201
|
Abstract
The machinery at the eukaryotic replication fork has seen many new structural advances using electron microscopy and crystallography. Recent structures of eukaryotic replisome components include the Mcm2-7 complex, the CMG helicase, DNA polymerases, a Ctf4 trimer hub and the first look at a core replisome of 20 different proteins containing the helicase, primase, leading polymerase and a lagging strand polymerase. The eukaryotic core replisome shows an unanticipated architecture, with one polymerase sitting above the helicase and the other below. Additionally, structures of Mcm2 bound to an H3/H4 tetramer suggest a direct role of the replisome in handling nucleosomes, which are important to DNA organization and gene regulation. This review provides a summary of some of the many recent advances in the structure of the eukaryotic replisome.
Collapse
Affiliation(s)
- Mike O'Donnell
- DNA Replication Lab, The Rockefeller University, 1230 York Avenue, New York, New York, USA; Howard Hughes Medical Institute.
| | - Huilin Li
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York, USA; Biology Department, Brookhaven National Laboratory, Upton, New York, USA.
| |
Collapse
|
202
|
Pellegrini L. Structural insights into Cdc45 function: was there a nuclease at the heart of the ancestral replisome? Biophys Chem 2016; 225:10-14. [PMID: 27919598 PMCID: PMC5484177 DOI: 10.1016/j.bpc.2016.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 01/28/2023]
Abstract
The role of Cdc45 in genomic duplication has remained unclear since its initial identification as an essential replication factor. Recent structural studies of Cdc45 and the evolutionarily-related archaeal GAN and bacterial RecJ nucleases have provided fresh insight into its function as co-activator of the MCM helicase. The CMG helicase of the last archaeal/eukaryotic ancestor might have harboured a single-stranded DNA nuclease activity, conserved in some modern archaea.
Collapse
Affiliation(s)
- Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| |
Collapse
|
203
|
Xu Y, Gristwood T, Hodgson B, Trinidad JC, Albers SV, Bell SD. Archaeal orthologs of Cdc45 and GINS form a stable complex that stimulates the helicase activity of MCM. Proc Natl Acad Sci U S A 2016; 113:13390-13395. [PMID: 27821767 PMCID: PMC5127375 DOI: 10.1073/pnas.1613825113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulated recruitment of Cdc45 and GINS is key to activating the eukaryotic MCM(2-7) replicative helicase. We demonstrate that the homohexameric archaeal MCM helicase associates with orthologs of GINS and Cdc45 in vivo and in vitro. Association of these factors with MCM robustly stimulates the MCM helicase activity. In contrast to the situation in eukaryotes, archaeal Cdc45 and GINS form an extremely stable complex before binding MCM. Further, the archaeal GINS•Cdc45 complex contains two copies of Cdc45. Our analyses give insight into the function and evolution of the conserved core of the archaeal/eukaryotic replisome.
Collapse
Affiliation(s)
- Yuli Xu
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
- Biology Department, Indiana University, Bloomington, IN 47405
| | - Tamzin Gristwood
- Sir William Dunn School of Pathology, Oxford OX13RE, United Kingdom
| | - Ben Hodgson
- Sir William Dunn School of Pathology, Oxford OX13RE, United Kingdom
| | | | - Sonja-Verena Albers
- Max Planck Institute für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Stephen D Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405;
- Biology Department, Indiana University, Bloomington, IN 47405
| |
Collapse
|
204
|
p97 Promotes a Conserved Mechanism of Helicase Unloading during DNA Cross-Link Repair. Mol Cell Biol 2016; 36:2983-2994. [PMID: 27644328 DOI: 10.1128/mcb.00434-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/16/2016] [Indexed: 01/07/2023] Open
Abstract
Interstrand cross-links (ICLs) are extremely toxic DNA lesions that create an impassable roadblock to DNA replication. When a replication fork collides with an ICL, it triggers a damage response that promotes multiple DNA processing events required to excise the cross-link from chromatin and resolve the stalled replication fork. One of the first steps in this process involves displacement of the CMG replicative helicase (comprised of Cdc45, MCM2-7, and GINS), which obstructs the underlying cross-link. Here we report that the p97/Cdc48/VCP segregase plays a critical role in ICL repair by unloading the CMG complex from chromatin. Eviction of the stalled helicase involves K48-linked polyubiquitylation of MCM7, p97-mediated extraction of CMG, and a largely degradation-independent mechanism of MCM7 deubiquitylation. Our results show that ICL repair and replication termination both utilize a similar mechanism to displace the CMG complex from chromatin. However, unlike termination, repair-mediated helicase unloading involves the tumor suppressor protein BRCA1, which acts upstream of MCM7 ubiquitylation and p97 recruitment. Together, these findings indicate that p97 plays a conserved role in dismantling the CMG helicase complex during different cellular events, but that distinct regulatory signals ultimately control when and where unloading takes place.
Collapse
|
205
|
Swuec P, Costa A. DNA replication and inter-strand crosslink repair: Symmetric activation of dimeric nanomachines? Biophys Chem 2016; 225:15-19. [PMID: 27989548 DOI: 10.1016/j.bpc.2016.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
Eukaryotic DNA replication initiation and the Fanconi anemia pathway of interstrand crosslink repair both revolve around the recruitment of a set of DNA-processing factors onto a dimeric protein complex, which functions as a loading platform (MCM and FANCI-FANCD2 respectively). Here we compare and contrast the two systems, identifying a set of unresolved mechanistic questions. How is the dimeric loading platform assembled on the DNA? How can equivalent covalent modification of both factors in a dimer be achieved? Are multicomponent DNA-interacting machines built symmetrically around their dimeric loading platform? Recent biochemical reconstitution studies are starting to shed light on these issues.
Collapse
Affiliation(s)
- Paolo Swuec
- Macromolecular Machines Laboratory, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK.
| |
Collapse
|
206
|
Chang HW, Pandey M, Kulaeva OI, Patel SS, Studitsky VM. Overcoming a nucleosomal barrier to replication. SCIENCE ADVANCES 2016; 2:e1601865. [PMID: 27847876 PMCID: PMC5106197 DOI: 10.1126/sciadv.1601865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/11/2016] [Indexed: 05/05/2023]
Abstract
Efficient overcoming and accurate maintenance of chromatin structure and associated histone marks during DNA replication are essential for normal functioning of the daughter cells. However, the molecular mechanisms of replication through chromatin are unknown. We have studied traversal of uniquely positioned mononucleosomes by T7 replisome in vitro. Nucleosomes present a strong, sequence-dependent barrier for replication, with particularly strong pausing of DNA polymerase at the +(31-40) and +(41-65) regions of the nucleosomal DNA. The exonuclease activity of T7 DNA polymerase increases the overall rate of progression of the replisome through a nucleosome, likely by resolving nonproductive complexes. The presence of nucleosome-free DNA upstream of the replication fork facilitates the progression of DNA polymerase through the nucleosome. After replication, at least 50% of the nucleosomes assume an alternative conformation, maintaining their original positions on the DNA. Our data suggest a previously unpublished mechanism for nucleosome maintenance during replication, likely involving transient formation of an intranucleosomal DNA loop.
Collapse
Affiliation(s)
- Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Manjula Pandey
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Corresponding author. (S.S.P.); (V.M.S.)
| | - Vasily M. Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Corresponding author. (S.S.P.); (V.M.S.)
| |
Collapse
|
207
|
Xu X, Wang JT, Li M, Liu Y. TIMELESS Suppresses the Accumulation of Aberrant CDC45·MCM2-7·GINS Replicative Helicase Complexes on Human Chromatin. J Biol Chem 2016; 291:22544-22558. [PMID: 27587400 PMCID: PMC5077192 DOI: 10.1074/jbc.m116.719963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/31/2016] [Indexed: 07/24/2023] Open
Abstract
The replication licensing factor CDC6 recruits the MCM2-7 replicative helicase to the replication origin, where MCM2-7 is activated to initiate DNA replication. MCM2-7 is activated by both the CDC7-Dbf4 kinase and cyclin-dependent kinase and via interactions with CDC45 and go-ichi-ni-san complex (GINS) to form the CDC45·MCM2-7·GINS (CMG) helicase complex. TIMELESS (TIM) is important for the subsequent coupling of CMG activity to DNA polymerases for efficient DNA synthesis. However, the mechanism by which TIM regulates CMG activity for proper replication fork progression remains unclear. Here we show that TIM interacts with MCM2-7 prior to the initiation of DNA replication. TIM depletion in various human cell lines results in the accumulation of aberrant CMG helicase complexes on chromatin. Importantly, the presence of these abnormal CMG helicase complexes is not restricted to cells undergoing DNA synthesis. Furthermore, even though these aberrant CMG complexes interact with the DNA polymerases on human chromatin, these complexes are not phosphorylated properly by cyclin-dependent kinase/CDC7-Dbf4 kinase and exhibit reduced DNA unwinding activity. This phenomenon coincides with a significant accumulation of the p27 and p21 replication inhibitors, reduced chromatin association of CDC6 and cyclin E, and a delay in S phase entry. Our results provide the first evidence that TIM is required for the correct chromatin association of the CMG complex to allow efficient DNA replication.
Collapse
Affiliation(s)
- Xiaohua Xu
- From the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Jiin-Tarng Wang
- From the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Min Li
- From the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| | - Yilun Liu
- From the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010-3000
| |
Collapse
|
208
|
Perez-Arnaiz P, Kaplan DL. An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation. J Mol Biol 2016; 428:4608-4625. [PMID: 27751725 DOI: 10.1016/j.jmb.2016.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/28/2016] [Accepted: 10/07/2016] [Indexed: 11/25/2022]
Abstract
Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication.
Collapse
Affiliation(s)
- Patricia Perez-Arnaiz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Daniel L Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
209
|
RNAi-Based Suppressor Screens Reveal Genetic Interactions Between the CRL2LRR-1 E3-Ligase and the DNA Replication Machinery in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2016; 6:3431-3442. [PMID: 27543292 PMCID: PMC5068962 DOI: 10.1534/g3.116.033043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cullin-RING E3-Ligases (CRLs), the largest family of E3 ubiquitin-Ligases, regulate diverse cellular processes by promoting ubiquitination of target proteins. The evolutionarily conserved Leucine Rich Repeat protein 1 (LRR-1) is a substrate-recognition subunit of a CRL2LRR-1 E3-ligase. Here we provide genetic evidence supporting a role of this E3-enzyme in the maintenance of DNA replication integrity in Caenorhabditis elegans. Through RNAi-based suppressor screens of lrr-1(0) and cul-2(or209ts) mutants, we identified two genes encoding components of the GINS complex, which is part of the Cdc45-MCM-GINS (CMG) replicative helicase, as well as CDC-7 and MUS-101, which drives the assembly of the CMG helicase during DNA replication. In addition, we identified the core components of the ATR/ATL-1 DNA replication checkpoint pathway (MUS-101, ATL-1, CLSP-1, CHK-1). These results suggest that the CRL2LRR-1 E3-ligase acts to modify or degrade factor(s) that would otherwise misregulate the replisome, eventually leading to the activation of the DNA replication checkpoint.
Collapse
|
210
|
Ranatunga NS, Forsburg SL. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4. G3 (BETHESDA, MD.) 2016; 6:3049-3063. [PMID: 27473316 PMCID: PMC5068930 DOI: 10.1534/g3.116.033571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+ Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure.
Collapse
Affiliation(s)
- Nimna S Ranatunga
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
211
|
Evans DL, Zhang H, Ham H, Pei H, Lee S, Kim J, Billadeau DD, Lou Z. MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication. Cell Cycle 2016; 15:95-105. [PMID: 26771714 DOI: 10.1080/15384101.2015.1121323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.
Collapse
Affiliation(s)
- Debra L Evans
- a Mayo Graduate School, Biochemistry and Molecular Biology (BMB) Track, Mayo Clinic , Rochester , MN , USA
| | - Haoxing Zhang
- b Division of Oncology Research , Department of Oncology, Mayo Clinic , Rochester , MN , USA.,c School of life sciences, Southwest University , Chongqing , China
| | - Hyoungjun Ham
- d Mayo Graduate School, Immunology Track, Mayo Clinic , Rochester , MN , USA
| | - Huadong Pei
- b Division of Oncology Research , Department of Oncology, Mayo Clinic , Rochester , MN , USA.,e State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing , China
| | - SeungBaek Lee
- b Division of Oncology Research , Department of Oncology, Mayo Clinic , Rochester , MN , USA
| | - JungJin Kim
- b Division of Oncology Research , Department of Oncology, Mayo Clinic , Rochester , MN , USA
| | - Daniel D Billadeau
- b Division of Oncology Research , Department of Oncology, Mayo Clinic , Rochester , MN , USA.,d Mayo Graduate School, Immunology Track, Mayo Clinic , Rochester , MN , USA
| | - Zhenkun Lou
- b Division of Oncology Research , Department of Oncology, Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
212
|
Interaction of RECQ4 and MCM10 is important for efficient DNA replication origin firing in human cells. Oncotarget 2016; 6:40464-79. [PMID: 26588054 PMCID: PMC4747346 DOI: 10.18632/oncotarget.6342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/17/2022] Open
Abstract
DNA replication is a highly coordinated process that is initiated at multiple replication origins in eukaryotes. These origins are bound by the origin recognition complex (ORC), which subsequently recruits the Mcm2-7 replicative helicase in a Cdt1/Cdc6-dependent manner. In budding yeast, two essential replication factors, Sld2 and Mcm10, are then important for the activation of replication origins. In humans, the putative Sld2 homolog, RECQ4, interacts with MCM10. Here, we have identified two mutants of human RECQ4 that are deficient in binding to MCM10. We show that these RECQ4 variants are able to complement the lethality of an avian cell RECQ4 deletion mutant, indicating that the essential function of RECQ4 in vertebrates is unlikely to require binding to MCM10. Nevertheless, we show that the RECQ4-MCM10 interaction is important for efficient replication origin firing.
Collapse
|
213
|
The excluded DNA strand is SEW important for hexameric helicase unwinding. Methods 2016; 108:79-91. [DOI: 10.1016/j.ymeth.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 02/04/2023] Open
|
214
|
Oyama T, Ishino S, Shirai T, Yamagami T, Nagata M, Ogino H, Kusunoki M, Ishino Y. Atomic structure of an archaeal GAN suggests its dual roles as an exonuclease in DNA repair and a CMG component in DNA replication. Nucleic Acids Res 2016; 44:9505-9517. [PMID: 27599844 PMCID: PMC5100581 DOI: 10.1093/nar/gkw789] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/29/2016] [Indexed: 12/29/2022] Open
Abstract
In eukaryotic DNA replication initiation, hexameric MCM (mini-chromosome maintenance) unwinds the template double-stranded DNA to form the replication fork. MCM is activated by two proteins, Cdc45 and GINS, which constitute the ‘CMG’ unwindosome complex together with the MCM core. The archaeal DNA replication system is quite similar to that of eukaryotes, but only limited knowledge about the DNA unwinding mechanism is available, from a structural point of view. Here, we describe the crystal structure of an archaeal GAN (GINS-associated nuclease) from Thermococcus kodakaraensis, the homolog of eukaryotic Cdc45, in both the free form and the complex with the C-terminal domain of the cognate Gins51 subunit (Gins51C). This first archaeal GAN structure exhibits a unique, ‘hybrid’ structure between the bacterial RecJ and the eukaryotic Cdc45. GAN possesses the conserved DHH and DHH1 domains responsible for the exonuclease activity, and an inserted CID (CMG interacting domain)-like domain structurally comparable to that in Cdc45, suggesting its dual roles as an exonuclease in DNA repair and a CMG component in DNA replication. A structural comparison of the GAN–Gins51C complex with the GINS tetramer suggests that GINS uses the mobile Gins51C as a hook to bind GAN for CMG formation.
Collapse
Affiliation(s)
- Takuji Oyama
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Tsuyoshi Shirai
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Hiromi Ogino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Masami Kusunoki
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| |
Collapse
|
215
|
Joshi K, Shah VJ, Maddika S. GINS complex protein Sld5 recruits SIK1 to activate MCM helicase during DNA replication. Cell Signal 2016; 28:1852-1862. [PMID: 27592030 DOI: 10.1016/j.cellsig.2016.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
Abstract
In eukaryotes, proper loading and activation of MCM helicase at chromosomal origins plays a central role in DNA replication. Activation of MCM helicase requires its association with CDC45-GINS complex, but the mechanism of how this complex activates MCM helicase is poorly understood. Here we identified SIK1 (salt-inducible kinase 1), an AMPK related protein kinase, as a molecular link that connects GINS complex with MCM helicase activity. We demonstrated that Sld5 a component of GINS complex interacts with SIK1 and recruits it to the sites of DNA replication at the onset of S phase. Depletion of SIK1 leads to defective DNA replication. Further, we showed that SIK1 phosphorylates MCM2 at five conserved residues at its N-terminus, which is essential for the activation of MCM helicase. Collectively, our results suggest SIK1 as a novel integral component of CMG replicative helicase during eukaryotic DNA replication.
Collapse
Affiliation(s)
- Kiranmai Joshi
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India
| | - Varun Jayeshkumar Shah
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India; Manipal University, Manipal 576104, India
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India.
| |
Collapse
|
216
|
Abstract
DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Superieure, PSL Research University, Paris, France
| |
Collapse
|
217
|
Pellegrini L, Costa A. New Insights into the Mechanism of DNA Duplication by the Eukaryotic Replisome. Trends Biochem Sci 2016; 41:859-871. [PMID: 27555051 DOI: 10.1016/j.tibs.2016.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 11/26/2022]
Abstract
The DNA replication machinery, or replisome, is a macromolecular complex that combines DNA unwinding, priming and synthesis activities. In eukaryotic cells, the helicase and polymerases are multi-subunit, highly-dynamic assemblies whose structural characterization requires an integrated approach. Recent studies have combined single-particle electron cryo-microscopy and protein crystallography to gain insights into the mechanism of DNA duplication by the eukaryotic replisome. We review current understanding of how replication fork unwinding by the CMG helicase is coupled to leading-strand synthesis by polymerase (Pol) ɛ and lagging-strand priming by Pol α/primase, and discuss emerging principles of replisome organization.
Collapse
Affiliation(s)
- Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK.
| |
Collapse
|
218
|
Blumröder R, Glunz A, Dunkelberger BS, Serway CN, Berger C, Mentzel B, de Belle JS, Raabe T. Mcm3 replicative helicase mutation impairs neuroblast proliferation and memory in Drosophila. GENES BRAIN AND BEHAVIOR 2016; 15:647-59. [PMID: 27283469 DOI: 10.1111/gbb.12304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 01/03/2023]
Abstract
In the developing Drosophila brain, a small number of neural progenitor cells (neuroblasts) generate in a co-ordinated manner a high variety of neuronal cells by integration of temporal, spatial and cell-intrinsic information. In this study, we performed the molecular and phenotypic characterization of a structural brain mutant called small mushroom bodies (smu), which was isolated in a screen for mutants with altered brain structure. Focusing on the mushroom body neuroblast lineages we show that failure of neuroblasts to generate the normal number of mushroom body neurons (Kenyon cells) is the major cause of the smu phenotype. In particular, the premature loss of mushroom body neuroblasts caused a pronounced effect on the number of late-born Kenyon cells. Neuroblasts showed no obvious defects in processes controlling asymmetric cell division, but generated less ganglion mother cells. Cloning of smu uncovered a single amino acid substitution in an evolutionarily conserved protein interaction domain of the Minichromosome maintenance 3 (Mcm3) protein. Mcm3 is part of the multimeric Cdc45/Mcm/GINS (CMG) complex, which functions as a helicase during DNA replication. We propose that at least in the case of mushroom body neuroblasts, timely replication is not only required for continuous proliferation but also for their survival. The absence of Kenyon cells in smu reduced learning and early phases of conditioned olfactory memory. Corresponding to the absence of late-born Kenyon cells projecting to α'/β' and α/β lobes, smu is profoundly defective in later phases of persistent memory.
Collapse
Affiliation(s)
- R Blumröder
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany
| | - A Glunz
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany
| | - B S Dunkelberger
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.,Present address: Las Vegas High School, Las Vegas, NV, USA
| | - C N Serway
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.,Present address: UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - C Berger
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany
| | - B Mentzel
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany.,Present address: State of Lower Saxony, Ministry of the Environment, Energy and Climate Protection, Hannover, Germany
| | - J S de Belle
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.,Present address: Dart Neuroscience LLC, San Diego, CA, USA
| | - T Raabe
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany.
| |
Collapse
|
219
|
Fenwick AL, Kliszczak M, Cooper F, Murray J, Sanchez-Pulido L, Twigg SRF, Goriely A, McGowan SJ, Miller KA, Taylor IB, Logan C, Bozdogan S, Danda S, Dixon J, Elsayed SM, Elsobky E, Gardham A, Hoffer MJV, Koopmans M, McDonald-McGinn DM, Santen GWE, Savarirayan R, de Silva D, Vanakker O, Wall SA, Wilson LC, Yuregir OO, Zackai EH, Ponting CP, Jackson AP, Wilkie AOM, Niedzwiedz W, Bicknell LS. Mutations in CDC45, Encoding an Essential Component of the Pre-initiation Complex, Cause Meier-Gorlin Syndrome and Craniosynostosis. Am J Hum Genet 2016; 99:125-38. [PMID: 27374770 PMCID: PMC5005452 DOI: 10.1016/j.ajhg.2016.05.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
DNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS. Here we report the identification of mutations in CDC45 in 15 affected individuals from 12 families with MGS and/or craniosynostosis. CDC45 encodes a component of both the pre-initiation (preIC) and CMG helicase complexes, required for initiation of DNA replication origin firing and ongoing DNA synthesis during S-phase itself, respectively, and hence is functionally distinct from previously identified MGS-associated genes. The phenotypes of affected individuals range from syndromic coronal craniosynostosis to severe growth restriction, fulfilling diagnostic criteria for Meier-Gorlin syndrome. All mutations identified were biallelic and included synonymous mutations altering splicing of physiological CDC45 transcripts, as well as amino acid substitutions expected to result in partial loss of function. Functionally, mutations reduce levels of full-length transcripts and protein in subject cells, consistent with partial loss of CDC45 function and a predicted limited rate of DNA replication and cell proliferation. Our findings therefore implicate the preIC as an additional protein complex involved in the etiology of MGS and connect the core cellular machinery of genome replication with growth, chondrogenesis, and cranial suture homeostasis.
Collapse
Affiliation(s)
- Aimee L Fenwick
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Maciej Kliszczak
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Fay Cooper
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jennie Murray
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Luis Sanchez-Pulido
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Anne Goriely
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Simon J McGowan
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Kerry A Miller
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Indira B Taylor
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Clare Logan
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sevcan Bozdogan
- Department of Medical Genetics, Mersin University, Mersin, 33343 Cukurova, Turkey
| | - Sumita Danda
- Department of Clinical Genetics, Christian Medical College and Hospital, Vellore, Tamil Nadu 632004, India
| | - Joanne Dixon
- Genetic Health Service NZ-South Island Hub, Christchurch Hospital, Christchurch, Canterbury 8140, New Zealand
| | - Solaf M Elsayed
- Children's Hospital, Ain Shams University, Cairo 11566, Egypt
| | - Ezzat Elsobky
- Children's Hospital, Ain Shams University, Cairo 11566, Egypt
| | - Alice Gardham
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Mariette J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Marije Koopmans
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Donna M McDonald-McGinn
- Clinical Genetics, The Children's Hospital of Philadelphia, 34th & Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Deepthi de Silva
- Department of Physiology, Faculty of Medicine, University of Kelaniya, Ragama, Gampaha GQ 11010, Sri Lanka
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Steven A Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Louise C Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Ozge Ozalp Yuregir
- Genetic Diagnosis Center, Adana Numune Training and Research Hospital, Cukurova, Adana, 01170, Turkey
| | - Elaine H Zackai
- Clinical Genetics, The Children's Hospital of Philadelphia, 34th & Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Chris P Ponting
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Wojciech Niedzwiedz
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Louise S Bicknell
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK; Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, Otago 9016, New Zealand.
| |
Collapse
|
220
|
Meagher M, Enemark EJ. Structure of a double hexamer of the Pyrococcus furiosus minichromosome maintenance protein N-terminal domain. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:545-51. [PMID: 27380371 DOI: 10.1107/s2053230x1600858x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/27/2016] [Indexed: 11/11/2022]
Abstract
The crystal structure of the N-terminal domain of the Pyrococcus furiosus minichromosome maintenance (MCM) protein as a double hexamer is described. The MCM complex is a ring-shaped helicase that unwinds DNA at the replication fork of eukaryotes and archaea. Prior to replication initiation, the MCM complex assembles as an inactive double hexamer at specific sites of DNA. The presented structure is highly consistent with previous MCM double-hexamer structures and shows two MCM hexamers with a head-to-head interaction mediated by the N-terminal domain. Minor differences include a diminished head-to-head interaction and a slightly reduced inter-hexamer rotation.
Collapse
Affiliation(s)
- Martin Meagher
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Eric J Enemark
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
221
|
Boskovic J, Bragado-Nilsson E, Saligram Prabhakar B, Yefimenko I, Martínez-Gago J, Muñoz S, Méndez J, Montoya G. Molecular architecture of the recombinant human MCM2-7 helicase in complex with nucleotides and DNA. Cell Cycle 2016; 15:2431-40. [PMID: 27249176 DOI: 10.1080/15384101.2016.1191712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
DNA replication is a key biological process that involves different protein complexes whose assembly is rigorously regulated in a successive order. One of these complexes is a replicative hexameric helicase, the MCM complex, which is essential for the initiation and elongation phases of replication. After the assembly of a double heterohexameric MCM2-7 complex at replication origins in G1, the 2 heterohexamers separate from each other and associate with Cdc45 and GINS proteins in a CMG complex that is capable of unwinding dsDNA during S phase. Here, we have reconstituted and characterized the purified human MCM2-7 (hMCM2-7) hexameric complex by co-expression of its 6 different subunits in insect cells. The conformational variability of the complex has been analyzed by single particle electron microscopy in the presence of different nucleotide analogs and DNA. The interaction with nucleotide stabilizes the complex while DNA introduces conformational changes in the hexamer inducing a cylindrical shape. Our studies suggest that the assembly of GINS and Cdc45 to the hMCM2-7 hexamer would favor conformational changes on the hexamer bound to ssDNA shifting the cylindrical shape of the complex into a right-handed spiral conformation as observed in the CMG complex bound to DNA.
Collapse
Affiliation(s)
- Jasminka Boskovic
- a Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group , c/Melchor Fdez. Almagro 3, Madrid , Spain
| | - Elisabeth Bragado-Nilsson
- b Protein Structure & Function Programme, Novo Nordisk Foundation Centre for Protein Research, Faculty of Heath and Medical Sciences, University of Copenhagen , Denmark
| | - Bhargrav Saligram Prabhakar
- b Protein Structure & Function Programme, Novo Nordisk Foundation Centre for Protein Research, Faculty of Heath and Medical Sciences, University of Copenhagen , Denmark
| | - Igor Yefimenko
- a Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group , c/Melchor Fdez. Almagro 3, Madrid , Spain
| | - Jaime Martínez-Gago
- a Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group , c/Melchor Fdez. Almagro 3, Madrid , Spain
| | - Sergio Muñoz
- c DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Juan Méndez
- c DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Guillermo Montoya
- b Protein Structure & Function Programme, Novo Nordisk Foundation Centre for Protein Research, Faculty of Heath and Medical Sciences, University of Copenhagen , Denmark
| |
Collapse
|
222
|
DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities. Semin Cancer Biol 2016; 37-38:16-25. [DOI: 10.1016/j.semcancer.2016.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
|
223
|
Yao N, O’Donnell M. Bacterial and Eukaryotic Replisome Machines. JSM BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 3:1013. [PMID: 28042596 PMCID: PMC5199024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellular genomic DNA is replicated by a multiprotein replisome machine. The replisome contains numerous essential factors that unwind, prime and synthesize each of the two strands of duplex DNA. The antiparallel structure of DNA, and unidirectional activity of DNA polymerases, requires the two strands of DNA to be extended in opposite directions, and this structural feature requires distinctive processes for synthesis of the two strands. Genome duplication is of central importance to all cell types, and one may expect the replisome apparatus to be conserved from bacteria to human, as is the case with RNA polymerase driven transcription and ribosome mediated translation. However, it is known that the replication factors of bacteria are not homologous to those of archaea and eukaryotes, indicating that the replication process evolved twice, independently, rather than from a common ancestor cell. Thus, the different domains of life may exhibit significant differences in their mechanistic strategy of replication. In this review, we compare and contrast the different structures and mechanistic features of the cellular replication machinery in the three domains of life.
Collapse
Affiliation(s)
| | - Mike O’Donnell
- Corresponding author. Mike O’Donnell, Howard Hughes Medical Institute and DNA Replication Laboratory, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA,
| |
Collapse
|
224
|
Simon AC, Sannino V, Costanzo V, Pellegrini L. Structure of human Cdc45 and implications for CMG helicase function. Nat Commun 2016; 7:11638. [PMID: 27189187 PMCID: PMC4873980 DOI: 10.1038/ncomms11638] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/14/2016] [Indexed: 01/05/2023] Open
Abstract
Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication. The cell cycle division protein Cdc45 is required for genome duplication in eukaryotes. Here, the authors determine the crystal structure of human Cdc45 and combine it with functional data to improve our understanding of its role in DNA replication.
Collapse
Affiliation(s)
- Aline C Simon
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Vincenzo Sannino
- DNA Metabolism Laboratory, FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
225
|
Abid Ali F, Costa A. The MCM Helicase Motor of the Eukaryotic Replisome. J Mol Biol 2016; 428:1822-32. [PMID: 26829220 DOI: 10.1016/j.jmb.2016.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
The MCM motor of the CMG helicase powers ahead of the eukaryotic replication machinery to unwind DNA, in a process that requires ATP hydrolysis. The reconstitution of DNA replication in vitro has established the succession of events that lead to replication origin activation by the MCM and recent studies have started to elucidate the structural basis of duplex DNA unwinding. Despite the exciting progress, how the MCM translocates on DNA remains a matter of debate.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, United Kingdom
| | - Alessandro Costa
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, United Kingdom.
| |
Collapse
|
226
|
Franz A, Ackermann L, Hoppe T. Ring of Change: CDC48/p97 Drives Protein Dynamics at Chromatin. Front Genet 2016; 7:73. [PMID: 27200082 PMCID: PMC4853748 DOI: 10.3389/fgene.2016.00073] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/16/2016] [Indexed: 12/31/2022] Open
Abstract
The dynamic composition of proteins associated with nuclear DNA is a fundamental property of chromosome biology. In the chromatin compartment dedicated protein complexes govern the accurate synthesis and repair of the genomic information and define the state of DNA compaction in vital cellular processes such as chromosome segregation or transcription. Unscheduled or faulty association of protein complexes with DNA has detrimental consequences on genome integrity. Consequently, the association of protein complexes with DNA is remarkably dynamic and can respond rapidly to cellular signaling events, which requires tight spatiotemporal control. In this context, the ring-like AAA+ ATPase CDC48/p97 emerges as a key regulator of protein complexes that are marked with ubiquitin or SUMO. Mechanistically, CDC48/p97 functions as a segregase facilitating the extraction of substrate proteins from the chromatin. As such, CDC48/p97 drives molecular reactions either by directed disassembly or rearrangement of chromatin-bound protein complexes. The importance of this mechanism is reflected by human pathologies linked to p97 mutations, including neurodegenerative disorders, oncogenesis, and premature aging. This review focuses on the recent insights into molecular mechanisms that determine CDC48/p97 function in the chromatin environment, which is particularly relevant for cancer and aging research.
Collapse
Affiliation(s)
- André Franz
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Institute for Genetics, University of Cologne Cologne, Germany
| | - Leena Ackermann
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Institute for Genetics, University of Cologne Cologne, Germany
| | - Thorsten Hoppe
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Institute for Genetics, University of Cologne Cologne, Germany
| |
Collapse
|
227
|
Michl J, Zimmer J, Tarsounas M. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J 2016; 35:909-23. [PMID: 27037238 PMCID: PMC4865030 DOI: 10.15252/embj.201693860] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
The Fanconi anemia (FA) pathway plays a central role in the repair of DNA interstrand crosslinks (ICLs) and regulates cellular responses to replication stress. Homologous recombination (HR), the error-free pathway for double-strand break (DSB) repair, is required during physiological cell cycle progression for the repair of replication-associated DNA damage and protection of stalled replication forks. Substantial crosstalk between the two pathways has recently been unravelled, in that key HR proteins such as the RAD51 recombinase and the tumour suppressors BRCA1 and BRCA2 also play important roles in ICL repair. Consistent with this, rare patient mutations in these HR genes cause FA pathologies and have been assigned FA complementation groups. Here, we focus on the clinical and mechanistic implications of the connection between these two cancer susceptibility syndromes and on how these two molecular pathways of DNA replication and repair interact functionally to prevent genomic instability.
Collapse
Affiliation(s)
- Johanna Michl
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| | - Jutta Zimmer
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| |
Collapse
|
228
|
Abstract
The cellular replicating machine, or "replisome," is composed of numerous different proteins. The core replication proteins in all cell types include a helicase, primase, DNA polymerases, sliding clamp, clamp loader, and single-strand binding (SSB) protein. The core eukaryotic replisome proteins evolved independently from those of bacteria and thus have distinct architectures and mechanisms of action. The core replisome proteins of the eukaryote include: an 11-subunit CMG helicase, DNA polymerase alpha-primase, leading strand DNA polymerase epsilon, lagging strand DNA polymerase delta, PCNA clamp, RFC clamp loader, and the RPA SSB protein. There are numerous other proteins that travel with eukaryotic replication forks, some of which are known to be involved in checkpoint regulation or nucleosome handling, but most have unknown functions and no bacterial analogue. Recent studies have revealed many structural and functional insights into replisome action. Also, the first structure of a replisome from any cell type has been elucidated for a eukaryote, consisting of 20 distinct proteins, with quite unexpected results. This review summarizes the current state of knowledge of the eukaryotic core replisome proteins, their structure, individual functions, and how they are organized at the replication fork as a machine.
Collapse
Affiliation(s)
- D Zhang
- The Rockefeller University, New York, NY, United States
| | - M O'Donnell
- The Rockefeller University, New York, NY, United States; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
229
|
Deegan TD, Diffley JFX. MCM: one ring to rule them all. Curr Opin Struct Biol 2016; 37:145-51. [PMID: 26866665 DOI: 10.1016/j.sbi.2016.01.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/25/2022]
Abstract
Precise replication of the eukaryotic genome is achieved primarily through strict regulation of the enzyme responsible for DNA unwinding, the replicative helicase. The motor of this helicase is a hexameric AAA+ ATPase called MCM. The loading of MCM onto DNA and its subsequent activation and disassembly are each restricted to separate cell cycle phases; this ensures that a functional replisome is only built once at any replication origin. In recent years, biochemical and structural studies have shown that distinct conformational changes in MCM, each requiring post-translational modifications and/or the activity of other replication proteins, define the various stages of the chromosome replication cycle. Here, we review recent progress in this area.
Collapse
Affiliation(s)
- Tom D Deegan
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6 3LD, United Kingdom
| | - John F X Diffley
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6 3LD, United Kingdom.
| |
Collapse
|
230
|
Marks AB, Smith OK, Aladjem MI. Replication origins: determinants or consequences of nuclear organization? Curr Opin Genet Dev 2016; 37:67-75. [PMID: 26845042 PMCID: PMC4914405 DOI: 10.1016/j.gde.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Chromosome replication, gene expression and chromatin assembly all occur on the same template, necessitating a tight spatial and temporal coordination to maintain genomic stability. The distribution of replication initiation events is responsive to local and global changes in chromatin structure and is affected by transcriptional activity. Concomitantly, replication origin sequences, which determine the locations of replication initiation events, can affect chromatin structure and modulate transcriptional efficiency. The flexibility observed in the replication initiation landscape might help achieve complete and accurate genome duplication while coordinating the DNA replication program with transcription and other nuclear processes in a cell-type specific manner. This review discusses the relationships among replication origin distribution, local and global chromatin structures and concomitant nuclear metabolic processes.
Collapse
Affiliation(s)
- Anna B Marks
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA
| | - Owen K Smith
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
231
|
Douglas ME, Diffley JFX. Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the Minichromosome Maintenance (MCM) Complex. J Biol Chem 2016; 291:5879-5888. [PMID: 26719337 PMCID: PMC4786722 DOI: 10.1074/jbc.m115.707802] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/28/2015] [Indexed: 01/11/2023] Open
Abstract
Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly ("G1-like") and high affinity recruitment when CMG assembly takes place ("S-phase-like"). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus.
Collapse
Affiliation(s)
- Max E Douglas
- From The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - John F X Diffley
- From The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Hertfordshire EN6 3LD, United Kingdom.
| |
Collapse
|
232
|
Abid Ali F, Renault L, Gannon J, Gahlon HL, Kotecha A, Zhou JC, Rueda D, Costa A. Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nat Commun 2016; 7:10708. [PMID: 26888060 PMCID: PMC4759635 DOI: 10.1038/ncomms10708] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Ludovic Renault
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
- National Institute for Biological Standards and Control, Microscopy and Imaging, Blanche Lane, South Mimms EN6 3QG, UK
| | - Julian Gannon
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Hailey L. Gahlon
- Section of Virology and Single Molecule Imaging Group, Department of Medicine, MRC Clinical Centre, Imperial College London, London W12 0NN, UK
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jin Chuan Zhou
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - David Rueda
- Section of Virology and Single Molecule Imaging Group, Department of Medicine, MRC Clinical Centre, Imperial College London, London W12 0NN, UK
| | - Alessandro Costa
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| |
Collapse
|
233
|
Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O'Donnell ME, Li H. Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol 2016; 23:217-24. [PMID: 26854665 PMCID: PMC4812828 DOI: 10.1038/nsmb.3170] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
The CMG helicase is composed of Cdc45, Mcm2-7 and GINS. Here we report the structure of the Saccharomyces cerevisiae CMG, determined by cryo-EM at a resolution of 3.7-4.8 Å. The structure reveals that GINS and Cdc45 scaffold the N tier of the helicase while enabling motion of the AAA+ C tier. CMG exists in two alternating conformations, compact and extended, thus suggesting that the helicase moves like an inchworm. The N-terminal regions of Mcm2-7, braced by Cdc45-GINS, form a rigid platform upon which the AAA+ C domains make longitudinal motions, nodding up and down like an oil-rig pumpjack attached to a stable platform. The Mcm ring is remodeled in CMG relative to the inactive Mcm2-7 double hexamer. The Mcm5 winged-helix domain is inserted into the central channel, thus blocking entry of double-stranded DNA and supporting a steric-exclusion DNA-unwinding model.
Collapse
Affiliation(s)
- Zuanning Yuan
- Department of Biochemistry &Cell Biology, Stony Brook University, Stony Brook, New York, USA.,Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Lin Bai
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Jingchuan Sun
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Roxana Georgescu
- DNA Replication Laboratory, Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory, Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Huilin Li
- Department of Biochemistry &Cell Biology, Stony Brook University, Stony Brook, New York, USA.,Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
234
|
Franz A, Pirson PA, Pilger D, Halder S, Achuthankutty D, Kashkar H, Ramadan K, Hoppe T. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression. Nat Commun 2016; 7:10612. [PMID: 26842564 PMCID: PMC4743000 DOI: 10.1038/ncomms10612] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
The coordinated activity of DNA replication factors is a highly dynamic process that involves ubiquitin-dependent regulation. In this context, the ubiquitin-directed ATPase CDC-48/p97 recently emerged as a key regulator of chromatin-associated degradation in several of the DNA metabolic pathways that assure genome integrity. However, the spatiotemporal control of distinct CDC-48/p97 substrates in the chromatin environment remained unclear. Here, we report that progression of the DNA replication fork is coordinated by UBXN-3/FAF1. UBXN-3/FAF1 binds to the licensing factor CDT-1 and additional ubiquitylated proteins, thus promoting CDC-48/p97-dependent turnover and disassembly of DNA replication factor complexes. Consequently, inactivation of UBXN-3/FAF1 stabilizes CDT-1 and CDC-45/GINS on chromatin, causing severe defects in replication fork dynamics accompanied by pronounced replication stress and eventually resulting in genome instability. Our work identifies a critical substrate selection module of CDC-48/p97 required for chromatin-associated protein degradation in both Caenorhabditis elegans and humans, which is relevant to oncogenesis and aging. Cdc48/p97 is a key component of the ubiquitin-proteasome system, acting as a ubiquitin-directed segregase to regulate multiple cellular functions. Here the authors identify UBXN-3/FAF1 as a crucial regulator of chromatin-associated protein degradation that recruits Cdc48/p97 to DNA replication forks.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Paul A Pirson
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Domenic Pilger
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.,Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Swagata Halder
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Divya Achuthankutty
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Hamid Kashkar
- Centre for Molecular Medicine Cologne and Institute for Medical Microbiology, Immunology and Hygiene at CECAD Research Center, University Hospital of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Kristijan Ramadan
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Thorsten Hoppe
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
235
|
Berti M, Vindigni A. Replication stress: getting back on track. Nat Struct Mol Biol 2016; 23:103-9. [PMID: 26840898 PMCID: PMC5125612 DOI: 10.1038/nsmb.3163] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 12/17/2015] [Indexed: 12/17/2022]
Abstract
The replication-stress response enables the DNA replication machinery to overcome DNA lesions or intrinsic replication-fork obstacles, and it is essential to ensure faithful transmission of genetic information to daughter cells. Multiple replication stress–response pathways have been identified in recent years, thus raising questions about the specific and possibly redundant functions of these pathways. Here, we review the emerging mechanisms of the replication-stress response in mammalian cells and consider how they may influence the dynamics of the core DNA replication complex.
Collapse
Affiliation(s)
- Matteo Berti
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Alessandro Vindigni
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
236
|
The role of ATP-dependent machines in regulating genome topology. Curr Opin Struct Biol 2016; 36:85-96. [PMID: 26827284 DOI: 10.1016/j.sbi.2016.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/22/2022]
Abstract
All cells must copy and express genes in accord with internal and external cues. The proper timing and response of such events relies on the active control of higher-order genomic organization. Cells use ATP-dependent molecular machines to alter the local and global topology of DNA so as to promote and counteract the persistent effects of transcription and replication. X-ray crystallography and electron microscopy, coupled with biochemical and single molecule methods are continuing to provide a wealth of mechanistic information on how DNA remodeling factors are employed to dynamically shape and organize the genome.
Collapse
|
237
|
Walter D, Hoffmann S, Komseli ES, Rappsilber J, Gorgoulis V, Sørensen CS. SCF(Cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun 2016; 7:10530. [PMID: 26818844 PMCID: PMC4738361 DOI: 10.1038/ncomms10530] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
Maintenance of genome stability requires that DNA is replicated precisely once per cell cycle. This is believed to be achieved by limiting replication origin licensing and thereby restricting the firing of each replication origin to once per cell cycle. CDC6 is essential for eukaryotic replication origin licensing, however, it is poorly understood how CDC6 activity is constrained in higher eukaryotes. Here we report that the SCFCyclin F ubiquitin ligase complex prevents DNA re-replication by targeting CDC6 for proteasomal degradation late in the cell cycle. We show that CDC6 and Cyclin F interact through defined sequence motifs that promote CDC6 ubiquitylation and degradation. Absence of Cyclin F or expression of a stable mutant of CDC6 promotes re-replication and genome instability in cells lacking the CDT1 inhibitor Geminin. Together, our work reveals a novel SCFCyclin F-mediated mechanism required for precise once per cell cycle replication. To ensure genome stability, cells need to restrict DNA replication to once per cell cycle. Here the authors show that Cyclin F interacts with and targets the licensing factor CDC6 for degradation, preventing re-firing of replication origins.
Collapse
Affiliation(s)
- David Walter
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N 2200, Denmark
| | - Saskia Hoffmann
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N 2200, Denmark
| | - Eirini-Stavroula Komseli
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens GR-11527, Greece
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland.,Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Vassilis Gorgoulis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens GR-11527, Greece.,Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N 2200, Denmark
| |
Collapse
|
238
|
Abstract
Hexameric helicases control both the initiation and the elongation phase of DNA replication. The toroidal structure of these enzymes provides an inherent challenge in the opening and loading onto DNA at origins, as well as the conformational changes required to exclude one strand from the central channel and activate DNA unwinding. Recently, high-resolution structures have not only revealed the architecture of various hexameric helicases but also detailed the interactions of DNA within the central channel, as well as conformational changes that occur during loading. This structural information coupled with advanced biochemical reconstitutions and biophysical methods have transformed our understanding of the dynamics of both the helicase structure and the DNA interactions required for efficient unwinding at the replisome.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| |
Collapse
|
239
|
Brüning JG, Myka KK, McGlynn P. Overexpression of the Replicative Helicase in Escherichia coli Inhibits Replication Initiation and Replication Fork Reloading. J Mol Biol 2016; 428:1068-1079. [PMID: 26812209 PMCID: PMC4828956 DOI: 10.1016/j.jmb.2016.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 01/05/2023]
Abstract
Replicative helicases play central roles in chromosome duplication and their assembly onto DNA is regulated via initiators and helicase loader proteins. The Escherichia coli replicative helicase DnaB and the helicase loader DnaC form a DnaB6–DnaC6 complex that is required for loading DnaB onto single-stranded DNA. Overexpression of dnaC inhibits replication by promoting continual rebinding of DnaC to DnaB and consequent prevention of helicase translocation. Here we show that overexpression of dnaB also inhibits growth and chromosome duplication. This inhibition is countered by co-overexpression of wild-type DnaC but not of a DnaC mutant that cannot interact with DnaB, indicating that a reduction in DnaB6–DnaC6 concentration is responsible for the phenotypes associated with elevated DnaB concentration. Partial defects in the oriC-specific initiator DnaA and in PriA-specific initiation away from oriC during replication repair sensitise cells to dnaB overexpression. Absence of the accessory replicative helicase Rep, resulting in increased replication blockage and thus increased reinitiation away from oriC, also exacerbates DnaB-induced defects. These findings indicate that elevated levels of helicase perturb replication initiation not only at origins of replication but also during fork repair at other sites on the chromosome. Thus, imbalances in levels of the replicative helicase and helicase loader can inhibit replication both via inhibition of DnaB6–DnaC6 complex formation with excess DnaB, as shown here, and promotion of formation of DnaB6–DnaC6 complexes with excess DnaC [Allen GC, Jr., Kornberg A. Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. J. Biol. Chem. 1991;266:22096–22101; Skarstad K, Wold S. The speed of the Escherichia coli fork in vivo depends on the DnaB:DnaC ratio. Mol. Microbiol. 1995;17:825–831]. Thus, there are two mechanisms by which an imbalance in the replicative helicase and its associated loader protein can inhibit genome duplication. Loading of the replicative helicase is the key step in replisome assembly. Increasing replicative helicase concentration in E. coli inhibits growth. Inhibition is due to helicase complexes depleted of the helicase loader protein. Depletion inhibits replication initiation and reinitiation during replication repair. Imbalances in replicative helicase components can prevent replication initiation.
Collapse
Affiliation(s)
- Jan-Gert Brüning
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Kamila Katarzyna Myka
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom.
| |
Collapse
|
240
|
Gillespie PJ, Neusiedler J, Creavin K, Chadha GS, Blow JJ. Cell Cycle Synchronization in Xenopus Egg Extracts. Methods Mol Biol 2016; 1342:101-47. [PMID: 26254920 DOI: 10.1007/978-1-4939-2957-3_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many important discoveries in cell cycle research have been made using cell-free extracts prepared from the eggs of the South African clawed frog Xenopus laevis. These extracts efficiently support the key nuclear functions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. Here, we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei. We detail how these extracts can be used to study the key transitions of the eukaryotic cell cycle and describe conditions under which these transitions can be manipulated by addition of drugs that either retard or advance passage. In addition, we describe in detail essential techniques that provide a practical starting point for investigating the function of proteins involved in the operation of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Peter J Gillespie
- Centre for Gene Regulation & Expression, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | |
Collapse
|
241
|
Hutchins JRA, Aze A, Coulombe P, Méchali M. Characteristics of Metazoan DNA Replication Origins. DNA REPLICATION, RECOMBINATION, AND REPAIR 2016. [PMCID: PMC7120227 DOI: 10.1007/978-4-431-55873-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
242
|
Sanuki Y, Kubota Y, Kanemaki MT, Takahashi TS, Mimura S, Takisawa H. RecQ4 promotes the conversion of the pre-initiation complex at a site-specific origin for DNA unwinding in Xenopus egg extracts. Cell Cycle 2015; 14:1010-23. [PMID: 25602506 DOI: 10.1080/15384101.2015.1007003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Eukaryotic DNA replication is initiated through stepwise assembly of evolutionarily conserved replication proteins onto replication origins, but how the origin DNA is unwound during the assembly process remains elusive. Here, we established a site-specific origin on a plasmid DNA, using in vitro replication systems derived from Xenopus egg extracts. We found that the pre-replicative complex (pre-RC) was preferentially assembled in the vicinity of GAL4 DNA-binding sites of the plasmid, depending on the binding of Cdc6 fused with a GAL4 DNA-binding domain in Cdc6-depleted extracts. Subsequent addition of nucleoplasmic S-phase extracts to the GAL4-dependent pre-RC promoted initiation of DNA replication from the origin, and components of the pre-initiation complex (pre-IC) and the replisome were recruited to the origin concomitant with origin unwinding. In this replication system, RecQ4 is dispensable for both recruitment of Cdc45 onto the origin and stable binding of Cdc45 and GINS to the pre-RC assembled plasmid. However, both origin binding of DNA polymerase α and unwinding of DNA were diminished upon depletion of RecQ4 from the extracts. These results suggest that RecQ4 plays an important role in the conversion of pre-ICs into active replisomes requiring the unwinding of origin DNA in vertebrates.
Collapse
Affiliation(s)
- Yosuke Sanuki
- a Department of Biological Sciences; Graduate School of Science ; Osaka University ; Toyonaka , Osaka , Japan
| | | | | | | | | | | |
Collapse
|
243
|
Bruck I, Perez-Arnaiz P, Colbert MK, Kaplan DL. Insights into the Initiation of Eukaryotic DNA Replication. Nucleus 2015; 6:449-54. [PMID: 26710261 DOI: 10.1080/19491034.2015.1115938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.
Collapse
Affiliation(s)
- Irina Bruck
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Patricia Perez-Arnaiz
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Max K Colbert
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Daniel L Kaplan
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| |
Collapse
|
244
|
Voss M, Bryceson YT. Natural killer cell biology illuminated by primary immunodeficiency syndromes in humans. Clin Immunol 2015; 177:29-42. [PMID: 26592356 DOI: 10.1016/j.clim.2015.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/22/2015] [Accepted: 11/14/2015] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells are innate immune cytotoxic effector cells well known for their role in antiviral immunity and tumor immunosurveillance. In parts, this knowledge stems from rare inherited immunodeficiency disorders in humans that abrogate NK cell function leading to immune impairments, most notably associated with a high susceptibility to viral infections. Phenotypically, these disorders range from deficiencies selectively affecting NK cells to complex general immune defects that affect NK cells but also other immune cell subsets. Moreover, deficiencies may be associated with reduced NK cell numbers or rather impair specific NK cell effector functions. In recent years, genetic defects underlying the various NK cell deficiencies have been uncovered and have triggered investigative efforts to decipher the molecular mechanisms underlying these disorders. Here we review the associations between inherited human diseases and NK cell development as well as function, with a particular focus on defects in NK cell exocytosis and cytotoxicity. Furthermore we outline how reports of diverse genetic defects have shaped our understanding of NK cell biology.
Collapse
Affiliation(s)
- Matthias Voss
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Broegelmann Research Laboratory, Institute of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
245
|
Perez-Arnaiz P, Bruck I, Kaplan DL. Mcm10 coordinates the timely assembly and activation of the replication fork helicase. Nucleic Acids Res 2015; 44:315-29. [PMID: 26582917 PMCID: PMC4705653 DOI: 10.1093/nar/gkv1260] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/02/2015] [Indexed: 11/12/2022] Open
Abstract
Mcm10 is an essential replication factor that is required for DNA replication in eukaryotes. Two key steps in the initiation of DNA replication are the assembly and activation of Cdc45–Mcm2–7-GINS (CMG) replicative helicase. However, it is not known what coordinates helicase assembly with helicase activation. We show in this manuscript, using purified proteins from budding yeast, that Mcm10 directly interacts with the Mcm2–7 complex and Cdc45. In fact, Mcm10 recruits Cdc45 to Mcm2–7 complex in vitro. To study the role of Mcm10 in more detail in vivo we used an auxin inducible degron in which Mcm10 is degraded upon addition of auxin. We show in this manuscript that Mcm10 is required for the timely recruitment of Cdc45 and GINS recruitment to the Mcm2–7 complex in vivo during early S phase. We also found that Mcm10 stimulates Mcm2 phosphorylation by DDK in vivo and in vitro. These findings indicate that Mcm10 plays a critical role in coupling replicative helicase assembly with helicase activation. Mcm10 is first involved in the recruitment of Cdc45 to the Mcm2–7 complex. After Cdc45–Mcm2–7 complex assembly, Mcm10 promotes origin melting by stimulating DDK phosphorylation of Mcm2, which thereby leads to GINS attachment to Mcm2–7.
Collapse
Affiliation(s)
- Patricia Perez-Arnaiz
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Irina Bruck
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Daniel L Kaplan
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| |
Collapse
|
246
|
Eisenhardt N, Chaugule VK, Koidl S, Droescher M, Dogan E, Rettich J, Sutinen P, Imanishi SY, Hofmann K, Palvimo JJ, Pichler A. A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly. Nat Struct Mol Biol 2015; 22:959-67. [PMID: 26524493 DOI: 10.1038/nsmb.3114] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/22/2015] [Indexed: 12/25/2022]
Abstract
SUMO chains act as stress-induced degradation tags or repair factor-recruiting signals at DNA lesions. Although E1 activating, E2 conjugating and E3 ligating enzymes efficiently assemble SUMO chains, specific chain-elongation mechanisms are unknown. E4 elongases are specialized E3 ligases that extend a chain but are inefficient in the initial conjugation of the modifier. We identified ZNF451, a representative member of a new class of SUMO2 and SUMO3 (SUMO2/3)-specific enzymes that execute catalysis via a tandem SUMO-interaction motif (SIM) region. One SIM positions the donor SUMO while a second SIM binds SUMO on the back side of the E2 enzyme. This tandem-SIM region is sufficient to extend a back side-anchored SUMO chain (E4 elongase activity), whereas efficient chain initiation also requires a zinc-finger region to recruit the initial acceptor SUMO (E3 ligase activity). Finally, we describe four human proteins sharing E4 elongase activities and their function in stress-induced SUMO2/3 conjugation.
Collapse
Affiliation(s)
- Nathalie Eisenhardt
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Viduth K Chaugule
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Stefanie Koidl
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Esen Dogan
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jan Rettich
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Päivi Sutinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
247
|
Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT, Li H, O'Donnell ME. The architecture of a eukaryotic replisome. Nat Struct Mol Biol 2015; 22:976-82. [PMID: 26524492 DOI: 10.1038/nsmb.3113] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/21/2015] [Indexed: 12/14/2022]
Abstract
At the eukaryotic DNA replication fork, it is widely believed that the Cdc45-Mcm2-7-GINS (CMG) helicase is positioned in front to unwind DNA and that DNA polymerases trail behind the helicase. Here we used single-particle EM to directly image a Saccharomyces cerevisiae replisome. Contrary to expectations, the leading strand Pol ɛ is positioned ahead of CMG helicase, whereas Ctf4 and the lagging-strand polymerase (Pol) α-primase are behind the helicase. This unexpected architecture indicates that the leading-strand DNA travels a long distance before reaching Pol ɛ, first threading through the Mcm2-7 ring and then making a U-turn at the bottom and reaching Pol ɛ at the top of CMG. Our work reveals an unexpected configuration of the eukaryotic replisome, suggests possible reasons for this architecture and provides a basis for further structural and biochemical replisome studies.
Collapse
Affiliation(s)
- Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, Upton, New York, USA.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Yi Shi
- DNA Replication Laboratory, Rockefeller University, New York, New York, USA
| | - Roxana E Georgescu
- DNA Replication Laboratory, Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Zuanning Yuan
- Biosciences Department, Brookhaven National Laboratory, Upton, New York, USA.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Brian T Chait
- DNA Replication Laboratory, Rockefeller University, New York, New York, USA
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, New York, USA.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory, Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| |
Collapse
|
248
|
Campos EI, Smits AH, Kang YH, Landry S, Escobar TM, Nayak S, Ueberheide BM, Durocher D, Vermeulen M, Hurwitz J, Reinberg D. Analysis of the Histone H3.1 Interactome: A Suitable Chaperone for the Right Event. Mol Cell 2015; 60:697-709. [PMID: 26527279 DOI: 10.1016/j.molcel.2015.08.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/17/2015] [Accepted: 08/07/2015] [Indexed: 11/17/2022]
Abstract
Despite minimal disparity at the sequence level, mammalian H3 variants bind to distinct sets of polypeptides. Although histone H3.1 predominates in cycling cells, our knowledge of the soluble complexes that it forms en route to deposition or following eviction from chromatin remains limited. Here, we provide a comprehensive analysis of the H3.1-binding proteome, with emphasis on its interactions with histone chaperones and components of the replication fork. Quantitative mass spectrometry revealed 170 protein interactions, whereas a large-scale biochemical fractionation of H3.1 and associated enzymatic activities uncovered over twenty stable protein complexes in dividing human cells. The sNASP and ASF1 chaperones play pivotal roles in the processing of soluble histones but do not associate with the active CDC45/MCM2-7/GINS (CMG) replicative helicase. We also find TONSL-MMS22L to function as a H3-H4 histone chaperone. It associates with the regulatory MCM5 subunit of the replicative helicase.
Collapse
Affiliation(s)
- Eric I Campos
- Howard Hughes Medical Institute, New York University School of Medicine, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10016, USA
| | - Arne H Smits
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands 6525 GA
| | - Young-Hoon Kang
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | - Sébastien Landry
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, and Department of Molecular Genetics, University of Toronto, Toronto M5G 1X5, Canada
| | - Thelma M Escobar
- Howard Hughes Medical Institute, New York University School of Medicine, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10016, USA
| | - Shruti Nayak
- Office of Collaborative Science, New York University School of Medicine, NY 10016, USA
| | - Beatrix M Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10016, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, and Department of Molecular Genetics, University of Toronto, Toronto M5G 1X5, Canada
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands 6525 GA
| | - Jerard Hurwitz
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University School of Medicine, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10016, USA.
| |
Collapse
|
249
|
Hubbi ME, Semenza GL. Regulation of cell proliferation by hypoxia-inducible factors. Am J Physiol Cell Physiol 2015; 309:C775-82. [PMID: 26491052 DOI: 10.1152/ajpcell.00279.2015] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a physiological cue that impacts diverse physiological processes, including energy metabolism, autophagy, cell motility, angiogenesis, and erythropoiesis. One of the key cell-autonomous effects of hypoxia is as a modulator of cell proliferation. For most cell types, hypoxia induces decreased cell proliferation, since an increased number of cells, with a consequent increase in O2 demand, would only exacerbate hypoxic stress. However, certain cell populations maintain cell proliferation in the face of hypoxia. This is a common pathological hallmark of cancers, but can also serve a physiological function, as in the maintenance of stem cell populations that reside in a hypoxic niche. This review will discuss major molecular mechanisms by which hypoxia regulates cell proliferation in different cell populations, with a particular focus on the role of hypoxia-inducible factors.
Collapse
Affiliation(s)
- Maimon E Hubbi
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Gregg L Semenza
- Departments of Pediatrics, Medicine, Oncology, Radiation Oncology and Biological Chemistry; Vascular Program, Institute for Cell Engineering; and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
250
|
Archaeal MCM Proteins as an Analog for the Eukaryotic Mcm2-7 Helicase to Reveal Essential Features of Structure and Function. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:305497. [PMID: 26539061 PMCID: PMC4619765 DOI: 10.1155/2015/305497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/05/2015] [Indexed: 11/18/2022]
Abstract
In eukaryotes, the replicative helicase is the large multisubunit CMG complex consisting of the Mcm2–7 hexameric ring, Cdc45, and the tetrameric GINS complex. The Mcm2–7 ring assembles from six different, related proteins and forms the core of this complex. In archaea, a homologous MCM hexameric ring functions as the replicative helicase at the replication fork. Archaeal MCM proteins form thermostable homohexamers, facilitating their use as models of the eukaryotic Mcm2–7 helicase. Here we review archaeal MCM helicase structure and function and how the archaeal findings relate to the eukaryotic Mcm2–7 ring.
Collapse
|