201
|
Tardiff DF, Lacadie SA, Rosbash M. A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional. Mol Cell 2006; 24:917-29. [PMID: 17189193 PMCID: PMC1828117 DOI: 10.1016/j.molcel.2006.12.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 11/01/2006] [Accepted: 12/06/2006] [Indexed: 09/30/2022]
Abstract
Recent ChIP experiments indicate that spliceosome assembly and splicing can occur cotranscriptionally in S. cerevisiae. However, only a few genes have been examined, and all have long second exons. To extend these studies, we analyzed intron-containing genes with different second exon lengths by using ChIP as well as whole-genome tiling arrays (ChIP-CHIP). The data indicate that U1 snRNP recruitment is independent of exon length. Recursive splicing constructs, which uncouple U1 recruitment from transcription, suggest that cotranscriptional U1 recruitment contributes to optimal splicing efficiency. In contrast, U2 snRNP recruitment, as well as cotranscriptional splicing, is deficient on short second exon genes. We estimate that > or =90% of endogenous yeast splicing is posttranscriptional, consistent with an analysis of posttranscriptional snRNP-associated pre-mRNA.
Collapse
Affiliation(s)
- Daniel F. Tardiff
- Howard Hughes Medical Institute, Biology Department MS008, Brandeis University, 415 South Street Waltham, Massachusetts 02454
| | - Scott A. Lacadie
- Howard Hughes Medical Institute, Biology Department MS008, Brandeis University, 415 South Street Waltham, Massachusetts 02454
| | - Michael Rosbash
- Howard Hughes Medical Institute, Biology Department MS008, Brandeis University, 415 South Street Waltham, Massachusetts 02454
| |
Collapse
|
202
|
Moore MJ, Schwartzfarb EM, Silver PA, Yu MC. Differential Recruitment of the Splicing Machinery during Transcription Predicts Genome-Wide Patterns of mRNA Splicing. Mol Cell 2006; 24:903-15. [PMID: 17189192 DOI: 10.1016/j.molcel.2006.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/30/2006] [Accepted: 12/11/2006] [Indexed: 11/23/2022]
Abstract
The splicing machinery associates with genes to facilitate efficient cotranscriptional mRNA processing. We have mapped these associations by genome localization analysis to ascertain how splicing is achieved and regulated on a system-wide scale. Our data show that factors important for intron recognition sample nascent mRNAs and are retained specifically at intron-containing genes via RNA-dependent interactions. Spliceosome assembly proceeds cotranscriptionally but completes posttranscriptionally in most cases. Some intron-containing genes were not bound by the spliceosome, including several developmentally regulated genes. On this basis, we predicted and verified regulated splicing and observed a role for nuclear mRNA surveillance in monitoring those events. Finally, we present evidence that cotranscriptional processing events determine the recruitment of specific mRNA export factors. Broadly, our results provide mechanistic insights into the coordinated regulation of transcription, mRNA processing, and nuclear export in executing complex gene expression programs.
Collapse
Affiliation(s)
- Michael J Moore
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
203
|
Behzadnia N, Hartmuth K, Will CL, Lührmann R. Functional spliceosomal A complexes can be assembled in vitro in the absence of a penta-snRNP. RNA (NEW YORK, N.Y.) 2006; 12:1738-46. [PMID: 16880538 PMCID: PMC1557700 DOI: 10.1261/rna.120606] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 06/12/2006] [Indexed: 05/11/2023]
Abstract
Two different models currently exist for the assembly pathway of the spliceosome, namely, the traditional model, in which spliceosomal snRNPs associate in a stepwise, ordered manner with the pre-mRNA, and the holospliceosome model, in which all spliceosomal snRNPs preassemble into a penta-snRNP complex. Here we have tested whether the spliceosomal A complex, which contains solely U1 and U2 snRNPs bound to pre-mRNA, is a functional, bona fide assembly intermediate. Significantly, A complexes affinity-purified from nuclear extract depleted of U4/U6 snRNPs (and thus unable to form a penta-snRNP) supported pre-mRNA splicing in nuclear extract depleted of U2 snRNPs, whereas naked pre-mRNA did not. Mixing experiments with purified A complexes and naked pre-mRNA additionally confirmed that under these conditions, A complexes do not form de novo. Thus, our studies demonstrate that holospliceosome formation is not a prerequisite for generating catalytically active spliceosomes and that, at least in vitro, the U1 and U2 snRNPs can functionally associate with the pre-mRNA, prior to and independent of the tri-snRNP. The ability to isolate functional spliceosomal A complexes paves the way to study in detail subsequent spliceosome assembly steps using purified components.
Collapse
Affiliation(s)
- Nastaran Behzadnia
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
204
|
Pandit S, Lynn B, Rymond BC. Inhibition of a spliceosome turnover pathway suppresses splicing defects. Proc Natl Acad Sci U S A 2006; 103:13700-5. [PMID: 16945917 PMCID: PMC1564266 DOI: 10.1073/pnas.0603188103] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defects in assembly are suggested to signal the dissociation of faulty splicing complexes. A yeast genetic screen was performed to identify components of the putative discard pathway. Weak mutant alleles of SPP382 (also called NTR1) were found to suppress defects in two proteins required for spliceosome activation, Prp38p and Prp8p. Spp382p is shown necessary for cellular splicing, with premRNA and, for some alleles, excised intron, accumulating after inactivation. Like spp382-1, a mutant allele of AAR2 was identified in this suppressor screen. Like Spp382p, Aar2p has a reported role in spliceosome recycling and is found with Spp382p in a complex recovered with a mutant version of the spliceosomal core protein Prp8p. Possible insight into to the spp382 suppressor phenotype is provided by the observation that defective splicing complexes lacking the 5' exon cleavage intermediate are recovered by a tandem affinity purification-tagged Spp382 derivative. Stringent proteomic and two-hybrid analyses show that Spp382p also interacts with Cwc23p, a DNA J-like protein present in the spliceosome and copurified with the Prp43p DExD/H-box ATPase. Spp382p binds Prp43p and Prp43p requires Spp382p for intron release from the spliceosome. Consistent with a related function in the removal of defective complexes, three prp43 mutants are also shown to suppress splicing defects, with efficiencies inversely proportionate to the measured ATPase activities. These and related genetic data support the existence of a Spp382p-dependent turnover pathway acting on defective spliceosomes.
Collapse
Affiliation(s)
| | - Bert Lynn
- Chemistry, University of Kentucky, Lexington, KY 40506-0225
| | - Brian C. Rymond
- Departments of *Biology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
205
|
Kyburz A, Friedlein A, Langen H, Keller W. Direct interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3' end processing and splicing. Mol Cell 2006; 23:195-205. [PMID: 16857586 DOI: 10.1016/j.molcel.2006.05.037] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 04/13/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
Eukaryotic pre-mRNAs are capped at their 5' ends, polyadenylated at their 3' ends, and spliced before being exported from the nucleus to the cytoplasm. Although the three processing reactions can be studied separately in vitro, they are coupled in vivo. We identified subunits of the U2 snRNP in highly purified CPSF and showed that the two complexes physically interact. We therefore tested whether this interaction contributes to the coupling of 3' end processing and splicing. We found that CPSF is necessary for efficient splicing activity in coupled assays and that mutations in the pre-mRNA binding site of the U2 snRNP resulted in impaired splicing and in much reduced cleavage efficiency. Moreover, we showed that efficient cleavage required the presence of the U2 snRNA in coupled assays. We therefore propose that the interaction between CPSF and the U2 snRNP contributes to the coupling of splicing and 3' end formation.
Collapse
Affiliation(s)
- Andrea Kyburz
- Department of Cell Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
206
|
Listerman I, Sapra AK, Neugebauer KM. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 2006; 13:815-22. [PMID: 16921380 DOI: 10.1038/nsmb1135] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 07/24/2006] [Indexed: 01/09/2023]
Abstract
Coupling between transcription and RNA processing is a key gene regulatory mechanism. Here we use chromatin immunoprecipitation to detect transcription-dependent accumulation of the precursor mRNA (pre-mRNA) splicing factors hnRNP A1, U2AF65 and U1 and U5 snRNPs on the intron-containing human FOS gene. These factors were poorly detected on intronless heat-shock and histone genes, a result that opposes direct recruitment by RNA polymerase II (Pol II) or the cap-binding complex in vivo. However, an observed RNA-dependent interaction between U2AF65 and active forms of Pol II may stabilize U2AF65 binding to intron-containing nascent RNA. We establish chromatin-RNA immunoprecipitation and show that FOS pre-mRNA is cotranscriptionally spliced. Notably, the topoisomerase I inhibitor camptothecin, which stalls elongating Pol II, increased cotranscriptional splicing factor accumulation and splicing in parallel. This provides direct evidence for a kinetic link between transcription, splicing factor recruitment and splicing catalysis.
Collapse
Affiliation(s)
- Imke Listerman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | |
Collapse
|
207
|
Lacadie SA, Tardiff DF, Kadener S, Rosbash M. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev 2006; 20:2055-66. [PMID: 16882983 PMCID: PMC1536057 DOI: 10.1101/gad.1434706] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/01/2006] [Indexed: 11/25/2022]
Abstract
Spliceosome assembly in the budding yeast Saccharomyces cerevisiae was recently shown to occur at the site of transcription. However, evidence for cotranscriptional splicing as well as for coupling between transcription and splicing is still lacking. Using modifications of a previously published chromatin immunoprecipitation (ChIP) assay, we show that cotranscriptional splicing occurs approximately 1 kb after transcription of the 3' splice site (3'SS). This pathway furthermore protects most intron-containing nascent transcripts from the effects of cleavage by an intronic hammerhead ribozyme. This suggests that a high percentage of introns are recognized cotranscriptionally. This observation led us to screen a small deletion library for strains that sensitize a splicing reporter to ribozyme cleavage. Characterization of the Deltamud2 strain indicates that the early splicing factor Mud2p functions with U1 snRNP to form a cross-intron bridging complex on nascent pre-mRNA. The complex helps protect the transcript from ribozyme-mediated destruction and suggests an intron-definition event early in the spliceosome assembly process. The transcription elongation mutant strains Deltadst1 and Deltapaf1 show different cotranscriptional splicing phenotypes, suggesting that different transcription pathways differentially impact the efficiency of nascent intron definition.
Collapse
Affiliation(s)
- Scott A Lacadie
- Howard Hughes Medical Institute, Biology Department, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
208
|
Scherrer FW, Spingola M. A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention. RNA (NEW YORK, N.Y.) 2006; 12:1361-72. [PMID: 16738408 PMCID: PMC1484446 DOI: 10.1261/rna.2276806] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the yeast Saccharomyces cerevisiae, Mer1p is expressed only during meiosis, and its expression is linked to the splicing of at least three mRNAs: MER2, MER3, and AMA1. Previous evidence suggests that Mer1p activates splicing by directly recruiting snRNPs or stabilizing intermediate splicing complexes formed on pre-mRNA that contains an intronic Mer1p enhancer element. However, some splicing factors, especially accessory/non-snRNP factors, have critical roles in retaining unspliced pre-mRNAs in the nucleus. We tested if Mer1p may indirectly regulate splicing by preventing the export of pre-mRNAs to the cytoplasm and also demonstrated that a second subunit of the Retention and Splicing (RES) complex, Bud13p, has transcript-specific effects on Mer1p-activated splicing. The results indicated that Mer1p can retain unspliced pre-mRNA in the nucleus; however, nuclear retention could not be uncoupled from splicing activation. In the absence of Mer1p, the AMA1 pre-mRNA is exported to the cytoplasm, translated, but not subjected to nonsense-mediated decay (NMD) despite a premature stop codon in the intron. These data imply that Mer1p can retain pre-mRNAs in the nucleus only by facilitating their interaction with the spliceosome and that two subunits of the RES complex modulate Mer1p function on two of the three Mer1p-dependent introns. The results also support models for cytoplasmic degradation of unspliced pre-mRNAs that fail to assemble into spliceosomes in yeast.
Collapse
|
209
|
Tardiff DF, Rosbash M. Arrested yeast splicing complexes indicate stepwise snRNP recruitment during in vivo spliceosome assembly. RNA (NEW YORK, N.Y.) 2006; 12:968-79. [PMID: 16618970 PMCID: PMC1464846 DOI: 10.1261/rna.50506] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 02/06/2006] [Indexed: 05/08/2023]
Abstract
Pre-mRNA splicing is catalyzed by the spliceosome, a macromolecular machine dedicated to intron removal and exon ligation. Despite an abundance of in vitro information and a small number of in vivo studies, the pathway of yeast (Saccharomyces cerevisiae) in vivo spliceosome assembly remains uncertain. To address this situation, we combined in vivo depletions of U1, U2, or U5 snRNAs with chromatin immunoprecipitation (ChIP) analysis of other splicing snRNPs along an intron-containing gene. The data indicate that snRNP recruitment to nascent pre-mRNA predominantly proceeds via the canonical three-step assembly pathway: first U1, then U2, and finally the U4/U6*U5 tri-snRNP. Tandem affinity purification (TAP) using a U2 snRNP-tagged protein allowed the characterization of in vivo assembled higher-order splicing complexes. Consistent with an independent snRNP assembly pathway, we observed high levels of U1-U2 prespliceosomes under U5-depletion conditions, and we observed significant levels of a U2/U5/U6/Prp19-complex mature splicing complex under wild-type conditions. These complexes have implications for the steady-state distribution of snRNPs within nuclei and also reinforce the stepwise recruitment of U1, U2, and the tri-snRNP during in vivo spliceosome assembly.
Collapse
Affiliation(s)
- Daniel F Tardiff
- Howard Hughes Medical Institute, Biology Department, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
210
|
Hicks MJ, Yang CR, Kotlajich MV, Hertel KJ. Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns. PLoS Biol 2006; 4:e147. [PMID: 16640457 PMCID: PMC1450099 DOI: 10.1371/journal.pbio.0040147] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/09/2006] [Indexed: 11/19/2022] Open
Abstract
RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II (Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice sites are protected from nuclear degradation, presumably because the local concentration of the splicing machinery is sufficiently high to ensure its association over interactions with nucleases. Furthermore, the process of transcription influences alternative splicing of newly synthesized pre-mRNAs. Because other RNA polymerases do not provide similar protection from nucleases, and their RNA products display altered splicing patterns, the link between transcription and RNA processing is RNA Pol II-specific. We propose that the connection between transcription by Pol II and pre-mRNA splicing guarantees an extended half-life and proper processing of nascent pre-mRNAs. A novel in vitro method to study transcription and splicing leads to the proposal that linking transcription by Pol II and pre-mRNA splicing guarantees an extended half-life and proper processing of nascent pre-mRNAs.
Collapse
Affiliation(s)
- Martin J Hicks
- 1Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Chin-Rang Yang
- 1Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- 2Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - Matthew V Kotlajich
- 1Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Klemens J Hertel
- 1Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- 2Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
211
|
Das R, Dufu K, Romney B, Feldt M, Elenko M, Reed R. Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev 2006; 20:1100-9. [PMID: 16651655 PMCID: PMC1472470 DOI: 10.1101/gad.1397406] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 02/27/2006] [Indexed: 11/25/2022]
Abstract
The pathway of gene expression in higher eukaryotes involves a highly complex network of physical and functional interactions among the different machines involved in each step of the pathway. Here we established an efficient in vitro system to determine how RNA polymerase II (RNAP II) transcription is functionally coupled to pre-mRNA splicing. Strikingly, our data show that nascent pre-messenger RNA (pre-mRNA) synthesized by RNAP II is immediately and quantitatively directed into the spliceosome assembly pathway. In contrast, nascent pre-mRNA synthesized by T7 RNA polymerase is quantitatively assembled into the nonspecific H complex, which consists of heterogeneous nuclear ribonucleoprotein (hnRNP) proteins and is inhibitory for spliceosome assembly. Consequently, RNAP II transcription results in a dramatic increase in both the kinetics of splicing and overall yield of spliced mRNA relative to that observed for T7 transcription. We conclude that RNAP II mediates the functional coupling of transcription to splicing by directing the nascent pre-mRNA into spliceosome assembly, thereby bypassing interaction of the pre-mRNA with the inhibitory hnRNP proteins.
Collapse
Affiliation(s)
- Rita Das
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
212
|
Palaniswamy V, Moraes KCM, Wilusz CJ, Wilusz J. Nucleophosmin is selectively deposited on mRNA during polyadenylation. Nat Struct Mol Biol 2006; 13:429-35. [PMID: 16604083 PMCID: PMC2811576 DOI: 10.1038/nsmb1080] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/06/2006] [Indexed: 12/19/2022]
Abstract
Nucleophosmin (NPM), an abundant, predominantly nucleolar protein that influences numerous cellular processes, was shown to specifically associate with the bodies of messenger RNAs as a result of the process of 3'-end formation. NPM deposition requires polyadenylation but not the 3' cleavage event to occur on the transcript. Furthermore, the protein does not associate with RNAs bearing a preformed poly(A) tail or with mRNAs that have undergone cleavage but not polyadenylation. A region within 10 bases upstream of the AAUAAA element is required for NPM association, but deposition of the protein seems to be sequence independent. NPM association with poly(A)(+) mRNAs was also demonstrated in vivo. NPM, therefore, represents a mark left on transcripts as a result of 3'-end processing and may have a role in one or more of a variety of post-transcriptional processes influenced by the polyadenylation event.
Collapse
Affiliation(s)
- Viswanathan Palaniswamy
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
213
|
Dye MJ, Gromak N, Proudfoot NJ. Exon tethering in transcription by RNA polymerase II. Mol Cell 2006; 21:849-59. [PMID: 16543153 DOI: 10.1016/j.molcel.2006.01.032] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 12/12/2005] [Accepted: 01/30/2006] [Indexed: 10/24/2022]
Abstract
There is an emerging consensus that RNA polymerase II (RNA Pol II) transcription and pre-mRNA processing are tightly coupled events. We show here that exons flanking an intron that has been engineered to be co-transcriptionally cleaved are accurately and efficiently spliced together. These data underline the close coupling of processes in the initial stages of protein-encoding gene expression and provide evidence for a molecular tether connecting emergent splice sites in the pre-mRNA to transcribing RNA Pol II. This observation suggests that for some genes a continuous intron transcript is not required for pre-mRNA splicing in vivo.
Collapse
Affiliation(s)
- Michael J Dye
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
214
|
Abstract
A recent study reveals that the chromatin-remodeling factor SWI/SNF regulates alternative splicing by creating internal 'roadblocks' to transcriptional elongation where the phosphorylation status of RNA pol II is qualitatively changed.
Collapse
|
215
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
216
|
Dye MJ, Gromak N, Haussecker D, West S, Proudfoot NJ. Turnover and function of noncoding RNA polymerase II transcripts. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 71:275-84. [PMID: 17381307 DOI: 10.1101/sqb.2006.71.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the past few years, especially since the discovery of RNA interference (RNAi), our understanding of the role of RNA in gene expression has undergone a significant transformation. This change has been brought about by growing evidence that RNA is more complex and transcription more promiscuous than has previously been thought. Many of the new transcripts are of so-called noncoding RNA (ncRNA); i.e., RNA that does not code for proteins such as mRNA, or intrinsic parts of the cellular machinery such as the highly structured RNA components of ribosomes (rRNA) and the small nuclear RNA (snRNA) components of the splicing machinery. It is becoming increasingly apparent that ncRNAs have very important roles in gene expression. This paper focuses on work from our laboratory in which we have investigated the roles and turnover of ncRNA located within the gene pre-mRNA, which we refer to as intragenic ncRNA. Also discussed are some investigations of intergenic ncRNA transcription and how these two classes of ncRNA may interrelate.
Collapse
Affiliation(s)
- M J Dye
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
217
|
Grillari J, Ajuh P, Stadler G, Löscher M, Voglauer R, Ernst W, Chusainow J, Eisenhaber F, Pokar M, Fortschegger K, Grey M, Lamond AI, Katinger H. SNEV is an evolutionarily conserved splicing factor whose oligomerization is necessary for spliceosome assembly. Nucleic Acids Res 2005; 33:6868-83. [PMID: 16332694 PMCID: PMC1310963 DOI: 10.1093/nar/gki986] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 11/11/2005] [Accepted: 11/11/2005] [Indexed: 11/25/2022] Open
Abstract
We have isolated the human protein SNEV as downregulated in replicatively senescent cells. Sequence homology to the yeast splicing factor Prp19 suggested that SNEV might be the orthologue of Prp19 and therefore might also be involved in pre-mRNA splicing. We have used various approaches including gene complementation studies in yeast using a temperature sensitive mutant with a pleiotropic phenotype and SNEV immunodepletion from human HeLa nuclear extracts to determine its function. A human-yeast chimera was indeed capable of restoring the wild-type phenotype of the yeast mutant strain. In addition, immunodepletion of SNEV from human nuclear extracts resulted in a decrease of in vitro pre-mRNA splicing efficiency. Furthermore, as part of our analysis of protein-protein interactions within the CDC5L complex, we found that SNEV interacts with itself. The self-interaction domain was mapped to amino acids 56-74 in the protein's sequence and synthetic peptides derived from this region inhibit in vitro splicing by surprisingly interfering with spliceosome formation and stability. These results indicate that SNEV is the human orthologue of yeast PRP19, functions in splicing and that homo-oligomerization of SNEV in HeLa nuclear extract is essential for spliceosome assembly and that it might also be important for spliceosome stability.
Collapse
Affiliation(s)
- Johannes Grillari
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences Vienna, Austria Muthgasse 18, A-1190 Vienna.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Lacadie SA, Rosbash M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5'ss base pairing in yeast. Mol Cell 2005; 19:65-75. [PMID: 15989965 DOI: 10.1016/j.molcel.2005.05.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/05/2005] [Accepted: 05/09/2005] [Indexed: 11/16/2022]
Abstract
To investigate the mechanism of spliceosome assembly in vivo, we performed chromatin immunoprecipitation (ChIP) analysis of U1, U2, and U5 small nuclear ribonucleoprotein particles (snRNPs) to intron-containing yeast (S. cerevisiae) genes. The snRNPs display patterns that indicate a cotranscriptional assembly model: U1 first, then U2, and the U4/U6*U5 tri-snRNP followed by U1 destabilization. cis-splicing mutations also support a role of U2 and/or the tri-snRNP in U1 destabilization. Moreover, they indicate that splicing efficiency has a major impact on cotranscriptional snRNP recruitment and suggest that cotranscriptional recruitment of U2 or the tri-snRNP is required to commit the pre-mRNA to splicing. Branchpoint (BP) mutations had a major effect on the U1 pattern, whereas 5' splice site (5'ss) mutations had a stronger effect on the U2 pattern. A 5'ss-U1 snRNA complementation experiment suggests that pairing between U1 and the 5'ss occurs after U1 recruitment and contributes to a specific U1:substrate conformation required for efficient U2 and tri-snRNP recruitment.
Collapse
Affiliation(s)
- Scott A Lacadie
- Howard Hughes Medical Institute, Biology Department MS008, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|