201
|
Tauro BJ, Mathias RA, Greening DW, Gopal SK, Ji H, Kapp EA, Coleman BM, Hill AF, Kusebauch U, Hallows JL, Shteynberg D, Moritz RL, Zhu HJ, Simpson RJ. Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Mol Cell Proteomics 2013; 12:2148-59. [PMID: 23645497 DOI: 10.1074/mcp.m112.027086] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a highly conserved morphogenic process defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. EMT is associated with increased aggressiveness, invasiveness, and metastatic potential in carcinoma cells. To assess the contribution of extracellular vesicles following EMT, we conducted a proteomic analysis of exosomes released from Madin-Darby canine kidney (MDCK) cells, and MDCK cells transformed with oncogenic H-Ras (21D1 cells). Exosomes are 40-100 nm membranous vesicles originating from the inward budding of late endosomes and multivesicular bodies and are released from cells on fusion of multivesicular bodies with the plasma membrane. Exosomes from MDCK cells (MDCK-Exos) and 21D1 cells (21D1-Exos) were purified from cell culture media using density gradient centrifugation (OptiPrep™), and protein content identified by GeLC-MS/MS proteomic profiling. Both MDCK- and 21D1-Exos populations were morphologically similar by cryo-electron microscopy and contained stereotypical exosome marker proteins such as TSG101, Alix, and CD63. In this study we show that the expression levels of typical EMT hallmark proteins seen in whole cells correlate with those observed in MDCK- and 21D1-Exos, i.e. reduction of characteristic inhibitor of angiogenesis, thrombospondin-1, and epithelial markers E-cadherin, and EpCAM, with a concomitant up-regulation of mesenchymal makers such as vimentin. Further, we reveal that 21D1-Exos are enriched with several proteases (e.g. MMP-1, -14, -19, ADAM-10, and ADAMTS1), and integrins (e.g. ITGB1, ITGA3, and ITGA6) that have been recently implicated in regulating the tumor microenvironment to promote metastatic progression. A salient finding of this study was the unique presence of key transcriptional regulators (e.g. the master transcriptional regulator YBX1) and core splicing complex components (e.g. SF3B1, SF3B3, and SFRS1) in mesenchymal 21D1-Exos. Taken together, our findings reveal that exosomes from Ras-transformed MDCK cells are reprogrammed with factors which may be capable of inducing EMT in recipient cells.
Collapse
Affiliation(s)
- Bow J Tauro
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Chettouh H, Fartoux L, Aoudjehane L, Wendum D, Clapéron A, Chrétien Y, Rey C, Scatton O, Soubrane O, Conti F, Praz F, Housset C, Rosmorduc O, Desbois-Mouthon C. Mitogenic insulin receptor-A is overexpressed in human hepatocellular carcinoma due to EGFR-mediated dysregulation of RNA splicing factors. Cancer Res 2013; 73:3974-86. [PMID: 23633480 DOI: 10.1158/0008-5472.can-12-3824] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin receptor (IR) exists as two isoforms resulting from the alternative splicing of IR pre-mRNA. IR-B promotes the metabolic effects of insulin, whereas IR-A rather signals proliferative effects. IR-B is predominantly expressed in the adult liver. Here, we show that the alternative splicing of IR pre-mRNA is dysregulated in a panel of 85 human hepatocellular carcinoma (HCC) while being normal in adjacent nontumor liver tissue. An IR-B to IR-A switch is frequently observed in HCC tumors regardless of tumor etiology. Using pharmacologic and siRNA approaches, we show that the autocrine or paracrine activation of the EGF receptor (EGFR)/mitogen-activated protein/extracellular signal-regulated kinase pathway increases the IR-A:IR-B ratio in HCC cell lines, but not in normal hepatocytes, by upregulating the expression of the splicing factors CUGBP1, hnRNPH, hnRNPA1, hnRNPA2B1, and SF2/ASF. In HCC tumors, there is a significant correlation between the expression of IR-A and that of splicing factors. Dysregulation of IR pre-mRNA splicing was confirmed in a chemically induced model of HCC in rat but not in regenerating livers after partial hepatectomy. This study identifies a mechanism responsible for the generation of mitogenic IR-A and provides a novel interplay between IR and EGFR pathways in HCC. Increased expression of IR-A during neoplastic transformation of hepatocytes could mediate some of the adverse effects of hyperinsulinemia on HCC.
Collapse
Affiliation(s)
- Hamza Chettouh
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine; UPMC Univ Paris 06, UMR_S 938, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Cohen-Eliav M, Golan-Gerstl R, Siegfried Z, Andersen CL, Thorsen K, Ørntoft TF, Mu D, Karni R. The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers. J Pathol 2013; 229:630-9. [PMID: 23132731 DOI: 10.1002/path.4129] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/03/2012] [Accepted: 10/09/2012] [Indexed: 01/01/2023]
Abstract
An increasing body of evidence connects alterations in the process of alternative splicing with cancer development and progression. However, a direct role of splicing factors as drivers of cancer development is mostly unknown. We analysed the gene copy number of several splicing factors in colon and lung tumours, and found that the gene encoding for the splicing factor SRSF6 is amplified and over-expressed in these cancers. Moreover, over-expression of SRSF6 in immortal lung epithelial cells enhanced proliferation, protected them from chemotherapy-induced cell death and converted them to be tumourigenic in mice. In contrast, knock-down of SRSF6 in lung and colon cancer cell lines inhibited their tumourigenic abilities. SRSF6 up- or down-regulation altered the splicing of several tumour suppressors and oncogenes to generate the oncogenic isoforms and reduce the tumour-suppressive isoforms. Our data suggest that the splicing factor SRSF6 is an oncoprotein that regulates the proliferation and survival of lung and colon cancer cells.
Collapse
Affiliation(s)
- Michal Cohen-Eliav
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Pandit S, Zhou Y, Shiue L, Coutinho-Mansfield G, Li H, Qiu J, Huang J, Yeo GW, Ares M, Fu XD. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol Cell 2013; 50:223-35. [PMID: 23562324 DOI: 10.1016/j.molcel.2013.03.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/02/2013] [Accepted: 02/25/2013] [Indexed: 12/12/2022]
Abstract
SR proteins are well-characterized RNA binding proteins that promote exon inclusion by binding to exonic splicing enhancers (ESEs). However, it has been unclear whether regulatory rules deduced on model genes apply generally to activities of SR proteins in the cell. Here, we report global analyses of two prototypical SR proteins, SRSF1 (SF2/ASF) and SRSF2 (SC35), using splicing-sensitive arrays and CLIP-seq on mouse embryo fibroblasts (MEFs). Unexpectedly, we find that these SR proteins promote both inclusion and skipping of exons in vivo, but their binding patterns do not explain such opposite responses. Further analyses reveal that loss of one SR protein is accompanied by coordinated loss or compensatory gain in the interaction of other SR proteins at the affected exons. Therefore, specific effects on regulated splicing by one SR protein actually depend on a complex set of relationships with multiple other SR proteins in mammalian genomes.
Collapse
Affiliation(s)
- Shatakshi Pandit
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 2013; 122:191-207. [PMID: 23525660 DOI: 10.1007/s00412-013-0407-z] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022]
Abstract
Genomic sequencing reveals similar but limited numbers of protein-coding genes in different genomes, which begs the question of how organismal diversities are generated. Alternative pre-mRNA splicing, a widespread phenomenon in higher eukaryotic genomes, is thought to provide a mechanism to increase the complexity of the proteome and introduce additional layers for regulating gene expression in different cell types and during development. Among a large number of factors implicated in the splicing regulation are the SR protein family of splicing factors and SR protein-specific kinases. Here, we summarize the rules for SR proteins to function as splicing regulators, which depend on where they bind in exons versus intronic regions, on alternative exons versus flanking competing exons, and on cooperative as well as competitive binding between different SR protein family members on many of those locations. We review the importance of cycles of SR protein phosphorylation/dephosphorylation in the splicing reaction with emphasis on the recent molecular insight into the role of SR protein phosphorylation in early steps of spliceosome assembly. Finally, we highlight recent discoveries of SR protein-specific kinases in transducing growth signals to regulate alternative splicing in the nucleus and the connection of both SR proteins and SR protein kinases to human diseases, particularly cancer.
Collapse
|
206
|
Yu H, Yuan J, Xiao C, Qin Y. Integrative genomic analyses of recepteur d'origine nantais and its prognostic value in cancer. Int J Mol Med 2013; 31:1248-54. [PMID: 23483216 DOI: 10.3892/ijmm.2013.1296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/21/2013] [Indexed: 11/06/2022] Open
Abstract
Recepteur d'origine nantais (RON) is a receptor tyrosine kinase (RTK) normally expressed at low levels in epithelial cells. RON is a 180-kDa heterodimeric protein composed of a 40-kDa α-chain and a 150-kDa transmembrane β-chain with intrinsic tyrosine kinase activity. The extracellular sequences of RON contain several domains including an N-terminal semaphorin (sema) domain, followed by the plexin, semaphorin, integrin (PSI) domain, and four immunoglobulin, plexin, transcription factor (IPT) domains. Here, we identified RON genes from 14 vertebrate genomes and found that RON exists in all types of vertebrates including fish, amphibians, birds and mammals. We found that the human RON gene showed predominant expression in the liver, lymph node, thymus, intestine, lung, mammary gland, bone marrow, brain, heart, placenta, bladder, cortex, cervix, skin, kidney and prostate. When searched in the PrognoScan database, human RON was also found to be expressed in bladder, blood, breast, glioma, esophageal, colorectal, head and neck, ovarian, lung and skin cancer. The relationship between the expression of RON and prognosis was found to vary in different cancer types, even in the same cancer from different databases. This suggests that the function of RON in these tumors may be multidimensional, not just as a tumor suppressor or oncogene. Six available single-nucleotide polymorphisms (SNPs) disrupting existing exonic splicing enhancers were identified in RON. This may contribute to the generation of active RON variants by alternative splicing, which is frequently observed in primary tumors.
Collapse
Affiliation(s)
- Haizhong Yu
- Department of Clinical Laboratory of the Traditional Chinese Medical Hospital of Nantong City, Nantong, Jiangsu, P.R. China.
| | | | | | | |
Collapse
|
207
|
Fregoso OI, Das S, Akerman M, Krainer AR. Splicing-factor oncoprotein SRSF1 stabilizes p53 via RPL5 and induces cellular senescence. Mol Cell 2013; 50:56-66. [PMID: 23478443 DOI: 10.1016/j.molcel.2013.02.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 10/05/2012] [Accepted: 01/30/2013] [Indexed: 12/28/2022]
Abstract
Splicing and translation are highly regulated steps of gene expression. Altered expression of proteins involved in these processes can be deleterious. Therefore, the cell has many safeguards against such misregulation. We report that the oncogenic splicing factor SRSF1, which is overexpressed in many cancers, stabilizes the tumor suppressor protein p53 by abrogating its MDM2-dependent proteasomal degradation. We show that SRSF1 is a necessary component of an MDM2/ribosomal protein complex, separate from the ribosome, that functions in a p53-dependent ribosomal-stress checkpoint pathway. Consistent with the stabilization of p53, increased SRSF1 expression in primary human fibroblasts decreases cellular proliferation and ultimately triggers oncogene-induced senescence (OIS). These findings underscore the deleterious outcome of SRSF1 overexpression and identify a cellular defense mechanism against its aberrant function. Furthermore, they implicate the RPL5-MDM2 complex in OIS and demonstrate a link between spliceosomal and ribosomal components, functioning independently of their canonical roles, to monitor cellular physiology and cell-cycle progression.
Collapse
Affiliation(s)
- Oliver I Fregoso
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
208
|
The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene 2013; 33:1082-92. [PMID: 23435423 DOI: 10.1038/onc.2013.50] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 12/15/2022]
Abstract
The epithelial-mesenchymal transition (EMT), a prerequisite for cancer progression and metastasis formation, is regulated not only at the transcriptional but also at the post-transcriptional level, including at the level of alternative pre-mRNA splicing. Several recent studies have highlighted the involvement of splicing factors, including epithelial splicing regulatory proteins (Esrps) and RNA-binding Fox protein 2 (Rbfox2), in this process. Esrps regulate epithelial-specific splicing, and their expression is downregulated during EMT. By contrast, the role of Rbfox2 is controversial because Rbfox2 regulates epithelial as well as mesenchymal splicing events. Here, we have used several established cell culture models to investigate the functions of Rbfox2 during EMT. We demonstrate that induction of an EMT upregulates the expression of Rbfox2, which correlates with an increase in Rbfox2-regulated splicing events in the cortactin (Cttn), Pard3 and dynamin 2 (Dnm2) transcripts. At the same time, however, the epithelial-specific ability to splice the Enah, Slk and Tsc2 transcripts is either reduced or lost completely by Rbfox2, which might be due, in part, to downregulation of the expression of the Esrps cooperative factors. Depletion of Rbfox2 during EMT did not prevent the activation of transforming growth factor-β signaling, the upregulation of mesenchymal markers or changes in cell morphology toward a mesenchymal phenotype. In addition, this depletion did not influence cell migration. However, depletion of Rbfox2 in cells that have completed an EMT significantly reduced their invasive potential. Taken together, our results suggest that during an EMT, Rbfox2-regulated splicing shifts from epithelial-to mesenchymal-specific events, leading to a higher degree of tissue invasiveness.
Collapse
|
209
|
Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 2013; 14:153-65. [PMID: 23385723 DOI: 10.1038/nrm3525] [Citation(s) in RCA: 605] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alternative splicing was discovered simultaneously with splicing over three decades ago. Since then, an enormous body of evidence has demonstrated the prevalence of alternative splicing in multicellular eukaryotes, its key roles in determining tissue- and species-specific differentiation patterns, the multiple post- and co-transcriptional regulatory mechanisms that control it, and its causal role in hereditary disease and cancer. The emerging evidence places alternative splicing in a central position in the flow of eukaryotic genetic information, between transcription and translation, in that it can respond not only to various signalling pathways that target the splicing machinery but also to transcription factors and chromatin structure.
Collapse
Affiliation(s)
- Alberto R Kornblihtt
- Departamento de Fisiología, Biología Molecular y Celular e Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
210
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 552] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
211
|
Abstract
Epithelial to mesenchymal transition (EMT) is essential for driving plasticity during development, but is an unintentional behaviour of cells during cancer progression. The EMT-associated reprogramming of cells not only suggests that fundamental changes may occur to several regulatory networks but also that an intimate interplay exists between them. Disturbance of a controlled epithelial balance is triggered by altering several layers of regulation, including the transcriptional and translational machinery, expression of non-coding RNAs, alternative splicing and protein stability.
Collapse
Affiliation(s)
- Bram De Craene
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | | |
Collapse
|
212
|
Ghigna C, Riva S, Biamonti G. Alternative splicing of tumor suppressors and oncogenes. Cancer Treat Res 2013; 158:95-117. [PMID: 24222355 DOI: 10.1007/978-3-642-31659-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alternative splicing is a fundamental mechanism to modulate gene expression programs in response to different growth and environmental stimuli. There is now ample evidence that alternative splicing errors, caused by mutations in cis-acting elements and defects and/or imbalances in trans-acting factors, may be causatively associated to cancer progression. Recent work indicates the existence of an intricate network of interactions between alternative splicing events and signal transduction pathways. In this network, splicing factors occupy a central position and appear to function both as targets and effectors of regulatory circuits. Thus, a change in their activity deeply affects alternative splicing profiles and hence the cell behavior. Here, we discuss a number of cases that exemplify the involvement of deregulated alternative splicing in tumor progression.
Collapse
Affiliation(s)
- Claudia Ghigna
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, 27100, Italy
| | | | | |
Collapse
|
213
|
Abstract
For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively removed by the spliceosome, other splice junctions are not used systematically, generating the phenomenon of alternative splicing. Alternative splicing is therefore the process by which a single species of pre-mRNA can be matured to produce different mRNA molecules (Fig. 1). Depending on the number and types of alternative splicing events, a pre-mRNA can generate from two to several thousands different mRNAs leading to the production of a corresponding number of proteins. It is now believed that the expression of at least 70 % of human genes is subjected to alternative splicing, implying an enormous contribution to proteomic diversity, and by extension, to the development and the evolution of complex animals. Defects in splicing have been associated with human diseases (Caceres and Kornblihtt, Trends Genet 18(4):186-93, 2002, Cartegni et al., Nat Rev Genet 3(4):285-98, 2002, Pagani and Baralle, Nat Rev Genet 5(5):389-96, 2004), including cancer (Brinkman, Clin Biochem 37(7):584-94, 2004, Venables, Bioessays 28(4):378-86, 2006, Srebrow and Kornblihtt, J Cell Sci 119(Pt 13):2635-2641, 2006, Revil et al., Bull Cancer 93(9):909-919, 2006, Venables, Transworld Res Network, 2006, Pajares et al., Lancet Oncol 8(4):349-57, 2007, Skotheim and Nees, Int J Biochem Cell Biol 39:1432-1449, 2007). Numerous studies have now confirmed the existence of specific differences in the alternative splicing profiles between normal and cancer tissues. Although there are a few cases where specific mutations are the primary cause for these changes, global alterations in alternative splicing in cancer cells may be primarily derived from changes in the expression of RNA-binding proteins that control splice site selection. Overall, these cancer-specific differences in alternative splicing offer an immense potential to improve the diagnosis and the prognosis of cancer. This review will focus on the functional impact of cancer-associated alternative splicing variants, the molecular determinants that alter the splicing decisions in cancer cells, and future therapeutic strategies.
Collapse
|
214
|
Abstract
Up-regulation of the apoptosis-regulatory gene Mcl-1 (myeloid cell leukemia-1) occurs in different cancer types and is linked with drug resistance to cancer therapies. It is well known that Mcl-1 pre-mRNA undergoes alternative splicing events to produce two functionally distinct proteins, Mcl-1S (pro-apoptotic) and Mcl-lL (anti-apoptotic); the latter isoform is predominant in different cancers including breast and ovarian cancer cells. In the present study we report that the RNA-binding protein (RBP) and proto-oncogene SRSF1 (serine and arginine-rich splicing factor 1) influences splicing of Mcl-1 in both MCF-7 and MDA-MB-231 breast cancer cells and JAR choriocarcinoma cells; we also show for the first time that another RBP SRSF5 affects splicing of Mcl-1 in the MCF-7 cells. Moreover, we report that SRSF1 is involved in other aspects of Mcl-1 regulation with knockdown of SRSF1, by RNAi, resulting in a significant decrease in Mcl-1 protein levels in MCF-7 cells but an increase in JAR cells, respectively, by potentially affecting protein stability and translation of Mcl-l. The key findings from this study highlight the importance of the cellular context of different cancer cells for the function of multifunctional RBPs like SRSF1 and have implications for therapeutic approaches employed to target Mcl-1.
Collapse
|
215
|
RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. Mol Cell Biol 2012; 33:396-405. [PMID: 23149937 DOI: 10.1128/mcb.01174-12] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing.
Collapse
|
216
|
Carpignano F, Silva G, Surdo S, Leva V, Montecucco A, Aredia F, Scovassi AI, Merlo S, Barillaro G, Mazzini G. A new cell-selective three-dimensional microincubator based on silicon photonic crystals. PLoS One 2012; 7:e48556. [PMID: 23139792 PMCID: PMC3490954 DOI: 10.1371/journal.pone.0048556] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/27/2012] [Indexed: 01/09/2023] Open
Abstract
In this work, we show that vertical, high aspect-ratio (HAR) photonic crystals (PhCs), consisting of periodic arrays of 5 µm wide gaps with depth of 50 µm separated by 3 µm thick silicon walls, fabricated by electrochemical micromachining, can be used as three-dimensional microincubators, allowing cell lines to be selectively grown into the gaps. Silicon micromachined dice incorporating regions with different surface profiles, namely flat silicon and deeply etched PhC, were used as microincubators for culturing adherent cell lines with different morphology and adhesion properties. We extensively investigated and compared the proliferative behavior on HAR PhCs of eight human cell models, with different origins, such as the epithelial (SW613-B3; HeLa; SW480; HCT116; HT29) and the mesenchymal (MRC-5V1; CF; HT1080). We also verified the contribution of cell sedimentation into the silicon gaps. Fluorescence microscopy analysis highlights that only cell lines that exhibit, in the tested culture condition, the behavior typical of the mesenchymal phenotype are able to penetrate into the gaps of the PhC, extending their body deeply in the narrow gaps between adjacent silicon walls, and to grow adherent to the vertical surfaces of silicon. Results reported in this work, confirmed in various experiments, strongly support our statement that such three-dimensional microstructures have selection capabilities with regard to the cell lines that can actively populate the narrow gaps. Cells with a mesenchymal phenotype could be exploited in the next future as bioreceptors, in combination with HAR PhC optical transducers, e.g., for label-free optical detection of cellular activities involving changes in cell adhesion and/or morphology (e.g., apoptosis) in a three-dimensional microenvironment.
Collapse
Affiliation(s)
- Francesca Carpignano
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università di Pavia, Pavia, Italy
| | - Gloria Silva
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università di Pavia, Pavia, Italy
| | - Salvatore Surdo
- Dipartimento di Ingegneria dell’Informazione, Elettronica, Informatica, Telecomunicazioni, Università di Pisa, Pisa, Italy
| | | | | | | | | | - Sabina Merlo
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università di Pavia, Pavia, Italy
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell’Informazione, Elettronica, Informatica, Telecomunicazioni, Università di Pisa, Pisa, Italy
| | - Giuliano Mazzini
- IGM-CNR, Pavia, Italy
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| |
Collapse
|
217
|
Abnormal expression of the pre-mRNA splicing regulators SRSF1, SRSF2, SRPK1 and SRPK2 in non small cell lung carcinoma. PLoS One 2012; 7:e46539. [PMID: 23071587 PMCID: PMC3468597 DOI: 10.1371/journal.pone.0046539] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/31/2012] [Indexed: 01/15/2023] Open
Abstract
Splicing abnormalities frequently occur in cancer. A key role as splice site choice regulator is played by the members of the SR (Ser/Arg-rich) family of proteins. We recently demonstrated that SRSF2 is involved in cisplatin-mediated apoptosis of human lung carcinoma cell lines. In this study, by using immunohistochemistry, we demonstrate that the SR proteins SRSF1 and SRSF2 are overexpressed in 63% and 65% of lung adenocarcinoma (ADC) as well as in 68% and 91% of squamous cell lung carcinoma (SCC), respectively, compared to normal lung epithelial cells. In addition, we show that SRSF2 overexpression correlates with high level of phosphorylated SRSF2 in both ADC (p<0.0001) and SCC (p = 0.02), indicating that SRSF2 mostly accumulates under a phosphorylated form in lung tumors. Consistently, we further show that the SR-phosphorylating kinases SRPK1 and SRPK2 are upregulated in 92% and 94% of ADC as well as in 72% and 68% of SCC, respectively. P-SRSF2 and SRPK2 scores are correlated in ADC (p = 0.01). Using lung adenocarcinoma cell lines, we demonstrate that SRSF1 overexpression leads to a more invasive phenotype, evidenced by activation of PI3K/AKT and p42/44MAPK signaling pathways, increased growth capacity in soft agar, acquisition of mesenchymal markers such as E cadherin loss, vimentin and fibronectin gain, and increased resistance to chemotherapies. Finally, we provide evidence that high levels of SRSF1 and P-SRSF2 proteins are associated with extensive stage (III–IV) in ADC. Taken together, these results indicate that a global deregulation of pre-mRNA splicing regulators occurs during lung tumorigenesis and does not predict same outcome in both Non Small Cell Lung Carcinoma histological sub-types, likely contributing to a more aggressive phenotype in adenocarcinoma.
Collapse
|
218
|
Jewer M, Findlay SD, Postovit LM. Post-transcriptional regulation in cancer progression : Microenvironmental control of alternative splicing and translation. J Cell Commun Signal 2012; 6:233-48. [PMID: 23054595 DOI: 10.1007/s12079-012-0179-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/24/2012] [Indexed: 12/28/2022] Open
Abstract
The microenvironment acts as a conduit for cellular communication, delivering signals that direct development and sustain tissue homeostasis. In pathologies such as cancer, this integral function of the microenvironment is hijacked to support tumor growth and progression. Cells sense the microenvironment via signal transduction pathways culminating in altered gene expression. In addition to induced transcriptional changes, the microenvironment exerts its effect on the cell through regulation of post-transcriptional processes including alternative splicing and translational control. Here we describe how alternative splicing and protein translation are controlled by microenvironmental parameters such as oxygen availability. We also emphasize how these pathways can be utilized to support processes that are hallmarks of cancer such as angiogenesis, proliferation, and cell migration. We stress that cancer cells respond to their microenvironment through an integrated regulation of gene expression at multiple levels that collectively contribute to disease progression.
Collapse
Affiliation(s)
- Michael Jewer
- Department of Anatomy & Cell Biology, The Schulich School of Medicine and Dentistry, Western University, 438 Medical Science Building, London, ON, N6A 5C1, Canada
| | | | | |
Collapse
|
219
|
Reinke LM, Xu Y, Cheng C. Snail represses the splicing regulator epithelial splicing regulatory protein 1 to promote epithelial-mesenchymal transition. J Biol Chem 2012; 287:36435-42. [PMID: 22961986 DOI: 10.1074/jbc.m112.397125] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a tightly regulated process that is critical for development, is frequently re-activated during cancer metastasis and recurrence. We reported previously that CD44 isoform switching is critical for EMT and showed that the splicing factor ESRP1 inhibits CD44 isoform switching during EMT. However, the mechanism by which ESRP1 is regulated during EMT has not been fully understood. Here we show that the transcription repressor Snail binds to E-boxes in the ESRP1 promoter, causing repression of the ESRP1 gene. Biochemically, we define the mechanism by which ESRP1 regulates CD44 alternative splicing: ESRP1 binds to the intronic region flanking a CD44 variable exon and causes increased variable exon inclusion. We further show that ectopically expressing ESRP1 inhibits Snail-induced EMT, suggesting that down-regulation of ESRP1 is required for function by Snail in EMT. Together, these data reveal how the transcription factor Snail mediates EMT through regulation of a splicing factor.
Collapse
Affiliation(s)
- Lauren M Reinke
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
220
|
Risso G, Pelisch F, Quaglino A, Pozzi B, Srebrow A. Regulating the regulators: serine/arginine-rich proteins under scrutiny. IUBMB Life 2012; 64:809-16. [PMID: 22941908 DOI: 10.1002/iub.1075] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/04/2012] [Indexed: 01/29/2023]
Abstract
Serine/arginine-rich (SR) proteins are among the most studied splicing regulators. They constitute a family of evolutionarily conserved proteins that, apart from their initially identified and deeply studied role in splicing regulation, have been implicated in genome stability, chromatin binding, transcription elongation, mRNA stability, mRNA export and mRNA translation. Remarkably, this list of SR protein activities seems far from complete, as unexpected functions keep being unraveled. An intriguing aspect that awaits further investigation is how the multiple tasks of SR proteins are concertedly regulated within mammalian cells. In this article, we first discuss recent findings regarding the regulation of SR protein expression, activity and accessibility. We dive into recent studies describing SR protein auto-regulatory feedback loops involving different molecular mechanisms such asunproductive splicing, microRNA-mediated regulation and translational repression. In addition, we take into account another step of regulation of SR proteins, presenting new findings about a variety of post-translational modifications by proteomics approaches and how some of these modifications can regulate SR protein sub-cellular localization or stability. Towards the end, we focus in two recently revealed functions of SR proteins beyond mRNA biogenesis and metabolism, the regulation of micro-RNA processing and the regulation of small ubiquitin-like modifier (SUMO) conjugation.
Collapse
Affiliation(s)
- Guillermo Risso
- Instituto de Fisiología, Biología Molecular y Neurociencias - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
221
|
Abstract
INTRODUCTION Since its discovery nearly 20 years ago, the Ron receptor tyrosine kinase has been extensively studied. These studies have elucidated many of the major signaling pathways activated by Ron. In the context of the inflammation and cancer, studies have shown that Ron plays differential roles; Ron activation limits the inflammatory response, whereas in cancer, Ron activation is associated with increased metastases and poor prognosis. AREAS COVERED This review discusses the current literature with regard to Ron signaling and consequences of its activation in cancer as well as its role in cancer therapy. Further, we discuss the mechanisms by which Ron influences the inflammatory response and its role in chronic inflammatory diseases. Finally, we discuss Ron's connection between chronic inflammation and progression to cancer. EXPERT OPINION The complex nature of Ron's signaling paradigm necessitates additional studies to understand the pathways by which Ron is functioning and how these differ in inflammation and cancer. This will be vital to understanding the impact that Ron signaling has in disease states. Additional studies of targeted therapies, either alone or in conjunction with current therapies are needed to determine if inhibition of Ron signaling will provide long-term benefits to cancer patients.
Collapse
Affiliation(s)
- Nancy M Benight
- University of Cincinnati College of Medicine, Cincinnati Veterans Affairs Medical Center, Department of Cancer and Cell Biology, OH 45267-0521, USA
| | | |
Collapse
|
222
|
Alternative transcription and alternative splicing in cancer. Pharmacol Ther 2012; 136:283-94. [PMID: 22909788 DOI: 10.1016/j.pharmthera.2012.08.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 01/27/2023]
Abstract
In recent years, the notion of "one gene makes one protein that functions in one signaling pathway" in mammalian cells has been shown to be overly simplistic. Recent genome-wide studies suggest that at least half of the human genes, including many therapeutic target genes, produce multiple protein isoforms through alternative splicing and alternative usage of transcription initiation and/or termination. For example, alternative splicing of the vascular endothelial growth factor gene (VEGFA) produces multiple protein isoforms, which display either pro-angiogenic or anti-angiogenic activities. Similarly, for the majority of human genes, the inclusion or exclusion of exonic sequences enhances the generation of transcript variants and/or protein isoforms that can vary in structure and functional properties. Many of the isoforms produced in this manner are tightly regulated during normal development but are misregulated in cancer cells. Altered expression of transcript variants and protein isoforms for numerous genes is linked with disease and its prognosis, and cancer cells manipulate regulatory mechanisms to express specific isoforms that confer drug resistance and survival advantages. Emerging insights indicate that modulating the expression of transcript and protein isoforms of a gene may hold the key to impeding tumor growth and act as a model for efficient targeting of disease-associated genes at the isoform level. This review highlights the role and regulation of alternative transcription and splicing mechanisms in generating the transcriptome, and the misuse and diagnostic/prognostic potential of alternative transcription and splicing in cancer.
Collapse
|
223
|
Muñoz Ú, Puche JE, Hannivoort R, Lang UE, Cohen-Naftaly M, Friedman SL. Hepatocyte growth factor enhances alternative splicing of the Kruppel-like factor 6 (KLF6) tumor suppressor to promote growth through SRSF1. Mol Cancer Res 2012; 10:1216-27. [PMID: 22859706 DOI: 10.1158/1541-7786.mcr-12-0213] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alternative splicing of the Krüppel-like factor 6 (KLF6) tumor suppressor into an antagonistic splice variant 1 (SV1) is a pathogenic event in several cancers including hepatocellular carcinoma (HCC) because elevated SV1 is associated with increased tumor metastasis and mortality. Ras activation is one factor that can enhance KLF6 splicing in cancer cells, however pathways driving KLF6 splicing are unknown. Splice site selection is regulated by splice factors that include serine/arginine-rich (SR) proteins such as SRSF1 (ASF-SF2), which in turn is controlled by phosphoinositide 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) signaling pathway. Because signaling pathways downstream of the liver mitogen hepatocyte growth factor (HGF) include Akt, we explored whether HGF induces KLF6 alternative splicing. In HepG2 cells, HGF (25 ng/mL) significantly increases the ratio of SV1/KLF6 full by 40% through phosphorylation of Akt and subsequent downregulation of two splicing regulators, SRSF3 (SRp20) and SRSF1. Decreased SRSF3 levels regulate SRSF1 levels by alternative splicing associated with the nonsense-mediated mRNA decay pathway (AS-NMD), which stimulates cell growth by decreasing p21 levels. Enhanced cell replication through increased KLF6 alternative splicing is a novel growth-promoting pathway of HGF that could contribute to the molecule's mitogenic activity in physiologic liver growth and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Úrsula Muñoz
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
224
|
Biamonti G, Bonomi S, Gallo S, Ghigna C. Making alternative splicing decisions during epithelial-to-mesenchymal transition (EMT). Cell Mol Life Sci 2012; 69:2515-26. [PMID: 22349259 PMCID: PMC11115103 DOI: 10.1007/s00018-012-0931-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/22/2012] [Accepted: 01/24/2012] [Indexed: 12/22/2022]
Abstract
Alternative splicing generates multiple mRNAs from a single transcript and is a major contributor to proteomic diversity and to the control of gene expression in complex organisms. Not surprisingly, this post-transcriptional event is tightly regulated in different tissues and developmental stages. An increasing body of evidences supports a causative role of aberrant alternative splicing in cancer. However, very little is known about its impact on cellular processes crucially involved in tumor progression. The aim of this review is to discuss the link between alternative splicing and the epithelial-to-mesenchymal transition (EMT), one of the major routes by which cancer cells acquire invasive capabilities and become metastatic. We begin with a brief overview of alternative splicing. Next, we discuss alternative splicing factors that regulate EMT. Finally, we provide examples of target genes presenting alternative splicing changes that contribute to the morphological conversions in the EMT process.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare – Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Serena Bonomi
- Istituto di Genetica Molecolare – Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Stefania Gallo
- Istituto di Genetica Molecolare – Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Claudia Ghigna
- Istituto di Genetica Molecolare – Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
| |
Collapse
|
225
|
Kaida D, Schneider-Poetsch T, Yoshida M. Splicing in oncogenesis and tumor suppression. Cancer Sci 2012; 103:1611-6. [PMID: 22691055 DOI: 10.1111/j.1349-7006.2012.02356.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 12/23/2022] Open
Abstract
Post-transcriptional modifications, such as 5' end capping, 3' end polyadenylation and splicing, are necessary for the precise regulation of gene expression and transcriptome integrity. Therefore, it is not surprising that abnormalities of these post-transcriptional modifications prompt numerous diseases, including cancer. In fact, many studies revealed that misregulation of mRNA processing, especially splicing, are observed in a variety of cancer cells. In this review we describe how changes within RNA splicing regulatory elements or mutations in the processing factors alter the expression of tumor suppressors or oncogenes with pathological consequences. In addition, we show how several small molecules that bind to spliceosomal components and splicing regulators inhibit or modulate splicing activity. These compounds have anticancer activity and further development of small molecule modulators has potential in next generation cancer therapy.
Collapse
Affiliation(s)
- Daisuke Kaida
- Frontier Research Core for Life Sciences, University of Toyama, Japan
| | | | | |
Collapse
|
226
|
Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 2012; 18:472-82. [PMID: 22819011 DOI: 10.1016/j.molmed.2012.06.006] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 01/18/2023]
Abstract
In metazoans, alternative splicing of genes is essential for regulating gene expression and contributing to functional complexity. Computational predictions, comparative genomics, and transcriptome profiling of normal and diseased tissues indicate that an unexpectedly high fraction of diseases are caused by mutations that alter splicing. Mutations in cis elements cause missplicing of genes that alter gene function and contribute to disease pathology. Mutations of core spliceosomal factors are associated with hematolymphoid neoplasias, retinitis pigmentosa, and microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1). Mutations in the trans regulatory factors that control alternative splicing are associated with autism spectrum disorder, amyotrophic lateral sclerosis (ALS), and various cancers. In addition to discussing the disorders caused by these mutations, this review summarizes therapeutic approaches that have emerged to correct splicing of individual genes or target the splicing machinery.
Collapse
|
227
|
Alternatively spliced lysyl oxidase-like 4 isoforms have a pro-metastatic role in cancer. Clin Exp Metastasis 2012; 30:103-17. [DOI: 10.1007/s10585-012-9514-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 06/29/2012] [Indexed: 01/17/2023]
|
228
|
Pelisch F, Khauv D, Risso G, Stallings-Mann M, Blaustein M, Quadrana L, Radisky DC, Srebrow A. Involvement of hnRNP A1 in the matrix metalloprotease-3-dependent regulation of Rac1 pre-mRNA splicing. J Cell Biochem 2012; 113:2319-29. [PMID: 22345078 PMCID: PMC3927408 DOI: 10.1002/jcb.24103] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rac1b is an alternatively spliced isoform of the small GTPase Rac1 that includes the 57-nucleotide exon 3b. Rac1b was originally identified through its over-expression in breast and colorectal cancer cells, and has subsequently been implicated as a key player in a number of different oncogenic signaling pathways, including tumorigenic transformation of mammary epithelial cells exposed to matrix metalloproteinase-3 (MMP-3). Although many of the cellular consequences of Rac1b activity have been recently described, the molecular mechanism by which MMP-3 treatment leads to Rac1b induction has not been defined. Here we use proteomic methods to identify heterogeneous nuclear ribonucleoprotein (hnRNP) A1 as a factor involved in Rac1 splicing regulation. We find that hnRNP A1 binds to Rac1 exon 3b in mouse mammary epithelial cells, repressing its inclusion into mature mRNA. We also find that exposure of cells to MMP-3 leads to release of hnRNP A1 from exon 3b and the consequent generation of Rac1b. Finally, we analyze normal breast tissue and breast cancer biopsies, and identify an inverse correlation between expression of hnRNP A1 and Rac1b, suggesting the existence of this regulatory axis in vivo. These results provide new insights on how extracellular signals regulate alternative splicing, contributing to cellular transformation and development of breast cancer.
Collapse
Affiliation(s)
- Federico Pelisch
- Instituto de Fisiología, Biología Molecular y Neurociencias - Consejo Nacional de Investigaciones Científicas y Técnicas; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires. Ciudad Universitaria, Pabellón II, Buenos Aires (C1428EHA), Argentina
| | - Davitte Khauv
- Mayo Clinic Cancer Center, Jacksonville, FL 32225 USA
| | - Guillermo Risso
- Instituto de Fisiología, Biología Molecular y Neurociencias - Consejo Nacional de Investigaciones Científicas y Técnicas; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires. Ciudad Universitaria, Pabellón II, Buenos Aires (C1428EHA), Argentina
| | | | - Matías Blaustein
- Instituto de Fisiología, Biología Molecular y Neurociencias - Consejo Nacional de Investigaciones Científicas y Técnicas; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires. Ciudad Universitaria, Pabellón II, Buenos Aires (C1428EHA), Argentina
| | - Leandro Quadrana
- Instituto de Fisiología, Biología Molecular y Neurociencias - Consejo Nacional de Investigaciones Científicas y Técnicas; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires. Ciudad Universitaria, Pabellón II, Buenos Aires (C1428EHA), Argentina
| | | | - Anabella Srebrow
- Instituto de Fisiología, Biología Molecular y Neurociencias - Consejo Nacional de Investigaciones Científicas y Técnicas; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires. Ciudad Universitaria, Pabellón II, Buenos Aires (C1428EHA), Argentina
| |
Collapse
|
229
|
Kim YJ, Kim HS. Alternative splicing and its impact as a cancer diagnostic marker. Genomics Inform 2012; 10:74-80. [PMID: 23105933 PMCID: PMC3480681 DOI: 10.5808/gi.2012.10.2.74] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 01/13/2023] Open
Abstract
Most genes are processed by alternative splicing for gene expression, resulting in the complexity of the transcriptome in eukaryotes. It allows a limited number of genes to encode various proteins with intricate functions. Alternative splicing is regulated by genetic mutations in cis-regulatory factors and epigenetic events. Furthermore, splicing events occur differently according to cell type, developmental stage, and various diseases, including cancer. Genome instability and flexible proteomes by alternative splicing could affect cancer cells to grow and survive, leading to metastasis. Cancer cells that are transformed by aberrant and uncontrolled mechanisms could produce alternative splicing to maintain and spread them continuously. Splicing variants in various cancers represent crucial roles for tumorigenesis. Taken together, the identification of alternative spliced variants as biomarkers to distinguish between normal and cancer cells could cast light on tumorigenesis.
Collapse
Affiliation(s)
- Yun-Ji Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | | |
Collapse
|
230
|
Wu CY, Tsai YP, Wu MZ, Teng SC, Wu KJ. Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet 2012; 28:454-63. [PMID: 22717049 DOI: 10.1016/j.tig.2012.05.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a developmental process that is important for organ development, metastasis, cancer stemness, and organ fibrosis. The EMT process is regulated by different signaling pathways as well as by various epigenetic and post-transcriptional mechanisms. Here, we review recent progress describing the role of different chromatin modifiers in various signaling events leading to EMT, including hypoxia, transforming growth factor (TGF)-β, Notch, and Wnt. We also discuss post-transcriptional mechanisms, such as RNA alternative splicing and the effects of miRNAs in EMT regulation. Furthermore, we highlight on-going and future work aimed at a detailed understanding of the epigenetic and post-transcriptional mechanisms that regulate EMT. This work will shed new light on the cellular and tumorigenic processes affected by EMT misregulation.
Collapse
Affiliation(s)
- Chung-Yin Wu
- Department of Occupational Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | | | | | | | | |
Collapse
|
231
|
Warzecha CC, Carstens RP. Complex changes in alternative pre-mRNA splicing play a central role in the epithelial-to-mesenchymal transition (EMT). Semin Cancer Biol 2012; 22:417-27. [PMID: 22548723 DOI: 10.1016/j.semcancer.2012.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 04/16/2012] [Indexed: 12/18/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is an important developmental process that is also implicated in disease pathophysiology, such as cancer progression and metastasis. A wealth of literature in recent years has identified important transcriptional regulators and large-scale changes in gene expression programs that drive the phenotypic changes that occur during the EMT. However, in the past couple of years it has become apparent that extensive changes in alternative splicing also play a profound role in shaping the changes in cell behavior that characterize the EMT. While long known splicing switches in FGFR2 and p120-catenin provided hints of a larger program of EMT-associated alternative splicing, the recent identification of the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) began to reveal this genome-wide post-transcriptional network. Several studies have now demonstrated the truly vast extent of this alternative splicing program. The global switches in splicing associated with the EMT add an important additional layer of post-transcriptional control that works in harmony with transcriptional and epigenetic regulation to effect complex changes in cell shape, polarity, and behavior that mediate transitions between epithelial and mesenchymal cell states. Future challenges include the need to investigate the functional consequences of these splicing switches at both the individual gene as well as systems level.
Collapse
Affiliation(s)
- Claude C Warzecha
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, United States
| | | |
Collapse
|
232
|
Anczuków O, Rosenberg AZ, Akerman M, Das S, Zhan L, Karni R, Muthuswamy SK, Krainer AR. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol 2012; 19:220-8. [PMID: 22245967 PMCID: PMC3272117 DOI: 10.1038/nsmb.2207] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 11/16/2011] [Indexed: 01/13/2023]
Abstract
The splicing-factor oncoprotein SRSF1 (also known as SF2/ASF) is upregulated in breast cancers. We investigated SRSF1’s ability to transform human and mouse mammary epithelial cells in vivo and in vitro. SRSF1-overexpressing COMMA-1D cells formed tumors, following orthotopic transplantation to reconstitute the mammary gland. In 3-D culture, SRSF1-overexpressing MCF-10A cells formed larger acini than control cells, reflecting increased proliferation and delayed apoptosis during acinar morphogenesis. These effects required the first RNA-recognition motif and nuclear functions of SRSF1. SRSF1 overexpression promoted alternative splicing of BIM and BIN1 isoforms that lack pro-apoptotic functions and contribute to the phenotype. Finally, SRSF1 cooperated specifically with MYC to transform mammary epithelial cells, in part by potentiating eIF4E activation, and these cooperating oncogenes are significantly co-expressed in human breast tumors. Thus, SRSF1 can promote breast cancer, and SRSF1 itself or its downstream effectors may be valuable targets for therapeutics development.
Collapse
Affiliation(s)
- Olga Anczuków
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Zong X, Tripathi V, Prasanth KV. RNA splicing control: yet another gene regulatory role for long nuclear noncoding RNAs. RNA Biol 2011; 8:968-77. [PMID: 21941126 DOI: 10.4161/rna.8.6.17606] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mammalian genome harbors a large number of long non-coding RNAs (lncRNAs) that do not code for proteins, but rather they exert their function directly as RNA molecules. LncRNAs are involved in executing several vital cellular functions. They facilitate the recruitment of proteins to specific chromatin sites, ultimately regulating processes like dosage compensation and genome imprinting. LncRNAs are also known to regulate nucleocytoplasmic transport of macromolecules. A large number of the regulatory lncRNAs are retained within the cell nucleus and constitute a subclass termed nuclear-retained RNAs (nrRNAs). NrRNAs are speculated to be involved in crucial gene regulatory networks, acting as structural scaffolds of subnuclear domains. NrRNAs modulate gene expression by influencing chromatin modification, transcription and post-transcriptional gene processing. The cancer-associated Metastasis-associated lung adenocarcinoma transcript1 (MALAT1) is one such long nrRNA that regulates pre-mRNA processing in mammalian cells. Thus far, our understanding about the roles played by nrRNAs and their relevance in disease pathways is only 'a tip of an iceberg'. It will therefore be crucial to unravel the functions for the vast number of long nrRNAs, buried within the complex mine of the human genome.
Collapse
Affiliation(s)
- Xinying Zong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
234
|
Abstract
Numerous studies
report splicing alterations in a multitude of
cancers by using gene-by-gene analysis. However,
understanding of the role of alternative
splicing in cancer is now reaching a new level,
thanks to the use of novel technologies allowing
the analysis of splicing at a large-scale level.
Genome-wide analyses of alternative splicing
indicate that splicing alterations can affect
the products of gene networks involved in key
cellular programs. In addition, many splicing
variants identified as being misregulated in
cancer are expressed in normal tissues. These
observations suggest that splicing programs
contribute to specific cellular programs that
are altered during cancer initiation and
progression. Supporting this model, recent
studies have identified splicing factors
controlling cancer-associated splicing programs.
The characterization of splicing programs and
their regulation by splicing factors will allow
a better understanding of the genetic mechanisms
involved in cancer initiation and progression
and the development of new therapeutic
targets.
Collapse
|
235
|
Leva V, Giuliano S, Bardoni A, Camerini S, Crescenzi M, Lisa A, Biamonti G, Montecucco A. Phosphorylation of SRSF1 is modulated by replicational stress. Nucleic Acids Res 2011; 40:1106-17. [PMID: 21984412 PMCID: PMC3273819 DOI: 10.1093/nar/gkr837] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA ligase I-deficient 46BR.1G1 cells show a delay in the maturation of replicative intermediates resulting in the accumulation of single- and double-stranded DNA breaks. As a consequence the ataxia telangiectasia mutated protein kinase (ATM) is constitutively phosphorylated at a basal level. Here, we use 46BR.1G1 cells as a model system to study the cell response to chronic replication-dependent DNA damage. Starting from a proteomic approach, we demonstrate that the phosphorylation level of factors controlling constitutive and alternative splicing is affected by the damage elicited by DNA ligase I deficiency. In particular, we show that SRSF1 is hyperphosphorylated in 46BR.1G1 cells compared to control fibroblasts. This hyperphosphorylation can be partially prevented by inhibiting ATM activity with caffeine. Notably, hyperphosphorylation of SRSF1 affects the subnuclear distribution of the protein and the alternative splicing pattern of target genes. We also unveil a modulation of SRSF1 phosphorylation after exposure of MRC-5V1 control fibroblasts to different exogenous sources of DNA damage. Altogether, our observations indicate that a relevant aspect of the cell response to DNA damage involves the post-translational regulation of splicing factor SRSF1 which is associated with a shift in the alternative splicing program of target genes to control cell survival or cell death.
Collapse
Affiliation(s)
- Valentina Leva
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Alternative splicing in oncogenic kinases: from physiological functions to cancer. J Nucleic Acids 2011; 2012:639062. [PMID: 22007291 PMCID: PMC3189609 DOI: 10.1155/2012/639062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/14/2011] [Indexed: 01/13/2023] Open
Abstract
Among the 518 protein kinases encoded by the human kinome, several of them act as oncoproteins in human cancers. Like other eukaryotic genes, oncogenes encoding protein kinases are frequently subjected to alternative splicing in coding as well as noncoding sequences. In the present paper, we will illustrate how alternative splicing can significantly impact on the physiological functions of oncogenic protein kinases, as demonstrated by mouse genetic model studies. This includes examples of membrane-bound tyrosine kinases receptors (FGFR2, Ret, TrkB, ErbB4, and VEGFR) as well as cytosolic protein kinases (B-Raf). We will further discuss how regular alternative splicing events of these kinases are in some instances implicated in oncogenic processes during tumor progression (FGFR, TrkB, ErbB2, Abl, and AuroraA). Finally, we will present typical examples of aberrant splicing responsible for the deregulation of oncogenic kinases activity in cancers (AuroraB, Jak2, Kit, Met, and Ron).
Collapse
|
237
|
Sterne-Weiler T, Howard J, Mort M, Cooper DN, Sanford JR. Loss of exon identity is a common mechanism of human inherited disease. Genome Res 2011; 21:1563-71. [PMID: 21750108 PMCID: PMC3202274 DOI: 10.1101/gr.118638.110] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/30/2011] [Indexed: 01/12/2023]
Abstract
It is widely accepted that at least 10% of all mutations causing human inherited disease disrupt splice-site consensus sequences. In contrast to splice-site mutations, the role of auxiliary cis-acting elements such as exonic splicing enhancers (ESE) and exonic splicing silencers (ESS) in human inherited disease is still poorly understood. Here we use a top-down approach to determine rates of loss or gain of known human exonic splicing regulatory (ESR) sequences associated with either disease-causing mutations or putatively neutral single nucleotide polymorphisms (SNPs). We observe significant enrichment toward loss of ESEs and gain of ESSs among inherited disease-causing variants relative to neutral polymorphisms, indicating that exon skipping may play a prominent role in aberrant gene regulation. Both computational and biochemical approaches underscore the relevance of exonic splicing enhancer loss and silencer gain in inherited disease. Additionally, we provide direct evidence that both SRp20 (SRSF3) and possibly PTB (PTBP1) are involved in the function of a splicing silencer that is created de novo by a total of 83 different inherited disease mutations in 67 different disease genes. Taken together, we find that ~25% (7154/27,681) of known mis-sense and nonsense disease-causing mutations alter functional splicing signals within exons, suggesting a much more widespread role for aberrant mRNA processing in causing human inherited disease than has hitherto been appreciated.
Collapse
Affiliation(s)
- Timothy Sterne-Weiler
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Jonathan Howard
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Jeremy R. Sanford
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
238
|
Abstract
Genome-wide analyses of metazoan transcriptomes have revealed an unexpected level of mRNA diversity that is generated by alternative splicing. Recently, regulatory networks have been identified through which splicing promotes dynamic remodelling of the transcriptome to promote physiological changes, which involve robust and coordinated alternative splicing transitions. The regulation of splicing in yeast, worms, flies and vertebrates affects a variety of biological processes. The functional classes of genes that are regulated by alternative splicing include both those with widespread homeostatic activities and those with cell-type-specific functions. Alternative splicing can drive determinative physiological change or can have a permissive role by providing mRNA variability that is used by other regulatory mechanisms.
Collapse
|
239
|
Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J 2011; 30:4084-97. [PMID: 21915099 PMCID: PMC3209773 DOI: 10.1038/emboj.2011.259] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/05/2011] [Indexed: 12/11/2022] Open
Abstract
This study reveals two alternative splicing events that contribute to the development of glioma. HnRNPH is shown to control production of a pro-survival splice variant of the death-domain adaptor protein IG20-MADD and the motility-enhancing isoform of the RON receptor tyrosine kinase. In tumours, aberrant splicing generates variants that contribute to multiple aspects of tumour establishment, progression and maintenance. We show that in glioblastoma multiforme (GBM) specimens, death-domain adaptor protein Insuloma-Glucagonoma protein 20 (IG20) is consistently aberrantly spliced to generate an antagonist, anti-apoptotic isoform (MAP-kinase activating death domain protein, MADD), which effectively redirects TNF-α/TRAIL-induced death signalling to promote survival and proliferation instead of triggering apoptosis. Splicing factor hnRNPH, which is upregulated in gliomas, controls this splicing event and similarly mediates switching to a ligand-independent, constitutively active Recepteur d′Origine Nantais (RON) tyrosine kinase receptor variant that promotes migration and invasion. The increased cell death and the reduced invasiveness caused by hnRNPH ablation can be rescued by the targeted downregulation of IG20/MADD exon 16- or RON exon 11-containing variants, respectively, using isoform-specific knockdown or splicing redirection approaches. Thus, hnRNPH activity appears to be involved in the pathogenesis and progression of malignant gliomas as the centre of a splicing oncogenic switch, which might reflect reactivation of stem cell patterns and mediates multiple key aspects of aggressive tumour behaviour, including evasion from apoptosis and invasiveness.
Collapse
|
240
|
Cho S, Hoang A, Chakrabarti S, Huynh N, Huang DB, Ghosh G. The SRSF1 linker induces semi-conservative ESE binding by cooperating with the RRMs. Nucleic Acids Res 2011; 39:9413-21. [PMID: 21852328 PMCID: PMC3241662 DOI: 10.1093/nar/gkr663] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
SR proteins promote spliceosome formation by recognizing exonic splicing enhancers (ESEs) during pre-mRNA splicing. Each SR protein binds diverse ESEs using strategies that are yet to be elucidated. Here, we show that the RNA-binding domain (RBD) of SRSF1 optimally binds to decameric purine rich ESE sequences although locations of purines are not stringently specified. The presence of uracils either within or outside of the recognition site is detrimental for binding with SRSF1. The entire RBD, comprised of two RRMs and a glycine-rich linker, is essential for ESE binding. Mutation within each segment reduced or nearly abolished binding, suggesting that these segments mediate cooperative binding. The linker plays a decisive role in organizing ESE binding. The flanking basic regions of the linker appear to communicate with each other in bringing the two RRMs close together to form the complex with RNA. Our study thus suggests semi-conservative adaptable interaction between ESE and SRSF1, and such binding mode is not only essential for the recognition of plethora of physiological ESE sequences but may also be essential for the interaction with various factors during the spliceosome assembly.
Collapse
Affiliation(s)
- Suhyung Cho
- Department of Chemistry & Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
241
|
Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH, Burge CB, Gertler FB. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet 2011; 7:e1002218. [PMID: 21876675 PMCID: PMC3158048 DOI: 10.1371/journal.pgen.1002218] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 06/17/2011] [Indexed: 01/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA–Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT–dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell–cell junction formation, and regulation of cell migration, were enriched among EMT–associated alternatively splicing events. Our analysis suggested that most EMT–associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT–associated splicing pattern. Expression of EMT–associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. The functional significance of EMT–associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT–associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression. Epithelial-to-mesenchymal transition (EMT) is the process by which cancer cells lose their epithelial characteristics and obtain a mesenchymal phenotype that is thought to allow them to migrate away from the primary tumor. A better understanding of how EMT is controlled would be valuable in predicting the likelihood of metastasis and in designing targeted therapies to block metastatic progression. While there have been many studies on the contribution of changes in gene expression to EMT, much less is known regarding the role of alternative splicing of mRNA during EMT. Alternative splicing can produce different protein isoforms from the same gene that often have distinct activities and functions. Here, we used a recently developed method to characterize changes in alternative splicing during EMT and found that thousands of multi-exon genes underwent alternative splicing. Alternative isoform expression was confirmed in human breast cancer cell lines and in primary human breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. Since EMT is considered an early step in metastatic progression, novel markers of EMT that we identified in human breast cancer samples might become valuable prognostic and diagnostic tools if confirmed in a larger cohort of patients.
Collapse
Affiliation(s)
- Irina M. Shapiro
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Albert W. Cheng
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Nicholas C. Flytzanis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michele Balsamo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John S. Condeelis
- Department of Anatomy, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - Christopher B. Burge
- Department of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (FBG); (CBB)
| | - Frank B. Gertler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (FBG); (CBB)
| |
Collapse
|
242
|
Bielli P, Busà R, Paronetto MP, Sette C. The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Relat Cancer 2011; 18:R91-R102. [PMID: 21565971 DOI: 10.1530/erc-11-0041] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Src associated in mitosis, of 68 kDa (Sam68) is a KH domain RNA-binding protein that belongs to the signal transduction and activation of RNA family. Although ubiquitously expressed, Sam68 plays very specialized roles in different cellular environments. In most cells, Sam68 resides in the nucleus and is involved in several steps of mRNA processing, from transcription, to alternative splicing, to nuclear export. In addition, Sam68 translocates to the cytoplasm upon cell stimulation, cell cycle transitions or viral infections, where it takes part to signaling complexes and associates with the mRNA translation machinery. Recent evidence has linked Sam68 function to the onset and progression of endocrine tumors, such as prostate and breast carcinomas. Notably, all the biochemical activities reported for Sam68 seem to be implicated in carcinogenesis. Herein, we review the recent advancement in the knowledge of Sam68 function and regulation and discuss it in the frame of its participation to neoplastic transformation and tumor progression.
Collapse
Affiliation(s)
- Pamela Bielli
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Italy
| | | | | | | |
Collapse
|
243
|
Ghigna C, Valacca C, Biamonti G. Alternative splicing and tumor progression. Curr Genomics 2011; 9:556-70. [PMID: 19516963 PMCID: PMC2694562 DOI: 10.2174/138920208786847971] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 08/12/2008] [Accepted: 08/18/2008] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing is a key molecular mechanism for increasing the functional diversity of the eukaryotic proteomes. A large body of experimental data implicates aberrant splicing in various human diseases, including cancer. Both mutations in cis-acting splicing elements and alterations in the expression and/or activity of splicing regulatory factors drastically affect the splicing profile of many cancer-associated genes. In addition, the splicing profile of several cancer-associated genes is altered in particular types of cancer arguing for a direct role of specific splicing isoforms in tumor progression. Deciphering the mechanisms underlying aberrant splicing in cancer may prove crucial to understand how splicing machinery is controlled and integrated with other cellular processes, in particular transcription and signaling pathways. Moreover, the characterization of splicing deregulation in cancer will lead to a better comprehension of malignant transformation. Cancer-associated alternative splicing variants may be new tools for the diagnosis and classification of cancers and could be the targets for innovative therapeutical interventions based on highly selective splicing correction approaches.
Collapse
Affiliation(s)
- Claudia Ghigna
- Istituto di Genetica Molecolare - Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207. 27100 Pavia, Italy
| | | | | |
Collapse
|
244
|
Catenacci DVT, Cervantes G, Yala S, Nelson EA, El-Hashani E, Kanteti R, El Dinali M, Hasina R, Brägelmann J, Seiwert T, Sanicola M, Henderson L, Grushko TA, Olopade O, Karrison T, Bang YJ, Ho Kim W, Tretiakova M, Vokes E, Frank DA, Kindler HL, Huet H, Salgia R. RON (MST1R) is a novel prognostic marker and therapeutic target for gastroesophageal adenocarcinoma. Cancer Biol Ther 2011; 12:9-46. [PMID: 21543897 PMCID: PMC3149873 DOI: 10.4161/cbt.12.1.15747] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 12/22/2022] Open
Abstract
RON (MST1R) is one of two members of the MET receptor tyrosine kinase family, along with parent receptor MET. RON has a putative role in several cancers, but its expression and function is poorly characterized in gastroesophageal adenocarcinoma. A recognized functional role of MET tyrosine kinase in gastroesophageal cancer has led to early phase clinical trials using MET inhibitors, with unimpressive results. Therefore, the role of RON in gastroesophageal cancer, as well as its role in cooperative signaling with MET and as a mechanism of resistance to MET inhibition, was studied in gastroesophageal tissues and cell lines. By IHC, RON was highly over-expressed in 74% of gastroesophageal samples (n=94), and over-expression was prognostic of poor survival (p=0.008); RON and MET co-expression occurred in 43% of samples and was prognostic of worst survival (p=0.03). High MST1R gene copy number by quantitative polymerase chain reaction, and confirmed by fluorescence in situ hybridization and/or array comparative genomic hybridization, was seen in 35.5% (16/45) of cases. High MST1R gene copy number correlated with poor survival (p=0.01), and was associated with high MET and ERBB2 gene copy number. A novel somatic MST1R juxtamembrane mutation R1018G was found in 11% of samples. RON signaling was functional in cell lines, activating downstream effector STAT3, and resulted in increased viability over controls. RON and MET co-stimulation assays led to enhanced malignant phenotypes over stimulation of either receptor alone. Growth inhibition as evidenced by viability and apoptosis assays was optimal using novel blocking monoclonal antibodies to both RON and MET, versus either alone. SU11274, a classic MET small molecule tyrosine kinase inhibitor, blocked signaling of both receptors, and proved synergistic when combined with STAT3 inhibition (combination index < 1). These preclinical studies define RON as an important novel prognostic marker and therapeutic target for gastroesophageal cancer warranting further investigation.
Collapse
Affiliation(s)
- Daniel VT Catenacci
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Gustavo Cervantes
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Soheil Yala
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Erik A Nelson
- Department of Medical Oncology; Dana-Farber Cancer Institute; Boston, MA USA
| | - Essam El-Hashani
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Rajani Kanteti
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Mohamed El Dinali
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Rifat Hasina
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Johannes Brägelmann
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Tanguy Seiwert
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | | | - Les Henderson
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Tatyana A Grushko
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Olufunmilayo Olopade
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - Theodore Karrison
- Department of Health Studies; University of Chicago; Chicago, IL USA
| | - Yung-Jue Bang
- Department of Internal Medicine; Seoul National Univeristy College of Medicine; Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology; Seoul National Univeristy College of Medicine; Seoul, Korea
| | | | - Everett Vokes
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | - David A Frank
- Department of Medical Oncology; Dana-Farber Cancer Institute; Boston, MA USA
| | - Hedy L Kindler
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| | | | - Ravi Salgia
- Department of Medicine; Section of Hematology/Oncology; University of Chicago Medical Center; University of Chicago; Chicago, IL USA
| |
Collapse
|
245
|
Fang HY, Chen SB, Guo DJ, Pan SY, Yu ZL. Proteomic identification of differentially expressed proteins in curcumin-treated MCF-7 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:697-703. [PMID: 21239154 DOI: 10.1016/j.phymed.2010.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 09/22/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
Curcumin (CM), a well-known dietary pigment derived from Curcuma longa L., possess anticancer activities against a variety of tumors including human breast carcinoma. In combination with docetaxel, CM has been used in breast cancer management in the clinic. In order to explore the possible mechanism of anticancer activity of CM, in the present study, we aimed to identify proteins involved in the anticancer activity of CM in human breast cancer cell line MCF-7 using the two-dimensional electrophoresis (2-DE)-based proteomic analysis. MCF-7 cells were cultured at 37°C in an atmosphere of 5.0% CO(2). All the following experiments were repeated three times. Cell viability assay showed that after a 48-h incubation CM dose-dependently inhibited cell growth with an IC(50) value of 47.42 μM. Treatment of CM at 47.42 μM for 48 h induced apoptosis as determined by nuclear morphologic changes of Hoechst stained cells and flow cytometric analysis of Annexin V-FITC/PI stained cells. Proteomic analysis identified 12 differentially expressed proteins which contributed to multiple functional activities such as DNA transcription, mRNA splicing and translation, amino acid synthesis, protein synthesis, folding and degradation, lipid metabolism, glycolysis, and cell motility. Among them 7 proteins were up-regulated and 5 down-regulated. The up-regulated ones were verified by quantitative real-time PCR. The down-regulated proteins, TDP-43, SF2/ASF and eIF3i, as well as up-regulated ones, 3-PGDH, ERP29, and platelet-activating factor acetylhydrolase IB subunit beta positively contribute to the anticancer activity of CM in MCF-7 cells. These molecules are implicated in the bioactivities of CM for the first time. The findings of this study would shed new insights for systematically understanding the mechanisms of CM in breast cancer intervention.
Collapse
Affiliation(s)
- H Y Fang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
246
|
Chang JG, Yang DM, Chang WH, Chow LP, Chan WL, Lin HH, Huang HD, Chang YS, Hung CH, Yang WK. Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells. PLoS One 2011; 6:e18643. [PMID: 21694768 PMCID: PMC3111415 DOI: 10.1371/journal.pone.0018643] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/11/2011] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing involves differential exon selection of a gene transcript to generate mRNA and protein isoforms with structural and functional diversity. Abnormal alternative splicing has been shown to be associated with malignant phenotypes of cancer cells, such as chemo-resistance and invasive activity. Screening small molecules and drugs for modulating RNA splicing in human hepatocellular carcinoma cell line Huh-7, we discovered that amiloride, distinct from four pH-affecting amiloride analogues, could "normalize" the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts. Our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF, and decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, and increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulates kinases and up-regulates phosphatases in the signal pathways known to affect splicing factor protein phosphorylation. These amiloride effects of "normalized" oncogenic RNA splicing and splicing factor hypo-phosphorylation were both abrogated by pre-treatment with a PP1 inhibitor. Global exon array of amiloride-treated Huh-7 cells detected splicing pattern changes involving 584 exons in 551 gene transcripts, many of which encode proteins playing key roles in ion transport, cellular matrix formation, cytoskeleton remodeling, and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. Other human solid tumor and leukemic cells, but not a few normal cells, showed similar amiloride-altered RNA splicing with devitalized consequence. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of RNA splicing for cancer therapeutics.
Collapse
Affiliation(s)
- Jan-Gowth Chang
- Department of Medical Research, University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail: (W-KY); (J-GC)
| | - Den-Mei Yang
- Cell/Gene Therapy Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Hsin Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Ling Chan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Hui-Hua Lin
- Department of Medical Research, University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Ya-Sian Chang
- Department of Medical Research, University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Hao Hung
- Cell/Gene Therapy Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Kuang Yang
- Cell/Gene Therapy Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Departments of Biochemistry and Medicine, China Medical University, Taichung, Taiwan
- * E-mail: (W-KY); (J-GC)
| |
Collapse
|
247
|
|
248
|
Golan-Gerstl R, Cohen M, Shilo A, Suh SS, Bakàcs A, Coppola L, Karni R. Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res 2011; 71:4464-72. [PMID: 21586613 DOI: 10.1158/0008-5472.can-10-4410] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The process of alternative splicing is widely misregulated in cancer, but the contribution of splicing regulators to cancer development is largely unknown. In this study, we found that the splicing factor hnRNP A2/B1 is overexpressed in glioblastomas and is correlated with poor prognosis. Conversely, patients who harbor deletions of the HNRNPA2B1 gene show better prognosis than average. Knockdown of hnRNP A2/B1 in glioblastoma cells inhibited tumor formation in mice. In contrast, overexpression of hnRNP A2/B1 in immortal cells led to malignant transformation, suggesting that HNRNPA2B1 is a putative proto-oncogene. We then identified several tumor suppressors and oncogenes that are regulated by HNRNPA2B1, among them are c-FLIP, BIN1, and WWOX, and the proto-oncogene RON. Knockdown of RON inhibited hnRNP A2/B1 mediated transformation, which implied that RON is one of the mediators of HNRNPA2B1 oncogenic activity. Together, our results indicate that HNRNPA2B1 is a novel oncogene in glioblastoma and a potential new target for glioblastoma therapy.
Collapse
Affiliation(s)
- Regina Golan-Gerstl
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
249
|
Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly. Proc Natl Acad Sci U S A 2011; 108:8233-8. [PMID: 21536904 DOI: 10.1073/pnas.1017700108] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been widely accepted that the early spliceosome assembly begins with U1 small nuclear ribonucleoprotein (U1 snRNP) binding to the 5' splice site (5'SS), which is assisted by the Ser/Arg (SR)-rich proteins in mammalian cells. In this process, the RS domain of SR proteins is thought to directly interact with the RS motif of U1-70K, which is subject to regulation by RS domain phosphorylation. Here we report that the early spliceosome assembly event is mediated by the RNA recognition domains (RRM) of serine/arginine-rich splicing factor 1 (SRSF1), which bridges the RRM of U1-70K to pre-mRNA by using the surface opposite to the RNA binding site. Specific mutation in the RRM of SRSF1 that disrupted the RRM-RRM interaction also inhibits the formation of spliceosomal E complex and splicing. We further demonstrate that the hypo-phosphorylated RS domain of SRSF1 interacts with its own RRM, thus competing with U1-70K binding, whereas the hyper-phosphorylated RS domain permits the formation of a ternary complex containing ESE, an SR protein, and U1 snRNP. Therefore, phosphorylation of the RS domain in SRSF1 appears to induce a key molecular switch from intra- to intermolecular interactions, suggesting a plausible mechanism for the documented requirement for the phosphorylation/dephosphorylation cycle during pre-mRNA splicing.
Collapse
|
250
|
David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 2011; 24:2343-64. [PMID: 21041405 DOI: 10.1101/gad.1973010] [Citation(s) in RCA: 639] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alternative splicing of mRNA precursors is a nearly ubiquitous and extremely flexible point of gene control in humans. It provides cells with the opportunity to create protein isoforms of differing, even opposing, functions from a single gene. Cancer cells often take advantage of this flexibility to produce proteins that promote growth and survival. Many of the isoforms produced in this manner are developmentally regulated and are preferentially re-expressed in tumors. Emerging insights into this process indicate that pathways that are frequently deregulated in cancer often play important roles in promoting aberrant splicing, which in turn contributes to all aspects of tumor biology.
Collapse
Affiliation(s)
- Charles J David
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|