201
|
Karagiannis D, Wu W, Li A, Hayashi M, Chen X, Yip M, Mangipudy V, Xu X, Sánchez-Rivera FJ, Soto-Feliciano YM, Ye J, Papagiannakopoulos T, Lu C. Metabolic Reprogramming by Histone Deacetylase Inhibition Selectively Targets NRF2-activated tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538118. [PMID: 37162970 PMCID: PMC10168258 DOI: 10.1101/2023.04.24.538118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Interplay between metabolism and chromatin signaling have been implicated in cancer initiation and progression. However, whether and how metabolic reprogramming in tumors generates specific epigenetic vulnerabilities remain unclear. Lung adenocarcinoma (LUAD) tumors frequently harbor mutations that cause aberrant activation of the NRF2 antioxidant pathway and drive aggressive and chemo-resistant disease. We performed a chromatin-focused CRISPR screen and report that NRF2 activation sensitized LUAD cells to genetic and chemical inhibition of class I histone deacetylases (HDAC). This association was consistently observed across cultured cells, syngeneic mouse models and patient-derived xenografts. HDAC inhibition causes widespread increases in histone H4 acetylation (H4ac) at intergenic regions, but also drives re-targeting of H4ac reader protein BRD4 away from promoters with high H4ac levels and transcriptional downregulation of corresponding genes. Integrative epigenomic, transcriptomic and metabolomic analysis demonstrates that these chromatin changes are associated with reduced flux into amino acid metabolism and de novo nucleotide synthesis pathways that are preferentially required for the survival of NRF2-active cancer cells. Together, our findings suggest that metabolic alterations such as NRF2 activation could serve as biomarkers for effective repurposing of HDAC inhibitors to treat solid tumors.
Collapse
|
202
|
Ghosh AK, Su YP, Forman M, Keyes RF, Smith BC, Hu X, Ferrer M, Arav-Boger R. Harnessing the Noncanonical Keap1-Nrf2 Pathway for Human Cytomegalovirus Control. J Virol 2023; 97:e0016023. [PMID: 36939350 PMCID: PMC10134830 DOI: 10.1128/jvi.00160-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023] Open
Abstract
Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
Collapse
Affiliation(s)
- Ayan K. Ghosh
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yu-Pin Su
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Forman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F. Keyes
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C. Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
203
|
Wu Q, Zhang H, You S, Xu Z, Liu X, Chen X, Zhang W, Ye J, Li P, Zhou X. NEDD4L inhibits migration, invasion, cisplatin resistance and promotes apoptosis of bladder cancer cells by inactivating the p62/Keap1/Nrf2 pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37087754 DOI: 10.1002/tox.23796] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE This study identified the function of neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L) on bladder cancer (BLCA). METHODS NEDD4L expression in BLCA patients was scrutinized. The function of NEDD4L on the viability, apoptosis, migration and invasion of BLCA cells was evaluated by cell counting kit-8, flow cytometry and Transwell assays. The effect of NEDD4L on the cisplatin (DDP) resistance of the DDP-resistant BLCA cells was explored. The influence of NEDD4L on the p62/Keap1/Nrf2 pathway activity in BLCA cells was tested by Western blot. Rescue experiments were implemented to verify whether NEDD4L regulated BLCA cell malignant behavior by mediating the Keap1/Nrf2 pathway activity via p62. The effect of NEDD4L on the growth and the p62/Keap1/Nrf2 pathway activity in vivo was researched in xenograft tumor nude mice models. RESULTS The down-regulated NEDD4L in BLCA patients was associated with unfavorable survival. NEDD4L suppressed the viability (inhibition rate 57.1%/49.0%), migration (inhibition rate 49.7%/77.1%), invasion (inhibition rate 50.6%/75.7%), promoted the apoptosis of T24/5637 cells (promotion rate 243.8%/201.9%), reduced IC 50 of DDP-resistant T24/5637 cells from 132.2/101.8 to 57.81/59.71 μM, respectively, and inactivated the p62/Keap1/Nrf2 pathway in T24/5637 cells. p62 up-regulation partially abrogated the inhibition of NEDD4L on the Keap1/Nrf2 pathway activity, the malignant behavior of BLCA cells, and the DDP resistance of DDP-resistant BLCA cells. NEDD4L overexpression inhibited the tumor growth and the p62/Keap1/Nrf2 pathway activity in vivo in BLCA. CONCLUSION NEDD4L inhibits the progression of BLCA by inactivating the p62/Keap1/Nrf2 pathway. It may be an effective target for BLCA treatment.
Collapse
Affiliation(s)
- Qi Wu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Huijiang Zhang
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Shengjie You
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Zhaoyu Xu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Xiang Liu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Xuedong Chen
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Weili Zhang
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Junjie Ye
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Peng Li
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Xiaoqing Zhou
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| |
Collapse
|
204
|
Liang X, Yao J, Cui D, Zheng W, Liu Y, Lou G, Ye B, Shui L, Sun Y, Zhao Y, Zheng M. The TRAF2-p62 axis promotes proliferation and survival of liver cancer by activating mTORC1 pathway. Cell Death Differ 2023:10.1038/s41418-023-01164-7. [PMID: 37081115 DOI: 10.1038/s41418-023-01164-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
TRAF2 (Tumor necrosis factor receptor-associated factor 2) is a dual function protein, acting as an adaptor protein and a ubiquitin E3 ligase, which plays an essential role in mediating the TNFα-NFκB signal pathway. Dysregulated expression of TRAF2 has been reported in a variety of human cancers. Whether and how TRAF2 regulates the growth of liver cancer cells remains elusive. The goal of this study is to investigate potential dysregulation of TRAF2 and its biological function in liver cancer, and to elucidate the underlying mechanism, leading to validation of TRAF2 as an attractive liver cancer target. Here, we reported TRAF2 is up-regulated in human liver cancer cell lines and tissues, and high TRAF2 expression is associated with a poor prognosis of HCC patients. Proteomics profiling along with Co-immunoprecipitation analysis revealed that p62 is a new substrate of TRAF2, which is subjected to TRAF2-induced polyubiquitination via the K63 linkage at the K420 residue. A strong negative correlation was found between the protein levels of p62 and TRAF2 in human HCC samples. TRAF2 depletion inhibited growth and survival of liver cancer cells both in vitro and in vivo by causing p62 accumulation, which is partially rescued by simultaneous p62 knockdown. Mechanistically, TRAF2-mediated p62 polyubiquitylation activates the mTORC1 by forming the p62-mTORC1-Rag complex, which facilitates the lysosome localization of mTORC1. TRAF2 depletion inhibited mTORC1 activity through the disruption of interaction between p62 and the mTORC1 complex. In conclusion, our study provides the proof-of-concept evidence that TRAF2 is a valid target for liver cancer.
Collapse
Affiliation(s)
- Xue Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Jiping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Danrui Cui
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Weiyang Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Bingjue Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Liyan Shui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China.
| |
Collapse
|
205
|
Chen YQ, Gao LD, Liu YL, Shen Y, Diao JL, Yang WH, Wei RL. Autophagy in graves' ophthalmopathy. Front Cell Dev Biol 2023; 11:1158279. [PMID: 37123414 PMCID: PMC10140433 DOI: 10.3389/fcell.2023.1158279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is an inflammatory autoimmune disease that affects the eyes. It can significantly alter the quality of life in patients because of its distinctive pathological appearance and the effect on vision. To date, the exact pathological mechanism of GO has not been explicitly discovered. However, several studies have associated autophagy with this disease. Autophagy is a catabolic process that helps maintain homeostasis in all organisms by protecting the cells and tissues from various endogenous and exogenous stress factors. Based on our results, patients affected with GO have comparatively elevated levels of autophagy, which critically affects the pathological mechanism of the GO. In this review, we have summarized the autophagy mechanism in the pathogenesis of GO.
Collapse
Affiliation(s)
- Yu-Qing Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Lian-Di Gao
- Department of Nursing, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Yi-Lin Liu
- Department of Nursing, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Ya Shen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Jia-Le Diao
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Wei-Hua Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Rui-Li Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| |
Collapse
|
206
|
Almeida Lima K, Osawa IYA, Ramalho MCC, de Souza I, Guedes CB, Souza Filho CHDD, Monteiro LKS, Latancia MT, Rocha CRR. Temozolomide Resistance in Glioblastoma by NRF2: Protecting the Evil. Biomedicines 2023; 11:biomedicines11041081. [PMID: 37189700 DOI: 10.3390/biomedicines11041081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
The transcription factor NRF2 is constitutively active in glioblastoma, a highly aggressive brain tumor subtype with poor prognosis. Temozolomide (TMZ) is the primary chemotherapeutic agent for this type of tumor treatment, but resistance to this drug is often observed. This review highlights the research that is demonstrating how NRF2 hyperactivation creates an environment that favors the survival of malignant cells and protects against oxidative stress and TMZ. Mechanistically, NRF2 increases drug detoxification, autophagy, DNA repair, and decreases drug accumulation and apoptotic signaling. Our review also presents potential strategies for targeting NRF2 as an adjuvant therapy to overcome TMZ chemoresistance in glioblastoma. Specific molecular pathways, including MAPKs, GSK3β, βTRCP, PI3K, AKT, and GBP, that modulate NRF2 expression leading to TMZ resistance are discussed, along with the importance of identifying NRF2 modulators to reverse TMZ resistance and develop new therapeutic targets. Despite the significant progress in understanding the role of NRF2 in GBM, there are still unanswered questions regarding its regulation and downstream effects. Future research should focus on elucidating the precise mechanisms by which NRF2 mediates resistance to TMZ, and identifying potential novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Karoline Almeida Lima
- Department of Clinical and Experimental Oncology, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04037-003, Brazil
| | - Isabeli Yumi Araújo Osawa
- Department of Clinical and Experimental Oncology, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04037-003, Brazil
| | - Maria Carolina Clares Ramalho
- Department of Clinical and Experimental Oncology, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04037-003, Brazil
| | - Izadora de Souza
- Department of Clinical and Experimental Oncology, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04037-003, Brazil
| | - Camila Banca Guedes
- Department of Clinical and Experimental Oncology, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04037-003, Brazil
| | | | | | - Marcela Teatin Latancia
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Clarissa Ribeiro Reily Rocha
- Department of Clinical and Experimental Oncology, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04037-003, Brazil
| |
Collapse
|
207
|
Hubert A, Achour D, Grare C, Zarcone G, Muntaner M, Hamroun A, Gauthier V, Amouyel P, Matran R, Zerimech F, Lo-Guidice JM, Dauchet L. The relationship between residential exposure to atmospheric pollution and circulating miRNA in adults living in an urban area in northern France. ENVIRONMENT INTERNATIONAL 2023; 174:107913. [PMID: 37037173 DOI: 10.1016/j.envint.2023.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/04/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION MicroRNAs are epigenetic regulatory factors capable of silencing the expression of target genes and might mediate the effects of air pollution on health. The objective of the present population-based study was to investigate the association between microRNA expression and long-term, residential exposure to atmospheric PM10 and NO2. METHOD We included 998 non-smoking adult participants from the cross-sectional ELISABET survey (2010-2014) in the Lille urban area of France. The mean residential annual pollution levels were estimated with an atmospheric dispersion modelling system. Ten microRNAs were selected on the basis of the literature data, together with two housekeeping microRNAs (miR-93-5p and miR-191-5p) and were quantified with RT-qPCRs. Multivariate linear regression models were used to study the association between microRNAs and air pollution. The threshold for statistical significance (after correction for the FDR) was set to p < 0.1. RESULTS The mean annual exposure between 2011 and the year of inclusion was 26.4 ± 2.0 µg/m3 for PM10 and 24.7 ± 5.1 µg/m3 for NO2. Each 2 µg/m3 increment in PM10 exposure was associated with an 8.6% increment (95%CI [3.1; 14.3]; pFDR = 0.019) in miR-451a expression. A 5 µg/m3 increment in NO2 exposure was associated with a 5.3% increment ([0.7; 10]; pFDR = 0.056) in miR451a expression, a 3.6% decrement (95%CI [-6.1; -1.1]; pFDR = 0.052) in miR-223-3p expression, a 3.8% decrement (95%CI[-6.8; -0.7]; pFDR = 0.079) in miR-28-3p expression, a 4.3% decrement (95%CI [-7.7; -0.8]; pFDR = 0.055) in miR-146a-5p expression, and a 4.0% decrement (95% CI[-7.4; -0.4]; pFDR = 0.059) in miR-23a-5p expression. The difference between the two housekeeping microRNAs miR-93-5p and miR-191-5p was also associated with PM10 and NO2 exposure. CONCLUSION Our results suggest that circulating miRNAs are potentially valuable biomarkers of the effects of air pollution.
Collapse
Affiliation(s)
- Audrey Hubert
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Djamal Achour
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Céline Grare
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Gianni Zarcone
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Manon Muntaner
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Aghiles Hamroun
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Victoria Gauthier
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Philippe Amouyel
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Régis Matran
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Farid Zerimech
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Jean-Marc Lo-Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Luc Dauchet
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| |
Collapse
|
208
|
Hallis SP, Kim JM, Kwak MK. Emerging Role of NRF2 Signaling in Cancer Stem Cell Phenotype. Mol Cells 2023; 46:153-164. [PMID: 36994474 PMCID: PMC10070166 DOI: 10.14348/molcells.2023.2196] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer stem cells (CSCs) are a small population of tumor cells characterized by self-renewal and differentiation capacity. CSCs are currently postulated as the driving force that induces intra-tumor heterogeneity leading to tumor initiation, metastasis, and eventually tumor relapse. Notably, CSCs are inherently resistant to environmental stress, chemotherapy, and radiotherapy due to high levels of antioxidant systems and drug efflux transporters. In this context, a therapeutic strategy targeting the CSC-specific pathway holds a promising cure for cancer. NRF2 (nuclear factor erythroid 2-like 2; NFE2L2) is a master transcription factor that regulates an array of genes involved in the detoxification of reactive oxygen species/electrophiles. Accumulating evidence suggests that persistent NRF2 activation, observed in multiple types of cancer, supports tumor growth, aggressive malignancy, and therapy resistance. Herein, we describe the core properties of CSCs, focusing on treatment resistance, and review the evidence that demonstrates the roles of NRF2 signaling in conferring unique properties of CSCs and the associated signaling pathways.
Collapse
Affiliation(s)
- Steffanus P. Hallis
- Department of Pharmacy, Graduate School, The Catholic University of Korea, Bucheon 14662, Korea
| | - Jin Myung Kim
- Department of Pharmacy, Graduate School, The Catholic University of Korea, Bucheon 14662, Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy, Graduate School, The Catholic University of Korea, Bucheon 14662, Korea
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
209
|
Rathore AS, Singh SS, Birla H, Zahra W, Keshri PK, Dilnashin H, Singh R, Singh S, Singh SP. Curcumin Modulates p62-Keap1-Nrf2-Mediated Autophagy in Rotenone-Induced Parkinson's Disease Mouse Models. ACS Chem Neurosci 2023. [PMID: 36989171 DOI: 10.1021/acschemneuro.2c00706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Autophagy mediates self-digestion of abnormally aggregated proteins and organelles present in the cytoplasm. This mechanism may prove to be neuroprotective against Parkinson's disease (PD) by clearing misfolded α-synuclein (α-syn) aggregates from dopaminergic neurons. p62, an adaptor protein acts as a selective substrate for autophagy and regulates the formation as well as the degradation of protein aggregates. p62 sequesters keap1 freeing Nrf2 and consequently activating the transcription of its target genes. In the present study, we aimed to investigate the anti-parkinsonian activity of curcumin targeting primarily activation of autophagy via the Nrf2-Keap1 pathway. The mice were subcutaneously injected with rotenone (2.5 mg/kg bodyweight) and co-treated with oral administration of curcumin (80 mg/kg bodyweight) for 35 days. Following completion of dosing, motor activities, anti-oxidative potential, mitochondrial dysfunction, and various protein expressions, including Nrf2, Keap1, p62, LC3, Bcl2, Bax, and caspase 3, were assessed. The results revealed that curcumin restored the motor coordination and anti-oxidative activity while improving the mitochondrial functioning in PD mice. Autophagy was evaluated by the change in the expression of autophagic markers, p62 and LC3-II. Reduced p62 and LC3-II expressions in the rotenone mouse model of PD confirmed the compromised autophagy pathway, consequently increasing the aggregation of misfolded protein α-syn. Whereas, curcumin treatment-enhanced autophagy-mediated clearance of misfolded α-syn proteins by increasing the LC3-II expression and blocked apoptotic cascade. Curcumin administration upregulated the Nrf2 expression and normalized the Nrf2-Keap1 pathway, which justifies the improved anti-oxidative activity. Therefore, the findings reveal that curcumin is a Nrf2-inducer and is endowed with neuroprotective potential, which may prove to be a potential candidate for the anti-Parkinson's disease treatment therapy.
Collapse
Affiliation(s)
- Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shekhar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
210
|
Lv X, Tang W, Qin J, Wang W, Dong J, Wei Y. The crosslinks between ferroptosis and autophagy in asthma. Front Immunol 2023; 14:1140791. [PMID: 37063888 PMCID: PMC10090423 DOI: 10.3389/fimmu.2023.1140791] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is an evolutionarily conserved cellular process capable of degrading various biological molecules and organelles via the lysosomal pathway. Ferroptosis is a type of oxidative stress-dependent regulated cell death associated with the iron accumulation and lipid peroxidation. The crosslinks between ferroptosis and autophagy have been focused on since the dependence of ferroptosis on autophagy was discovered. Although the research and theories on the relationship between autophagy and ferroptosis remain scattered and fragmented, the crosslinks between these two forms of regulated cell death are closely related to the treatment of various diseases. Thereof, asthma as a chronic inflammatory disease has a tight connection with the occurrence of ferroptosis and autophagy since the crosslinked signal pathways may be the crucial regulators or exactly regulated by cells and secretion in the immune system. In addition, non-immune cells associated with asthma are also closely related to autophagy and ferroptosis. Further studies of cross-linking asthma inflammation with crosslinked signaling pathways may provide us with several key molecules that regulate asthma through specific regulators. The crosslinks between autophagy and ferroptosis provide us with a new perspective to interpret and understand the manifestations of asthma, potential drug discovery targets, and new therapeutic options to effectively intervene in the imbalance caused by abnormal inflammation in asthma. Herein, we introduce the main molecular mechanisms of ferroptosis, autophagy, and asthma, describe the role of crosslinks between ferroptosis and autophagy in asthma based on their common regulatory cells or molecules, and discuss potential drug discovery targets and therapeutic applications in the context of immunomodulatory and symptom alleviation.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Ying Wei, ; Jingcheng Dong,
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Ying Wei, ; Jingcheng Dong,
| |
Collapse
|
211
|
Ke PY. Crosstalk between Autophagy and RLR Signaling. Cells 2023; 12:cells12060956. [PMID: 36980296 PMCID: PMC10047499 DOI: 10.3390/cells12060956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Autophagy plays a homeostatic role in regulating cellular metabolism by degrading unwanted intracellular materials and acts as a host defense mechanism by eliminating infecting pathogens, such as viruses. Upon viral infection, host cells often activate retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling to induce the transcription of type I interferons, thus establishing the first line of the innate antiviral response. In recent years, numerous studies have shown that virus-mediated autophagy activation may benefit viral replication through different actions on host cellular processes, including the modulation of RLR-mediated innate immunity. Here, an overview of the functional molecules and regulatory mechanism of the RLR antiviral immune response as well as autophagy is presented. Moreover, a summary of the current knowledge on the biological role of autophagy in regulating RLR antiviral signaling is provided. The molecular mechanisms underlying the crosstalk between autophagy and RLR innate immunity are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
212
|
Abstract
Significance: Central nervous system (CNS) diseases are disorders of the brain and/or spinal cord and include neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor belonging to the cap-n-collar family that harbors a unique basic leucine zipper motif and plays as a master regulator of homeostatic responses. Recent Advances: Kelch-like ECH-associated protein 1 (KEAP1) is an adaptor of the Cullin3 (CUL3)-based ubiquitin E3 ligase that enhances the ubiquitylation of NRF2, which promotes the degradation of NRF2 to suppress its transcriptional activity in the absence of stress. Cysteine residues of KEAP1 are modified under stress conditions, and NRF2 degradation is attenuated, allowing it to accumulate and induce the expression of target genes. This regulatory system is referred to as the KEAP1-NRF2 system and plays a central role in protecting cells against various stresses. NRF2 also negatively regulates the expression of inflammatory cytokine and chemokine genes and suppresses pathological inflammation. As oxidative stress, inflammation, and proteostasis are known to contribute to neurodegenerative diseases, the KEAP1-NRF2 system is an attractive target for the treatment of these diseases. Critical Issues: In mouse models of neurodegenerative diseases, Nrf2 depletion exacerbates symptoms and enhances oxidative damage and inflammation in the CNS. In contrast, chemical or genetic NRF2 activation improves these symptoms. Indeed, the NRF2-activating chemical dimethyl fumarate is now widely used for the clinical treatment of MS. Future Directions: The KEAP1-NRF2 system is a promising therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
213
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
214
|
Wang L, Han H, Feng Y, Ma J, Han Z, Li R, Zhu W, Li S, Tian J, Zhang L. Capilliposide B inhibits the migration of prostate cancer by inducing autophagy through the ROS/AMPK/mTOR pathway. Phytother Res 2023. [PMID: 36867511 DOI: 10.1002/ptr.7785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Capilliposide B (CPS-B), a novel oleanane triterpenoid saponin derived from Lysimachia capillipes Hemsl, is a potent anticancer agent. However, its anticancer mechanism remains elusive. In the present study, we demonstrated the potent anti-tumor activity and molecular mechanism of CPS-B both in vitro and in vivo. Proteomic analysis using isobaric tags for relative and absolute quantitation techniques suggested that CPS-B modulated autophagy in prostate cancer (PC). Moreover, Western blotting showed that both autophagy and epithelial-mesenchymal transition occurred place after CPS-B treatment in vivo, which was also proven in PC-3 cancer cells. We deduced that CPS-B inhibited migration by inducing autophagy. We examined the accumulation of reactive oxygen species (ROS) in cells, and in downstream pathways, LKB1 and AMPK were activated while mTOR was inhibited. Transwell experiment results showed that CPS-B inhibited the metastasis of PC-3 cells and that this effect was significantly attenuated after pretreatment with chloroquine, indicating that CPS-B inhibited metastasis via autophagy induction. Altogether, these data suggest that CPS-B is a potential therapeutic agent for cancer treatment that acts by inhibiting migration through the ROS/AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Luping Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Haote Han
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yue Feng
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Jiahui Ma
- Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Zhuo Han
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Ruyi Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Wei Zhu
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Shouxin Li
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| |
Collapse
|
215
|
Kwon J, Kim J, Kim KI. Crosstalk between endoplasmic reticulum stress response and autophagy in human diseases. Anim Cells Syst (Seoul) 2023; 27:29-37. [PMID: 36860271 PMCID: PMC9970256 DOI: 10.1080/19768354.2023.2181217] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Cells activate protective mechanisms to overcome stressful conditions that threaten cellular homeostasis, including imbalances in calcium, redox, and nutrient levels. Endoplasmic reticulum (ER) stress activates an intracellular signaling pathway, known as the unfolded protein response (UPR), to mitigate such circumstances and protect cells. Although ER stress is sometimes a negative regulator of autophagy, UPR induced by ER stress typically activates autophagy, a self-degradative pathway that further supports its cytoprotective role. Sustained activation of ER stress and autophagy is known to trigger cell death and is considered a therapeutic target for certain diseases. However, ER stress-induced autophagy can also lead to treatment resistance in cancer and exacerbation of certain diseases. Since the ER stress response and autophagy affect each other, and the degree of their activation is closely related to various diseases, understanding their relationship is very important. In this review, we summarize the current understanding of two fundamental cellular stress responses, the ER stress response and autophagy, and their crosstalk under pathological conditions to help develop therapies for inflammatory diseases, neurodegenerative disorders, and cancer.
Collapse
Affiliation(s)
- Junhee Kwon
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Jihyun Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea, Keun Il Kim Department of Biological Sciences, Sookmyung Women’s University, Seoul04310, Republic of Korea
| |
Collapse
|
216
|
Dinkova-Kostova AT, Copple IM. Advances and challenges in therapeutic targeting of NRF2. Trends Pharmacol Sci 2023; 44:137-149. [PMID: 36628798 DOI: 10.1016/j.tips.2022.12.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Activation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is emerging as an attractive therapeutic approach to counteract oxidative stress, inflammation, and metabolic imbalances. These processes underpin many chronic pathologies with unmet therapeutic needs, including neurodegenerative disorders and metabolic diseases. As the NRF2 field transitions into the clinical phase of its evolution, the need for an understanding of the factors influencing NRF2 pharmacology has never been greater. In this opinion article we describe the rationale for targeting NRF2, summarise the recent advances in drug development of NRF2 modulators, and reflect on the remaining challenges in realising the full clinical potential of NRF2 as a therapeutic target.
Collapse
Affiliation(s)
- Albena T Dinkova-Kostova
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ian M Copple
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK.
| |
Collapse
|
217
|
Wu Y, Tan HWS, Lin JY, Shen HM, Wang H, Lu G. Molecular mechanisms of autophagy and implications in liver diseases. LIVER RESEARCH 2023; 7:56-70. [PMID: 39959698 PMCID: PMC11792062 DOI: 10.1016/j.livres.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Autophagy is a highly conserved process in which cytosolic contents are degraded by the lysosome, which plays an important role in energy and nutrient balance, and protein or organelle quality control. The liver is the most important organ for metabolism. Studies to date have revealed a significant role of autophagy in the maintenance of liver homeostasis under basal and stressed conditions, and the impairment of autophagy has been closely linked to various liver diseases. Therefore, a comprehensive understanding of the roles of autophagy in liver diseases may help in the development of therapeutic strategies via targeting autophagy. In this review, we will summarize the latest understanding of the molecular mechanisms of autophagy and systematically discuss its implications in various liver diseases, including alcohol-related liver disease, non-alcoholic fatty liver disease, viral hepatitis, hepatocellular carcinoma, and acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Yuankai Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Yi Lin
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
218
|
Ji L, Moghal N, Zou X, Fang Y, Hu S, Wang Y, Tsao MS. The NRF2 antagonist ML385 inhibits PI3K-mTOR signaling and growth of lung squamous cell carcinoma cells. Cancer Med 2023; 12:5688-5702. [PMID: 36305267 PMCID: PMC10028163 DOI: 10.1002/cam4.5311] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) currently has limited therapeutic options because of the relatively few validated targets and the lack of clinical drugs for some of these targets. Although NRF2/NFE2L2 pathway activation commonly occurs in LUSC, NRF2 has predominantly been studied in other cancer models. Here, we investigated the function of NRF2 in LUSC, including in organoid models, and we explored the activity of a small molecule NRF2 inhibitor ML385, which has not previously been investigated in LUSC. METHODS We first explored the role of NRF2 signaling in LUSC cancer cell line and organoid proliferation through NRF2 knockdown or ML385 treatment, both in vivo and in vitro. Next, we performed Western blot and immunofluorescence assays to determine the effect of NRF2 inhibition on PI3K-mTOR signaling. Finally, we used cell viability and clonogenic assays to explore whether ML385 could sensitize LUSC cancer cells to PI3K inhibitors. RESULTS We find that downregulation of NRF2 signaling inhibited proliferation of LUSC cancer cell lines and organoids, both in vivo and in vitro. We also demonstrate that inhibition of NRF2 reduces PI3K-mTOR signaling, with two potential mechanisms being involved. Although NRF2 promotes AKT phosphorylation, it also acts downstream of AKT to increase RagD protein expression and recruitment of mTOR to lysosomes after amino acid stimulation. We also find that ML385 potentiates LUSC growth inhibition by a pan-PI3K inhibitor, which correlates with stronger inhibition of PI3K-mTOR signaling. CONCLUSIONS Our data provide additional support for NRF2 promoting LUSC growth through PI3K-mTOR activation and support development of NRF2 inhibitors for the treatment of LUSC.
Collapse
Affiliation(s)
- Lili Ji
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Xinru Zou
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yixuan Fang
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Shuning Hu
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yuhui Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
219
|
Tanaka H, Mizuno M, Ishikawa K, Miron C, Okazaki Y, Toyokuni S, Nakamura K, Kajiyama H, Hori M. Plasma activated Ringer's lactate solution. Free Radic Res 2023; 57:14-20. [PMID: 36815453 DOI: 10.1080/10715762.2023.2182663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Low-temperature plasma (LTP) has been widely used in life science. Plasma-activated solutions were defined as solutions irradiated with LTP, and water, medium, and Ringer's solutions have been irradiated with LTP to produce plasma-activated solutions. They contain chemical compounds produced by reactions among LTP, air, and solutions. Reactive oxygen and nitrogen species (RONS) are major components in plasma-activated solutions and recent studies revealed that plasma-activated organic compounds are produced in plasma-activated Ringer's lactate solution (PAL). Many in vitro and in vivo studies demonstrated that PAL exhibits anti-tumor effects on cancers, and biochemical analyses revealed intracellular molecular mechanisms of cancer cell death by PAL.
Collapse
Affiliation(s)
- Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Kenji Ishikawa
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Camelia Miron
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Toyokuni
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kae Nakamura
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan.,Department of Obstetrics and Gynecology, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan.,Department of Obstetrics and Gynecology, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
220
|
Zhang H, Xue Y, Xie W, Wang Y, Ma N, Chang G, Shen X. Subacute ruminal acidosis downregulates FOXA2, changes oxidative status, and induces autophagy in the livers of dairy cows fed a high-concentrate diet. J Dairy Sci 2023; 106:2007-2018. [PMID: 36631320 DOI: 10.3168/jds.2022-22222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/02/2022] [Indexed: 01/11/2023]
Abstract
The purpose of this experiment was to investigate high-concentrate feeding-induced changed status of oxidative and autophagy in the livers of dairy cows. Hepatocyte nuclear factor 3β (FOXA2) was reported in cases of liver fibrosis, glucolipid metabolism, and hepatocyte differentiation, but not in cases liver damage in cows fed a high-concentrate diet. Therefore, we also aimed to explore the potential role of FOXA2 in SARA-induced liver damage. We divided 12 mid-lactating Holstein cows into 2 groups and fed them a high-concentrate (HC group, forage:concentrate = 4:6) and a low-concentrate (forage:concentrate = 6:4) diet. After a 2-wk adaptation period and a 3-wk experimental period, peripheral blood was collected for determination of antioxidant enzyme activity, and liver tissue was collected to examine genes and proteins. On d 20 and 21 of the experiment, rumen fluid was collected, and the pH was measured. A significant difference in rumen fluid pH was found between the 2 groups (low-concentrate: 6.10 ± 0.07 vs. HC: 5.59 ± 0.09). The rumen fluid pH in the HC group was less than 5.6 at 2 time points, indicating that SARA was successfully induced. Lipopolysaccharide (0.24 ± 0.10 vs. 0.42 ± 0.12) and malondialdehyde (1.46 ± 0.25 vs. 2.94 ± 0.65) increased, whereas superoxide dismutase (14.06 ± 0.63 vs. 11.71 ± 0.64), reduced glutathione (14.48 ± 2.25 vs. 6.82 ± 0.67), and the total antioxidant capacity (0.43 ± 0.03 vs. 0.30 ± 0.03) decreased in the peripheral blood of the HC group. Moreover, in liver tissue from the HC group, catalase (0.71 ± 0.03 vs. 0.49 ± 0.03) and superoxide dismutase (27.46 ± 1.90 vs. 20.32 ± 1.54) were decreased, whereas malondialdehyde (0.21 ± 0.03 vs. 0.28 ± 0.03) was elevated. Meanwhile, we observed lower gene expression of CAT (1.00 ± 0.15 vs. 0.64 ± 0.17), NAD(P)H quinone dehydrogenase 1 (NQO1; 1.00 ± 0.09 vs. 0.47 ± 0.14), glutathione peroxidase 1 (GPX1; 1.03 ± 0.27 vs. 0.55 ± 0.09), SOD1 (1.01 ± 0.17 vs. 0.76 ± 0.17), and SOD3 (1.02 ± 0.21 vs. 0.55 ± 0.16) in the liver tissue of the HC group. Furthermore, western blot analysis showed that high-concentrate feeding led to decreased sirtuin-1 (SIRT1) (1.00 ± 0.10 vs. 0.62 ± 0.15) and FOXA2 (1.02 ± 0.19 vs. 0.68 ± 0.18), elevated autophagy-related protein microtubule associated protein 1 light chain 3 II (MAP1LC3-II; 1.00 ± 0.32 vs. 1.98 ± 0.83) and autophagy related 5 (ATG5; 1.00 ± 0.30 vs. 1.80 ± 0.27), and suppressed antioxidant signaling pathway-related protein nuclear factor erythroid 2-like 2 (NFE2L2; 1.00 ± 0.18 vs. 0.61 ± 0.30) and heme oxygenase 1 (HMOX1; 1.00 ± 0.48 vs. 0.38 ± 0.25) in liver tissue. Overall, these data indicated that SARA elevated systematic oxidative status and enhanced autophagy in the liver, and suppressed SIRT1 and FOXA2 may mediate enhanced oxidative damage and autophagy in the livers of dairy cows fed a high-concentrate diet.
Collapse
Affiliation(s)
- Hongzhu Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Yang Xue
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China.
| |
Collapse
|
221
|
Yang C, Lu T, Liu M, Yuan X, Li D, Zhang J, Zhou L, Xu M. Tiliroside targets TBK1 to induce ferroptosis and sensitize hepatocellular carcinoma to sorafenib. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154668. [PMID: 36657316 DOI: 10.1016/j.phymed.2023.154668] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Combination therapy with other antineoplastic agent is a favorable approach for targeting the molecules involved in sorafenib resistance. PURPOSE In the present study, we determined whether tiliroside, a natural flavonoid glycoside isolated from oriental paperbush flower, could improve the sensitivity of hepatocellular carcinoma (HCC) cells to sorafenib. Furthermore, we investigated the mechanisms and identified the potential drug targets of tiliroside. METHODS Synergy was performed using CalcuSyn. Transcriptomic studies were adopted to investigate whether tiliroside could induce ferroptosis and inhibit the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in HCC cells. Ferroptosis was analyzed using western blotting, flow cytometry, and transmission electron microscopy. Immunofluorescence, co-immunoprecipitation, and Nrf2 knockdown or overexpression were performed to confirm the involvement of Nrf2 in tiliroside-induced ferroptosis. Additionally, molecular docking and biolayer interferometry-based measurements were used to confirm the direct target of tiliroside. Finally, subcutaneous xenograft and orthotopic xenograft tumors in nude mice were used to assess the effects of tiliroside in vivo. RESULTS Tiliroside significantly enhanced the anti-HCC activity of sorafenib without any discernible side effects. Moreover, the combination of tiliroside and sorafenib induced synergistic effects against HCC in vitro. The inhibitory effects of tiliroside on HCC were antagonized by N-acetylcysteine and the ferroptosis inhibitor liproxstatin-1. Studies on the mechanism of action revealed that tiliroside could directly bind to TANK-binding kinase 1 (TBK1) and inhibit its enzymatic activity. Inhibition of TBK1 by tiliroside decreased the phosphorylation of serine 349 on sequestosome-1 (p62) and the affinity of p62 for kelch like ECH-associated protein 1 (Keap1) and promoted Keap1-mediated Nrf2 ubiquitination and degradation. The downstream target proteins of Nrf2, including glutathione peroxidase 4, ferritin heavy chain 1, and glucose-6-phosphate dehydrogenase, demonstrated similar results to that of Nrf2 protein, inducing ferroptosis in tiliroside-treated HCC cells. We extended these findings in vivo and found that tiliroside inhibited the growth of HepG2 tumors in both subcutaneous xenograft and orthotopic xenograft tumor models of HCC. CONCLUSION Our findings imply that tiliroside is a potent TBK1 inhibitor and a candidate natural anti-cancer product that could function as a sensitizer of sorafenib in HCC treatment by targeting TBK1 to induce ferroptosis.
Collapse
Affiliation(s)
- Chen Yang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Tao Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Ming Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaoqing Yuan
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Desheng Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jiayu Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
222
|
Abstract
Herpes simplex virus 1 (HSV-1) is a DNA virus belonging to the family Herpesviridae. HSV-1 infection causes severe neurological disease in the central nervous system (CNS), including encephalitis. Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. Here, we demonstrate that HSV-1 induces ferroptosis, as hallmarks of ferroptosis, including Fe2+ overload, reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, lipid peroxidation, and mitochondrion shrinkage, are observed in HSV-1-infected cultured human astrocytes, microglia cells, and murine brains. Moreover, HSV-1 infection enhances the E3 ubiquitin ligase Keap1 (Kelch-like ECH-related protein 1)-mediated ubiquitination and degradation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidative genes, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin E2 (PGE2) plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by a ferroptosis inhibitor or a proteasome inhibitor to suppress Nrf2 degradation effectively alleviated HSV-1 encephalitis. Together, our findings demonstrate the interaction between HSV-1 infection and ferroptosis and provide novel insights into the pathogenesis of HSV-1 encephalitis. IMPORTANCE Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. In the current study, we demonstrate that HSV-1 infection induces ferroptosis, as Fe2+ overload, ROS accumulation, GSH depletion, lipid peroxidation, and mitochondrion shrinkage, all of which are hallmarks of ferroptosis, are observed in human cultured astrocytes, microglia cells, and murine brains infected with HSV-1. Moreover, HSV-1 infection enhances Keap1-dependent Nrf2 ubiquitination and degradation, which results in substantial reductions in the expression levels of antiferroptotic genes downstream of Nrf2, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of PTGS2 and PGE2 plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by either a ferroptosis inhibitor or a proteasome inhibitor to suppress HSV-1-induced Nrf2 degradation effectively alleviates HSV-1-caused neuro-damage and inflammation in infected mice. Overall, our findings uncover the interaction between HSV-1 infection and ferroptosis, shed novel light on the physiological impacts of ferroptosis on the pathogenesis of HSV-1 infection and encephalitis, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.
Collapse
|
223
|
Targeting NRF2 to promote epithelial repair. Biochem Soc Trans 2023; 51:101-111. [PMID: 36762597 PMCID: PMC9987932 DOI: 10.1042/bst20220228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
The transcription factor NRF2 is well known as a master regulator of the cellular stress response. As such, activation of NRF2 has gained widespread attention for its potential to prevent tissue injury, but also as a possible therapeutic approach to promote repair processes. While NRF2 activation affects most or even all cell types, its effect on epithelial cells during repair processes has been particularly well studied. In response to tissue injury, these cells proliferate, migrate and/or spread to effectively repair the damage. In this review, we discuss how NRF2 governs repair of epithelial tissues, and we highlight the increasing number of NRF2 targets with diverse roles in regulating epithelial repair.
Collapse
|
224
|
Nakashima A, Furuta A, Yamada K, Yoshida-Kawaguchi M, Yamaki-Ushijima A, Yasuda I, Ito M, Yamashita S, Tsuda S, Yoneda S, Cheng S, Sharma S, Shima T. The Role of Autophagy in the Female Reproduction System: For Beginners to Experts in This Field. BIOLOGY 2023; 12:biology12030373. [PMID: 36979065 PMCID: PMC10045718 DOI: 10.3390/biology12030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Autophagy is a fundamental process involved in regulating cellular homeostasis. Autophagy has been classically discovered as a cellular process that degrades cytoplasmic components non-selectively to produce energy. Over the past few decades, this process has been shown to work in energy production, as well as in the reduction of excessive proteins, damaged organelles, and membrane trafficking. It contributes to many human diseases, such as neurodegenerative diseases, carcinogenesis, diabetes mellitus, development, longevity, and reproduction. In this review, we provide important information for interpreting results related to autophagic experiments and present the role of autophagy in this field.
Collapse
Affiliation(s)
- Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
- Correspondence: ; Tel.: +81-76-434-7357
| | - Atsushi Furuta
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Kiyotaka Yamada
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Mihoko Yoshida-Kawaguchi
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Akemi Yamaki-Ushijima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Ippei Yasuda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Masami Ito
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Satoshi Yamashita
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Satoshi Yoneda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Shibin Cheng
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Surendra Sharma
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
225
|
Tsoporis JN, Amatullah H, Gupta S, Izhar S, Ektesabi AM, Vaswani CM, Desjardins JF, Kabir G, Teixera Monteiro AP, Varkouhi AK, Kavantzas N, Salpeas V, Rizos I, Marshall JC, Parker TG, Leong-Poi H, Dos Santos CC. DJ-1 Deficiency Protects against Sepsis-Induced Myocardial Depression. Antioxidants (Basel) 2023; 12:antiox12030561. [PMID: 36978809 PMCID: PMC10045744 DOI: 10.3390/antiox12030561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Oxidative stress is considered one of the early underlying contributors of sepsis-induced myocardial depression. DJ-1, also known as PARK7, has a well-established role as an antioxidant. We have previously shown, in a clinically relevant model of polymicrobial sepsis, DJ-1 deficiency improved survival and bacterial clearance by decreasing ROS production. In the present study, we investigated the role of DJ-1 in sepsis-induced myocardial depression. Here we compared wildtype (WT) with DJ-1 deficient mice at 24 and 48 h after cecal ligation and puncture (CLP). In WT mice, DJ-1 was increased in the myocardium post-CLP. DJ-1 deficient mice, despite enhanced inflammatory and oxidative responses, had an attenuated hypertrophic phenotype, less apoptosis, improved mitochondrial function, and autophagy, that was associated with preservation of myocardial function and improved survival compared to WT mice post-CLP. Collectively, these results identify DJ-1 as a regulator of myocardial function and as such, makes it an attractive therapeutic target in the treatment of early sepsis-induced myocardial depression.
Collapse
Affiliation(s)
- James N Tsoporis
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Hajera Amatullah
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sahil Gupta
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shehla Izhar
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Amin M Ektesabi
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chirag M Vaswani
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jean-Francois Desjardins
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Golam Kabir
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ana Paula Teixera Monteiro
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Amir K Varkouhi
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Nikolaos Kavantzas
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasileios Salpeas
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ioannis Rizos
- 2nd Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece
| | - John C Marshall
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas G Parker
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Howard Leong-Poi
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Claudia C Dos Santos
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
226
|
Xia Q, Li Y, Xu W, Wu C, Zheng H, Liu L, Dong L. Enhanced liquidity of p62 droplets mediated by Smurf1 links Nrf2 activation and autophagy. Cell Biosci 2023; 13:37. [PMID: 36810259 PMCID: PMC9945626 DOI: 10.1186/s13578-023-00978-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Macro-autophagy/Autophagy is an evolutionarily well-conserved recycling process to maintain the balance through precise spatiotemporal regulation. However, the regulatory mechanisms of biomolecular condensates by the key adaptor protein p62 via liquid-liquid phase separation (LLPS) remain obscure. RESULTS In this study, we showed that E3 ligase Smurf1 enhanced Nrf2 activation and promoted autophagy by increasing p62 phase separation capability. Specifically, the Smurf1/p62 interaction improved the formation and material exchange of liquid droplets compared with p62 single puncta. Additionally, Smurf1 promoted the competitive binding of p62 with Keap1 to increase Nrf2 nuclear translocation in p62 Ser349 phosphorylation-dependent manner. Mechanistically, overexpressed Smurf1 increased the activation of mTORC1 (mechanistic target of rapamycin complex 1), in turn leading to p62 Ser349 phosphorylation. Nrf2 activation increased the mRNA levels of Smurf1, p62, and NBR1, further promoting the droplet liquidity to enhance oxidative stress response. Importantly, we showed that Smurf1 maintained cellular homeostasis by promoting cargo degradation through the p62/LC3 autophagic pathway. CONCLUSIONS These findings revealed the complex interconnected role among Smurf1, p62/Nrf2/NBR1, and p62/LC3 axis in determining Nrf2 activation and subsequent clearance of condensates through LLPS mechanism.
Collapse
Affiliation(s)
- Qin Xia
- grid.43555.320000 0000 8841 6246School of Life Science, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, China
| | - Yang Li
- grid.43555.320000 0000 8841 6246School of Life Science, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, China
| | - Wanting Xu
- grid.43555.320000 0000 8841 6246School of Life Science, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, China
| | - Chengwei Wu
- grid.43555.320000 0000 8841 6246School of Life Science, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, China
| | - Hanfei Zheng
- grid.43555.320000 0000 8841 6246School of Life Science, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, China
| | - Liqun Liu
- grid.43555.320000 0000 8841 6246School of Life Science, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, China.
| |
Collapse
|
227
|
Moratilla-Rivera I, Sánchez M, Valdés-González JA, Gómez-Serranillos MP. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int J Mol Sci 2023; 24:ijms24043748. [PMID: 36835155 PMCID: PMC9967135 DOI: 10.3390/ijms24043748] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Neurodegenerative diseases (NDs) affect the West due to the increase in life expectancy. Nervous cells accumulate oxidative damage, which is one of the factors that triggers and accelerates neurodegeneration. However, cells have mechanisms that scavenge reactive oxygen species (ROS) and alleviate oxidative stress (OS). Many of these endogenous antioxidant systems are regulated at the gene expression level by the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In the presence of prooxidant conditions, Nrf2 translocates to the nucleus and induces the transcription of genes containing ARE (antioxidant response element). In recent years, there has been an increase in the study of the Nrf2 pathway and the natural products that positively regulate it to reduce oxidative damage to the nervous system, both in in vitro models with neurons and microglia subjected to stress factors and in vivo models using mainly murine models. Quercetin, curcumin, anthocyanins, tea polyphenols, and other less studied phenolic compounds such as kaempferol, hesperetin, and icariin can also modulate Nrf2 by regulating several Nrf2 upstream activators. Another group of phytochemical compounds that upregulate this pathway are terpenoids, including monoterpenes (aucubin, catapol), diterpenes (ginkgolides), triterpenes (ginsenosides), and carotenoids (astaxanthin, lycopene). This review aims to update the knowledge on the influence of secondary metabolites of health interest on the activation of the Nrf2 pathway and their potential as treatments for NDs.
Collapse
|
228
|
Uruno A, Yamamoto M. The KEAP1-NRF2 system and neurodegenerative diseases. Antioxid Redox Signal 2023. [PMID: 36734430 DOI: 10.1089/ars.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Significance: Central nervous system (CNS) diseases are disorders of the brain and/or spinal cord and include neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). NF-E2-related factor 2 (NRF2) is a transcription factor belonging to the cap-n-collar (CNC) family that harbors a unique basic leucine zipper motif and plays as a master regulator of homeostatic responses. Recent Advances: Kelch-like ECH-associated protein 1 (KEAP1) is an adaptor of the Cullin3 (CUL3)-based ubiquitin E3 ligase that enhances the ubiquitylation of NRF2, which promotes the degradation of NRF2 to suppress its transcriptional activity in the absence of stress. Cysteine residues of KEAP1 are modified under stress conditions, and NRF2 degradation is attenuated, allowing it to accumulate and induce the expression of target genes. This regulatory system is referred to as the KEAP1-NRF2 system and plays a central role in protecting cells against various stresses. NRF2 also negatively regulates the expression of inflammatory cytokine and chemokine genes and suppresses pathological inflammation. As oxidative stress, inflammation, and proteostasis are known to contribute to neurodegenerative diseases, the KEAP1-NRF2 system is an attractive target for the treatment of these diseases. Critical Issues: In mouse models of neurodegenerative diseases, Nrf2 depletion exacerbates symptoms and enhances oxidative damage and inflammation in the CNS. In contrast, chemical or genetic NRF2 activation improves these symptoms. Indeed, the NRF2-activating chemical dimethyl fumarate (DMF) is now widely used for the clinical treatment of MS. Future Directions: The KEAP1-NRF2 system is a promising therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Akira Uruno
- Tohoku University, 13101, 2-1 Seiryo-cho, Aoba-ku, Sendai, Sendai, Miyagi, Japan, 980-8577;
| | - Masayuki Yamamoto
- Tohoku University Graduate School of Medicine, Department of Medical Biochemistry, 2-1 Seiryo-machi, Aoba-ku, Sendai, Sendai, Japan, 980-8575;
| |
Collapse
|
229
|
Zhu D, Kong M, Chen C, Luo J, Kong L. Iso-seco-tanapartholide induces p62 covalent oligomerization to activate KEAP1-NRF2 redox pathway in rheumatoid arthritis. Int Immunopharmacol 2023; 115:109689. [PMID: 36621330 DOI: 10.1016/j.intimp.2023.109689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
SQSTM1/p62 sequesters intracellular aberrant proteins and mediates their selective autophagic degradation. p62 oligomerization posttranslational modification enhances its sequestration function and positively regulates the KEAP1-NRF2 redox pathway. However, the regulation of p62 covalent oligomerization has yet been poorly characterized. Here, we identified a natural small-molecule sesquiterpene, Iso-seco-tanapartholide (IST) modified p62 cysteine residues, which induced p62 to form crosslinked oligomers between TBS and TBS or TBS and PB1 domains in a covalently non-disulfide-linked manner. Using LC-MS/MS analysis and complementary approaches, we revealed that Cys residues of p62 were necessary for IST-induced covalent oligomer. This oligomerization promoted p62 recruitment of KEAP1 for degradation by autophagosomes and released NRF2 to the nucleus to activate the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. Accordingly, IST-mediated p62/NRF2 activation conferred protection from oxidative and inflammatory destruction of rheumatoid arthritis in vitro and in vivo. In contrast, p62-knockdown cells displayed a reduced anti-oxidant response and increased pro-inflammatory cytokine secretion in response to TNF-α stimulation. Hence, our findings uncover an unrecognized role of IST in the regulation of p62 oligomerization and provide a new strategy for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Dongrong Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Min Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
230
|
Furuta A, Shima T, Yoshida-Kawaguchi M, Yamada K, Yasuda I, Tsuda S, Yamaki-Ushijima A, Yoneda S, Higashisaka K, Cheng SB, Matsumoto K, Tsutsumi Y, Sharma S, Saito S, Nakashima A. Chloroquine is a safe autophagy inhibitor for sustaining the expression of antioxidant enzymes in trophoblasts. J Reprod Immunol 2023; 155:103766. [PMID: 36470134 DOI: 10.1016/j.jri.2022.103766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Inhibition of autophagy contributes to the pathophysiology of preeclampsia. Although chloroquine (CHQ) is an autophagy inhibitor, it can reduce the occurrence of preeclampsia in women with systemic lupus erythematosus. To clarify this important clinical question, this study aimed to address the safety of CHQ in trophoblast cells from the viewpoint of homeostasis, in which the anti-oxidative stress (OS) response and autophagy are involved. We used Western blotting to evaluate the protein levels in the trophoblast cells. The expression levels of heme oxygenase-1 (HO-1), an anti-OS enzyme, mediate resistance to OS induced by hydrogen peroxide (H2O2) in trophoblast cell lines. Among the autophagy modulators, bafilomycin A1 (BAF), an autophagy inhibitor, but not autophagy activators, suppressed HO-1 expression in BeWo cells; CHQ did not suppress HO-1 expression in BeWo cells. To clarify the role of autophagy in HO-1 induction, we observed no difference in HO-1 induction by H2O2 between autophagy-normal and autophagy-deficient cells. As for the mechanism of HO-1 induction by OS, BAF suppressed HO-1 induction by downregulating the expression of neighbor of BRCA1 gene 1 (NBR1) in the selective p62-NBR1-nuclear factor erythroid 2-related factor 2 (Nrf2) autophagy pathway. CHQ did not inhibit HO-1 expression by sustaining NBR1 expression in human villous tissues compared to BAF treatment. In conclusion, CHQ is a safer medicine than BAF for sustaining NBR1, which resist against OS in trophoblasts by connecting selective autophagy and the anti-OS response.
Collapse
Affiliation(s)
- Atsushi Furuta
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Mihoko Yoshida-Kawaguchi
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Kiyotaka Yamada
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Ippei Yasuda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Akemi Yamaki-Ushijima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Satoshi Yoneda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shi-Bin Cheng
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Surendra Sharma
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Shigeru Saito
- University of Toyama, 3190 Gofuku, Toyama 9308555, Japan
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan.
| |
Collapse
|
231
|
Tan CT, Soh NJH, Chang HC, Yu VC. p62/SQSTM1 in liver diseases: the usual suspect with multifarious identities. FEBS J 2023; 290:892-912. [PMID: 34882306 DOI: 10.1111/febs.16317] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/23/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
p62/Sequestosome-1 (SQSTM1) is a selective autophagy receptor that recruits and delivers intracellular substrates for bulk clearance through the autophagy lysosomal pathway. Interestingly, p62 also serves as a signaling scaffold to participate in the regulation of multiple physiological processes, including oxidative stress response, metabolism, inflammation, and programmed cell death. Perturbation of p62 activity has been frequently found to be associated with the pathogenesis of many liver diseases. p62 has been identified as a critical component of protein aggregates in the forms of Mallory-Denk bodies (MDBs) or intracellular hyaline bodies (IHBs), which are known to be frequently detected in biopsy samples from alcoholic steatohepatitis (ASH), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC) patients. Importantly, abundance of these p62 inclusion bodies is increasingly recognized as a biomarker for NASH and HCC. Although the level of p62 bodies seems to predict the progression and prognosis of these liver diseases, understanding of the underlying mechanisms by which p62 regulates and contributes to the development and progression of these diseases remains incomplete. In this review, we will focus on the function and regulation of p62, and its pathophysiological roles in the liver, by critically reviewing the findings from preclinical models that recapitulate the pathogenesis and manifestation of these liver diseases in humans. In addition, we will also explore the suitability of p62 as a predictive biomarker and a potential therapeutic target for the treatment of liver diseases, including NASH and HCC, as well as recent development of small-molecule compounds for targeting the p62 signaling axis.
Collapse
Affiliation(s)
- Chong Teik Tan
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Hao-Chun Chang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Victor C Yu
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
232
|
Yang H, Ping X, Cui Y, Zheng S, Shentu X. Role of Rapamycin and 3-MA in oxidative damage of HLECs caused by two doses of UVB radiation. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:15-22. [PMID: 37846426 PMCID: PMC10577839 DOI: 10.1016/j.aopr.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 10/18/2023]
Abstract
Background This study compared the role of autophagy regulators Rapamycin and 3-MA in oxidative damage and apoptosis of human lens epithelial cells (HLECs) caused by two doses of Ultraviolet Radiation B (UVB). Methods HLECs were irradiated with UVB, and two doses of UVB damage models were constructed. After treatment with autophagy regulators, cell damage tests such as CCK-8, LDH activity, and Ros detection were performed. Western blotting was used to detect the levels of autophagy-related proteins and apoptosis-related proteins. Quantitative real-time PCR (RT-qPCR) was used to detect the mRNA leve of secondary antioxidant enzymes.Flow cytometry was used to examine cell viability and apoptosis. Finally, the proportion of autophagy and apoptosis was observed by electron microscope. Results Autophagy inhibitor 3-MA promoted oxidative damage and apoptosis of HLECs at low doses of UVB (5 mJ/cm2), which corresponds to 1.3 h of exposure to sunlight in human eyes. Under the high dose of UVB (50mJ/cm2), which is equivalent to 13 h of exposure to sunlight in human eyes, the autophagy inducer Rapamycin caused more extensive oxidative damage and apoptosis of HLECs. 3-MA was able to reduce this damage, indicating that moderate autophagy is necessary for HLECs to cope with mild oxidative stress. For high dose UVB-induced oxidative stress, the use of 3-MA inhibiting autophagy is more beneficial to reduce cell damage and apoptosis. The mechanisms include degradation of damaged organelles, regulation of the expression of antioxidant enzymes HO-1, NQO1, GCS and regulation of apoptosis-related proteins. Conclusions Autophagy played different roles in HLECs oxidative stress induced by two doses of UVB. It provides new ideas for reducing oxidative damage and apoptosis of HLECs to prevent or delay the progression of age-related cataract (ARC).
Collapse
Affiliation(s)
- Hao Yang
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Xiyuan Ping
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Yilei Cui
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Sifan Zheng
- GKT School of Medical Education, King's College London, London, UK
| | - Xingchao Shentu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| |
Collapse
|
233
|
Targeting Nrf2 and NF-κB Signaling Pathways in Cancer Prevention: The Role of Apple Phytochemicals. Molecules 2023; 28:molecules28031356. [PMID: 36771023 PMCID: PMC9919881 DOI: 10.3390/molecules28031356] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Plant secondary metabolites, known as phytochemicals, have recently gained much attention in light of the "circular economy", to reutilize waste products deriving from agriculture and food industry. Phytochemicals are known for their onco-preventive and chemoprotective effects, among several other beneficial properties. Apple phytochemicals have been extensively studied for their effectiveness in a wide range of diseases, cancer included. This review aims to provide a thorough overview of the main studies reported in the literature concerning apple phytochemicals, mostly polyphenols, in cancer prevention. Although there are many different mechanisms targeted by phytochemicals, the Nrf2 and NF-κB signaling pathways are the ones this review will be focused on, highlighting also the existing crosstalk between these two systems.
Collapse
|
234
|
Hirose S, Waku T, Tani M, Masuda H, Endo K, Ashitani S, Aketa I, Kitano H, Nakada S, Wada A, Hatanaka A, Osawa T, Soga T, Kobayashi A. NRF3 activates mTORC1 arginine-dependently for cancer cell viability. iScience 2023; 26:106045. [PMID: 36818298 PMCID: PMC9932127 DOI: 10.1016/j.isci.2023.106045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Cancer cells coordinate the mTORC1 signals and the related metabolic pathways to robustly and rapidly grow in response to nutrient conditions. Although a CNC-family transcription factor NRF3 promotes cancer development, the biological relevance between NRF3 function and mTORC1 signals in cancer cells remains unknown. Hence, we showed that NRF3 contributes to cancer cell viability through mTORC1 activation in response to amino acids, particularly arginine. NRF3 induced SLC38A9 and RagC expression for the arginine-dependent mTORC1 recruitment onto lysosomes, and it also enhanced RAB5-mediated bulk macropinocytosis and SLC7A1-mediated selective transport for arginine loading into lysosomes. Besides, the inhibition of the NRF3-mTORC1 axis impaired mitochondrial function, leading to cancer cell apoptosis. Consistently, the aberrant upregulation of the axis caused tumor growth and poor prognosis. In conclusion, this study sheds light on the unique function of NRF3 in arginine-dependent mTORC1 activation and the pathophysiological aspects of the NRF3-mTORC1 axis in cancer development.
Collapse
Affiliation(s)
- Shuuhei Hirose
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan,Research Fellow of Japan Society for the Promotion of Science
| | - Tsuyoshi Waku
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610–0394, Japan,Corresponding author
| | - Misato Tani
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan
| | - Haruka Masuda
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan
| | - Keiko Endo
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
| | - Sanae Ashitani
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
| | - Iori Aketa
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan
| | - Hina Kitano
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610–0394, Japan
| | - Sota Nakada
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610–0394, Japan
| | - Ayaka Wada
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan
| | - Atsushi Hatanaka
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan
| | - Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan,Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610–0394, Japan,Corresponding author
| |
Collapse
|
235
|
Li Y, Zhang J, Sun L, Zhao H, Jia X, Zhang Y, Li Y. Fluoride-Induced Sperm Damage and HuR-Mediated Excessive Apoptosis and Autophagy in Spermatocytes. Biol Trace Elem Res 2023; 201:295-305. [PMID: 35226278 DOI: 10.1007/s12011-022-03138-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/11/2023]
Abstract
It is critical to determine the mechanism underlying fluoride (F)-induced damage of the testes to develop appropriate strategies for monitoring and intervention. In the present study, exposure to 50 mg/L sodium fluoride (NaF) for 90 days damaged the normal structure of the testes and quality of the sperm, particularly the spermatocytes, and triggered overexpression of human antigen R (Elavl1/HuR) according to western blotting and immunofluorescence. Furthermore, 0.5 mM NaF exposure for 24 h exposure increased the proportion of apoptosis and expression of caspase-3 and caspase-9 in mouse spermatocytes (GC-2spd cell line), whereas inhibition of HuR reduced apoptosis and the expression of caspase-3 and caspase-9. Additionally, inhibition of HuR alleviated F-induced autophagy based on observation of the autophagy bodies, detection of autophagy activity, and analysis of the expression of the LC3II/LC3I and p62 proteins. These results reveal that excessive F can lead to overexpression of HuR, resulting in high levels of apoptosis and autophagy in spermatocytes. These findings improve the understanding of the mechanisms underlying F-induced male reproductive toxicity, and HuR may be explored as a treatment target for certain conditions. Excessive fluoride can induce overexpression of HuR in testis and result in excessive apoptosis and autophagy in spermatocytes as well as male reproductive damage, such as a decreased sperm count, decreased sperm motility, and increased deformity rate.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China.
| | - Jianbin Zhang
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Linlin Sun
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Hongyu Zhao
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Xiaohan Jia
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Yingri Zhang
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Yuanbin Li
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| |
Collapse
|
236
|
Zhao Z, Dong R, Cui K, You Q, Jiang Z. An updated patent review of Nrf2 activators (2020-present). Expert Opin Ther Pat 2023; 33:29-49. [PMID: 36800917 DOI: 10.1080/13543776.2023.2178299] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION The nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor that controls the expression of numerous cytoprotective genes and regulates cellular defense system against oxidative insults. Thus, activating the Nrf2 pathway is a promising strategy for the treatment of various chronic diseases characterized by oxidative stress. AREAS COVERED This review first discusses the biological effects of Nrf2 and the regulatory mechanism of Kelch-like ECH-associated protein 1-Nrf2-antioxidant response element (Keap1-Nrf2-ARE) pathway. Then, Nrf2 activators (2020-present) are summarized based on the mechanism of action. The case studies consist of chemical structures, biological activities, structural optimization, and clinical development. EXPERT OPINION Extensive efforts have been devoted to developing novel Nrf2 activators with improved potency and drug-like properties. These Nrf2 activators have exhibited beneficial effects in in vitro and in vivo models of oxidative stress-related chronic diseases. However, some specific problems, such as target selectivity and brain blood barrier (BBB) permeability, still need to be addressed in the future.
Collapse
Affiliation(s)
- Ziquan Zhao
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruitian Dong
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Keni Cui
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
237
|
Govaere O, Anstee QM. Non-Alcoholic Fatty Liver Disease and Steatohepatitis. ENCYCLOPEDIA OF CELL BIOLOGY 2023:610-621. [DOI: 10.1016/b978-0-12-821618-7.00265-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
238
|
Hatano M, Hatamiya S, Miyara M, Kotake Y. Tributyltin activates the Keap1-Nrf2 pathway via a macroautophagy-independent reduction in Keap1. J Toxicol Sci 2023; 48:161-168. [PMID: 36858641 DOI: 10.2131/jts.48.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Tributyltin (TBT) is an environmental chemical, which was used as an antifouling agent for ships. Although its use has been banned, it is still persistently present in ocean sediments. Although TBT reportedly causes various toxicity in mammals, few studies on the mechanisms of biological response against TBT toxicity exist. The well-established Keap1-Nrf2 pathway is activated as a cytoprotective mechanism under stressful conditions. The relationship between TBT and the Keap1-Nrf2 pathway remains unclear. In the present study, we evaluated the effect of TBT on the Keap1-Nrf2 pathway. TBT reduced Keap1 protein expression in Neuro2a cells, a mouse neuroblastoma cell line, after 6 hr without altering mRNA expression levels. TBT also promoted the nuclear translocation of Nrf2, a transcription factor for antioxidant proteins, after 12 hr and augmented the expression of heme oxygenase 1, a downstream protein of Nrf2. Furthermore, TBT decreased Keap1 levels in mouse embryonic fibroblast (MEF) cells, with the knockout of Atg5, which is essential for macroautophagy, as well as in wild-type MEF cells. These results suggest that TBT activates the Keap1-Nrf2 pathway via the reduction in the Keap1 protein level in a macroautophagy-independent manner. The Keap1-Nrf2 pathway is activated by conformational changes in Keap1 induced by reactive oxygen species or electrophiles. Furthermore, any unutilized Keap1 protein is degraded by macroautophagy. Understanding the novel mechanism governing the macroautophagy-independent reduction in Keap1 by TBT may provide insights into the unresolved biological response mechanism against TBT toxicity and the activation mechanism of the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Misaki Hatano
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shunichi Hatamiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masatsugu Miyara
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
239
|
Redox Regulation of Autophagy in Cancer: Mechanism, Prevention and Therapy. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010098. [PMID: 36676047 PMCID: PMC9863886 DOI: 10.3390/life13010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS), products of normal cellular metabolism, play an important role in signal transduction. Autophagy is an intracellular degradation process in response to various stress conditions, such as nutritional deprivation, organelle damage and accumulation of abnormal proteins. ROS and autophagy both exhibit double-edged sword roles in the occurrence and development of cancer. Studies have shown that oxidative stress, as the converging point of these stimuli, is involved in the mechanical regulation of autophagy process. The regulation of ROS on autophagy can be roughly divided into indirect and direct methods. The indirect regulation of autophagy by ROS includes post-transcriptional and transcriptional modulation. ROS-mediated post-transcriptional regulation of autophagy includes the post-translational modifications and protein interactions of AMPK, Beclin 1, PI3K and other molecules, while transcriptional regulation mainly focuses on p62/Keap1/Nrf2 pathway. Notably, ROS can directly oxidize key autophagy proteins, such as ATG4 and p62, leading to the inhibition of autophagy pathway. In this review, we will elaborate the molecular mechanisms of redox regulation of autophagy in cancer, and discuss ROS- and autophagy-based therapeutic strategies for cancer treatment.
Collapse
|
240
|
Wei M, Bao G, Li S, Yang Z, Cheng C, Le W. PM2.5 exposure triggers cell death through lysosomal membrane permeabilization and leads to ferroptosis insensitivity via the autophagy dysfunction/p62-KEAP1-NRF2 activation in neuronal cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114333. [PMID: 36446170 DOI: 10.1016/j.ecoenv.2022.114333] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
PM2.5 exposure can be associated with the onset of neurodegenerative diseases, with oxidative stress-induced cellular homeostasis disruption and cell death as one of the main mechanisms. However, the exact cellular and molecular processes are still rarely investigated. Autophagy and KEAP1-NRF2 (Kelch-like ECH-Associating protein 1-nuclear factor erythroid 2 related factor 2) signaling pathway are two main cellular defense systems for maintaining cellular homeostasis and resisting oxidative stress. In this study, we primarily investigated the role of autophagy and KEAP1-NRF2 in regulating cell death resulting from PM2.5 exposure in mouse neuroblastoma N2a cells. Our results showed that PM2.5 exposure disrupted autophagic flux by impairing lysosomal function, including lysosomal alkalinization, increased lysosome membrane permeabilization (LMP), and Cathepsin B release. Furthermore, dysregulated autophagy enhances NRF2 activity in a p62-dependent manner, which then initiates the expression of a series of antioxidant genes and increases cellular insensitivity to ferroptosis. Meanwhile, autophagy dysfunction impairs the intracellular degradation of ferroptosis related proteins such as GPX4 and ferritin. As these proteins accumulate, cells also become less sensitive to ferroptosis. LMP-associated cell death may be the main mechanism of PM2.5-induced N2a cytotoxicity. Our results may provide insights into the mechanisms of PM2.5-induced neurotoxicity and predict effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Min Wei
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China.
| | - Guangming Bao
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Zhaofei Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Cheng Cheng
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China; Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China.
| |
Collapse
|
241
|
Zinovkin RA, Kondratenko ND, Zinovkina LA. Does Nrf2 Play a Role of a Master Regulator of Mammalian Aging? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1465-1476. [PMID: 36717440 DOI: 10.1134/s0006297922120045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
For a long time Nrf2 transcription factor has been attracting attention of researchers investigating phenomenon of aging. Numerous studies have investigated effects of Nrf2 on aging and cell senescence. Nrf2 is often considered as a key player in aging processes, however this needs to be proven. It should be noted that most studies were carried out on invertebrate model organisms, such as nematodes and fruit flies, but not on mammals. This paper briefly presents main mechanisms of mammalian aging and role of inflammation and oxidative stress in this process. The mechanisms of Nrf2 activity regulation, its involvement in aging and development of the senescence-associated secretory phenotype (SASP) are also discussed. Main part of this review is devoted to critical analysis of available experimental data on the role of Nrf2 in mammalian aging.
Collapse
Affiliation(s)
- Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Russian Clinical Research Center for Gerontology, Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, 129226, Russia
| | - Natalia D Kondratenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Russian Clinical Research Center for Gerontology, Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, 129226, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ludmila A Zinovkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
242
|
Lee YJ, Kim JK, Jung CH, Kim YJ, Jung EJ, Lee SH, Choi HR, Son YS, Shim SM, Jeon SM, Choe JH, Lee SH, Whang J, Sohn KC, Hur GM, Kim HT, Yeom J, Jo EK, Kwon YT. Chemical modulation of SQSTM1/p62-mediated xenophagy that targets a broad range of pathogenic bacteria. Autophagy 2022; 18:2926-2945. [PMID: 35316156 PMCID: PMC9673928 DOI: 10.1080/15548627.2022.2054240] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The N-degron pathway is a proteolytic system in which the N-terminal degrons (N-degrons) of proteins, such as arginine (Nt-Arg), induce the degradation of proteins and subcellular organelles via the ubiquitin-proteasome system (UPS) or macroautophagy/autophagy-lysosome system (hereafter autophagy). Here, we developed the chemical mimics of the N-degron Nt-Arg as a pharmaceutical means to induce targeted degradation of intracellular bacteria via autophagy, such as Salmonella enterica serovar Typhimurium (S. Typhimurium), Escherichia coli, and Streptococcus pyogenes as well as Mycobacterium tuberculosis (Mtb). Upon binding the ZZ domain of the autophagic cargo receptor SQSTM1/p62 (sequestosome 1), these chemicals induced the biogenesis and recruitment of autophagic membranes to intracellular bacteria via SQSTM1, leading to lysosomal degradation. The antimicrobial efficacy was independent of rapamycin-modulated core autophagic pathways and synergistic with the reduced production of inflammatory cytokines. In mice, these drugs exhibited antimicrobial efficacy for S. Typhimurium, Bacillus Calmette-Guérin (BCG), and Mtb as well as multidrug-resistant Mtb and inhibited the production of inflammatory cytokines. This dual mode of action in xenophagy and inflammation significantly protected mice from inflammatory lesions in the lungs and other tissues caused by all the tested bacterial strains. Our results suggest that the N-degron pathway provides a therapeutic target in host-directed therapeutics for a broad range of drug-resistant intracellular pathogens.Abbreviations: ATG: autophagy-related gene; BCG: Bacillus Calmette-Guérin; BMDMs: bone marrow-derived macrophages; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CFUs: colony-forming units; CXCL: C-X-C motif chemokine ligand; EGFP: enhanced green fluorescent protein; IL1B/IL-1β: interleukin 1 beta; IL6: interleukin 6; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; Mtb: Mycobacterium tuberculosis; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PB1: Phox and Bem1; SQSTM1/p62: sequestosome 1; S. Typhimurium: Salmonella enterica serovar Typhimurium; TAX1BP1: Tax1 binding protein 1; TNF: tumor necrosis factor; UBA: ubiquitin-associated.
Collapse
Affiliation(s)
- Yoon Jee Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Chan Hoon Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eui Jung Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su Hyun Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ha Rim Choi
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yeon Sung Son
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sang Mi Shim
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin Ho Choe
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC) & Basic Research Section, The Korean Institute of Tuberculosis (KIT), Cheongju, Korea
| | - Kyung-Cheol Sohn
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Gang Min Hur
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Tae Kim
- Chemistry R&D Center, AUTOTAC Bio Inc, Seoul, Republic of Korea
| | - Jinki Yeom
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea,Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea,CONTACT Eun-Kyeong Jo Department of Microbiology, and Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon35015, Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea,Chemistry R&D Center, AUTOTAC Bio Inc, Seoul, Republic of Korea,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea,Yong Tae Kwon Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul110-799, Korea
| |
Collapse
|
243
|
Wang Q, Botchway BOA, Zhang Y, Liu X. Ellagic acid activates the Keap1-Nrf2-ARE signaling pathway in improving Parkinson's disease: A review. Biomed Pharmacother 2022; 156:113848. [PMID: 36242848 DOI: 10.1016/j.biopha.2022.113848] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a familiar neurodegenerative disease, accompanied by motor retardation, static tremor, memory decline and dementia. Heredity, environment, age and oxidative stress have been suggested as key factors in the instigation of PD. The Keap1-Nrf2-ARE signaling is one of the most significant anti- oxidative stress (OS) pathways. The Keap1 is a negative regulator of the Nrf2. The Keap1-Nrf2-ARE pathway can induce cell oxidation resistance and reduce nerve injury to treat neurodegenerative diseases. Ellagic acid (EA) can inhibit the Keap1 to accumulate the Nrf2 in the nucleus, and act on the ARE to produce target proteins, which in turn may alleviate the impact of OS on neuronal cells of PD. This review analyzes the structure and physiological role of EA, along with the structure, composition and functions of the Keap1-Nrf2-ARE signaling pathway. We further expound on the mechanism of ellagic acid in its activation of the Keap1-Nrf2-ARE signaling pathway, as well as the relationship between EA in impairing the TLR4/Myd88/NF-κB and Nrf2 pathways. Ellagic acid has the potentiality of improving PD by activating the Keap1-Nrf2-ARE signaling pathway and scavenging free radicals.
Collapse
Affiliation(s)
- Qianhui Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
244
|
Sharp-Tawfik A, Fletcher JD, Guergues J, Marelia-Bennett C, Wolf TJ, Coiner AM, Zhang YC, Stevens SM, Burkhardt BR. Proteomic examination of Cornus officinalis stimulated 1.1B4 human pancreatic cells reveals activation of autophagy and Keap1/Nrf2 pathway. Mol Cell Endocrinol 2022; 557:111773. [PMID: 36100124 DOI: 10.1016/j.mce.2022.111773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 12/30/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease initiated by genetic predisposition and environmental influences culminating in the immunologically mediated destruction of pancreatic β-cells with eventual loss of insulin production. Although T1D can be accurately predicted via autoantibodies, therapies are lacking that can intercede autoimmunity and protect pancreatic β-cells. There are no approved interventional modalities established for this purpose. One such potential source for clinical agents of this use is from the frequently utilized Cornus officinalis (CO) in the field of ethnopharmacology. Studies by our lab and others have demonstrated that CO has robust proliferative, metabolic, and cytokine protective effects on pancreatic β-cells. To identify the molecular mechanism of the biological effects of CO, we performed a proteomic and phosphoproteomic analysis examining the cellular networks impacted by CO application on the 1.1B4 pancreatic β-cell line. Our label-free mass spectrometry approach has demonstrated significant increased phosphorylation of the selective autophagy receptor of p62 (Sequestosome-1/SQSTM1/p62) and predicted activation of the antioxidant Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor-erythroid factor 2-related factor 2 (Nrf2) pathway. Further validation by immunoblotting and immunofluorescence revealed markers of autophagy such as increased LC3-II and decreased total p62 along with nuclear localization of Nrf2. Both autophagy and the Keap1/Nrf2 pathways have been shown to be impaired in human and animal models of T1D and may serve as an excellent potential therapeutic target stimulated by CO.
Collapse
Affiliation(s)
- Arielle Sharp-Tawfik
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Justin D Fletcher
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Catherine Marelia-Bennett
- Department of Pathology & Laboratory Medicine at the Medical University of South Carolina in Charleston, SC, 29425, USA
| | - Tiara J Wolf
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Alexis M Coiner
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Y Clare Zhang
- Practice of Oriental Medicine, Tucson, AZ, 85716, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
245
|
Wei X, Li D, Feng C, Mao H, Zhu J, Cui Y, Yang J, Gao H, Wang C. Effects of hydrogen peroxide and l-tryptophan on antioxidative potential, apoptosis, and mammalian target of rapamycin signaling in bovine intestinal epithelial cells. J Dairy Sci 2022; 105:10007-10019. [DOI: 10.3168/jds.2022-21869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
|
246
|
Li L, Feng R, Li Y, Yu X, Liu Y, Zhao Y, Liu Z. Caspase-8 mutants activate Nrf2 via phosphorylating SQSTM1 to protect against oxidative stress in esophageal squamous cell carcinoma. Free Radic Biol Med 2022; 192:51-62. [PMID: 36165926 DOI: 10.1016/j.freeradbiomed.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Caspase-8, a caspase protein, is involved in the regulation of multiple cell death modes and has a predominant role in cell death. Cancer-associated mutations in the protein-coding region of caspase-8 have been widely reported in several solid tumors and might lead to the loss of its apoptotic function and contribute to the pathogenesis of tumors. However, the specific function and molecular mechanisms of mutant caspase-8 in the development of esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we identified caspase-8 mutants exert tumor-promoting properties in ESCC, patients with the mutants presented a worse prognosis, and caspase-8 mutants lost the suppressive effect on tumor growth in ESCC cells. In addition, we demonstrated that caspase-8 mutants gain a new function of abolishing excess reactive oxygen species (ROS) to maintain ESCC cell growth under oxidative stress. An Nrf2 inhibitor reduced the effects of caspase-8 mutants against oxidative stress. Caspase-8 mutants combined with mTOR to phosphorylate SQSTM1 at Ser349, facilitating the interaction of SQSTM1 and Keap1 and reducing the degradation of the Nrf2 protein. Therefore, our study demonstrated that caspase-8 mutants gain a new function of protecting against oxidative stress via the mTOR/SQSTM1/Keap1/Nrf2 axis in ESCC. Caspase-8 status may be a new prognostic factor for survival in ESCC patients.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Riyue Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuhao Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
247
|
Zhu J, Wang H, Jiang X. mTORC1 beyond anabolic metabolism: Regulation of cell death. J Biophys Biochem Cytol 2022; 221:213609. [PMID: 36282248 PMCID: PMC9606688 DOI: 10.1083/jcb.202208103] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1), a multi-subunit protein kinase complex, interrogates growth factor signaling with cellular nutrient and energy status to control metabolic homeostasis. Activation of mTORC1 promotes biosynthesis of macromolecules, including proteins, lipids, and nucleic acids, and simultaneously suppresses catabolic processes such as lysosomal degradation of self-constituents and extracellular components. Metabolic regulation has emerged as a critical determinant of various cellular death programs, including apoptosis, pyroptosis, and ferroptosis. In this article, we review the expanding knowledge on how mTORC1 coordinates metabolic pathways to impinge on cell death regulation. We focus on the current understanding on how nutrient status and cellular signaling pathways connect mTORC1 activity with ferroptosis, an iron-dependent cell death program that has been implicated in a plethora of human diseases. In-depth understanding of the principles governing the interaction between mTORC1 and cell death pathways can ultimately guide the development of novel therapies for the treatment of relevant pathological conditions.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Tsinghua-Peking Center for Life Sciences, Beijing, China,Correspondence to Jiajun Zhu:
| | - Hua Wang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY,Xuejun Jiang:
| |
Collapse
|
248
|
Abstract
Since its initial identification in 1992 as a possible class 1 cell-surface receptor without a known parent ligand, receptor tyrosine kinase-like orphan receptor 1 (ROR1) has stimulated research, which has made apparent its significance in embryonic development and cancer. Chronic lymphocytic leukemia (CLL) was the first malignancy found to have distinctive expression of ROR1, which can help distinguish leukemia cells from most noncancer cells. Aside from its potential utility as a diagnostic marker or target for therapy, ROR1 also factors in the pathophysiology of CLL. This review is a report of the studies that have elucidated the expression, biology, and evolving strategies for targeting ROR1 that hold promise for improving the therapy of patients with CLL or other ROR1-expressing malignancies.
Collapse
Affiliation(s)
- Thomas J. Kipps
- Center for Novel Therapeutics, Moores Cancer Center, Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
249
|
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:353. [PMID: 36198685 PMCID: PMC9535022 DOI: 10.1038/s41392-022-01200-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefitted from targeted therapies. Although immunotherapy has significantly improved cancer patients' outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.
Collapse
|
250
|
Miki K, Yagi M, Yoshimoto K, Kang D, Uchiumi T. Mitochondrial dysfunction and impaired growth of glioblastoma cell lines caused by antimicrobial agents inducing ferroptosis under glucose starvation. Oncogenesis 2022; 11:59. [PMID: 36195584 PMCID: PMC9532440 DOI: 10.1038/s41389-022-00437-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma is a difficult-to-cure disease owing to its malignancy. Under normal circumstances, cancer is dependent on the glycolytic system for growth, and mitochondrial oxidative phosphorylation (OXPHOS) is not well utilized. Here, we investigated the efficacy of mitochondria-targeted glioblastoma therapy in cell lines including U87MG, LN229, U373, T98G, and two patient-derived stem-like cells. When glioblastoma cells were exposed to a glucose-starved condition (100 mg/l), they rely on mitochondrial OXPHOS for growth, and mitochondrial translation product production is enhanced. Under these circumstances, drugs that inhibit mitochondrial translation, called antimicrobial agents, can cause mitochondrial dysfunction and thus can serve as a therapeutic option for glioblastoma. Antimicrobial agents activated the nuclear factor erythroid 2-related factor 2–Kelch-like ECH-associated protein 1 pathway, resulting in increased expression of heme oxygenase-1. Accumulation of lipid peroxides resulted from the accumulation of divalent iron, and cell death occurred via ferroptosis. In conclusion, mitochondrial OXPHOS is upregulated in glioblastoma upon glucose starvation. Under this condition, antimicrobial agents cause cell death via ferroptosis. The findings hold promise for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|