophilic, and paucigranulocytic inflammation. Expression of LTA4 hydrolase (LTA4H) by airway eosinophils was determined by immunohistochemistry (IHC). Subsequently, peripheral blood eosinophils were activated and secreted LTB4 was quantified by enzyme immunoassay. Blood eosinophil LTA4H expression was determined by flow cytometry, qPCR, and IHC. LTB4 concentrations were elevated in BAL fluid from patients with severe asthma, including those with isolated eosinophilic inflammation, and these eosinophils displayed LTA4H via IHC. LTA4H expression by blood eosinophils was confirmed by flow cytometry, IHC, and qPCR. Robust LTB4 production by blood eosinophils was observed in response to some, but not all, stimuli. We demonstrated that eosinophils express LTA4H transcripts and protein, and can be stimulated to secrete LTB4. We speculate that in many patients with asthma, eosinophil-derived LTB4 is increased, and this may contribute to the efficacy of 5-LO inhibition.
Collapse
Affiliation(s)
- Kavita Pal
- 1 Division of Pulmonary and Critical Care Medicine
| | - Xin Feng
- 2 Department of Otorhinolaryngology, QiLu Hospital of Shandong University, Jinan, Shandong, China
| | | | | | - Yun M Shim
- 1 Division of Pulmonary and Critical Care Medicine
| | | | | | - Larry Borish
- 3 Division of Asthma Allergy and Immunology, and.,6 Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia; and
| |
Collapse
|