201
|
Haahr P, Borgermann N, Guo X, Typas D, Achuthankutty D, Hoffmann S, Shearer R, Sixma TK, Mailand N. ZUFSP Deubiquitylates K63-Linked Polyubiquitin Chains to Promote Genome Stability. Mol Cell 2018; 70:165-174.e6. [PMID: 29576528 DOI: 10.1016/j.molcel.2018.02.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/17/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Deubiquitylating enzymes (DUBs) enhance the dynamics of the versatile ubiquitin (Ub) code by reversing and regulating cellular ubiquitylation processes at multiple levels. Here we discovered that the uncharacterized human protein ZUFSP (zinc finger with UFM1-specific peptidase domain protein/C6orf113/ZUP1), which has been annotated as a potentially inactive UFM1 protease, and its fission yeast homolog Mug105 define a previously unrecognized class of evolutionarily conserved cysteine protease DUBs. Human ZUFSP selectively interacts with and cleaves long K63-linked poly-Ub chains by means of tandem Ub-binding domains, whereas it displays poor activity toward mono- or di-Ub substrates. In cells, ZUFSP is recruited to and regulates K63-Ub conjugates at genotoxic stress sites, promoting chromosome stability upon replication stress in a manner dependent on its catalytic activity. Our findings establish ZUFSP as a new type of linkage-selective cysteine peptidase DUB with a role in genome maintenance pathways.
Collapse
Affiliation(s)
- Peter Haahr
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nikoline Borgermann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Xiaohu Guo
- Division of Biochemistry, Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dimitris Typas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Divya Achuthankutty
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Chromosome Stability, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Saskia Hoffmann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Robert Shearer
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Titia K Sixma
- Division of Biochemistry, Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Chromosome Stability, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
202
|
Abstract
Our genetic information is organized into chromatin, which consists of histones and proteins involved in regulating DNA compaction, accessibility and function. Chromatin is decorated by histone modifications, which provide signals that coordinate DNA-based processes including transcription and DNA damage response (DDR) pathways. A major signal involved in these processes is acetylation, which when attached to lysines within proteins, including histones, can be recognized and read by bromodomain-containing proteins. We recently identified the bromodomain protein ZMYND8 (also known as RACK7 and PRKCBP1) as a critical DNA damage response factor involved in regulating transcriptional responses and DNA repair activities at DNA double-strand breaks. Other studies have further defined the molecular details for how ZMYND8 interacts with chromatin and other chromatin modifying proteins to exert its DNA damage response functions. ZMYND8 also plays essential roles in regulating transcription during normal cellular growth, perturbation of which promotes cellular processes involved in cancer initiation and progression. In addition to acetylation, histone methylation and demethylase enzymes have emerged as important regulators of ZMYND8. Here we discuss our current understanding of the molecular mechanisms that govern ZMYND8 function within chromatin, highlighting the importance of this protein for genome maintenance both during the DDR and in cancer.
Collapse
Affiliation(s)
- Fade Gong
- a Department of Molecular Biosciences, Institute for Cellular and Molecular Biology , The University of Texas at Austin , 2506 Speedway, Austin , TX 78712 , USA
| | - Kyle M Miller
- a Department of Molecular Biosciences, Institute for Cellular and Molecular Biology , The University of Texas at Austin , 2506 Speedway, Austin , TX 78712 , USA
| |
Collapse
|
203
|
A family of unconventional deubiquitinases with modular chain specificity determinants. Nat Commun 2018; 9:799. [PMID: 29476094 PMCID: PMC5824887 DOI: 10.1038/s41467-018-03148-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/23/2018] [Indexed: 11/09/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate ubiquitin signaling by trimming ubiquitin chains or removing ubiquitin from modified substrates. Similar activities exist for ubiquitin-related modifiers, although the enzymes involved are usually not related. Here, we report human ZUFSP (also known as ZUP1 and C6orf113) and fission yeast Mug105 as founding members of a DUB family different from the six known DUB classes. The crystal structure of human ZUFSP in covalent complex with propargylated ubiquitin shows that the DUB family shares a fold with UFM1- and Atg8-specific proteases, but uses a different active site more similar to canonical DUB enzymes. ZUFSP family members differ widely in linkage specificity through differential use of modular ubiquitin-binding domains (UBDs). While the minimalistic Mug105 prefers K48 chains, ZUFSP uses multiple UBDs for its K63-specific endo-DUB activity. K63 specificity, localization, and protein interaction network suggest a role for ZUFSP in DNA damage response.
Collapse
|
204
|
Han ZJ, Feng YH, Gu BH, Li YM, Chen H. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol 2018; 52:1081-1094. [PMID: 29484374 PMCID: PMC5843405 DOI: 10.3892/ijo.2018.4280] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
SUMOylation is a reversible post-translational modification which has emerged as a crucial molecular regulatory mechanism, involved in the regulation of DNA damage repair, immune responses, carcinogenesis, cell cycle progression and apoptosis. Four SUMO isoforms have been identified, which are SUMO1, SUMO2/3 and SUMO4. The small ubiquitin-like modifier (SUMO) pathway is conserved in all eukaryotes and plays pivotal roles in the regulation of gene expression, cellular signaling and the maintenance of genomic integrity. The SUMO catalytic cycle includes maturation, activation, conjugation, ligation and de-modification. The dysregulation of the SUMO system is associated with a number of diseases, particularly cancer. SUMOylation is widely involved in carcinogenesis, DNA damage response, cancer cell proliferation, metastasis and apoptosis. SUMO can be used as a potential therapeutic target for cancer. In this review, we briefly outline the basic concepts of the SUMO system and summarize the involvement of SUMO proteins in cancer cells in order to better understand the role of SUMO in human disease.
Collapse
Affiliation(s)
- Zhi-Jian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yan-Hu Feng
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Bao-Hong Gu
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yu-Min Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Hao Chen
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
205
|
Voisset E, Moravcsik E, Stratford EW, Jaye A, Palgrave CJ, Hills RK, Salomoni P, Kogan SC, Solomon E, Grimwade D. Pml nuclear body disruption cooperates in APL pathogenesis and impairs DNA damage repair pathways in mice. Blood 2018; 131:636-648. [PMID: 29191918 PMCID: PMC5805489 DOI: 10.1182/blood-2017-07-794784] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/26/2017] [Indexed: 01/20/2023] Open
Abstract
A hallmark of acute promyelocytic leukemia (APL) is altered nuclear architecture, with disruption of promyelocytic leukemia (PML) nuclear bodies (NBs) mediated by the PML-retinoic acid receptor α (RARα) oncoprotein. To address whether this phenomenon plays a role in disease pathogenesis, we generated a knock-in mouse model with NB disruption mediated by 2 point mutations (C62A/C65A) in the Pml RING domain. Although no leukemias developed in PmlC62A/C65A mice, these transgenic mice also expressing RARα linked to a dimerization domain (p50-RARα model) exhibited a doubling in the rate of leukemia, with a reduced latency period. Additionally, we found that response to targeted therapy with all-trans retinoic acid in vivo was dependent on NB integrity. PML-RARα is recognized to be insufficient for development of APL, requiring acquisition of cooperating mutations. We therefore investigated whether NB disruption might be mutagenic. Compared with wild-type cells, primary PmlC62A/C65A cells exhibited increased sister-chromatid exchange and chromosome abnormalities. Moreover, functional assays showed impaired homologous recombination (HR) and nonhomologous end-joining (NHEJ) repair pathways, with defective localization of Brca1 and Rad51 to sites of DNA damage. These data directly demonstrate that Pml NBs are critical for DNA damage responses, and suggest that Pml NB disruption is a central contributor to APL pathogenesis.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- DNA Damage/genetics
- DNA End-Joining Repair/genetics
- DNA Repair/genetics
- Intranuclear Inclusion Bodies/genetics
- Intranuclear Inclusion Bodies/metabolism
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Transgenic
- Mutagenesis/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/physiology
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Edwige Voisset
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Eva Moravcsik
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Eva W Stratford
- Department of Tumor Biology, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
| | - Amie Jaye
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | | | - Robert K Hills
- Centre for Trials Research, College of Biomedical & Life Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Scott C Kogan
- Helen Diller Family Comprehensive Cancer Center and
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Ellen Solomon
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - David Grimwade
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
206
|
Romero-Barrios N, Vert G. Proteasome-independent functions of lysine-63 polyubiquitination in plants. THE NEW PHYTOLOGIST 2018; 217:995-1011. [PMID: 29194634 DOI: 10.1111/nph.14915] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 995 I. Introduction 995 II. The plant Ub machinery 996 III. From Ub to Ub linkage types in plants 997 IV. Increasing analytical resolution for K63 polyUb in plants 998 V. How to build K63 polyUb chains? 998 VI. Cellular roles of K63 polyUb in plants 999 VII. Physiological roles of K63 polyUb in plants 1004 VIII. Future perspectives: towards the next level of the Ub code 1006 Acknowledgements 1006 References 1007 SUMMARY: Ubiquitination is a post-translational modification essential for the regulation of eukaryotic proteins, having an impact on protein fate, function, localization or activity. What originally appeared to be a simple system to regulate protein turnover by the 26S proteasome is now known to be the most intricate regulatory process cells have evolved. Ubiquitin can be arranged in countless chain assemblies, triggering various cellular outcomes. Polyubiquitin chains using lysine-63 from ubiquitin represent the second most abundant type of ubiquitin modification. Recent studies have exposed their common function in proteasome-independent functions in non-plant model organisms. The existence of lysine-63 polyubiquitination in plants is, however, only just emerging. In this review, we discuss the recent advances on the characterization of ubiquitin chains and the molecular mechanisms driving the formation of lysine-63-linked ubiquitin modifications. We provide an overview of the roles associated with lysine-63 polyubiquitination in plant cells in the light of what is known in non-plant models. Finally, we review the crucial roles of lysine-63 polyubiquitin-dependent processes in plant growth, development and responses to environmental conditions.
Collapse
Affiliation(s)
- Natali Romero-Barrios
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| |
Collapse
|
207
|
Wan Y, Li C, She J, Wang J, Chen M. [Human RhoA is modified by SUMO2/3]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:75-80. [PMID: 33177017 DOI: 10.3969/j.issn.1673-4254.2018.01.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate whether human RhoA is modified by SUMO. METHODS Overlap extension PCR and double digestion technique were used to construct the eukaryotic expression vector pcDNA3-3flag-RhoA, which was identified by sequencing. The plasmid was transfected into HEK293T cells and its expression was detected by Western blotting. Immunofluorescence assay was used to detect whether RhoA is co-localized with SUMO. Co-Immunoprecipitation was used to detect whether RhoA is modified by SUMO. RESULTS The recombinant plasmid pcDNA3-3flag-RhoA was successfully constructed and verified. Western blotting showed that the recombinant plasmid pcDNA3-3flag-RhoA expressed abundant fusion protein in HEK293T cells. Immunofluorescence showed that RhoA was co-localized with SUMO2/3 but not with SUMO1. Co-immunoprecipitation verified that RhoA was modified by SUMO2/3 but not SUMO1. CONCLUSIONS Human RhoA is modified by SUMO2/3 and probably participates in the regulation of axon regrowth after nervous system injury.
Collapse
Affiliation(s)
- Yingcong Wan
- Department of Neurobiology, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Li
- Department of Neurobiology, Southern Medical University, Guangzhou 510515, China
| | - Jiayao She
- Department of Neurobiology, Southern Medical University, Guangzhou 510515, China
| | - Jingya Wang
- Department of Neurobiology, Southern Medical University, Guangzhou 510515, China
| | - Ming Chen
- Department of Neurobiology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
208
|
Phuyal S, Kasem M, Knittelfelder O, Sharma A, Fonseca DDM, Vebraite V, Shaposhnikov S, Slupphaug G, Skaug V, Zienolddiny S. Characterization of the proteome and lipidome profiles of human lung cells after low dose and chronic exposure to multiwalled carbon nanotubes. Nanotoxicology 2018; 12:138-152. [PMID: 29350075 DOI: 10.1080/17435390.2018.1425500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of long-term chronic exposure of human lung cells to multi-walled carbon nanotubes (MWCNT) and their impact upon cellular proteins and lipids were investigated. Since the lung is the major target organ, an in vitro normal bronchial epithelial cell line model was used. Additionally, to better mimic exposure to manufactured nanomaterials at occupational settings, cells were continuously exposed to two non-toxic and low doses of a MWCNT for 13-weeks. MWCNT-treatment increased ROS levels in cells without increasing oxidative DNA damage and resulted in differential expression of multiple anti- and pro-apoptotic proteins. The proteomic analysis of the MWCNT-exposed cells showed that among more than 5000 identified proteins; more than 200 were differentially expressed in the treated cells. Functional analyses revealed association of these differentially regulated proteins to cellular processes such as cell death and survival, cellular assembly, and organization. Similarly, shotgun lipidomic profiling revealed accumulation of multiple lipid classes. Our results indicate that long-term MWCNT-exposure of human normal lung cells at occupationally relevant low-doses may alter both the proteome and the lipidome profiles of the target epithelial cells in the lung.
Collapse
Affiliation(s)
- Santosh Phuyal
- a Department of Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Mayes Kasem
- a Department of Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| | | | - Animesh Sharma
- c Department of Clinical and Molecular Medicine , Norwegian University of Science and Technology , Trondheim , Norway.,d Proteomics and Metabolomics Core Facility (PROMEC) , NTNU and the Central Norway Regional Health Authority , Trondheim , Norway
| | - Davi de Miranda Fonseca
- c Department of Clinical and Molecular Medicine , Norwegian University of Science and Technology , Trondheim , Norway.,d Proteomics and Metabolomics Core Facility (PROMEC) , NTNU and the Central Norway Regional Health Authority , Trondheim , Norway
| | | | | | - Geir Slupphaug
- c Department of Clinical and Molecular Medicine , Norwegian University of Science and Technology , Trondheim , Norway.,d Proteomics and Metabolomics Core Facility (PROMEC) , NTNU and the Central Norway Regional Health Authority , Trondheim , Norway
| | - Vidar Skaug
- a Department of Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Shanbeh Zienolddiny
- a Department of Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| |
Collapse
|
209
|
Vilas CK, Emery LE, Denchi EL, Miller KM. Caught with One's Zinc Fingers in the Genome Integrity Cookie Jar. Trends Genet 2018; 34:313-325. [PMID: 29370947 DOI: 10.1016/j.tig.2017.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 12/27/2022]
Abstract
Zinc finger (ZnF) domains are present in at least 5% of human proteins. First characterized as binding to DNA, ZnFs display extraordinary binding plasticity and can bind to RNA, lipids, proteins, and protein post-translational modifications (PTMs). The diverse binding properties of ZnFs have made their functional characterization challenging. While once confined to large and poorly characterized protein families, proteomic, cellular, and molecular studies have begun to shed light on their involvement as protectors of the genome. We focus here on the emergent roles of ZnF domain-containing proteins in promoting genome integrity, including their involvement in telomere maintenance and DNA repair. These findings have highlighted the need for further characterization of ZnF proteins, which can reveal the functions of this large gene class in normal cell function and human diseases, including those involving genome instability such as aging and cancer.
Collapse
Affiliation(s)
- Caroline K Vilas
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Lara E Emery
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Eros Lazzerini Denchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
210
|
Takahashi TS, Hirade Y, Toma A, Sato Y, Yamagata A, Goto-Ito S, Tomita A, Nakada S, Fukai S. Structural insights into two distinct binding modules for Lys63-linked polyubiquitin chains in RNF168. Nat Commun 2018; 9:170. [PMID: 29330428 PMCID: PMC5766498 DOI: 10.1038/s41467-017-02345-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022] Open
Abstract
The E3 ubiquitin (Ub) ligase RNF168 plays a critical role in the initiation of the DNA damage response to double-strand breaks (DSBs). The recruitment of RNF168 by ubiquitylated targets involves two distinct regions, Ub-dependent DSB recruitment module (UDM) 1 and UDM2. Here we report the crystal structures of the complex between UDM1 and Lys63-linked diUb (K63-Ub2) and that between the C-terminally truncated UDM2 (UDM2ΔC) and K63-Ub2. In both structures, UDM1 and UDM2ΔC fold as a single α-helix. Their simultaneous bindings to the distal and proximal Ub moieties provide specificity for Lys63-linked Ub chains. Structural and biochemical analyses of UDM1 elucidate an Ub-binding mechanism between UDM1 and polyubiquitylated targets. Mutations of Ub-interacting residues in UDM2 prevent the accumulation of RNF168 to DSB sites in U2OS cells, whereas those in UDM1 have little effect, suggesting that the interaction of UDM2 with ubiquitylated and polyubiquitylated targets mainly contributes to the RNF168 recruitment. E3 ubiquitin ligase RNF168 is important for the repair of DNA double-strand breaks and recognizes ubiquitylated targets through two Ub-dependent DSB recruitment modules UDM1 and UDM2. Here the authors combine crystallography, cell biology and biochemical experiments to reveal how UDM1 and UDM2 interact with polyubiquitin chains.
Collapse
Affiliation(s)
- Tomio S Takahashi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yoshihiro Hirade
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Aya Toma
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8501, Japan
| | - Yusuke Sato
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8501, Japan
| | - Atsushi Yamagata
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8501, Japan
| | - Sakurako Goto-Ito
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Akiko Tomita
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan. .,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 565-0871, Japan.
| | - Shuya Fukai
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan. .,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8501, Japan.
| |
Collapse
|
211
|
Tantai J, Pan X, Hu D. RNF4-mediated SUMOylation is essential for NDRG2 suppression of lung adenocarcinoma. Oncotarget 2018; 7:26837-43. [PMID: 27072586 PMCID: PMC5042018 DOI: 10.18632/oncotarget.8663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/06/2016] [Indexed: 01/05/2023] Open
Abstract
N-Myc downstream-regulated gene 2 (NDRG2) protein is a tumor suppressor that inhibits cancer growth, metastasis and invasion. The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin through its selective recognition and ubiquitination of SUMO-modified proteins. We evaluated NDRG2 SUMOylation in lung adenocarcinoma cells and its underlying molecular mechanism. The results showed that NDRG2 is covalently modified by SUMO1 at K333, which suppressed anchorage independent adenocarcinoma cell proliferation and tumor growth. In human lung adenocarcinomas cells, RNF4 targeted NDRG2 to proteasomal degradation by stimulating its SUMOylation. Endogenous RNF4 expression was increased in human lung adenocarcinomas cells, and there was a concomitant upregulation of SUMO. These findings indicate that SUMOylation of NDRG2 is necessary for its tumor suppressor function in lung adenocarcinoma and that RNF4 increases the efficiency of this process.
Collapse
Affiliation(s)
- Jicheng Tantai
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dingzhong Hu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
212
|
Matunis MJ, Rodriguez MS. Concepts and Methodologies to Study Protein SUMOylation: An Overview. Methods Mol Biol 2018; 1475:3-22. [PMID: 27631794 DOI: 10.1007/978-1-4939-6358-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein modification by the small ubiquitin-related modifier (SUMO) was simultaneously discovered by several groups at the middle of the 1990s. Although distinct names were proposed including Sentrin, GMP1, PIC1, or SMT3, SUMO became the most popular. Early studies on the functions of SUMOylation focused on activities in the nucleus, including transcription activation, chromatin structure, and DNA repair. However, it is now recognized that SUMOylation affects a large diversity of cellular processes both in the nucleus and the cytoplasm and functions of SUMOylation appear to have undefined limits. SUMO-conjugating enzymes and specific proteases actively regulate the modification status of target proteins. The recent discoveries of ubiquitin-SUMO hybrid chains, multiple SUMO-interacting motifs, and macromolecular complexes regulated by SUMOylation underscore the high complexity of this dynamic reversible system. New conceptual frameworks suggested by these findings have motivated the development of new methodologies to study pre- and post-SUMOylation events in vitro and in vivo, using distinct model organisms. Here we summarize some of the new developments and methodologies in the field, particularly those that will be further elaborated on in the chapters integrating this book.
Collapse
Affiliation(s)
- Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Room W8118, Baltimore, MD, 21205, USA.
| | | |
Collapse
|
213
|
Zhou Z, Rajasingh S, Barani B, Samanta S, Dawn B, Wang R, Rajasingh J. Therapy of Infectious Diseases Using Epigenetic Approaches. EPIGENETICS IN HUMAN DISEASE 2018:689-715. [DOI: 10.1016/b978-0-12-812215-0.00022-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
214
|
Abstract
More than a decade after a Nobel Prize was awarded for the discovery of the ubiquitin-proteasome system and clinical approval of proteasome and ubiquitin E3 ligase inhibitors, first-generation deubiquitylating enzyme (DUB) inhibitors are now approaching clinical trials. However, although our knowledge of the physiological and pathophysiological roles of DUBs has evolved tremendously, the clinical development of selective DUB inhibitors has been challenging. In this Review, we discuss these issues and highlight recent advances in our understanding of DUB enzymology and biology as well as technological improvements that have contributed to the current interest in DUBs as therapeutic targets in diseases ranging from oncology to neurodegeneration.
Collapse
Affiliation(s)
- Jeanine A. Harrigan
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
| | - Xavier Jacq
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
| | - Niall M. Martin
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
- Present Address: and Department of Biochemistry, The Wellcome Trust and Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN UK
- Present address: Artios Pharmaceuticals Ltd, Maia, Babraham Research Campus, Cambridge CB22 3AT, UK,
| | - Stephen P. Jackson
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
- Present Address: and Department of Biochemistry, The Wellcome Trust and Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN UK
- Present address: Artios Pharmaceuticals Ltd, Maia, Babraham Research Campus, Cambridge CB22 3AT, UK,
| |
Collapse
|
215
|
Özen A, Rougé L, Bashore C, Hearn BR, Skelton NJ, Dueber EC. Selectively Modulating Conformational States of USP7 Catalytic Domain for Activation. Structure 2017; 26:72-84.e7. [PMID: 29249604 DOI: 10.1016/j.str.2017.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/31/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
Ubiquitin-specific protease 7 (USP7) deubiquitinase activity is controlled by a number of regulatory factors, including stimulation by intramolecular accessory domains. Alone, the USP7 catalytic domain (USP7cd) shows limited activity and apo USP7cd crystal structures reveal a disrupted catalytic triad. By contrast, ubiquitin-conjugated USP7cd structures demonstrate the canonical cysteine protease active-site geometry; however, the structural features of the USP7cd that stabilize the inactive conformation and the mechanism of transition between inactive and active states remain unclear. Here we use comparative structural analyses, molecular dynamics simulations, and in silico sequence re-engineering via directed sampling by RosettaDesign to identify key molecular determinants of USP7cd activation and successfully engineer USP7cd for improved activity. Full kinetic analysis and multiple X-ray crystal structures of our designs indicate that electrostatic interactions in the distal "switching loop" region and local packing in the hydrophobic core mediate subtle but significant conformational changes that modulate USP7cd activation.
Collapse
Affiliation(s)
- Ayşegül Özen
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA 94080, USA; Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lionel Rougé
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Charlene Bashore
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Brian R Hearn
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco, San Francisco, CA 94618, USA
| | - Nicholas J Skelton
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA.
| | - Erin C Dueber
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
216
|
Ubiquitin-conjugating enzyme E2T (UBE2T) and denticleless protein homolog (DTL) are linked to poor outcome in breast and lung cancers. Sci Rep 2017; 7:17530. [PMID: 29235520 PMCID: PMC5727519 DOI: 10.1038/s41598-017-17836-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination and degradation represent druggable vulnerabilities of cancer cells. We used gene expression and functional annotation analyses to identify genes in the ubiquitin pathway which are differentially expressed between normal breast and basal-like tumors. With this approach we identified 16 ubiquitin related genes overexpressed in basal-like breast cancers compared with normal breast. We then explored the association between these genes and outcomes using the KMPlotter online tool. Two genes, the ubiquitin-conjugating enzyme E2T (UBE2T) and the denticleless protein homolog (DTL) were overexpressed and linked with detrimental outcome in basal-like and luminal breast cancer patients. Furthermore, we found that UBE2T and DTL were amplified in around 12% of breast tumors based on data contained at cBioportal. In non-small cell lung adenocarcinomas, UBE2T and DTL were also amplified in around 7% of cases and linked with disease recurrence after surgical resection. No significant molecular alterations or a clear trend for clinical outcome was observed for these genes in ovarian serous cystadenocarcinoma, esophagus-stomach cancer or non-small squamous cell carcinoma. Our data suggest that UBE2T and DTL may have a role in the pathophysiology of breast and lung tumors, opening avenues for future clinical evaluation of agents targeting those proteins or their pathways.
Collapse
|
217
|
Dynamics of RIF1 SUMOylation is regulated by PIAS4 in the maintenance of Genomic Stability. Sci Rep 2017; 7:17367. [PMID: 29234018 PMCID: PMC5727183 DOI: 10.1038/s41598-017-16934-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/20/2017] [Indexed: 01/29/2023] Open
Abstract
RIF1 plays a key role in inhibiting DNA end resection and promoting NHEJ mediated DNA double stand break repair in G1. However, whether SUMOlyation may regulate RIF1 functions is still largely unknown. Here, we report that RIF1 is SUMOlyated in response to DNA damage. We identified PIAS4 as the primary SUMO E3 ligase required for the SUMOylation of RIF1 protein. Mammalian cells compromised of PIAS4 expression, show impaired RIF1 SUMOylation and defective for the disassembly of DNA damage responsive RIF1 foci. Mechanistically, we show that PIAS4 knockdown abrogates UHRF1-dependent ubiquitination of RIF1, compromising RIF1 protein turnover. We detected intense RPA foci that colocalize with RIF1 foci in PIAS4 knockdown cells. These data highlight an important role of PIAS4-dependent regulation of RIF1, likely mediated by SUMOylation, in the disassembly of RIF1 DNA damage response (DDR) foci. We propose that unresolved RIF1 protein at sites of DNA damage in PIAS4-depleted cells largely accumulates in S phase, and subsequently leads to DNA double strand breaks. Therefore, PIAS4 promotes genomic stability by regulating the timely removal of RIF1 from sites of DNA damage.
Collapse
|
218
|
Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. Nat Commun 2017; 8:2039. [PMID: 29229926 PMCID: PMC5725494 DOI: 10.1038/s41467-017-02146-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022] Open
Abstract
Pathway choice within DNA double-strand break (DSB) repair is a tightly regulated process to maintain genome integrity. RECQL4, deficient in Rothmund-Thomson Syndrome, promotes the two major DSB repair pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). Here we report that RECQL4 promotes and coordinates NHEJ and HR in different cell cycle phases. RECQL4 interacts with Ku70 to promote NHEJ in G1 when overall cyclin-dependent kinase (CDK) activity is low. During S/G2 phases, CDK1 and CDK2 (CDK1/2) phosphorylate RECQL4 on serines 89 and 251, enhancing MRE11/RECQL4 interaction and RECQL4 recruitment to DSBs. After phosphorylation, RECQL4 is ubiquitinated by the DDB1-CUL4A E3 ubiquitin ligase, which facilitates its accumulation at DSBs. Phosphorylation of RECQL4 stimulates its helicase activity, promotes DNA end resection, increases HR and cell survival after ionizing radiation, and prevents cellular senescence. Collectively, we propose that RECQL4 modulates the pathway choice of NHEJ and HR in a cell cycle-dependent manner. DNA double-strand break (DSB) repair is a tightly regulated process that can occur via non-homologous end joining (NHEJ) or homologous recombination (HR). Here, the authors investigate how RECQL4 modulates DSB repair pathway choice by differentially regulating NHEJ and HR in a cell cycle-dependent manner.
Collapse
|
219
|
Ramadan K, Dikic I. Editorial: Ubiquitin and Ubiquitin-Relative SUMO in DNA Damage Response. Front Genet 2017; 8:188. [PMID: 29230235 PMCID: PMC5711768 DOI: 10.3389/fgene.2017.00188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kristijan Ramadan
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology (MRC), Oxford University, Oxford, United Kingdom
| | - Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University, Frankfurt, Germany.,Molecular Signaling Unit, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
220
|
Hughes DJ, Tiede C, Penswick N, Tang AAS, Trinh CH, Mandal U, Zajac KZ, Gaule T, Howell G, Edwards TA, Duan J, Feyfant E, McPherson MJ, Tomlinson DC, Whitehouse A. Generation of specific inhibitors of SUMO-1- and SUMO-2/3-mediated protein-protein interactions using Affimer (Adhiron) technology. Sci Signal 2017; 10:10/505/eaaj2005. [PMID: 29138295 DOI: 10.1126/scisignal.aaj2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Because protein-protein interactions underpin most biological processes, developing tools that target them to understand their function or to inform the development of therapeutics is an important task. SUMOylation is the posttranslational covalent attachment of proteins in the SUMO family (SUMO-1, SUMO-2, or SUMO-3), and it regulates numerous cellular pathways. SUMOylated proteins are recognized by proteins with SUMO-interaction motifs (SIMs) that facilitate noncovalent interactions with SUMO. We describe the use of the Affimer system of peptide display for the rapid isolation of synthetic binding proteins that inhibit SUMO-dependent protein-protein interactions mediated by SIMs both in vitro and in cells. Crucially, these synthetic proteins did not prevent SUMO conjugation either in vitro or in cell-based systems, enabling the specific analysis of SUMO-mediated protein-protein interactions. Furthermore, through structural analysis and molecular modeling, we explored the molecular mechanisms that may underlie their specificity in interfering with either SUMO-1-mediated interactions or interactions mediated by either SUMO-2 or SUMO-3. Not only will these reagents enable investigation of the biological roles of SUMOylation, but the Affimer technology used to generate these synthetic binding proteins could also be exploited to design or validate reagents or therapeutics that target other protein-protein interactions.
Collapse
Affiliation(s)
- David J Hughes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. .,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Christian Tiede
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Natalie Penswick
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anna Ah-San Tang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Chi H Trinh
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Upasana Mandal
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Katarzyna Z Zajac
- BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thembaninskosi Gaule
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Gareth Howell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas A Edwards
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Michael J McPherson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Darren C Tomlinson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. .,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
221
|
DNA damage-induced histone H1 ubiquitylation is mediated by HUWE1 and stimulates the RNF8-RNF168 pathway. Sci Rep 2017; 7:15353. [PMID: 29127375 PMCID: PMC5681673 DOI: 10.1038/s41598-017-15194-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/16/2017] [Indexed: 01/08/2023] Open
Abstract
The DNA damage response (DDR), comprising distinct repair and signalling pathways, safeguards genomic integrity. Protein ubiquitylation is an important regulatory mechanism of the DDR. To study its role in the UV-induced DDR, we characterized changes in protein ubiquitylation following DNA damage using quantitative di-Gly proteomics. Interestingly, we identified multiple sites of histone H1 that are ubiquitylated upon UV-damage. We show that UV-dependent histone H1 ubiquitylation at multiple lysines is mediated by the E3-ligase HUWE1. Recently, it was shown that poly-ubiquitylated histone H1 is an important signalling intermediate in the double strand break response. This poly-ubiquitylation is dependent on RNF8 and Ubc13 which extend pre-existing ubiquitin modifications to K63-linked chains. Here we demonstrate that HUWE1 depleted cells showed reduced recruitment of RNF168 and 53BP1 to sites of DNA damage, two factors downstream of RNF8 mediated histone H1 poly-ubiquitylation, while recruitment of MDC1, which act upstream of histone H1 ubiquitylation, was not affected. Our data show that histone H1 is a prominent target for ubiquitylation after UV-induced DNA damage. Our data are in line with a model in which HUWE1 primes histone H1 with ubiquitin to allow ubiquitin chain elongation by RNF8, thereby stimulating the RNF8-RNF168 mediated DDR.
Collapse
|
222
|
A ubiquitin-dependent signalling axis specific for ALKBH-mediated DNA dealkylation repair. Nature 2017; 551:389-393. [PMID: 29144457 PMCID: PMC6458054 DOI: 10.1038/nature24484] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/04/2017] [Indexed: 01/06/2023]
Abstract
DNA repair is essential to prevent the cytotoxic or mutagenic effects of various types of DNA lesions, which are sensed by distinct pathways to recruit repair factors specific to the damage type. Although biochemical mechanisms for repairing several forms of genomic insults are well understood, the upstream signalling pathways that trigger repair are established for only certain types of damage, such as double-stranded breaks and interstrand crosslinks. Understanding the upstream signalling events that mediate recognition and repair of DNA alkylation damage is particularly important, since alkylation chemotherapy is one of the most widely used systemic modalities for cancer treatment and because environmental chemicals may trigger DNA alkylation. Here we demonstrate that human cells have a previously unrecognized signalling mechanism for sensing damage induced by alkylation. We find that the alkylation repair complex ASCC (activating signal cointegrator complex) relocalizes to distinct nuclear foci specifically upon exposure of cells to alkylating agents. These foci associate with alkylated nucleotides, and coincide spatially with elongating RNA polymerase II and splicing components. Proper recruitment of the repair complex requires recognition of K63-linked polyubiquitin by the CUE (coupling of ubiquitin conjugation to ER degradation) domain of the subunit ASCC2. Loss of this subunit impedes alkylation adduct repair kinetics and increases sensitivity to alkylating agents, but not other forms of DNA damage. We identify RING finger protein 113A (RNF113A) as the E3 ligase responsible for upstream ubiquitin signalling in the ASCC pathway. Cells from patients with X-linked trichothiodystrophy, which harbour a mutation in RNF113A, are defective in ASCC foci formation and are hypersensitive to alkylating agents. Together, our work reveals a previously unrecognized ubiquitin-dependent pathway induced specifically to repair alkylation damage, shedding light on the molecular mechanism of X-linked trichothiodystrophy.
Collapse
|
223
|
Proteomic features of delayed ocular symptoms caused by exposure to sulfur mustard: As studied by protein profiling of corneal epithelium. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1445-1454. [DOI: 10.1016/j.bbapap.2017.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
|
224
|
Hennell James R, Caceres EF, Escasinas A, Alhasan H, Howard JA, Deery MJ, Ettema TJG, Robinson NP. Functional reconstruction of a eukaryotic-like E1/E2/(RING) E3 ubiquitylation cascade from an uncultured archaeon. Nat Commun 2017; 8:1120. [PMID: 29066714 PMCID: PMC5654768 DOI: 10.1038/s41467-017-01162-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/22/2017] [Indexed: 11/25/2022] Open
Abstract
The covalent modification of protein substrates by ubiquitin regulates a diverse range of critical biological functions. Although it has been established that ubiquitin-like modifiers evolved from prokaryotic sulphur transfer proteins it is less clear how complex eukaryotic ubiquitylation system arose and diversified from these prokaryotic antecedents. The discovery of ubiquitin, E1-like, E2-like and small-RING finger (srfp) protein components in the Aigarchaeota and the Asgard archaea superphyla has provided a substantive step toward addressing this evolutionary question. Encoded in operons, these components are likely representative of the progenitor apparatus that founded the modern eukaryotic ubiquitin modification systems. Here we report that these proteins from the archaeon Candidatus ‘Caldiarchaeum subterraneum’ operate together as a bona fide ubiquitin modification system, mediating a sequential ubiquitylation cascade reminiscent of the eukaryotic process. Our observations support the hypothesis that complex eukaryotic ubiquitylation signalling pathways have developed from compact systems originally inherited from an archaeal ancestor. In eukaryotic cells, the ubiquitylation system regulates several cellular processes central to protein homoeostasis. Here the authors demonstrate the existence of an eukaryotic-like ubiquitylation cascade requiring E1, E2 and E3-like enzymes in the archaeon C. subterraneum, shedding light on the evolution of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Rory Hennell James
- Department of Biochemistry, The University of Cambridge, Cambridge, CB2 1GA, UK
| | - Eva F Caceres
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, 751 24, Sweden
| | - Alex Escasinas
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Haya Alhasan
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Julie A Howard
- Department of Biochemistry and Cambridge Systems Biology Centre, Cambridge Centre for Proteomics, The University of Cambridge, Cambridge, CB2 1GA, UK
| | - Michael J Deery
- Department of Biochemistry and Cambridge Systems Biology Centre, Cambridge Centre for Proteomics, The University of Cambridge, Cambridge, CB2 1GA, UK
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, 751 24, Sweden
| | - Nicholas P Robinson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK.
| |
Collapse
|
225
|
Lamberto I, Liu X, Seo HS, Schauer NJ, Iacob RE, Hu W, Das D, Mikhailova T, Weisberg EL, Engen JR, Anderson KC, Chauhan D, Dhe-Paganon S, Buhrlage SJ. Structure-Guided Development of a Potent and Selective Non-covalent Active-Site Inhibitor of USP7. Cell Chem Biol 2017; 24:1490-1500.e11. [PMID: 29056421 DOI: 10.1016/j.chembiol.2017.09.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/09/2017] [Accepted: 09/05/2017] [Indexed: 01/30/2023]
Abstract
Deubiquitinating enzymes (DUBs) have garnered significant attention as drug targets in the last 5-10 years. The excitement stems in large part from the powerful ability of DUB inhibitors to promote degradation of oncogenic proteins, especially proteins that are challenging to directly target but which are stabilized by DUB family members. Highly optimized and well-characterized DUB inhibitors have thus become highly sought after tools. Most reported DUB inhibitors, however, are polypharmacological agents possessing weak (micromolar) potency toward their primary target, limiting their utility in target validation and mechanism studies. Due to a lack of high-resolution DUB⋅small-molecule ligand complex structures, no structure-guided optimization efforts have been reported for a mammalian DUB. Here, we report a small-molecule⋅ubiquitin-specific protease (USP) family DUB co-structure and rapid design of potent and selective inhibitors of USP7 guided by the structure. Interestingly, the compounds are non-covalent active-site inhibitors.
Collapse
Affiliation(s)
- Ilaria Lamberto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiaoxi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathan J Schauer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Wanyi Hu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Deepika Das
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tatiana Mikhailova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ellen L Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dharminder Chauhan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
226
|
Dubois JC, Yates M, Gaudreau-Lapierre A, Clément G, Cappadocia L, Gaudreau L, Zou L, Maréchal A. A phosphorylation-and-ubiquitylation circuitry driving ATR activation and homologous recombination. Nucleic Acids Res 2017; 45:8859-8872. [PMID: 28666352 PMCID: PMC5587784 DOI: 10.1093/nar/gkx571] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022] Open
Abstract
RPA-coated single-stranded DNA (RPA–ssDNA), a nucleoprotein structure induced by DNA damage, promotes ATR activation and homologous recombination (HR). RPA is hyper-phosphorylated and ubiquitylated after DNA damage. The ubiquitylation of RPA by PRP19 and RFWD3 facilitates ATR activation and HR, but how it is stimulated by DNA damage is still unclear. Here, we show that RFWD3 binds RPA constitutively, whereas PRP19 recognizes RPA after DNA damage. The recruitment of PRP19 by RPA depends on PIKK-mediated RPA phosphorylation and a positively charged pocket in PRP19. An RPA32 mutant lacking phosphorylation sites fails to recruit PRP19 and support RPA ubiquitylation. PRP19 mutants unable to bind RPA or lacking ubiquitin ligase activity also fail to support RPA ubiquitylation and HR. These results suggest that RPA phosphorylation enhances the recruitment of PRP19 to RPA–ssDNA and stimulates RPA ubiquitylation through a process requiring both PRP19 and RFWD3, thereby triggering a phosphorylation-ubiquitylation circuitry that promotes ATR activation and HR.
Collapse
Affiliation(s)
| | - Maïlyn Yates
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | | | - Geneviève Clément
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute, New York, NY 10021, USA
| | - Luc Gaudreau
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandre Maréchal
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
227
|
Jeggo PA, Downs JA, Gasser SM. Chromatin modifiers and remodellers in DNA repair and signalling. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160279. [PMID: 28847816 PMCID: PMC5577457 DOI: 10.1098/rstb.2016.0279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Penny A Jeggo
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton BN71TL, UK
| | - Jessica A Downs
- Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
228
|
Nishi R. Balancing act: To be, or not to be ubiquitylated. Mutat Res 2017; 803-805:43-50. [PMID: 28764946 DOI: 10.1016/j.mrfmmm.2017.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 01/13/2023]
Abstract
DNA double-strand breaks (DSBs) are one of the most deleterious DNA lesions. Appropriate repair of DSB either by homologous recombination or non-homologous end-joining is critical for maintaining genome stability and fitness. DSB repair cooperates with cellular signalling networks, namely DSB response (DDR), which plays pivotal roles in the choice of DSB repair pathway, orchestrating recruitment of DDR factors to site of damage, transcription suppression and cell cycle checkpoint activation. It has been revealed that these mechanisms are strictly regulated, in time and space, by complex and minute ubiquitylation-mediated reactions. Furthermore, balancing the ubiquitylation status of the DDR and DSB repair proteins by deubiquitylation, which is carried out by deubiquitylating enzymes (DUBs), is also found to be important. Recent findings have uncovered that DUBs are involved in various aspects of both DDR and DSB repair by counteracting non-proteolytic ubiquitylations in addition to protecting substrates from proteasomal degradation by removing proteolytic ubiquitylation. An advanced understanding of the detailed molecular mechanisms of the "balancing act" between ubiquitylation and deubiquitylation will provide novel therapeutic targets for diseases caused by dysfunction of DDR and DSB repair.
Collapse
Affiliation(s)
- Ryotaro Nishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan.
| |
Collapse
|
229
|
Liang L, Zhang Z, Li J, Wu J, Wang L, Huang W, Gao S. Direct binding of RNF8 to SUMO2/3 promotes cell survival following DNA damage. Mol Med Rep 2017; 16:8385-8391. [DOI: 10.3892/mmr.2017.7624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/13/2017] [Indexed: 11/06/2022] Open
|
230
|
Gong F, Miller KM. Histone methylation and the DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:37-47. [PMID: 31395347 DOI: 10.1016/j.mrrev.2017.09.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/30/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023]
Abstract
Preserving genome function and stability are paramount for ensuring cellular homeostasis, an imbalance in which can promote diseases including cancer. In the presence of DNA lesions, cells activate pathways referred to as the DNA damage response (DDR). As nuclear DNA is bound by histone proteins and organized into chromatin in eukaryotes, DDR pathways have evolved to sense, signal and repair DNA damage within the chromatin environment. Histone proteins, which constitute the building blocks of chromatin, are highly modified by post-translational modifications (PTMs) that regulate chromatin structure and function. An essential histone PTM involved in the DDR is histone methylation, which is regulated by histone methyltransferase (HMT) and histone demethylase (HDM) enzymes that add and remove methyl groups on lysine and arginine residues within proteins respectively. Methylated histones can alter how proteins interact with chromatin, including their ability to be bound by reader proteins that recognize these PTMs. Here, we review histone methylation in the context of the DDR, focusing on DNA double-strand breaks (DSBs), a particularly toxic lesion that can trigger genome instability and cell death. We provide a comprehensive overview of histone methylation changes that occur in response to DNA damage and how the enzymes and reader proteins of these marks orchestrate the DDR. Finally, as many epigenetic pathways including histone methylation are altered in cancer, we discuss the potential involvement of these pathways in the etiology and treatment of this disease.
Collapse
Affiliation(s)
- Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, United States.
| |
Collapse
|
231
|
Schellenberg MJ, Lieberman JA, Herrero-Ruiz A, Butler LR, Williams JG, Muñoz-Cabello AM, Mueller GA, London RE, Cortés-Ledesma F, Williams RS. ZATT (ZNF451)-mediated resolution of topoisomerase 2 DNA-protein cross-links. Science 2017; 357:1412-1416. [PMID: 28912134 DOI: 10.1126/science.aam6468] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
Abstract
Topoisomerase 2 (TOP2) DNA transactions proceed via formation of the TOP2 cleavage complex (TOP2cc), a covalent enzyme-DNA reaction intermediate that is vulnerable to trapping by potent anticancer TOP2 drugs. How genotoxic TOP2 DNA-protein cross-links are resolved is unclear. We found that the SUMO (small ubiquitin-related modifier) ligase ZATT (ZNF451) is a multifunctional DNA repair factor that controls cellular responses to TOP2 damage. ZATT binding to TOP2cc facilitates a proteasome-independent tyrosyl-DNA phosphodiesterase 2 (TDP2) hydrolase activity on stalled TOP2cc. The ZATT SUMO ligase activity further promotes TDP2 interactions with SUMOylated TOP2, regulating efficient TDP2 recruitment through a "split-SIM" SUMO2 engagement platform. These findings uncover a ZATT-TDP2-catalyzed and SUMO2-modulated pathway for direct resolution of TOP2cc.
Collapse
Affiliation(s)
- Matthew J Schellenberg
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Jenna Ariel Lieberman
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, 41092 Sevilla, Spain
| | - Andrés Herrero-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, 41092 Sevilla, Spain
| | - Logan R Butler
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ana M Muñoz-Cabello
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, 41092 Sevilla, Spain
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, 41092 Sevilla, Spain.
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA.
| |
Collapse
|
232
|
Thandapani P, Couturier AM, Yu Z, Li X, Couture JF, Li S, Masson JY, Richard S. Lysine methylation of FEN1 by SET7 is essential for its cellular response to replicative stress. Oncotarget 2017; 8:64918-64931. [PMID: 29029401 PMCID: PMC5630301 DOI: 10.18632/oncotarget.18070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
The DNA damage response (DDR) is central to the cell survival and it requires post-translational modifications, in part, to sense the damage, amplify the signaling response and recruit and regulate DNA repair enzymes. Lysine methylation of histones such as H4K20 and non-histone proteins including p53 has been shown to be essential for the mounting of the DDR. It is well-known that the lysine methyltransferase SET7 regulates the DDR, as cells lacking this enzyme are hypersensitive to chemotherapeutic drugs. To define addition substrates of SET7 involved in the DDR, we screened a peptide array encompassing potential lysine methylation sites from >100 key DDR proteins and identified peptides from 58 proteins to be lysine methylated defining a methylation consensus sequence of [S>K-2; S>R-1; K0] consistent with previous findings. We focused on K377 methylation of the Flap endonuclease 1 (FEN1), a structure specific endonuclease with important functions in Okazaki fragment processing during DNA replication as a substrate of SET7. FEN1 was monomethylated by SET7 in vivo in a cell cycle dependent manner with levels increasing as cells progressed through S phase and decreasing as they exited S phase, as detected using K377me1 specific antibodies. Although K377me1 did not affect the enzymatic activity of FEN1, it was required for the cellular response to replicative stress by FEN1. These finding define FEN1 as a new substrate of SET7 required for the DDR.
Collapse
Affiliation(s)
- Palaniraja Thandapani
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Departments of Oncology and Medicine, McGill University, Montréal, Québec, Canada
| | - Anthony M. Couturier
- Genome Stability Laboratory, Laval University Cancer Research Center, CRCHU de Québec, Québec, Canada
| | - Zhenbao Yu
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Departments of Oncology and Medicine, McGill University, Montréal, Québec, Canada
| | - Xing Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Shawn Li
- Genome Stability Laboratory, Laval University Cancer Research Center, CRCHU de Québec, Québec, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, Laval University Cancer Research Center, CRCHU de Québec, Québec, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Departments of Oncology and Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
233
|
Regulation of Cellular Processes by SUMO: Understudied Topics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:89-97. [PMID: 28197907 DOI: 10.1007/978-3-319-50044-7_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SUMO plays a multiple role in maintenance of cellular homeostasis, both under normal conditions and under cell stress . Considerable effort has been devoted to unraveling the functions of SUMO in regulation of transcription and preservation of genome stability. However, it is clear from high-throughput SUMO proteome studies that SUMO likely regulates many more cellular processes. The function of SUMO in these processes has hardly been explored. This review will focus on the emerging function of SUMO in regulation of several of these processes.
Collapse
|
234
|
RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage. Mol Cell 2017; 66:458-472.e5. [PMID: 28525740 DOI: 10.1016/j.molcel.2017.04.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/22/2016] [Accepted: 04/18/2017] [Indexed: 11/22/2022]
Abstract
Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response.
Collapse
|
235
|
Kizilors A, Pickard MR, Schulte CE, Yacqub-Usman K, McCarthy NJ, Gan SU, Darling D, Gäken J, Williams GT, Farzaneh F. Retroviral insertional mutagenesis implicates E3 ubiquitin ligase RNF168 in the control of cell proliferation and survival. Biosci Rep 2017; 37:BSR20170843. [PMID: 28754805 PMCID: PMC5634340 DOI: 10.1042/bsr20170843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 02/01/2023] Open
Abstract
The E3 ubiquitin ligase RNF168 is a ring finger protein that has previously been identified to play an important regulatory role in the repair of double-strand DNA breaks. In the present study, an unbiased forward genetics functional screen in mouse granulocyte/ macrophage progenitor cell line FDCP1 has identified E3 ubiquitin ligase RNF168 as a key regulator of cell survival and proliferation. Our data indicate that RNF168 is an important component of the mechanisms controlling cell fate, not only in human and mouse haematopoietic growth factor-dependent cells, but also in the human breast epithelial cell line MCF-7. These observations therefore suggest that RNF168 provides a connection to key pathways controlling cell fate, potentially through interaction with PML nuclear bodies and/or epigenetic control of gene expression. Our study is the first to demonstrate a critical role for RNF168 in the in the mechanisms regulating cell proliferation and survival, in addition to its well-established role in DNA repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Shu-Uin Gan
- King's College London, London, N/A, United Kingdom
| | | | - Joop Gäken
- King's College London, London, N/A, United Kingdom
| | - Gwyn T Williams
- Life Sciences, Keele University, Keele, N/A, AT5 5AZ, United Kingdom
| | | |
Collapse
|
236
|
van den Boom J, Wolf M, Weimann L, Schulze N, Li F, Kaschani F, Riemer A, Zierhut C, Kaiser M, Iliakis G, Funabiki H, Meyer H. VCP/p97 Extracts Sterically Trapped Ku70/80 Rings from DNA in Double-Strand Break Repair. Mol Cell 2017; 64:189-198. [PMID: 27716483 DOI: 10.1016/j.molcel.2016.08.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/18/2016] [Accepted: 08/30/2016] [Indexed: 02/07/2023]
Abstract
During DNA double-strand break (DSB) repair, the ring-shaped Ku70/80 complex becomes trapped on DNA and needs to be actively extracted, but it has remained unclear what provides the required energy. By means of reconstitution of DSB repair on beads, we demonstrate here that DNA-locked Ku rings are released by the AAA-ATPase p97. To achieve this, p97 requires ATP hydrolysis, cooperates with the Ufd1-Npl4 ubiquitin-adaptor complex, and specifically targets Ku80 that is modified by K48-linked ubiquitin chains. In U2OS cells, chemical inhibition of p97 or siRNA-mediated depletion of p97 or its adapters impairs Ku80 removal after non-homologous end joining of DSBs. Moreover, this inhibition attenuates early steps in homologous recombination, consistent with p97-driven Ku release also affecting repair pathway choice. Thus, our data answer a central question regarding regulation of Ku in DSB repair and illustrate the ability of p97 to segregate even tightly bound protein complexes for release from DNA.
Collapse
Affiliation(s)
- Johannes van den Boom
- Molecular Biology I, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Markus Wolf
- Molecular Biology I, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lena Weimann
- Molecular Biology I, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Nina Schulze
- ICCE, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Fanghua Li
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - Farnusch Kaschani
- Chemical Proteomics, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Anne Riemer
- Molecular Biology I, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Christian Zierhut
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Markus Kaiser
- Chemical Proteomics, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Hemmo Meyer
- Molecular Biology I, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany.
| |
Collapse
|
237
|
Guan J, Yu S, Zheng X. NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage. Protein Cell 2017; 9:365-379. [PMID: 28831681 PMCID: PMC5876183 DOI: 10.1007/s13238-017-0455-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/21/2017] [Indexed: 01/27/2023] Open
Abstract
NEDDylation has been shown to participate in the DNA damage pathway, but the substrates of neural precursor cell expressed developmentally downregulated 8 (NEDD8) and the roles of NEDDylation involved in the DNA damage response (DDR) are largely unknown. Translesion synthesis (TLS) is a damage-tolerance mechanism, in which RAD18/RAD6-mediated monoubiquitinated proliferating cell nuclear antigen (PCNA) promotes recruitment of polymerase η (polη) to bypass lesions. Here we identify PCNA as a substrate of NEDD8, and show that E3 ligase RAD18-catalyzed PCNA NEDDylation antagonizes its ubiquitination. In addition, NEDP1 acts as the deNEDDylase of PCNA, and NEDP1 deletion enhances PCNA NEDDylation but reduces its ubiquitination. In response to H2O2 stimulation, NEDP1 disassociates from PCNA and RAD18-dependent PCNA NEDDylation increases markedly after its ubiquitination. Impairment of NEDDylation by Ubc12 knockout enhances PCNA ubiquitination and promotes PCNA-polη interaction, while up-regulation of NEDDylation by NEDD8 overexpression or NEDP1 deletion reduces the excessive accumulation of ubiquitinated PCNA, thus inhibits PCNA-polη interaction and blocks polη foci formation. Moreover, Ubc12 knockout decreases cell sensitivity to H2O2-induced oxidative stress, but NEDP1 deletion aggravates this sensitivity. Collectively, our study elucidates the important role of NEDDylation in the DDR as a modulator of PCNA monoubiquitination and polη recruitment.
Collapse
Affiliation(s)
- Junhong Guan
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shuyu Yu
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofeng Zheng
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
238
|
Regulation of DNA Repair Mechanisms: How the Chromatin Environment Regulates the DNA Damage Response. Int J Mol Sci 2017; 18:ijms18081715. [PMID: 28783053 PMCID: PMC5578105 DOI: 10.3390/ijms18081715] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 01/21/2023] Open
Abstract
Cellular DNA is constantly challenged by damage-inducing factors derived from exogenous or endogenous sources. In order to maintain genome stability and integrity, cells have evolved a wide variety of DNA repair pathways which counteract different types of DNA lesions, also referred to as the DNA damage response (DDR). However, DNA in eukaryotes is highly organized and compacted into chromatin representing major constraints for all cellular pathways, including DNA repair pathways, which require DNA as their substrate. Therefore, the chromatin configuration surrounding the lesion site undergoes dramatic remodeling to facilitate access of DNA repair factors and subsequent removal of the DNA lesion. In this review, we focus on the question of how the cellular DNA repair pathways overcome the chromatin barrier, how the chromatin environment is rearranged to facilitate efficient DNA repair, which proteins mediate this re-organization process and, consequently, how the altered chromatin landscape is involved in the regulation of DNA damage responses.
Collapse
|
239
|
Zhao X, Wei C, Li J, Xing P, Li J, Zheng S, Chen X. Cell cycle-dependent control of homologous recombination. Acta Biochim Biophys Sin (Shanghai) 2017; 49:655-668. [PMID: 28541389 DOI: 10.1093/abbs/gmx055] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Indexed: 01/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious type of DNA lesions threatening genome integrity. Homologous recombination (HR) and non-homologous end joining (NHEJ) are two major pathways to repair DSBs. HR requires a homologous template to direct DNA repair, and is generally recognized as a high-fidelity pathway. In contrast, NHEJ directly seals broken ends, but the repair product is often accompanied by sequence alterations. The choice of repair pathways is strictly controlled by the cell cycle. The occurrence of HR is restricted to late S to G2 phases while NHEJ operates predominantly in G1 phase, although it can act throughout most of the cell cycle. Deregulation of repair pathway choice can result in genotoxic consequences associated with cancers. How the cell cycle regulates the choice of HR and NHEJ has been extensively studied in the past decade. In this review, we will focus on the current progresses on how HR is controlled by the cell cycle in both Saccharomyces cerevisiae and mammals. Particular attention will be given to how cyclin-dependent kinases modulate DSB end resection, DNA damage checkpoint signaling, repair and processing of recombination intermediates. In addition, we will discuss recent findings on how HR is repressed in G1 and M phases by the cell cycle.
Collapse
Affiliation(s)
- Xin Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chengwen Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jingjing Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Poyuan Xing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jingyao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Sihao Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
240
|
Yu H, Zhang X, Liu R, Li H, Xiao X, Zhou Y, Wei C, Yang M, Liao M, Zhao J, Xia Z, Liao Q. Mcl-1 suppresses abasic site repair following bile acid-induced hepatic cellular DNA damage. Tumour Biol 2017; 39:1010428317712102. [PMID: 28681695 DOI: 10.1177/1010428317712102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In cholestasis, increases in bile acid levels result in the generation of reactive oxygen species and the induction of DNA damage and mutation. It is believed that bile acid accumulation is associated with liver tumorigenesis. However, the mechanism that underpins this phenomenon remains to be elucidated. Mcl-1, which is overexpressed in hepatic cells, is a pro-survival member of the Bcl-2 family. In this study, we observed that Mcl-1 potently suppresses the repair of bile acid-induced abasic (apurinic/apyrimidinic) sites in DNA lesions. Upon exposure of hepatic cells to glycochenodeoxycholate, one of the major conjugated human bile acids, we observed an increase in AP site accumulation along with induction of poly(ADP-ribose) polymerase and XRCC1 ( X-Ray Repair Cross Complementing 1). In addition, accumulation of Mcl-1 was observed in the nuclei of QGY-7703 cells in response to glycochenodeoxycholate stimulation. Knockdown of endogenous Mcl-1 by RNA interference significantly accelerated the repair of DNA lesions in glycochenodeoxycholate-treated cells. However, unlike XRCC1, poly(ADP-ribose) polymerase was induced following Mcl-1 knockdown. Conversely, poly(ADP-ribose) polymerase suppression was observed following glycochenodeoxycholate treatment of cells overexpressing Mcl-1. Moreover, AP-site counting analyses revealed that DNA repair activity was enhanced in cells overexpressing poly(ADP-ribose) polymerase under glycochenodeoxycholate stress conditions. It is well known that poly(ADP-ribose) polymerase plays a crucial role in the base excision repair pathway. Thus, our findings suggest that Mcl-1 suppresses base excision repair by inhibiting poly(ADP-ribose) polymerase induction following glycochenodeoxycholate-induced DNA damage. These results potentially explain how bile acid accumulation results in genetic instability and carcinogenesis.
Collapse
Affiliation(s)
- Haiyang Yu
- 1 Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiaoqing Zhang
- 2 The Fifth Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Ren Liu
- 3 Merck Research Laboratory, Kenilworth, NJ, USA
| | - Hui Li
- 4 State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Xiaolong Xiao
- 4 State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Yuzheng Zhou
- 4 State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Chaoying Wei
- 4 State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Manyi Yang
- 1 Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Mingmei Liao
- 1 Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Jinfeng Zhao
- 1 Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zanxian Xia
- 4 State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Qiande Liao
- 1 Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
241
|
Ubiquitin-specific protease 21 stabilizes BRCA2 to control DNA repair and tumor growth. Nat Commun 2017; 8:137. [PMID: 28743957 PMCID: PMC5526993 DOI: 10.1038/s41467-017-00206-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/13/2017] [Indexed: 01/23/2023] Open
Abstract
Tumor growth relies on efficient DNA repair to mitigate the detrimental impact of DNA damage associated with excessive cell division. Modulating repair factor function, thus, provides a promising strategy to manipulate malignant growth. Here, we identify the ubiquitin-specific protease USP21 as a positive regulator of BRCA2, a key mediator of DNA repair by homologous recombination. USP21 interacts with, deubiquitinates and stabilizes BRCA2 to promote efficient RAD51 loading at DNA double-strand breaks. As a result, depletion of USP21 decreases homologous recombination efficiency, causes an increase in DNA damage load and impairs tumor cell survival. Importantly, BRCA2 overexpression partially restores the USP21-associated survival defect. Moreover, we show that USP21 is overexpressed in hepatocellular carcinoma, where it promotes BRCA2 stability and inversely correlates with patient survival. Together, our findings identify deubiquitination as a means to regulate BRCA2 function and point to USP21 as a potential therapeutic target in BRCA2-proficient tumors.BRCA2 is essential for the repair of DNA damage; therefore, defects in BRCA2 are associated with tumorigenesis but also with increased susceptibility to genotoxic stress. Here the authors show that USP21 regulates the ability of tumor cells to repair damaged DNA by regulating BRCA2 stability.
Collapse
|
242
|
DNA end resection requires constitutive sumoylation of CtIP by CBX4. Nat Commun 2017; 8:113. [PMID: 28740167 PMCID: PMC5524638 DOI: 10.1038/s41467-017-00183-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
DNA breaks are complex DNA lesions that can be repaired by two alternative mechanisms: non-homologous end-joining and homologous recombination. The decision between them depends on the activation of the DNA resection machinery, which blocks non-homologous end-joining and stimulates recombination. On the other hand, post-translational modifications play a critical role in DNA repair. We have found that the SUMO E3 ligase CBX4 controls resection through the key factor CtIP. Indeed, CBX4 depletion impairs CtIP constitutive sumoylation and DNA end processing. Importantly, mutating lysine 896 in CtIP recapitulates the CBX4-depletion phenotype, blocks homologous recombination and increases genomic instability. Artificial fusion of CtIP and SUMO suppresses the effects of both the non-sumoylatable CtIP mutant and CBX4 depletion. Mechanistically, CtIP sumoylation is essential for its recruitment to damaged DNA. In summary, sumoylation of CtIP at lysine 896 defines a subpopulation of the protein that is involved in DNA resection and recombination. The choice between non-homologous end-joining and homologous recombination to repair a DNA double-strand break depends on activation of the end resection machinery. Here the authors show that SUMO E3 ligase CBX4 sumoylates subpopulation of CtIP to regulate recruitment to breaks and resection.
Collapse
|
243
|
Disruption of DNA repair in cancer cells by ubiquitination of a destabilising dimerization domain of nucleotide excision repair protein ERCC1. Oncotarget 2017; 8:55246-55264. [PMID: 28903417 PMCID: PMC5589656 DOI: 10.18632/oncotarget.19422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022] Open
Abstract
DNA repair pathways present in all cells serve to preserve genome stability, but in cancer cells they also act reduce the efficacy of chemotherapy. The endonuclease ERCC1-XPF has an important role in the repair of DNA damage caused by a variety of chemotherapeutic agents and there has been intense interest in the use of ERCC1 as a predictive marker of therapeutic response in non-small cell lung carcinoma, squamous cell carcinoma and ovarian cancer. We have previously validated ERCC1 as a therapeutic target in melanoma, but all small molecule ERCC1-XPF inhibitors reported to date have lacked sufficient potency and specificity for clinical use. In an alternative approach to prevent the repair activity of ERCC1-XPF, we investigated the mechanism of ERCC1 ubiquitination and found that the key region was the C-terminal (HhH)2 domain which heterodimerizes with XPF. This ERCC1 region was modified by non-conventional lysine-independent, but proteasome-dependent polyubiquitination, involving Lys33 of ubiquitin and a linear ubiquitin chain. XPF was not polyubiquitinated and its expression was dependent on presence of ERCC1, but not vice versa. To our surprise we found that ERCC1 can also homodimerize through its C-terminal (HhH)2 domain. We exploited the ability of a peptide containing this C-terminal domain to destabilise both endogenous ERCC1 and XPF in human melanoma cells and fibroblasts, resulting in reductions of up to 85% in nucleotide excision repair and near two-fold increased sensitivity to DNA damaging agents. We suggest that the ERCC1 (HhH)2 domain could be used in an alternative strategy to treat cancer.
Collapse
|
244
|
Wang Q, Zang Y, Zhou X, Xiao W. Characterization of four rice UEV1 genes required for Lys63-linked polyubiquitination and distinct functions. BMC PLANT BIOLOGY 2017; 17:126. [PMID: 28716105 PMCID: PMC5513143 DOI: 10.1186/s12870-017-1073-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/03/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND The error-free branch of the DNA-damage tolerance (DDT) pathway is orchestrated by Lys63-linked polyubiquitination of proliferating cell nuclear antigen (PCNA), and this polyubiquitination is mediated by a Ubc13-Uev complex in yeast. We have previously cloned OsUBC13 from rice, whose product functions as an E2 to promote Lys63-linked ubiquitin chain assembly in the presence of yeast or human Uev. RESULTS Here we identify four highly conserved UEV1 genes in rice whose products are able to form stable heterodimers with OsUbc13 and mediate Lys63-linked ubiquitin chain assembly. Expression of OsUEV1s is able to rescue the yeast mms2 mutant from death caused by DNA-damaging agents. Interestingly, OsUev1A contains a unique C-terminal tail with a conserved prenylation site not found in the other three OsUev1s, and this post-translational modification appears to be required for its unique subcellular distribution and association with the membrane. The analysis of OsUEV1 expression profiles obtained from the Genevestigator database indicates that these genes are differentially regulated. CONCLUSIONS We speculate that different OsUev1s play distinct roles by serving as a regulatory subunit of the Ubc13-Uev1 complex to respond to diverse cellular, developmental and environmental signals.
Collapse
Affiliation(s)
- Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuepeng Zang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xuan Zhou
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
245
|
Tomimatsu N, Mukherjee B, Harris JL, Boffo FL, Hardebeck MC, Potts PR, Khanna KK, Burma S. DNA-damage-induced degradation of EXO1 exonuclease limits DNA end resection to ensure accurate DNA repair. J Biol Chem 2017; 292:10779-10790. [PMID: 28515316 PMCID: PMC5491765 DOI: 10.1074/jbc.m116.772475] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/11/2017] [Indexed: 12/22/2022] Open
Abstract
End resection of DNA double-strand breaks (DSBs) to generate 3'-single-stranded DNA facilitates DSB repair via error-free homologous recombination (HR) while stymieing repair by the error-prone non-homologous end joining (NHEJ) pathway. Activation of DNA end resection involves phosphorylation of the 5' to 3' exonuclease EXO1 by the phosphoinositide 3-kinase-like kinases ATM (ataxia telangiectasia-mutated) and ATR (ATM and Rad3-related) and by the cyclin-dependent kinases 1 and 2. After activation, EXO1 must also be restrained to prevent over-resection that is known to hamper optimal HR and trigger global genomic instability. However, mechanisms by which EXO1 is restrained are still unclear. Here, we report that EXO1 is rapidly degraded by the ubiquitin-proteasome system soon after DSB induction in human cells. ATR inhibition attenuated DNA-damage-induced EXO1 degradation, indicating that ATR-mediated phosphorylation of EXO1 targets it for degradation. In accord with these results, EXO1 became resistant to degradation when its SQ motifs required for ATR-mediated phosphorylation were mutated. We show that upon the induction of DNA damage, EXO1 is ubiquitinated by a member of the Skp1-Cullin1-F-box (SCF) family of ubiquitin ligases in a phosphorylation-dependent manner. Importantly, expression of degradation-resistant EXO1 resulted in hyper-resection, which attenuated both NHEJ and HR and severely compromised DSB repair resulting in chromosomal instability. These findings indicate that the coupling of EXO1 activation with its eventual degradation is a timing mechanism that limits the extent of DNA end resection for accurate DNA repair.
Collapse
Affiliation(s)
- Nozomi Tomimatsu
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Bipasha Mukherjee
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Janelle Louise Harris
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Francesca Ludovica Boffo
- Department of Molecular Medicine and Medical Biotechnology, Università Federico II, Napoli 80131, Italy, and
| | - Molly Catherine Hardebeck
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Sandeep Burma
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390,
| |
Collapse
|
246
|
Tan M, Zhang D, Zhang E, Xu D, Liu Z, Qiu J, Fan Y, Shen B. SENP2 suppresses epithelial-mesenchymal transition of bladder cancer cells through deSUMOylation of TGF-βRI. Mol Carcinog 2017; 56:2332-2341. [PMID: 28574613 DOI: 10.1002/mc.22687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/20/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022]
Abstract
SUMO-specific protease 2 (SENP2) is a deSUMOylation protease that plays an important role in the regulation of transforming growth factor-β (TGF-β) signaling. Aberrant TGF-β signaling is common in human cancers and contributes to tumor metastasis by inducing an epithelial-mesenchymal transition (EMT). In previous studies, we demonstrated that SENP2 suppresses bladder cancer cell migration and invasion. However, little is known about whether SENP2 inhibits EMT by regulating TGF-β signaling in bladder cancer progression. Here, we investigated the role of SENP2 in regulating TGF-β signaling and bladder cancer metastasis in vitro and in vivo. We found that SENP2 is frequently downregulated in bladder cancer, especially in metastatic bladder cancer. SENP2 downregulation is associated with more aggressive phenotypes and poor patient outcomes. SENP2 knockdown results in a decrease of E-cadherin and an increase of N-cadherin and fibronectin at both transcript and protein levels, indicating that SENP2 negatively regulates EMT. On the contrary, SENP2 overexpression suppresses TGF-β signaling and TGF-β-induced EMT. We further demonstrated that SENP2 regulates TGF-β signaling partly through deSUMOylation of TGFβ receptor I (TGF-βRI). Functionally, SENP2 suppresses bladder cancer cell invasion in vitro and tumor metastasis in vivo, acts as a tumor suppressor gene in bladder cancer. Our results establish a function of SENP2 in metastatic progression and suggest its candidacy as a new prognostic biomarker and target for clinical management of bladder cancer.
Collapse
Affiliation(s)
- Mingyue Tan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Dingguo Zhang
- Department of Urology, Shanghai Pudong New Area people's Hospital, Shanghai, P. R. China
| | - Encheng Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Dongliang Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jianxin Qiu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yu Fan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
247
|
Abstract
DNA double strand breaks need to be repaired in an organized fashion to preserve genomic integrity. In the organization of faithful repair, histone ubiquitination plays a crucial role. Recent findings suggest an integrated model for DNA repair regulation through site-specific histone ubiquitination and crosstalk to other posttranslational modifications. Here we discuss how site-specific histone ubiquitination is achieved on a molecular level and how different multi-protein complexes work together to integrate different histone ubiquitination states. We propose a model where site-specific H2A ubiquitination organizes the spatio-temporal recruitment of DNA repair factors which will ultimately contribute to DNA repair pathway choice between homologous recombination and non-homologous end joining.
Collapse
Affiliation(s)
- Michael Uckelmann
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
248
|
Brun S, Abella N, Berciano MT, Tapia O, Jaumot M, Freire R, Lafarga M, Agell N. SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage. PLoS One 2017; 12:e0178925. [PMID: 28582471 PMCID: PMC5459497 DOI: 10.1371/journal.pone.0178925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/22/2017] [Indexed: 01/06/2023] Open
Abstract
We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus.
Collapse
Affiliation(s)
- Sonia Brun
- Departament Biomedicina, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Neus Abella
- Departament Biomedicina, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Maria T. Berciano
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Olga Tapia
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Montserrat Jaumot
- Departament Biomedicina, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Tenerife, Spain
| | - Miguel Lafarga
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Neus Agell
- Departament Biomedicina, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
249
|
Gong F, Clouaire T, Aguirrebengoa M, Legube G, Miller KM. Histone demethylase KDM5A regulates the ZMYND8-NuRD chromatin remodeler to promote DNA repair. J Cell Biol 2017; 216:1959-1974. [PMID: 28572115 PMCID: PMC5496618 DOI: 10.1083/jcb.201611135] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/14/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
Upon DNA damage, histone modifications are reshaped to accommodate DNA damage signaling and repair. Gong et al. report that the histone demethylase KDM5A promotes loading of the chromatin remodeling complex ZMYND8–NuRD to double-strand DNA breaks through H3K4me3 demethylation, thereby allowing repair of the lesion. Upon DNA damage, histone modifications are dynamically reshaped to accommodate DNA damage signaling and repair within chromatin. In this study, we report the identification of the histone demethylase KDM5A as a key regulator of the bromodomain protein ZMYND8 and NuRD (nucleosome remodeling and histone deacetylation) complex in the DNA damage response. We observe KDM5A-dependent H3K4me3 demethylation within chromatin near DNA double-strand break (DSB) sites. Mechanistically, demethylation of H3K4me3 is required for ZMYND8–NuRD binding to chromatin and recruitment to DNA damage. Functionally, KDM5A deficiency results in impaired transcriptional silencing and repair of DSBs by homologous recombination. Thus, this study identifies a crucial function for KDM5A in demethylating H3K4 to allow ZMYND8–NuRD to operate within damaged chromatin to repair DSBs.
Collapse
Affiliation(s)
- Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Thomas Clouaire
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Marion Aguirrebengoa
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Gaëlle Legube
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| |
Collapse
|
250
|
Li Y, Luo K, Yin Y, Wu C, Deng M, Li L, Chen Y, Nowsheen S, Lou Z, Yuan J. USP13 regulates the RAP80-BRCA1 complex dependent DNA damage response. Nat Commun 2017; 8:15752. [PMID: 28569838 PMCID: PMC5461494 DOI: 10.1038/ncomms15752] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/25/2017] [Indexed: 12/16/2022] Open
Abstract
BRCA1 regulates multiple cellular pathways that maintain genomic stability including cell cycle checkpoints, DNA repair, protein ubiquitination, chromatin remodelling, transcriptional regulation and apoptosis. Receptor-associated protein 80 (RAP80) helps recruit BRCA1 to double-strand breaks (DSBs) through the scaffold protein CCDC98 (Abraxas) and facilitates DNA damage response (DDR). However, the regulation of RAP80-BRCA1 complex is still unclear. Here we report that a deubiquitinase, USP13, regulates DDR by targeting RAP80. Mechanistically, USP13 is phosphorylated by ATM following DNA damage which, in turn, facilitates its DSB localization. USP13, in turn, deubiquitinates RAP80 and promotes RAP80 recruitment and proper DDR. Depleting or inhibiting USP13 sensitizes ovarian cancer cells to cisplatin and PARP inhibitor (olaparib) while overexpression of USP13 renders ovarian cancer cells resistant to chemotherapy. Overall, we identify USP13 as a regulator of DNA repair and reveal a model in which a phosphorylation-deubiquitination axis dynamically regulates RAP80-BRCA1 complex foci formation and function. RAP80 helps to recruit BRCA1 to double-strand breaks, facilitating DNA damage responses. Here the authors report that phosphorylated USP13 deubiquitinates RAP80 after DNA damage, prompting recruitment to the break site.
Collapse
Affiliation(s)
- Yunhui Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Kuntian Luo
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Yujiao Yin
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chenming Wu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lei Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Clinic School of Medicine, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|