201
|
Weiser NE, Yang DX, Feng S, Kalinava N, Brown KC, Khanikar J, Freeberg MA, Snyder MJ, Csankovszki G, Chan RC, Gu SG, Montgomery TA, Jacobsen SE, Kim JK. MORC-1 Integrates Nuclear RNAi and Transgenerational Chromatin Architecture to Promote Germline Immortality. Dev Cell 2017; 41:408-423.e7. [PMID: 28535375 DOI: 10.1016/j.devcel.2017.04.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/05/2017] [Accepted: 04/25/2017] [Indexed: 12/12/2022]
Abstract
Germline-expressed endogenous small interfering RNAs (endo-siRNAs) transmit multigenerational epigenetic information to ensure fertility in subsequent generations. In Caenorhabditis elegans, nuclear RNAi ensures robust inheritance of endo-siRNAs and deposition of repressive H3K9me3 marks at target loci. How target silencing is maintained in subsequent generations is poorly understood. We discovered that morc-1 is essential for transgenerational fertility and acts as an effector of endo-siRNAs. Unexpectedly, morc-1 is dispensable for siRNA inheritance but is required for target silencing and maintenance of siRNA-dependent chromatin organization. A forward genetic screen identified mutations in met-1, which encodes an H3K36 methyltransferase, as potent suppressors of morc-1(-) and nuclear RNAi mutant phenotypes. Further analysis of nuclear RNAi and morc-1(-) mutants revealed a progressive, met-1-dependent enrichment of H3K36me3, suggesting that robust fertility requires repression of MET-1 activity at nuclear RNAi targets. Without MORC-1 and nuclear RNAi, MET-1-mediated encroachment of euchromatin leads to detrimental decondensation of germline chromatin and germline mortality.
Collapse
Affiliation(s)
- Natasha E Weiser
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danny X Yang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, PO Box 957239, Los Angeles, CA 90095-7239, USA; Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Natallia Kalinava
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kristen C Brown
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jayshree Khanikar
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mallory A Freeberg
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Martha J Snyder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raymond C Chan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sam G Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, PO Box 957239, Los Angeles, CA 90095-7239, USA; Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, Los Angeles, CA 90095, USA.
| | - John K Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
202
|
Choi YS, Edwards LO, DiBello A, Jose AM. Removing bias against short sequences enables northern blotting to better complement RNA-seq for the study of small RNAs. Nucleic Acids Res 2017; 45:e87. [PMID: 28180294 PMCID: PMC5449620 DOI: 10.1093/nar/gkx091] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/02/2017] [Indexed: 12/21/2022] Open
Abstract
Changes in small non-coding RNAs such as micro RNAs (miRNAs) can serve as indicators of disease and can be measured using next-generation sequencing of RNA (RNA-seq). Here, we highlight the need for approaches that complement RNA-seq, discover that northern blotting of small RNAs is biased against short sequences and develop a protocol that removes this bias. We found that multiple small RNA-seq datasets from the worm Caenorhabditis elegans had shorter forms of miRNAs that appear to be degradation products that arose during the preparatory steps required for RNA-seq. When using northern blotting during these studies, we discovered that miRNA-length probes can have ∼1000-fold bias against detecting even synthetic sequences that are 8 nt shorter. By using shorter probes and by performing hybridization and washes at low temperatures, we greatly reduced this bias to enable nearly equivalent detection of 24 to 14 nt RNAs. Our protocol can discriminate RNAs that differ by a single nucleotide and can detect specific miRNAs present in total RNA from C. elegans and pRNAs in total RNA from bacteria. This improved northern blotting is particularly useful to analyze products of RNA processing or turnover, and functional RNAs that are shorter than typical miRNAs.
Collapse
Affiliation(s)
- Yun S Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College, Park, MD 20742, USA
| | - Lanelle O Edwards
- Department of Cell Biology and Molecular Genetics, University of Maryland, College, Park, MD 20742, USA
| | - Aubrey DiBello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College, Park, MD 20742, USA
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College, Park, MD 20742, USA
| |
Collapse
|
203
|
Minkina O, Hunter CP. Stable Heritable Germline Silencing Directs Somatic Silencing at an Endogenous Locus. Mol Cell 2017; 65:659-670.e5. [PMID: 28212751 DOI: 10.1016/j.molcel.2017.01.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/27/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
The importance of transgenerationally inherited epigenetic states to organismal fitness remains unknown as well-documented examples are often not amenable to mechanistic analysis or rely on artificial reporter loci. Here we describe an induced silenced state at an endogenous locus that persists, at 100% transmission without selection, for up to 13 generations. This unusually persistent silencing enables a detailed molecular genetic analysis of an inherited epigenetic state. We find that silencing is dependent on germline nuclear RNAi factors and post-transcriptional mechanisms. Consistent with these later observations, inheritance does not require the silenced locus, and we provide genetic evidence that small RNAs embody the inherited silencing signal. Notably, heritable germline silencing directs somatic epigenetic silencing. Somatic silencing does not require somatic nuclear RNAi but instead requires both maternal germline nuclear RNAi and chromatin-modifying activity. Coupling inherited germline silencing to somatic silencing may enable selection for physiologically important traits.
Collapse
Affiliation(s)
- Olga Minkina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Craig P Hunter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
204
|
The genetic basis of natural variation in a phoretic behavior. Nat Commun 2017; 8:273. [PMID: 28819099 PMCID: PMC5561207 DOI: 10.1038/s41467-017-00386-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/20/2017] [Indexed: 01/24/2023] Open
Abstract
Phoresy is a widespread form of commensalism that facilitates dispersal of one species through an association with a more mobile second species. Dauer larvae of the nematode Caenorhabditis elegans exhibit a phoretic behavior called nictation, which could enable interactions with animals such as isopods or snails. Here, we show that natural C. elegans isolates differ in nictation. We use quantitative behavioral assays and linkage mapping to identify a genetic locus (nict-1) that mediates the phoretic interaction with terrestrial isopods. The nict-1 locus contains a Piwi-interacting small RNA (piRNA) cluster; we observe that the Piwi Argonaute PRG-1 is involved in the regulation of nictation. Additionally, this locus underlies a trade-off between offspring production and dispersal. Variation in the nict-1 locus contributes directly to differences in association between nematodes and terrestrial isopods in a laboratory assay. In summary, the piRNA-rich nict-1 locus could define a novel mechanism underlying phoretic interactions. Nematodes use a characteristic set of movements, called nictation, to hitchhike on more mobile animals. Here, Lee et al. identify a genetic locus in the nematode Caenorhabditis elegans that underlies nictation and contributes to successful hitchhiking, but at expense of reduced offspring production.
Collapse
|
205
|
Akay A, Di Domenico T, Suen KM, Nabih A, Parada GE, Larance M, Medhi R, Berkyurek AC, Zhang X, Wedeles CJ, Rudolph KLM, Engelhardt J, Hemberg M, Ma P, Lamond AI, Claycomb JM, Miska EA. The Helicase Aquarius/EMB-4 Is Required to Overcome Intronic Barriers to Allow Nuclear RNAi Pathways to Heritably Silence Transcription. Dev Cell 2017; 42:241-255.e6. [PMID: 28787591 PMCID: PMC5554785 DOI: 10.1016/j.devcel.2017.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/14/2017] [Accepted: 07/05/2017] [Indexed: 02/02/2023]
Abstract
Small RNAs play a crucial role in genome defense against transposable elements and guide Argonaute proteins to nascent RNA transcripts to induce co-transcriptional gene silencing. However, the molecular basis of this process remains unknown. Here, we identify the conserved RNA helicase Aquarius/EMB-4 as a direct and essential link between small RNA pathways and the transcriptional machinery in Caenorhabditis elegans. Aquarius physically interacts with the germline Argonaute HRDE-1. Aquarius is required to initiate small-RNA-induced heritable gene silencing. HRDE-1 and Aquarius silence overlapping sets of genes and transposable elements. Surprisingly, removal of introns from a target gene abolishes the requirement for Aquarius, but not HRDE-1, for small RNA-dependent gene silencing. We conclude that Aquarius allows small RNA pathways to compete for access to nascent transcripts undergoing co-transcriptional splicing in order to detect and silence transposable elements. Thus, Aquarius and HRDE-1 act as gatekeepers coordinating gene expression and genome defense.
Collapse
Affiliation(s)
- Alper Akay
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Tomas Di Domenico
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Kin M Suen
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Amena Nabih
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Guillermo E Parada
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Mark Larance
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ragini Medhi
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Ahmet C Berkyurek
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Xinlian Zhang
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Christopher J Wedeles
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Konrad L M Rudolph
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Jan Engelhardt
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Haertelstraße 16-18, Leipzig 04107, Germany
| | - Martin Hemberg
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eric A Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK.
| |
Collapse
|
206
|
Tyc KM, Nabih A, Wu MZ, Wedeles CJ, Sobotka JA, Claycomb JM. The Conserved Intron Binding Protein EMB-4 Plays Differential Roles in Germline Small RNA Pathways of C. elegans. Dev Cell 2017; 42:256-270.e6. [DOI: 10.1016/j.devcel.2017.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/15/2017] [Accepted: 07/05/2017] [Indexed: 02/08/2023]
|
207
|
Wani S, Kuroyanagi H. An emerging model organism Caenorhabditis elegans for alternative pre-mRNA processing in vivo. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28703462 DOI: 10.1002/wrna.1428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022]
Abstract
A nematode Caenorhabditis elegans is an intron-rich organism and up to 25% of its pre-mRNAs are estimated to be alternatively processed. Its compact genomic organization enables construction of fluorescence splicing reporters with intact genomic sequences and visualization of alternative processing patterns of interest in the transparent living animals with single-cell resolution. Genetic analysis with the reporter worms facilitated identification of trans-acting factors and cis-acting elements, which are highly conserved in mammals. Analysis of unspliced and partially spliced pre-mRNAs in vivo raised models for alternative splicing regulation relying on specific order of intron excision. RNA-seq analysis of splicing factor mutants and CLIP-seq analysis of the factors allow global search for target genes in the whole animal. An mRNA surveillance system is not essential for its viability or fertility, allowing analysis of unproductively spliced noncoding mRNAs. These features offer C. elegans as an ideal model organism for elucidating alternative pre-mRNA processing mechanisms in vivo. Examples of isoform-specific functions of alternatively processed genes are summarized. WIREs RNA 2017, 8:e1428. doi: 10.1002/wrna.1428 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shotaro Wani
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehito Kuroyanagi
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
208
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
209
|
Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, Zhang M, Hua MM, Lu Y, Zhu Y, Li Z, Chen H, Wu LG, Li D, Fu XD, Li J, Shi HJ, Liu MF. Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis. Cell 2017; 169:1090-1104.e13. [PMID: 28552346 DOI: 10.1016/j.cell.2017.04.034] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/07/2016] [Accepted: 04/03/2017] [Indexed: 11/25/2022]
Abstract
Genetic studies have elucidated critical roles of Piwi proteins in germline development in animals, but whether Piwi is an actual disease gene in human infertility remains unknown. We report germline mutations in human Piwi (Hiwi) in patients with azoospermia that prevent its ubiquitination and degradation. By modeling such mutations in Piwi (Miwi) knockin mice, we demonstrate that the genetic defects are directly responsible for male infertility. Mechanistically, we show that MIWI binds the histone ubiquitin ligase RNF8 in a Piwi-interacting RNA (piRNA)-independent manner, and MIWI stabilization sequesters RNF8 in the cytoplasm of late spermatids. The resulting aberrant sperm show histone retention, abnormal morphology, and severely compromised activity, which can be functionally rescued via blocking RNF8-MIWI interaction in spermatids with an RNF8-N peptide. Collectively, our findings identify Piwi as a factor in human infertility and reveal its role in regulating the histone-to-protamine exchange during spermiogenesis.
Collapse
Affiliation(s)
- Lan-Tao Gou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jun-Yan Kang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Dai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Feng Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuang Zhao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Man Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Min-Min Hua
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and Development Institution, Shanghai 200032, China
| | - Yi Lu
- Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and Development Institution, Shanghai 200032, China
| | - Yong Zhu
- Department of Andrology and PFD, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zheng Li
- Department of Andrology and PFD, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Hong Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li-Gang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Dangsheng Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hui-Juan Shi
- Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and Development Institution, Shanghai 200032, China.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China; Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China.
| |
Collapse
|
210
|
McMurchy AN, Stempor P, Gaarenstroom T, Wysolmerski B, Dong Y, Aussianikava D, Appert A, Huang N, Kolasinska-Zwierz P, Sapetschnig A, Miska EA, Ahringer J. A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress. eLife 2017; 6:e21666. [PMID: 28294943 PMCID: PMC5395297 DOI: 10.7554/elife.21666] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/10/2017] [Indexed: 12/26/2022] Open
Abstract
Repetitive sequences derived from transposons make up a large fraction of eukaryotic genomes and must be silenced to protect genome integrity. Repetitive elements are often found in heterochromatin; however, the roles and interactions of heterochromatin proteins in repeat regulation are poorly understood. Here we show that a diverse set of C. elegans heterochromatin proteins act together with the piRNA and nuclear RNAi pathways to silence repetitive elements and prevent genotoxic stress in the germ line. Mutants in genes encoding HPL-2/HP1, LIN-13, LIN-61, LET-418/Mi-2, and H3K9me2 histone methyltransferase MET-2/SETDB1 also show functionally redundant sterility, increased germline apoptosis, DNA repair defects, and interactions with small RNA pathways. Remarkably, fertility of heterochromatin mutants could be partially restored by inhibiting cep-1/p53, endogenous meiotic double strand breaks, or the expression of MIRAGE1 DNA transposons. Functional redundancy among factors and pathways underlies the importance of safeguarding the genome through multiple means.
Collapse
Affiliation(s)
- Alicia N McMurchy
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Przemyslaw Stempor
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Tessa Gaarenstroom
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Brian Wysolmerski
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Yan Dong
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Darya Aussianikava
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Alex Appert
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ni Huang
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Alexandra Sapetschnig
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Eric A Miska
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
211
|
Sharma U, Rando OJ. Metabolic Inputs into the Epigenome. Cell Metab 2017; 25:544-558. [PMID: 28273477 DOI: 10.1016/j.cmet.2017.02.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/14/2016] [Accepted: 01/07/2017] [Indexed: 12/30/2022]
Abstract
A number of molecular pathways play key roles in transmitting information in addition to the genomic sequence-epigenetic information-from one generation to the next. However, so-called epigenetic marks also impact an enormous variety of physiological processes, even under circumstances that do not result in heritable consequences. Perhaps inevitably, the epigenetic regulatory machinery is highly responsive to metabolic cues, as, for example, central metabolites are the substrates for the enzymes that catalyze the deposition of covalent modifications on histones, DNA, and RNA. Interestingly, in addition to the effects that metabolites exert over biological regulation in somatic cells, over the past decade multiple studies have shown that ancestral nutrition can alter the metabolic phenotype of offspring, raising the question of how metabolism regulates the epigenome of germ cells. Here, we review the widespread links between metabolism and epigenetic modifications, both in somatic cells and in the germline.
Collapse
Affiliation(s)
- Upasna Sharma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
212
|
Germ Granules Prevent Accumulation of Somatic Transcripts in the Adult Caenorhabditis elegans Germline. Genetics 2017; 206:163-178. [PMID: 28258184 DOI: 10.1534/genetics.116.198549] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/01/2017] [Indexed: 11/18/2022] Open
Abstract
The germ cells of multicellular organisms protect their developmental potential through specialized mechanisms. A shared feature of germ cells from worms to humans is the presence of nonmembrane-bound, ribonucleoprotein organelles called germ granules. Depletion of germ granules in Caenorhabditis elegans (i.e., P granules) leads to sterility and, in some germlines, expression of the neuronal transgene unc-119::gfp and the muscle myosin MYO-3 Thus, P granules are hypothesized to maintain germ cell totipotency by preventing somatic development, although the mechanism by which P granules carry out this function is unknown. In this study, we performed transcriptome and single molecule RNA-FISH analyses of dissected P granule-depleted gonads at different developmental stages. Our results demonstrate that P granules are necessary for adult germ cells to downregulate spermatogenesis RNAs and to prevent the accumulation of numerous soma-specific RNAs. P granule-depleted gonads that express the unc-119::gfp transgene also express many other genes involved in neuronal development and concomitantly lose expression of germ cell fate markers. Finally, we show that removal of either of two critical P-granule components, PGL-1 or GLH-1, is sufficient to cause germ cells to express UNC-119::GFP and MYO-3 and to display RNA accumulation defects similar to those observed after depletion of P granules. Our data identify P granules as critical modulators of the germline transcriptome and guardians of germ cell fate.
Collapse
|
213
|
Gammon DB, Ishidate T, Li L, Gu W, Silverman N, Mello CC. The Antiviral RNA Interference Response Provides Resistance to Lethal Arbovirus Infection and Vertical Transmission in Caenorhabditis elegans. Curr Biol 2017; 27:795-806. [PMID: 28262484 DOI: 10.1016/j.cub.2017.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/18/2017] [Accepted: 02/01/2017] [Indexed: 11/18/2022]
Abstract
The recent discovery of the positive-sense single-stranded RNA (ssRNA) Orsay virus (OV) as a natural pathogen of the nematode Caenorhabditis elegans has stimulated interest in exploring virus-nematode interactions. However, OV infection is restricted to a small number of intestinal cells, even in nematodes defective in their antiviral RNA interference (RNAi) response, and is neither lethal nor vertically transmitted. Using a fluorescent reporter strain of the negative-sense ssRNA vesicular stomatitis virus (VSV), we show that microinjection of VSV particles leads to a dose-dependent, muscle tissue-tropic, lethal infection in C. elegans. Furthermore, we find nematodes deficient for components of the antiviral RNAi pathway, such as Dicer-related helicase 1 (DRH-1), to display hypersusceptibility to VSV infection as evidenced by elevated infection rates, virus replication in multiple tissue types, and earlier mortality. Strikingly, infection of oocytes and embryos could also be observed in drh-1 mutants. Our results suggest that the antiviral RNAi response not only inhibits vertical VSV transmission but also promotes transgenerational inheritance of antiviral immunity. Our study introduces a new, in vivo virus-host model system for exploring arbovirus pathogenesis and provides the first evidence for vertical pathogen transmission in C. elegans.
Collapse
Affiliation(s)
- Don B Gammon
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Takao Ishidate
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lichao Li
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | - Weifeng Gu
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | - Neal Silverman
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
214
|
Swarts DC, Szczepaniak M, Sheng G, Chandradoss SD, Zhu Y, Timmers EM, Zhang Y, Zhao H, Lou J, Wang Y, Joo C, van der Oost J. Autonomous Generation and Loading of DNA Guides by Bacterial Argonaute. Mol Cell 2017; 65:985-998.e6. [PMID: 28262506 DOI: 10.1016/j.molcel.2017.01.033] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/09/2016] [Accepted: 01/27/2017] [Indexed: 01/20/2023]
Abstract
Several prokaryotic Argonaute proteins (pAgos) utilize small DNA guides to mediate host defense by targeting invading DNA complementary to the DNA guide. It is unknown how these DNA guides are being generated and loaded onto pAgo. Here, we demonstrate that guide-free Argonaute from Thermus thermophilus (TtAgo) can degrade double-stranded DNA (dsDNA), thereby generating small dsDNA fragments that subsequently are loaded onto TtAgo. Combining single-molecule fluorescence, molecular dynamic simulations, and structural studies, we show that TtAgo loads dsDNA molecules with a preference toward a deoxyguanosine on the passenger strand at the position opposite to the 5' end of the guide strand. This explains why in vivo TtAgo is preferentially loaded with guides with a 5' end deoxycytidine. Our data demonstrate that TtAgo can independently generate and selectively load functional DNA guides.
Collapse
Affiliation(s)
- Daan C Swarts
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Malwina Szczepaniak
- Kavli Institute of NanoScience, Department of BioNanoScience, Delft University of Technology, 2628 CD Delft, the Netherlands
| | - Gang Sheng
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Stanley D Chandradoss
- Kavli Institute of NanoScience, Department of BioNanoScience, Delft University of Technology, 2628 CD Delft, the Netherlands
| | - Yifan Zhu
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Elizabeth M Timmers
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Yong Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongtu Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanli Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chirlmin Joo
- Kavli Institute of NanoScience, Department of BioNanoScience, Delft University of Technology, 2628 CD Delft, the Netherlands.
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
215
|
Wang Y, Liu H, Sun Z. Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol Rev Camb Philos Soc 2017; 92:2084-2111. [PMID: 28220606 DOI: 10.1111/brv.12322] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
Abstract
Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non-genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non-DNA sequence-based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment-induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non-coding RNAs, are also summarized. We particularly focus on evidence that parental environment-induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex-specific effects. The thought-provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome-wide level and single-cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental environment-induced epigenetic marks across generations. Considering their diverse epigenetic architectures, the conservation and prevalence of the mechanisms underlying epigenetic inheritance in non-mammals require further investigation in mammals. Interpretation of the consequences arising from epigenetic inheritance on organisms and a better understanding of the underlying mechanisms will provide insight into how gene-environment interactions shape developmental processes and physiological functions, which in turn may have wide-ranging implications for human health, and understanding biological adaptation and evolution.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Huijie Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
216
|
Zhou X, Feng X, Mao H, Li M, Xu F, Hu K, Guang S. RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nat Struct Mol Biol 2017; 24:258-269. [DOI: 10.1038/nsmb.3376] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 01/10/2017] [Indexed: 12/27/2022]
|
217
|
Rodríguez-Martínez M, Pinzón N, Ghommidh C, Beyne E, Seitz H, Cayrou C, Méchali M. The gastrula transition reorganizes replication-origin selection in Caenorhabditis elegans. Nat Struct Mol Biol 2017; 24:290-299. [PMID: 28112731 DOI: 10.1038/nsmb.3363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/13/2016] [Indexed: 01/09/2023]
Abstract
Although some features underlying replication-origin activation in metazoan cells have been determined, little is known about their regulation during metazoan development. Using the nascent-strand purification method, here we identified replication origins throughout Caenorhabditis elegans embryonic development and found that the origin repertoire is thoroughly reorganized after gastrulation onset. During the pluripotent embryonic stages (pregastrula), potential cruciform structures and open chromatin are determining factors that establish replication origins. The observed enrichment of replication origins in transcription factor-binding sites and their presence in promoters of highly transcribed genes, particularly operons, suggest that transcriptional activity contributes to replication initiation before gastrulation. After the gastrula transition, when embryonic differentiation programs are set, new origins are selected at enhancers, close to CpG-island-like sequences, and at noncoding genes. Our findings suggest that origin selection coordinates replication initiation with transcriptional programs during metazoan development.
Collapse
Affiliation(s)
| | | | - Charles Ghommidh
- Agropolymer Engineering and Emerging Technologies, University of Montpellier, Montpellier, France
| | | | - Hervé Seitz
- Institute of Human Genetics, CNRS, Montpellier, France
| | | | | |
Collapse
|
218
|
Mathew R, Pal Bhadra M, Bhadra U. Insulin/insulin-like growth factor-1 signalling (IIS) based regulation of lifespan across species. Biogerontology 2017; 18:35-53. [DOI: 10.1007/s10522-016-9670-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
|
219
|
Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nat Genet 2016; 48:1385-1395. [DOI: 10.1038/ng.3672] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
|
220
|
Fu Q, Pandey RR, Leu NA, Pillai RS, Wang PJ. Mutations in the MOV10L1 ATP Hydrolysis Motif Cause piRNA Biogenesis Failure and Male Sterility in Mice. Biol Reprod 2016; 95:103. [PMID: 27655786 PMCID: PMC5178147 DOI: 10.1095/biolreprod.116.142430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small noncoding RNAs. piRNAs protect the genome integrity of the germline by silencing active transposable elements and are essential for germ cell development. Most piRNA pathway proteins are evolutionarily conserved. MOV10L1, a testis-specific RNA helicase, binds to piRNA precursors and is a master regulator of piRNA biogenesis in mouse. Here we report that mutation of the MOV10L1 ATP hydrolysis site leads to depletion of piRNAs on Piwi proteins, de-repression of transposable elements, and conglomeration of piRNA pathway proteins into polar granules. The Mov10l1 mutant mice exhibit meiotic arrest and male sterility. Our results show that mutation of the MOV10L1 ATP hydrolysis site perturbs piRNA biogenesis.
Collapse
Affiliation(s)
- Qi Fu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Radha Raman Pandey
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Ramesh S. Pillai
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
- Correspondence: P. Jeremy Wang, Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
221
|
Tang W, Tu S, Lee HC, Weng Z, Mello CC. The RNase PARN-1 Trims piRNA 3' Ends to Promote Transcriptome Surveillance in C. elegans. Cell 2016; 164:974-84. [PMID: 26919432 DOI: 10.1016/j.cell.2016.02.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/14/2015] [Accepted: 02/03/2016] [Indexed: 02/05/2023]
Abstract
Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and are essential for fertility in diverse organisms. An interesting feature of piRNAs is that, while piRNA lengths are stereotypical within a species, they can differ widely between species. For example, piRNAs are mainly 29 and 30 nucleotides in humans, 24 to 30 nucleotides in D. melanogaster, and uniformly 21 nucleotides in C. elegans. However, how piRNA length is determined and whether length impacts function remains unknown. Here, we show that C. elegans deficient for PARN-1, a conserved RNase, accumulate untrimmed piRNAs with 3' extensions. Surprisingly, these longer piRNAs are stable and associate with the Piwi protein PRG-1 but fail to robustly recruit downstream silencing factors. Our findings identify PARN-1 as a key regulator of piRNA length in C. elegans and suggest that length is regulated to promote efficient transcriptome surveillance.
Collapse
Affiliation(s)
- Wen Tang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shikui Tu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Heng-Chi Lee
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute.
| |
Collapse
|
222
|
Frøkjær-Jensen C, Jain N, Hansen L, Davis MW, Li Y, Zhao D, Rebora K, Millet JRM, Liu X, Kim SK, Dupuy D, Jorgensen EM, Fire AZ. An Abundant Class of Non-coding DNA Can Prevent Stochastic Gene Silencing in the C. elegans Germline. Cell 2016; 166:343-357. [PMID: 27374334 PMCID: PMC4947018 DOI: 10.1016/j.cell.2016.05.072] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 03/31/2016] [Accepted: 05/18/2016] [Indexed: 11/30/2022]
Abstract
Cells benefit from silencing foreign genetic elements but must simultaneously avoid inactivating endogenous genes. Although chromatin modifications and RNAs contribute to maintenance of silenced states, the establishment of silenced regions will inevitably reflect underlying DNA sequence and/or structure. Here we demonstrate that a pervasive non-coding DNA feature in Caenorhabditis elegans, characterized by 10-basepair periodic An/Tn-clusters (PATCs), can license transgenes for germline expression within repressive chromatin domains. Transgenes containing natural or synthetic PATCs are resistant to position effect variegation and stochastic silencing in the germline. Among endogenous genes, intron length and PATC-character undergo dramatic changes as orthologs move from active to repressive chromatin over evolutionary time, indicating a dynamic character to the An/Tn periodicity. We propose that PATCs form the basis of a cellular immune system, identifying certain endogenous genes in heterochromatic contexts as privileged while foreign DNA can be suppressed with no requirement for a cellular memory of prior exposure.
Collapse
Affiliation(s)
- Christian Frøkjær-Jensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Sciences and Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nimit Jain
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Loren Hansen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - M Wayne Davis
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Yongbin Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Di Zhao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Karine Rebora
- IECB, University of Bordeaux, Laboratoire ARNA-INSERM, U869, 33600 Pessac, France
| | - Jonathan R M Millet
- IECB, University of Bordeaux, Laboratoire ARNA-INSERM, U869, 33600 Pessac, France
| | - Xiao Liu
- Department of Developmental Biology, Stanford University Medical Center, Stanford, CA 94305, USA; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Stuart K Kim
- Department of Developmental Biology, Stanford University Medical Center, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Denis Dupuy
- IECB, University of Bordeaux, Laboratoire ARNA-INSERM, U869, 33600 Pessac, France
| | - Erik M Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | - Andrew Z Fire
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
223
|
Li R, Ren X, Bi Y, Ho VWS, Hsieh CL, Young A, Zhang Z, Lin T, Zhao Y, Miao L, Sarkies P, Zhao Z. Specific down-regulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression. Genome Res 2016; 26:1219-32. [PMID: 27197225 PMCID: PMC5052035 DOI: 10.1101/gr.204479.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022]
Abstract
Hybrid incompatibility (HI) prevents gene flow between species, thus lying at the heart of speciation genetics. One of the most common HIs is male sterility. Two superficially contradictory observations exist for hybrid male sterility. First, an introgression on the X Chromosome is more likely to produce male sterility than on autosome (so-called large-X theory); second, spermatogenesis genes are enriched on the autosomes but depleted on the X Chromosome (demasculinization of X Chromosome). Analysis of gene expression in Drosophila hybrids suggests a genetic interaction between the X Chromosome and autosomes that is essential for male fertility. However, the prevalence of such an interaction and its underlying mechanism remain largely unknown. Here we examine the interaction in nematode species by contrasting the expression of both coding genes and transposable elements (TEs) between hybrid sterile males and its parental nematode males. We use two lines of hybrid sterile males, each carrying an independent introgression fragment from Caenorhabditis briggsae X Chromosome in an otherwise Caenorhabditis nigoni background, which demonstrate similar defects in spermatogenesis. We observe a similar pattern of down-regulated genes that are specific for spermatogenesis between the two hybrids. Importantly, the down-regulated genes caused by the X Chromosome introgressions show a significant enrichment on the autosomes, supporting an epistatic interaction between the X Chromosome and autosomes. We investigate the underlying mechanism of the interaction by measuring small RNAs and find that a subset of 22G RNAs specifically targeting the down-regulated spermatogenesis genes is significantly up-regulated in hybrids, suggesting that perturbation of small RNA-mediated regulation may contribute to the X-autosome interaction.
Collapse
Affiliation(s)
- Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Bi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | - Amanda Young
- Illumina Incorporated, San Diego, California 92122, USA
| | - Zhihong Zhang
- Illumina Incorporated, San Diego, California 92122, USA
| | - Tingting Lin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanmei Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Miao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peter Sarkies
- MRC Clinical Sciences Centre, London W12 0NN, United Kingdom; Institute of Clinical Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
224
|
Gerson-Gurwitz A, Wang S, Sathe S, Green R, Yeo GW, Oegema K, Desai A. A Small RNA-Catalytic Argonaute Pathway Tunes Germline Transcript Levels to Ensure Embryonic Divisions. Cell 2016; 165:396-409. [PMID: 27020753 DOI: 10.1016/j.cell.2016.02.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/20/2016] [Accepted: 02/18/2016] [Indexed: 12/11/2022]
Abstract
Multiple division cycles without growth are a characteristic feature of early embryogenesis. The female germline loads proteins and RNAs into oocytes to support these divisions, which lack many quality control mechanisms operating in somatic cells undergoing growth. Here, we describe a small RNA-Argonaute pathway that ensures early embryonic divisions in C. elegans by employing catalytic slicing activity to broadly tune, instead of silence, germline gene expression. Misregulation of one target, a kinesin-13 microtubule depolymerase, underlies a major phenotype associated with pathway loss. Tuning of target transcript levels is guided by the density of homologous small RNAs, whose generation must ultimately be related to target sequence. Thus, the tuning action of a small RNA-catalytic Argonaute pathway generates oocytes capable of supporting embryogenesis. We speculate that the specialized nature of germline chromatin led to the emergence of small RNA-catalytic Argonaute pathways in the female germline as a post-transcriptional control layer to optimize oocyte composition.
Collapse
Affiliation(s)
- Adina Gerson-Gurwitz
- Ludwig Institute for Cancer Research, San Diego, CA 92093, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Shaohe Wang
- Ludwig Institute for Cancer Research, San Diego, CA 92093, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Shashank Sathe
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; UCSD Stem Cell Program & Sanford Consortium for Regenerative Medicine, Institute for Genomic Medicine, La Jolla, CA 92093, USA
| | - Rebecca Green
- Ludwig Institute for Cancer Research, San Diego, CA 92093, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA; UCSD Stem Cell Program & Sanford Consortium for Regenerative Medicine, Institute for Genomic Medicine, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, San Diego, CA 92093, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, San Diego, CA 92093, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
225
|
Xu L, Chang G, Ma T, Wang H, Chen J, Li Z, Guo X, Wan F, Ren L, Lu W, Chen G. Piwil1 mediates meiosis during spermatogenesis in chicken. Anim Reprod Sci 2016; 166:99-108. [DOI: 10.1016/j.anireprosci.2016.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
226
|
A One Precursor One siRNA Model for Pol IV-Dependent siRNA Biogenesis. Cell 2016; 163:445-55. [PMID: 26451488 DOI: 10.1016/j.cell.2015.09.032] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/14/2015] [Accepted: 09/11/2015] [Indexed: 01/07/2023]
Abstract
RNA-directed DNA methylation in Arabidopsis thaliana is driven by the plant-specific RNA Polymerase IV (Pol IV). It has been assumed that a Pol IV transcript can give rise to multiple 24-nt small interfering RNAs (siRNAs) that target DNA methylation. Here, we demonstrate that Pol IV-dependent RNAs (P4RNAs) from wild-type Arabidopsis are surprisingly short in length (30 to 40 nt) and mirror 24-nt siRNAs in distribution, abundance, strand bias, and 5'-adenine preference. P4RNAs exhibit transcription start sites similar to Pol II products and are featured with 5'-monophosphates and 3'-misincorporated nucleotides. The 3'-misincorporation preferentially occurs at methylated cytosines on the template DNA strand, suggesting a co-transcriptional feedback to siRNA biogenesis by DNA methylation to reinforce silencing locally. These results highlight an unusual mechanism of Pol IV transcription and suggest a "one precursor, one siRNA" model for the biogenesis of 24-nt siRNAs in Arabidopsis.
Collapse
|
227
|
Hermant C, Boivin A, Teysset L, Delmarre V, Asif-Laidin A, van den Beek M, Antoniewski C, Ronsseray S. Paramutation in Drosophila Requires Both Nuclear and Cytoplasmic Actors of the piRNA Pathway and Induces Cis-spreading of piRNA Production. Genetics 2015; 201:1381-96. [PMID: 26482790 PMCID: PMC4676525 DOI: 10.1534/genetics.115.180307] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023] Open
Abstract
Transposable element activity is repressed in the germline in animals by PIWI-interacting RNAs (piRNAs), a class of small RNAs produced by genomic loci mostly composed of TE sequences. The mechanism of induction of piRNA production by these loci is still enigmatic. We have shown that, in Drosophila melanogaster, a cluster of tandemly repeated P-lacZ-white transgenes can be activated for piRNA production by maternal inheritance of a cytoplasm containing homologous piRNAs. This activated state is stably transmitted over generations and allows trans-silencing of a homologous transgenic target in the female germline. Such an epigenetic conversion displays the functional characteristics of a paramutation, i.e., a heritable epigenetic modification of one allele by the other. We report here that piRNA production and trans-silencing capacities of the paramutated cluster depend on the function of the rhino, cutoff, and zucchini genes involved in primary piRNA biogenesis in the germline, as well as on that of the aubergine gene implicated in the ping-pong piRNA amplification step. The 21-nt RNAs, which are produced by the paramutated cluster, in addition to 23- to 28-nt piRNAs are not necessary for paramutation to occur. Production of these 21-nt RNAs requires Dicer-2 but also all the piRNA genes tested. Moreover, cytoplasmic transmission of piRNAs homologous to only a subregion of the transgenic locus can generate a strong paramutated locus that produces piRNAs along the whole length of the transgenes. Finally, we observed that maternally inherited transgenic small RNAs can also impact transgene expression in the soma. In conclusion, paramutation involves both nuclear (Rhino, Cutoff) and cytoplasmic (Aubergine, Zucchini) actors of the piRNA pathway. In addition, since it is observed between nonfully homologous loci located on different chromosomes, paramutation may play a crucial role in epigenome shaping in Drosophila natural populations.
Collapse
Affiliation(s)
- Catherine Hermant
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Antoine Boivin
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Laure Teysset
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Valérie Delmarre
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Amna Asif-Laidin
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Marius van den Beek
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Drosophila Genetics and Epigenetics," F-75005, Paris, France CNRS, FR3631, Institut de Biologie Paris-Seine, ARTbio Bioinformatics Analysis Facility, F-75005, Paris, France
| | - Christophe Antoniewski
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Drosophila Genetics and Epigenetics," F-75005, Paris, France CNRS, FR3631, Institut de Biologie Paris-Seine, ARTbio Bioinformatics Analysis Facility, F-75005, Paris, France
| | - Stéphane Ronsseray
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| |
Collapse
|
228
|
George P, Jensen S, Pogorelcnik R, Lee J, Xing Y, Brasset E, Vaury C, Sharakhov IV. Increased production of piRNAs from euchromatic clusters and genes in Anopheles gambiae compared with Drosophila melanogaster. Epigenetics Chromatin 2015; 8:50. [PMID: 26617674 PMCID: PMC4662822 DOI: 10.1186/s13072-015-0041-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Specific genomic loci, termed Piwi-interacting RNA (piRNA) clusters, manufacture piRNAs that serve as guides for the inactivation of complementary transposable elements (TEs). The piRNA pathway has been accurately detailed in Drosophila melanogaster, while it remains poorly examined in other insects. This pathway is increasingly recognized as critical for germline development and reproduction. Understanding of the piRNA functions in mosquitoes could offer an opportunity for disease vector control by the reduction of their reproductive potential. RESULTS To analyze the similarities and differences in this pathway between Drosophila and mosquito, we performed an in-depth analysis of the genomic loci producing piRNAs and their targets in the African malaria vector Anopheles gambiae. We identified 187 piRNA clusters in the An. gambiae genome and 155 piRNA clusters in the D. melanogaster genome. We demonstrate that many more piRNA clusters in the mosquito compared with the fruit fly are uni-directionally transcribed and are located outside pericentromeric heterochromatin. About 11 % of the An. gambiae piRNA population map to gene transcripts. This is a noticeable increase compared with the ~6 % of the piRNA population mapped to genes in D. melanogaster. A subset of the piRNA-enriched genes in An. gambiae has functions related to reproduction and development. At least 24 and 65 % of the mapped piRNAs correspond to genomic TE sequences in An. gambiae and D. melanogaster, respectively. DNA transposons and non-LTR retrotransposons are more abundant in An. gambiae, while LTR retrotransposons are more abundant in D. melanogaster. Yet, piRNAs predominantly target LTR retrotransposons in both species, which may point to a distinct feature of these elements compared to the other classes of TEs concerning their silencing by the piRNA pathway. CONCLUSIONS Here, we demonstrate that piRNA-producing loci have more ubiquitous distribution in the An. gambiae genome than in the genome of D. melanogaster. Also, protein-coding genes have an increased role in production of piRNAs in the germline of this mosquito. Genes involved in germline and embryonic development of An. gambiae generate a substantial portion of piRNAs, suggesting a role of the piRNA pathway in the epigenetic regulation of the reproductive processes in the African malaria vector.
Collapse
Affiliation(s)
- Phillip George
- />Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Silke Jensen
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Romain Pogorelcnik
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Jiyoung Lee
- />The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Yi Xing
- />The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Emilie Brasset
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Chantal Vaury
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Igor V. Sharakhov
- />Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
- />The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| |
Collapse
|
229
|
Gebert D, Rosenkranz D. RNA-based regulation of transposon expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:687-708. [DOI: 10.1002/wrna.1310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel Gebert
- Institute of Anthropology; Johannes Gutenberg University; Mainz Germany
| | - David Rosenkranz
- Institute of Anthropology; Johannes Gutenberg University; Mainz Germany
| |
Collapse
|
230
|
Abstract
Small RNA programmed Argonautes are sophisticated cellular effector platforms known to be involved in a diverse array of functions ranging from mRNA cleavage, translational inhibition, DNA elimination, epigenetic silencing, alternative splicing and even gene activation. First observed in human cells, small RNA-induced gene activation, also known as RNAa, involves the targeted recruitment of Argonaute proteins to specific promoter sequences followed by induction of stable epigenetic changes which promote transcription. The existence of RNAa remains contentious due to its elusive mechanism. A string of recent studies in C. elegans provides unequivocal evidence for RNAa's fundamental role in sculpting the epigenetic landscape and maintaining active transcription of endogenous genes and supports the presence of a functionally sophisticated network of small RNA-Argonaute pathways consisting of opposite yet complementary "yin and yang" regulatory elements. In this review, we summarize key findings from recent studies of endogenous RNAa in C. elegans, with an emphasis on the Argonaute protein CSR-1.
Collapse
Key Words
- Argonaute
- LCE, lin-4 complementary element
- RDRP, RNA-dependent RNA polymerase
- RISC, RNA induced silencing complex
- RNAa
- RNAa, RNA activation
- RNAe
- RNAe, RNA-induced epigenetic silencing
- RNAi, RNA interference
- TSS, transcription start site
- WAGO, worm-specific AGO
- epigenetic memory
- gene expression
- miRNAa, miRNA induced RNAa
- piRNA, Piwi-interacting RNA
Collapse
Affiliation(s)
- Dan Guo
- a Laboratory of Molecular Medicine; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College ; Beijing , China
| | | | | | | | | |
Collapse
|
231
|
Abstract
Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied 'germ plasm', inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells.
Collapse
Affiliation(s)
- Susan Strome
- Molecular, Cell &Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Dustin Updike
- Kathryn W. Davis Center for Regenerative Biology &Medicine, Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672, USA
| |
Collapse
|
232
|
Ronsseray S. Paramutation phenomena in non-vertebrate animals. Semin Cell Dev Biol 2015; 44:39-46. [PMID: 26318740 DOI: 10.1016/j.semcdb.2015.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
Abstract
Paramutation was initially described in maize and was defined as an epigenetic interaction between two alleles of a locus, through which one allele induces a heritable modification of the other allele without modifying the DNA sequence [1,2]. Thus it implies that the paramutated allele conserves its new properties on the long term over generations even in the absence of the paramutagenic allele and that it turns paramutagenic itself, without undergoing any changes in the DNA sequence. Some epigenetic interactions have been described in two non-vertebrate animal models, which appear to exhibit similar properties. Both systems are linked to trans-generational transmission of non-coding small RNAs. In Drosophila melanogaster, paramutation is correlated with transmission of PIWI-Interacting RNAs (piRNAs), a class of small non-coding RNAs that repress mobile DNA in the germline. A tandem repeated transgenic locus producing abundant ovarian piRNAs can activate piRNA production and associated homology-dependent silencing at a locus that was previously stably devoid of such capacities. The newly converted locus is then perfectly stable in absence of the inducer locus (>100 generations) and becomes fully paramutagenic. In Caenorhabditis elegans, paramutation is correlated with transmission of siRNAs, which are produced by transgenes targeted by piRNAs in the germline. Indeed, a transgenic locus, targeted by the piRNA machinery, produces siRNAs that can induce silencing of homologous transgenes, which can be further transmitted in a repressed state over generations despite the absence of the inducer transgenic locus. As in fly, the paramutated locus can become fully paramutagenic, and paramutation can be mediated by cytoplasmic inheritance without transmission of the paramutagenic locus itself. Nevertheless, in contrast to flies where the induction is only maternally inherited, both parents can transmit it in worms. In addition, a reciprocal phenomenon - (from off toward on) - appears to be also possible in worms as some activated transgenes can reactivate silent transgenes in the germline, and this modification can also be transmitted to next generations, even so it appears to be only partially stable. Thus, in a given system, opposite paramutation-like phenomena could exist, mediated by antagonist active pathways. As in plants, paramutation in flies and worms correlates with chromatin structure modification of the paramutated locus. In flies, inheritance of small RNAs from one generation to the next transmits a memory mainly targeting loci for repression whereas in worms, small RNAs can target loci either for repression or expression. Nevertheless, in the two species, paramutation can play an important role in the epigenome establishment.
Collapse
Affiliation(s)
- Stéphane Ronsseray
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR 7622, Developmental Biology, 9 quai Saint-Bernard, F-75005 Paris, France; CNRS, IBPS, UMR 7622, Developmental Biology, 9 quai Saint-Bernard, F-75005 Paris, France.
| |
Collapse
|
233
|
Abstract
Messenger ribonucleoprotein (mRNP) granules are dynamic, self-assembling structures that harbor non-translating mRNAs bound by various proteins that regulate mRNA translation, localization, and turnover. Their importance in gene expression regulation is far reaching, ranging from precise spatial-temporal control of mRNAs that drive developmental programs in oocytes and embryos, to similarly exquisite control of mRNAs in neurons that underpin synaptic plasticity, and thus, memory formation. Analysis of mRNP granules in their various contexts has revealed common themes of assembly, disassembly, and modes of mRNA regulation, yet new studies continue to reveal unexpected and important findings, such as links between aberrant mRNP granule assembly and neurodegenerative disease. Continued study of these enigmatic structures thus promises fascinating new insights into cellular function, and may also suggest novel therapeutic strategies in various disease states.
Collapse
Affiliation(s)
- J Ross Buchan
- a Department of Molecular and Cellular Biology ; University of Arizona ; Tucson , AZ USA
| |
Collapse
|
234
|
de Albuquerque BFM, Placentino M, Ketting RF. Maternal piRNAs Are Essential for Germline Development following De Novo Establishment of Endo-siRNAs in Caenorhabditis elegans. Dev Cell 2015; 34:448-56. [PMID: 26279485 DOI: 10.1016/j.devcel.2015.07.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/27/2015] [Accepted: 07/16/2015] [Indexed: 11/26/2022]
Abstract
The Piwi-piRNA pathway represents a germline-specific transposon-defense system. C. elegans Piwi, prg-1, is a non-essential gene and triggers a secondary RNAi response that depends on mutator genes, endo-siRNAs (22G-RNAs), and the 22G-RNA-binding Argonaute protein HRDE-1. Interestingly, silencing of PRG-1 targets can become PRG-1 independent. This state, known as RNAe, is heritable and depends on mutator genes and HRDE-1. We studied how the transgenerational memory of RNAe and the piRNA pathway interact. We find that maternally provided PRG-1 is required for de novo establishment of 22G-RNA populations, especially those targeting transposons. Strikingly, attempts to re-establish 22G-RNAs in absence of both PRG-1 and RNAe memory result in severe germline proliferation defects. This is accompanied by a disturbed balance between gene-activating and -repressing 22G-RNA pathways. We propose a model in which CSR-1 prevents the loading of HRDE-1 and in which both PRG-1 and HRDE-1 help to keep mutator activity focused on the proper targets.
Collapse
Affiliation(s)
- Bruno F M de Albuquerque
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; Graduate Program in Areas of Basic and Applied Biology, University of Porto, 4099-003 Porto, Portugal
| | - Maria Placentino
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - René F Ketting
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
235
|
Phillips CM, Brown KC, Montgomery BE, Ruvkun G, Montgomery TA. piRNAs and piRNA-Dependent siRNAs Protect Conserved and Essential C. elegans Genes from Misrouting into the RNAi Pathway. Dev Cell 2015; 34:457-65. [PMID: 26279487 DOI: 10.1016/j.devcel.2015.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/27/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
piRNAs silence foreign genes, such as transposons, to preserve genome integrity, but they also target endogenous mRNAs by mechanisms that are poorly understood. Caenorhabditis elegans piRNAs interact with both transposon and nontransposon mRNAs to initiate sustained silencing via the RNAi pathway. To assess the dysregulation of gene silencing caused by lack of piRNAs, we restored RNA silencing in RNAi-defective animals in the presence or absence of piRNAs. In the absence of piRNAs and a cellular memory of piRNA activity, essential and conserved genes are misrouted into the RNAi pathway to produce siRNAs that bind the nuclear Argonaute HRDE-1, resulting in dramatic defects in germ cell proliferation and function such that the animals are sterile. Inactivation of RNAi suppresses sterility, indicating that aberrant siRNAs produced in the absence of piRNAs target essential genes for silencing. Thus, by reanimating RNAi, we uncovered a role for piRNAs in protecting essential genes from RNA silencing.
Collapse
Affiliation(s)
- Carolyn M Phillips
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Kristen C Brown
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO 80523, USA
| | - Brooke E Montgomery
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
236
|
Wang Y, Mao Z, Yan J, Cheng X, Liu F, Xiao L, Dai L, Luo F, Xie B. Identification of MicroRNAs in Meloidogyne incognita Using Deep Sequencing. PLoS One 2015; 10:e0133491. [PMID: 26241472 PMCID: PMC4524723 DOI: 10.1371/journal.pone.0133491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/29/2015] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs play important regulatory roles in eukaryotic lineages. In this paper, we employed deep sequencing technology to sequence and identify microRNAs in M. incognita genome, which is one of the important plant parasitic nematodes. We identified 102 M. incognita microRNA genes, which can be grouped into 71 nonredundant miRNAs based on mature sequences. Among the 71 miRANs, 27 are known miRNAs and 44 are novel miRNAs. We identified seven miRNA clusters in M. incognita genome. Four of the seven clusters, miR-100/let-7, miR-71-1/miR-2a-1, miR-71-2/miR-2a-2 and miR-279/miR-2b are conserved in other species. We validated the expressions of 5 M. incognita microRNAs, including 3 known microRNAs (miR-71, miR-100b and let-7) and 2 novel microRNAs (NOVEL-1 and NOVEL-2), using RT-PCR. We can detect all 5 microRNAs. The expression levels of four microRNAs obtained using RT-PCR were consistent with those obtained by high-throughput sequencing except for those of let-7. We also examined how M. incognita miRNAs are conserved in four other nematodes species: C. elegans, A. suum, B. malayi and P. pacificus. We found that four microRNAs, miR-100, miR-92, miR-279 and miR-137, exist only in genomes of parasitic nematodes, but do not exist in the genomes of the free living nematode C. elegans. Our research created a unique resource for the research of plant parasitic nematodes. The candidate microRNAs could help elucidate the genomic structure, gene regulation, evolutionary processes, and developmental features of plant parasitic nematodes and nematode-plant interaction.
Collapse
Affiliation(s)
- Yunsheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, PR China
- Institute of Vegetables and Flowers, CAAS, Beijing, PR China
- * E-mail: (YW); (BX)
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, CAAS, Beijing, PR China
| | - Jin Yan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, PR China
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing, PR China
| | - Feng Liu
- Institute of Vegetables and Flowers, CAAS, Beijing, PR China
| | - Luo Xiao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, PR China
| | - Liangying Dai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, PR China
| | - Feng Luo
- School of Computing, Clemson University, Clemson, South Carolina, United States of America
| | - Bingyan Xie
- Institute of Vegetables and Flowers, CAAS, Beijing, PR China
- * E-mail: (YW); (BX)
| |
Collapse
|
237
|
A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat Commun 2015; 6:7316. [PMID: 26095918 PMCID: PMC4557300 DOI: 10.1038/ncomms8316] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are thought to silence transposon and gene expression during development. However, the roles of piRNAs in somatic tissues are largely unknown. Here we report the identification of 555 piRNAs in human lung bronchial epithelial (HBE) and non-small cell lung cancer (NSCLC) cell lines, including 295 that do not exist in databases termed as piRNA-like sncRNAs or piRNA-Ls. Distinctive piRNA/piRNA-L expression patterns are observed between HBE and NSCLC cells. piRNA-like-163 (piR-L-163), the top downregulated piRNA-L in NSCLC cells, binds directly to phosphorylated ERM proteins (p-ERM), which is dependent on the central part of UUNNUUUNNUU motif in piR-L-163 and the RRRKPDT element in ERM. The piR-L-163/p-ERM interaction is critical for p-ERM's binding capability to filamentous actin (F-actin) and ERM-binding phosphoprotein 50 (EBP50). Thus, piRNA/piRNA-L may play a regulatory role through direct interaction with proteins in physiological and pathophysiological conditions. PIWI-interacting RNAs (piRNAs) suppress transposon and gene expression during development. Here, the authors identify many piRNAs and piRNA-like small RNAs in 11 human cell lines, and show that one piRNA-like small RNA binds to phosphorylated ERM proteins to regulate cancer cell migration and invasion.
Collapse
|
238
|
Leopold LE, Heestand BN, Seong S, Shtessel L, Ahmed S. Lack of pairing during meiosis triggers multigenerational transgene silencing in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2015; 112:E2667-76. [PMID: 25941370 PMCID: PMC4443339 DOI: 10.1073/pnas.1501979112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-copy transgenes in Caenorhabditis elegans can be subjected to a potent, irreversible silencing process termed small RNA-induced epigenetic silencing (RNAe). RNAe is promoted by the Piwi Argonaute protein PRG-1 and associated Piwi-interacting RNAs (piRNAs), as well as by proteins that promote and respond to secondary small interfering RNA (siRNA) production. Here we define a related siRNA-mediated silencing process, termed "multigenerational RNAe," which can occur for transgenes that are maintained in a hemizygous state for several generations. We found that transgenes that contain either GFP or mCherry epitope tags can be silenced via multigenerational RNAe, whereas a transgene that possesses GFP and a perfect piRNA target site can be rapidly and permanently silenced via RNAe. Although previous studies have shown that PRG-1 is typically dispensable for maintenance of RNAe, we found that both initiation and maintenance of multigenerational RNAe requires PRG-1 and the secondary siRNA biogenesis protein RDE-2. Although silencing via RNAe is irreversible, we found that transgene expression can be restored when hemizygous transgenes that were silenced via multigenerational RNAe become homozygous. Furthermore, multigenerational RNAe was accelerated when meiotic pairing of the chromosome possessing the transgene was abolished. We propose that persistent lack of pairing during meiosis elicits a reversible multigenerational silencing response, which can lead to permanent transgene silencing. Multigenerational RNAe may be broadly relevant to single-copy transgenes used in experimental biology and to shaping the epigenomic landscape of diverse species, where genomic polymorphisms between homologous chromosomes commonly result in unpaired DNA during meiosis.
Collapse
Affiliation(s)
| | - Bree N Heestand
- Department of Genetics, Lineberger Comprehensive Cancer Center, and
| | | | | | - Shawn Ahmed
- Department of Genetics, Lineberger Comprehensive Cancer Center, and Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280
| |
Collapse
|
239
|
Rosenkranz D, Rudloff S, Bastuck K, Ketting RF, Zischler H. Tupaia small RNAs provide insights into function and evolution of RNAi-based transposon defense in mammals. RNA (NEW YORK, N.Y.) 2015; 21:911-22. [PMID: 25802409 PMCID: PMC4408798 DOI: 10.1261/rna.048603.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/10/2015] [Indexed: 05/25/2023]
Abstract
Argonaute proteins comprising Piwi-like and Argonaute-like proteins and their guiding small RNAs combat mobile DNA on the transcriptional and post-transcriptional level. While Piwi-like proteins and associated piRNAs are generally restricted to the germline, Argonaute-like proteins and siRNAs have been linked with transposon control in the germline as well as in the soma. Intriguingly, evolution has realized distinct Argonaute subfunctionalization patterns in different species but our knowledge about mammalian RNA interference pathways relies mainly on findings from the mouse model. However, mice differ from other mammals by absence of functional Piwil3 and expression of an oocyte-specific Dicer isoform. Thus, studies beyond the mouse model are required for a thorough understanding of function and evolution of mammalian RNA interference pathways. We high-throughput sequenced small RNAs from the male Tupaia belangeri germline, which represents a close outgroup to primates, hence phylogenetically links mice with humans. We identified transposon-derived piRNAs as well as siRNAs clearly contrasting the separation of piRNA- and siRNA-pathways into male and female germline as seen in mice. Genome-wide analysis of tree shrew transposons reveal that putative siRNAs map to transposon sites that form foldback secondary structures thus representing suitable Dicer substrates. In contrast piRNAs target transposon sites that remain accessible. With this we provide a basic mechanistic explanation how secondary structure of transposon transcripts influences piRNA- and siRNA-pathway utilization. Finally, our analyses of tree shrew piRNA clusters indicate A-Myb and the testis-expressed transcription factor RFX4 to be involved in the transcriptional regulation of mammalian piRNA clusters.
Collapse
Affiliation(s)
- David Rosenkranz
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz 55128, Germany
| | - Stefanie Rudloff
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz 55128, Germany
| | - Katharina Bastuck
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz 55128, Germany
| | - René F Ketting
- Institute of Molecular Biology, IMB. Mainz, Rheinland-Pfalz 55128, Germany
| | - Hans Zischler
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz 55128, Germany
| |
Collapse
|
240
|
Tsai HY, Chen CCG, Conte D, Moresco JJ, Chaves DA, Mitani S, Yates JR, Tsai MD, Mello CC. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi. Cell 2015; 160:407-19. [PMID: 25635455 DOI: 10.1016/j.cell.2015.01.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/21/2014] [Accepted: 12/23/2014] [Indexed: 11/29/2022]
Abstract
Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However, in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3' uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3' uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal.
Collapse
Affiliation(s)
- Hsin-Yue Tsai
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chun-Chieh G Chen
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Darryl Conte
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel A Chaves
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Shohei Mitani
- CREST, Japan Science and Technology Agency and Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
241
|
Wynant N, Santos D, Subramanyam SH, Verlinden H, Vanden Broeck J. Drosha, Dicer-1 and Argonaute-1 in the desert locust: phylogenetic analyses, transcript profiling and regulation during phase transition and feeding. JOURNAL OF INSECT PHYSIOLOGY 2015; 75:20-29. [PMID: 25746231 DOI: 10.1016/j.jinsphys.2015.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
In this article, we identify and characterise the miRNA machinery components Drosha, Dicer-1 and Argonaute-1 of the desert locust. By means of phylogenetic analyses, we reveal important insights in the evolutionary context of these components. Our data illustrate that insect Argonaute-1 proteins form a monophyletic group with ALG-1 and ALG-2 of Caenorhabditis elegans and with the four (non-Piwi) Argonaute proteins present in humans. On the other hand, humans apparently lack clear homologues of the insect Argonaute-2 proteins. In addition, we demonstrate that drosha, dicer-1 and argonaute-1 display wide transcript tissue-distribution in adult desert locusts, and that during locust phase transition and feeding of starved locusts the expression levels of the miRNA pathway are regulated at the transcript level.
Collapse
Affiliation(s)
- Niels Wynant
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Sudheendra Hebbar Subramanyam
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| |
Collapse
|
242
|
Abstract
Endogenously produced small interfering RNAs (endo-siRNAs, 18-30 nucleotides) play a key role in gene regulatory pathways, guiding Argonaute effector proteins as a part of a functional ribonucleoprotein complex called the RISC (RNA induced silencing complex) to complementarily target nucleic acid. Enabled by the advent of high throughput sequencing, there has been an explosion in the identification of endo-siRNAs in all three kingdoms of life since the discovery of the first microRNA in 1993. Concurrently, our knowledge of the variety of cellular processes in which small RNA pathways related to RNA interference (RNAi) play key regulatory roles has also expanded dramatically. Building on the strong foundation of RNAi established over the past fifteen years, this review uses a historical context to highlight exciting recent developments in endo-siRNA pathways. Specifically, my focus will be on recent insights regarding the Argonaute effectors, their endo-siRNA guides and the functional outputs of these pathways in several model systems that have been longstanding champions of small RNA research. I will also touch on newly discovered roles for bacterial Argonautes, which have been integral in deciphering Argonaute structure and demonstrate key functions of these conserved pathways in genome defense.
Collapse
Affiliation(s)
- Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, 4366 Medical Sciences Building, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
243
|
Sapetschnig A, Sarkies P, Lehrbach NJ, Miska EA. Tertiary siRNAs mediate paramutation in C. elegans. PLoS Genet 2015; 11:e1005078. [PMID: 25811365 PMCID: PMC4374809 DOI: 10.1371/journal.pgen.1005078] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/17/2015] [Indexed: 12/17/2022] Open
Abstract
In the nematode Caenorhabditis elegans, different small RNA-dependent gene silencing mechanisms act in the germline to initiate transgenerational gene silencing. Piwi-interacting RNAs (piRNAs) can initiate transposon and gene silencing by acting upstream of endogenous short interfering RNAs (siRNAs), which engage a nuclear RNA interference (RNAi) pathway to trigger transcriptional gene silencing. Once gene silencing has been established, it can be stably maintained over multiple generations without the requirement of the initial trigger and is also referred to as RNAe or paramutation. This heritable silencing depends on the integrity of the nuclear RNAi pathway. However, the exact mechanism by which silencing is maintained across generations is not understood. Here we demonstrate that silencing of piRNA targets involves the production of two distinct classes of small RNAs with different genetic requirements. The first class, secondary siRNAs, are localized close to the direct target site for piRNAs. Nuclear import of the secondary siRNAs by the Argonaute HRDE-1 leads to the production of a distinct class of small RNAs that map throughout the transcript, which we term tertiary siRNAs. Both classes of small RNAs are necessary for full repression of the target gene and can be maintained independently of the initial piRNA trigger. Consistently, we observed a form of paramutation associated with tertiary siRNAs. Once paramutated, a tertiary siRNA generating allele confers dominant silencing in the progeny regardless of its own transmission, suggesting germline-transmitted siRNAs are sufficient for multigenerational silencing. This work uncovers a multi-step siRNA amplification pathway that promotes germline integrity via epigenetic silencing of endogenous and invading genetic elements. In addition, the same pathway can be engaged in environmentally induced heritable gene silencing and could therefore promote the inheritance of acquired traits. Transgenerational epigenetic gene silencing has been shown to be important for organisms to react directly to their environment without the need to acquire genetic mutations. The inheritance of acquired traits via the gametes can prove advantageous in fast reproducing organisms. In Caenorhabditis elegans, a free-living nematode, multigenerational epigenetic inheritance can be induced by exogenous (experimentally provided) and endogenous cues that trigger small RNA-dependent gene silencing in the germline of these animals. PIWI interacting small RNAs (piRNAs) are required for the initiation of stable silencing of invading genomic elements in the germline such as transposons. Gene silencing established by piRNAs can subsequently be maintained over multiple generations without the original trigger. In C. elegans, this stable maintenance of silencing requires an additional class of small interfering RNAs (siRNAs) that must be amplified in each generation in order to maintain multigenerational silencing. Here we show that these siRNAs fall into two distinct classes, which we call secondary and tertiary siRNAs. We find that the production of tertiary siRNAs is part of a nuclear amplification pathway associated with the stable heritable silencing of an allele, a form of paramutation. This amplification pathway therefore promotes germline integrity and possibly the inheritance of acquired physiological traits.
Collapse
Affiliation(s)
- Alexandra Sapetschnig
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Peter Sarkies
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nicolas J. Lehrbach
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Eric A. Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
244
|
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small RNAs that are 24-31 nucleotides in length. They associate with PIWI proteins, which constitute a germline-specific subclade of the Argonaute family, to form effector complexes known as piRNA-induced silencing complexes, which repress transposons via transcriptional or posttranscriptional mechanisms and maintain germline genome integrity. In addition to having a role in transposon silencing, piRNAs in diverse organisms function in the regulation of cellular genes. In some cases, piRNAs have shown transgenerational inheritance to pass on the memory of "self" and "nonself," suggesting a contribution to various cellular processes over generations. Many piRNA factors have been identified; however, both the molecular mechanisms leading to the production of mature piRNAs and the effector phases of gene silencing are still enigmatic. Here, we summarize the current state of our knowledge on the biogenesis of piRNA, its biological functions, and the underlying mechanisms.
Collapse
Affiliation(s)
- Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | | | | |
Collapse
|
245
|
Chen YCA, Aravin AA. Non-Coding RNAs in Transcriptional Regulation: The review for Current Molecular Biology Reports. ACTA ACUST UNITED AC 2015; 1:10-18. [PMID: 26120554 DOI: 10.1007/s40610-015-0002-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcriptional gene silencing guided by small RNAs is a process conserved from protozoa to mammals. Small RNAs loaded into Argonaute family proteins direct repressive histone modifications or DNA cytosine methylation to homologous regions of the genome. Small RNA-mediated transcriptional silencing is required for many biological processes, including repression of transposable elements, maintaining the genome stability/integrity, and epigenetic inheritance of gene expression. Here we will summarize the current knowledge about small RNA biogenesis and mechanisms of transcriptional regulation in plants, Drosophila, C. elegans and mice. Furthermore, a rapidly growing number long non-coding RNAs (lncRNAs) have been implicated as important players in transcription regulation. We will discuss current models for long non-coding RNA-mediated gene regulation.
Collapse
Affiliation(s)
- Yung-Chia Ariel Chen
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
246
|
Ancient and novel small RNA pathways compensate for the loss of piRNAs in multiple independent nematode lineages. PLoS Biol 2015; 13:e1002061. [PMID: 25668728 PMCID: PMC4323106 DOI: 10.1371/journal.pbio.1002061] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/02/2015] [Indexed: 01/17/2023] Open
Abstract
Small RNA pathways act at the front line of defence against transposable elements across the Eukaryota. In animals, Piwi interacting small RNAs (piRNAs) are a crucial arm of this defence. However, the evolutionary relationships among piRNAs and other small RNA pathways targeting transposable elements are poorly resolved. To address this question we sequenced small RNAs from multiple, diverse nematode species, producing the first phylum-wide analysis of how small RNA pathways evolve. Surprisingly, despite their prominence in Caenorhabditis elegans and closely related nematodes, piRNAs are absent in all other nematode lineages. We found that there are at least two evolutionarily distinct mechanisms that compensate for the absence of piRNAs, both involving RNA-dependent RNA polymerases (RdRPs). Whilst one pathway is unique to nematodes, the second involves Dicer-dependent RNA-directed DNA methylation, hitherto unknown in animals, and bears striking similarity to transposon-control mechanisms in fungi and plants. Our results highlight the rapid, context-dependent evolution of small RNA pathways and suggest piRNAs in animals may have replaced an ancient eukaryotic RNA-dependent RNA polymerase pathway to control transposable elements. A survey of the nematode phylum reveals loss of the Piwi/piRNA pathway in several lineages, but RNA-dependent RNA polymerases control transposable elements in its absence. Transposable elements are segments of DNA that have the ability to copy themselves independently of the host genome and thus pose a severe threat to the integrity of the genome. Organisms have evolved mechanisms to restrict the spread of transposable elements, with small RNA molecules being one of the most important defense mechanisms. In animals, the predominant small RNA transposon-silencing mechanism is the piRNA pathway, which appears to be widely conserved. However, little is known about how small RNA pathways that target transposons evolve. In order to study this question we investigated small RNA pathways across the nematode phylum, using a well-studied model organism—the nematode Caenorhabditis elegans—as the starting point. Surprisingly we found that the piRNA pathway has been completely lost in all groups of nematodes bar those most closely related to C. elegans. This finding raises the intriguing question of how these nematodes are able to control transposable element mobilization without piRNAs. We discovered that there are other small RNA pathways that target transposable elements in these nematodes, employing RNA-dependent RNA polymerases in order to make small RNAs antisense to transposable elements. Intriguingly, the most ancient of these mechanisms, found in the most basal nematodes, is a Dicer-dependent RNA-directed DNA methylation pathway. This pathway shares strong similarity to transposon-silencing mechanisms in plants and fungi, suggesting that it might have been present in an ancient common ancestor of all eukaryotes. Our results highlight the rapid evolution of small RNA pathways and demonstrate the importance of examining molecular pathways in detail across a range of evolutionary distances.
Collapse
|
247
|
Kasper DM, Wang G, Gardner KE, Johnstone TG, Reinke V. The C. elegans SNAPc component SNPC-4 coats piRNA domains and is globally required for piRNA abundance. Dev Cell 2015; 31:145-58. [PMID: 25373775 DOI: 10.1016/j.devcel.2014.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 08/25/2014] [Accepted: 09/25/2014] [Indexed: 11/26/2022]
Abstract
The Piwi/Piwi-interacting RNA (piRNA) pathway protects the germline from the activity of foreign sequences such as transposons. Remarkably, tens of thousands of piRNAs arise from a minimal number of discrete genomic regions. The extent to which clustering of these small RNA genes contributes to their coordinated expression remains unclear. We show that C. elegans SNPC-4, the Myb-like DNA-binding subunit of the small nuclear RNA activating protein complex, binds piRNA clusters in a germline-specific manner and is required for global piRNA expression. SNPC-4 localization is mutually dependent with localization of piRNA biogenesis factor PRDE-1. SNPC-4 exhibits an atypical widely distributed binding pattern that "coats" piRNA domains. Discrete peaks within the domains occur frequently at RNA-polymerase-III-occupied transfer RNA (tRNA) genes, which have been implicated in chromatin organization. We suggest that SNPC-4 binding establishes a positive expression environment across piRNA domains, providing an explanation for the conserved clustering of individually transcribed piRNA genes.
Collapse
Affiliation(s)
- Dionna M Kasper
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Guilin Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathryn E Gardner
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Timothy G Johnstone
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
248
|
Abstract
Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
Collapse
Affiliation(s)
- Daniel Holoch
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
249
|
Ni JZ, Chen E, Gu SG. Complex coding of endogenous siRNA, transcriptional silencing and H3K9 methylation on native targets of germline nuclear RNAi in C. elegans. BMC Genomics 2014; 15:1157. [PMID: 25534009 PMCID: PMC4367959 DOI: 10.1186/1471-2164-15-1157] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/10/2014] [Indexed: 11/14/2022] Open
Abstract
Background Small RNA-guided transcriptional silencing (nuclear RNAi) is fundamental to genome integrity and epigenetic inheritance. Despite recent progress in identifying the capability and genetic requirements for nuclear RNAi in Caenorhabditis elegans, the natural targets and cellular functions of nuclear RNAi remain elusive. Methods To resolve this gap, we coordinately examined the genome-wide profiles of transcription, histone H3 lysine 9 methylation (H3K9me) and endogenous siRNAs of a germline nuclear Argonaute (hrde-1/wago-9) mutant and identified regions on which transcription activity is markedly increased and/or H3K9me level is markedly decreased relative to wild type animals. Results Our data revealed a distinct set of native targets of germline nuclear RNAi, with the H3K9me response exhibiting both overlapping and non-overlapping distribution with the transcriptional silencing response. Interestingly LTR retrotransposons, but not DNA transposons, are highly enriched in the targets of germline nuclear RNAi. The genomic distribution of the native targets is highly constrained, with >99% of the identified targets present in five autosomes but not in the sex chromosome. By contrast, HRDE-1-associated small RNAs correspond to all chromosomes. In addition, we found that the piRNA pathway is not required for germline nuclear RNAi activity on native targets. Conclusion Germline nuclear RNAi in C. elegans is required to silence retrotransposons but not DNA transposon. Transcriptional silencing and H3K9me can occur independently of each other on the native targets of nuclear RNAi in C. elegans. Our results rule out a simple model in which nuclear Argonaute protein-associated-small RNAs are sufficient to trigger germline nuclear RNAi responses. In addition, the piRNA pathway and germline nuclear RNAi are specialized to target different types of foreign genetic elements for genome surveillance in C. elegans. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1157) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Nelson Labs A125, 604 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
250
|
Schott D, Yanai I, Hunter CP. Natural RNA interference directs a heritable response to the environment. Sci Rep 2014; 4:7387. [PMID: 25552271 PMCID: PMC4894413 DOI: 10.1038/srep07387] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/20/2014] [Indexed: 11/14/2022] Open
Abstract
RNA interference can induce heritable gene silencing, but it remains unexplored whether similar mechanisms play a general role in responses to cues that occur in the wild. We show that transient, mild heat stress in the nematode Caenorhabditis elegans results in changes in messenger RNA levels that last for more than one generation. The affected transcripts are enriched for genes targeted by germline siRNAs downstream of the piRNA pathway, and worms defective for germline RNAi are defective for these heritable effects. Our results demonstrate that a specific siRNA pathway transmits information about variable environmental conditions between generations.
Collapse
Affiliation(s)
- Daniel Schott
- Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Itai Yanai
- Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Craig P Hunter
- Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|