201
|
Lagunin AA, Goel RK, Gawande DY, Pahwa P, Gloriozova TA, Dmitriev AV, Ivanov SM, Rudik AV, Konova VI, Pogodin PV, Druzhilovsky DS, Poroikov VV. Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Nat Prod Rep 2014; 31:1585-611. [DOI: 10.1039/c4np00068d] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An overview of databases andin silicotools for discovery of the hidden therapeutic potential of medicinal plants.
Collapse
Affiliation(s)
- Alexey A. Lagunin
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
- Russian National Research Medical University
- Medico-Biologic Faculty
- Moscow, Russia
| | - Rajesh K. Goel
- Department of Pharmaceutical Sciences and Drug Research
- Punjabi University
- Patiala-147002, India
| | - Dinesh Y. Gawande
- Department of Pharmaceutical Sciences and Drug Research
- Punjabi University
- Patiala-147002, India
| | - Priynka Pahwa
- Department of Pharmaceutical Sciences and Drug Research
- Punjabi University
- Patiala-147002, India
| | | | | | - Sergey M. Ivanov
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
| | - Anastassia V. Rudik
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
| | - Varvara I. Konova
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
| | - Pavel V. Pogodin
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
- Russian National Research Medical University
- Medico-Biologic Faculty
- Moscow, Russia
| | | | - Vladimir V. Poroikov
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
- Russian National Research Medical University
- Medico-Biologic Faculty
- Moscow, Russia
| |
Collapse
|
202
|
Ibáñez C, García-Cañas V, Valdés A, Simó C. Novel MS-based approaches and applications in food metabolomics. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.06.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
203
|
Škrášková K, Heeren RM. A review of complementary separation methods and matrix assisted laser desorption ionization-mass spectrometry imaging: Lowering sample complexity. J Chromatogr A 2013; 1319:1-13. [DOI: 10.1016/j.chroma.2013.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
204
|
Shimma S, Takashima Y, Hashimoto J, Yonemori K, Tamura K, Hamada A. Alternative two-step matrix application method for imaging mass spectrometry to avoid tissue shrinkage and improve ionization efficiency. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1285-90. [PMID: 24338883 DOI: 10.1002/jms.3288] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/16/2013] [Accepted: 09/25/2013] [Indexed: 05/20/2023]
Abstract
Mass spectrometry (MS) was used to measure the concentrations of drug and biological compounds in plasma and tissues. Matrix-assisted laser desorption/ionization (MALDI) imaging MS (IMS) has recently been applied to the analysis of localized drugs on biological tissue surfaces. In MALDI-IMS, matrix application process is crucial for successful results. However, it is difficult to obtain homogeneous matrix crystals on the tissue surface due to endogenous salts and tissue surface heterogeneity. Consequently, the non-uniform crystals degrade the quality of the spectrum and likely cause surface imaging artifacts. Furthermore, the direct application of matrix solution can cause tissue shrinkage due to the organic solvents. Here, we report an alternative two-step matrix application protocol which combines the vacuum deposition of matrix crystals and the spraying of matrix solution to produce a homogeneous matrix layer on the tissue surface. Our proposed technique can also prevent cracking or shrinking of the tissue samples and improve the ionization efficiency of the distributed exogenous material.
Collapse
Affiliation(s)
- Shuichi Shimma
- Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 1040045, Japan; Division of Clinical Pharmacology Group for Translational Research Support Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 1040045, Japan
| | | | | | | | | | | |
Collapse
|
205
|
A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry. Anal Bioanal Chem 2013; 406:1275-89. [DOI: 10.1007/s00216-013-7478-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 01/29/2023]
|
206
|
Zhu GT, He XM, Li XS, Wang ST, Luo YB, Yuan BF, Feng YQ. Preparation of mesoporous silica embedded pipette tips for rapid enrichment of endogenous peptides. J Chromatogr A 2013; 1316:23-8. [DOI: 10.1016/j.chroma.2013.09.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 01/10/2023]
|
207
|
Passarelli MK, Ewing AG. Single-cell imaging mass spectrometry. Curr Opin Chem Biol 2013; 17:854-9. [PMID: 23948695 DOI: 10.1016/j.cbpa.2013.07.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
Single-cell imaging mass spectrometry (IMS) is a powerful technique used to map the distributions of endogenous biomolecules with subcellular resolution. Currently, secondary ion mass spectrometry is the predominant technique for single-cell IMS, thanks to its submicron lateral resolution and surface sensitivity. However, recent methodological and technological developments aimed at improving the spatial resolution of matrix assisted laser desorption ionization (MALDI) have made this technique a potential platform of single-cell IMS. MALDI opens the field of single-cell IMS to new possibilities, including single cell proteomic imaging and atmospheric pressure analyses; however, sensitivity is a challenge. In this report, we estimate the availability of proteins and lipids in a single cell and discuss strategies employed to improve sensitivity at the single-cell level.
Collapse
|
208
|
Moore JL, Becker KW, Nicklay JJ, Boyd KL, Skaar EP, Caprioli RM. Imaging mass spectrometry for assessing temporal proteomics: analysis of calprotectin in Acinetobacter baumannii pulmonary infection. Proteomics 2013; 14:820-828. [PMID: 23754577 DOI: 10.1002/pmic.201300046] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/23/2013] [Accepted: 05/11/2013] [Indexed: 12/13/2022]
Abstract
Imaging MS is routinely used to show spatial localization of proteins within a tissue sample and can also be employed to study temporal protein dynamics. The antimicrobial S100 protein calprotectin, a heterodimer of subunits S100A8 and S100A9, is an abundant cytosolic component of neutrophils. Using imaging MS, calprotectin can be detected as a marker of the inflammatory response to bacterial challenge. In a murine model of Acinetobacter baumannii pneumonia, protein images of S100A8 and S100A9 collected at different time points throughout infection aid in visualization of the innate immune response to this pathogen. Calprotectin is detectable within 6 h of infection as immune cells respond to the invading pathogen. As the bacterial burden decreases, signals from the inflammatory proteins decrease. Calprotectin is no longer detectable 96-144 h post infection, correlating to a lack of detectable bacterial burden in lungs. These experiments provide a label-free, multiplexed approach to study host response to a bacterial threat and eventual clearance of the pathogen over time.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.,Mass Spectrometry Research Center, Vanderbilt University, School of Medicine, Nashville, TN, USA
| | - Kyle W Becker
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joshua J Nicklay
- Mass Spectrometry Research Center, Vanderbilt University, School of Medicine, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Richard M Caprioli
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.,Mass Spectrometry Research Center, Vanderbilt University, School of Medicine, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.,Departments of Pharmacology and Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
209
|
Weaver EM, Hummon AB. Imaging mass spectrometry: from tissue sections to cell cultures. Adv Drug Deliv Rev 2013; 65:1039-55. [PMID: 23571020 DOI: 10.1016/j.addr.2013.03.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Imaging mass spectrometry (IMS) has been a useful tool for investigating protein, peptide, drug and metabolite distributions in human and animal tissue samples for almost 15years. The major advantages of this method include a broad mass range, the ability to detect multiple analytes in a single experiment without the use of labels and the preservation of biologically relevant spatial information. Currently the majority of IMS experiments are based on imaging animal tissue sections or small tumor biopsies. An alternative method currently being developed is the application of IMS to three-dimensional cell and tissue culture systems. With new advances in tissue culture and engineering, these model systems are able to provide increasingly accurate, high-throughput and cost-effective models that recapitulate important characteristics of cell and tissue growth in vivo. This review will describe the most recent advances in IMS technology and the bright future of applying IMS to the field of three-dimensional cell and tissue culture.
Collapse
|
210
|
Eriksson C, Masaki N, Yao I, Hayasaka T, Setou M. MALDI Imaging Mass Spectrometry-A Mini Review of Methods and Recent Developments. Mass Spectrom (Tokyo) 2013; 2:S0022. [PMID: 24349941 DOI: 10.5702/massspectrometry.s0022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/23/2013] [Indexed: 12/16/2022] Open
Abstract
As the only imaging method available, Imaging Mass Spectrometry (IMS) can determine both the identity and the distribution of hundreds of molecules on tissue sections, all in one single run. IMS is becoming an established research technology, and due to recent technical and methodological improvements the interest in this technology is increasing steadily and within a wide range of scientific fields. Of the different IMS methods available, matrix-assisted laser desorption/ionization (MALDI) IMS is the most commonly employed. The course at IMSC 2012 in Kyoto covered the fundamental principles and techniques of MALDI-IMS, assuming no previous experience in IMS. This mini review summarizes the content of the one-day course and describes some of the most recent work performed within this research field.
Collapse
Affiliation(s)
- Cecilia Eriksson
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine ; Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Uppsala University
| | - Noritaka Masaki
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine
| | - Ikuko Yao
- Department of Medical Chemistry, Kansai Medical University
| | - Takahiro Hayasaka
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine
| | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine
| |
Collapse
|
211
|
Schöne C, Höfler H, Walch A. MALDI imaging mass spectrometry in cancer research: Combining proteomic profiling and histological evaluation. Clin Biochem 2013; 46:539-45. [DOI: 10.1016/j.clinbiochem.2013.01.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 01/31/2023]
|
212
|
Fonville JM, Carter CL, Pizarro L, Steven RT, Palmer AD, Griffiths RL, Lalor PF, Lindon JC, Nicholson JK, Holmes E, Bunch J. Hyperspectral visualization of mass spectrometry imaging data. Anal Chem 2013; 85:1415-23. [PMID: 23249247 DOI: 10.1021/ac302330a] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The acquisition of localized molecular spectra with mass spectrometry imaging (MSI) has a great, but as yet not fully realized, potential for biomedical diagnostics and research. The methodology generates a series of mass spectra from discrete sample locations, which is often analyzed by visually interpreting specifically selected images of individual masses. We developed an intuitive color-coding scheme based on hyperspectral imaging methods to generate a single overview image of this complex data set. The image color-coding is based on spectral characteristics, such that pixels with similar molecular profiles are displayed with similar colors. This visualization strategy was applied to results of principal component analysis, self-organizing maps and t-distributed stochastic neighbor embedding. Our approach for MSI data analysis, combining automated data processing, modeling and display, is user-friendly and allows both the spatial and molecular information to be visualized intuitively and effectively.
Collapse
Affiliation(s)
- Judith M Fonville
- Biomolecular Medicine, Department of Surgery and Cancer, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Thomas A, Patterson NH, Laveaux Charbonneau J, Chaurand P. Orthogonal organic and aqueous-based washes of tissue sections to enhance protein sensitivity by MALDI imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:42-48. [PMID: 23303746 DOI: 10.1002/jms.3114] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 06/01/2023]
Abstract
Imaging mass spectrometry (IMS) is an emergent and innovative approach for measuring the composition, abundance and regioselectivity of molecules within an investigated area of fixed dimension. Although providing unprecedented molecular information compared with conventional MS techniques, enhancement of protein signature by IMS is still necessary and challenging. This paper demonstrates the combination of conventional organic washes with an optimized aqueous-based buffer for tissue section preparation before matrix-assisted laser desorption/ionization (MALDI) IMS of proteins. Based on a 500 mM ammonium formate in water-acetonitrile (9:1; v/v, 0.1% trifluororacetic acid, 0.1% Triton) solution, this buffer wash has shown to significantly enhance protein signature by profiling and IMS (~fourfold) when used after organic washes (70% EtOH followed by 90% EtOH), improving the quality and number of ion images obtained from mouse kidney and a 14-day mouse fetus whole-body tissue sections, while maintaining a similar reproducibility with conventional tissue rinsing. Even if some protein losses were observed, the data mining has demonstrated that it was primarily low abundant signals and that the number of new peaks found is greater with the described procedure. The proposed buffer has thus demonstrated to be of high efficiency for tissue section preparation providing novel and complementary information for direct on-tissue MALDI analysis compared with solely conventional organic rinsing.
Collapse
Affiliation(s)
- Aurélien Thomas
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
214
|
|
215
|
Li PH, Huang SY, Chen YC, Urban PL. A hybrid nanoparticle matrix for mass spectrometry. RSC Adv 2013. [DOI: 10.1039/c3ra22977g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
216
|
Going forward: Increasing the accessibility of imaging mass spectrometry. J Proteomics 2012; 75:5113-5121. [DOI: 10.1016/j.jprot.2012.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 12/18/2022]
|
217
|
Jones EA, Deininger SO, Hogendoorn PC, Deelder AM, McDonnell LA. Imaging mass spectrometry statistical analysis. J Proteomics 2012; 75:4962-4989. [DOI: 10.1016/j.jprot.2012.06.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/06/2012] [Accepted: 06/16/2012] [Indexed: 12/22/2022]
|