201
|
Abrahams L, Hurst LD. Adenine Enrichment at the Fourth CDS Residue in Bacterial Genes Is Consistent with Error Proofing for +1 Frameshifts. Mol Biol Evol 2018; 34:3064-3080. [PMID: 28961919 PMCID: PMC5850271 DOI: 10.1093/molbev/msx223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Beyond selection for optimal protein functioning, coding sequences (CDSs) are under selection at the RNA and DNA levels. Here, we identify a possible signature of “dual-coding,” namely extensive adenine (A) enrichment at bacterial CDS fourth sites. In 99.07% of studied bacterial genomes, fourth site A use is greater than expected given genomic A-starting codon use. Arguing for nucleotide level selection, A-starting serine and arginine second codons are heavily utilized when compared with their non-A starting synonyms. Several models have the ability to explain some of this trend. In part, A-enrichment likely reduces 5′ mRNA stability, promoting translation initiation. However T/U, which may also reduce stability, is avoided. Further, +1 frameshifts on the initiating ATG encode a stop codon (TGA) provided A is the fourth residue, acting either as a frameshift “catch and destroy” or a frameshift stop and adjust mechanism and hence implicated in translation initiation. Consistent with both, genomes lacking TGA stop codons exhibit weaker fourth site A-enrichment. Sequences lacking a Shine–Dalgarno sequence and those without upstream leader genes, that may be more error prone during initiation, have greater utilization of A, again suggesting a role in initiation. The frameshift correction model is consistent with the notion that many genomic features are error-mitigation factors and provides the first evidence for site-specific out of frame stop codon selection. We conjecture that the NTG universal start codon may have evolved as a consequence of TGA being a stop codon and the ability of NTGA to rapidly terminate or adjust a ribosome.
Collapse
Affiliation(s)
- Liam Abrahams
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
202
|
Draycheva A, Lee S, Wintermeyer W. Cotranslational protein targeting to the membrane: Nascent-chain transfer in a quaternary complex formed at the translocon. Sci Rep 2018; 8:9922. [PMID: 29967439 PMCID: PMC6028451 DOI: 10.1038/s41598-018-28262-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/20/2018] [Indexed: 11/29/2022] Open
Abstract
Membrane proteins in bacteria are cotranslationally inserted into the plasma membrane through the SecYEG translocon. Ribosomes exposing the signal-anchor sequence (SAS) of a membrane protein are targeted to the translocon by the signal recognition particle (SRP) pathway. SRP scans translating ribosomes and forms high-affinity targeting complexes with those exposing a SAS. Recognition of the SAS activates SRP for binding to its receptor, FtsY, which, in turn, is primed for SRP binding by complex formation with SecYEG, resulting in a quaternary targeting complex. Here we examine the effect of SecYEG docking to ribosome-nascent-chain complexes (RNCs) on SRP binding and SAS transfer, using SecYEG embedded in phospholipid-containing nanodiscs and monitoring FRET between fluorescence-labeled constituents of the targeting complex. SecYEG–FtsY binding to RNC–SRP complexes lowers the affinity of SRP to both ribosome and FtsY, indicating a general weakening of the complex due to partial binding competition near the ribosomal peptide exit. The rearrangement of the quaternary targeting complex to the pre-transfer complex requires an at least partially exposed SAS. The presence of SecYEG-bound FtsY and the length of the nascent chain strongly influence nascent-chain transfer from SRP to the translocon and repositioning of SRP in the post-transfer complex.
Collapse
Affiliation(s)
- Albena Draycheva
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Sejeong Lee
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,Chemistry Research Laboratory, University of Oxford, OX1 3TA, Oxford, UK
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
203
|
The RNA-Binding Protein Scp160p Facilitates Aggregation of Many Endogenous Q/N-Rich Proteins. Cell Rep 2018; 24:20-26. [DOI: 10.1016/j.celrep.2018.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/18/2018] [Accepted: 06/01/2018] [Indexed: 01/05/2023] Open
|
204
|
Hanazono Y, Takeda K, Miki K. Co-translational folding of α-helical proteins: structural studies of intermediate-length variants of the λ repressor. FEBS Open Bio 2018; 8:1312-1321. [PMID: 30087834 PMCID: PMC6070647 DOI: 10.1002/2211-5463.12480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
Nascent polypeptide chains fold cotranslationally, but the atomic‐level details of this process remain unknown. Here, we report crystallographic, de novo modeling, and spectroscopic studies of intermediate‐length variants of the λ repressor N‐terminal domain. Although the ranges of helical regions of the half‐length variant were almost identical to those of the full‐length protein, the relative orientations of these helices in the intermediate‐length variants differed. Our results suggest that cotranslational folding of the λ repressor initially forms a helical structure with a transient conformation, as in the case of a molten globule state. This conformation subsequently matures during the course of protein synthesis. Database Structural data are available in the PDB under the accession numbers http://www.rcsb.org/pdb/search/structidSearch.do?structureId=5ZCA and http://www.rcsb.org/pdb/search/structidSearch.do?structureId=3WOA.
Collapse
Affiliation(s)
- Yuya Hanazono
- Department of Chemistry Graduate School of Science Kyoto University Japan.,Present address: Graduate School of Information Sciences Tohoku University Aoba-ku, Sendai 980-8579 Japan
| | - Kazuki Takeda
- Department of Chemistry Graduate School of Science Kyoto University Japan
| | - Kunio Miki
- Department of Chemistry Graduate School of Science Kyoto University Japan
| |
Collapse
|
205
|
Analysis of synonymous codon usage bias in helicase gene from Autographa californica multiple nucleopolyhedrovirus. Genes Genomics 2018; 40:767-780. [PMID: 29934813 DOI: 10.1007/s13258-018-0689-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
The helicase gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is not only involved in viral DNA replication, but also plays a role in viral host range. To identify the codon usage bias of helicase of AcMNPV, the codon usage bias of helicase was especially studies in AcMNPV and 41 reference strains of baculoviruses by calculating the codon adaptation index (CAI), effective number of codon (ENc), relative synonymous codon usage (RSCU), and other indices. The helicase of baculovirus is less biased (mean ENc = 50.539 > 40; mean CAI = 0.246). AcMNPV helicase has a strong bias toward the synonymous codons with G and C at the third codon position (GC3s = 53.6%). The plot of GC3s against ENc values revealed that GC compositional constraints are the main factor that determines the codon usage bias of major of helicase. Several indicators supported that the codon usage pattern of helicase is mainly subject to mutation pressure. Analysis of variation in codon usage and amino acid composition indicated AcMNPV helicase shows the significant preference for one or more postulated codons for each amino acid. A cluster analysis based on RSCU values suggested that AcMNPV is evolutionarily closer to members of group I alphabaculovirus. Comparison of the codon usage pattern among E. coli, yeast, mouse, human and AcMNPV showed that yeast is a suitable expression system for AcMNPV helicase. AcMNPV helicase shows weak codon usage bias. This study may help in elucidating the functional mechanism of AcMNPV helicase and the evolution of baculovirus helicases.
Collapse
|
206
|
Choi J, Grosely R, Prabhakar A, Lapointe CP, Wang J, Puglisi JD. How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation. Annu Rev Biochem 2018; 87:421-449. [PMID: 29925264 PMCID: PMC6594189 DOI: 10.1146/annurev-biochem-060815-014818] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.
Collapse
Affiliation(s)
- Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
- Department of Applied Physics, Stanford University, Stanford, California 94305-4090, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
- Program in Biophysics, Stanford University, Stanford, California 94305, USA
| | - Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| |
Collapse
|
207
|
Argüello RJ, Reverendo M, Mendes A, Camosseto V, Torres AG, Ribas de Pouplana L, van de Pavert SA, Gatti E, Pierre P. SunRiSE - measuring translation elongation at single-cell resolution by means of flow cytometry. J Cell Sci 2018; 131:jcs.214346. [PMID: 29700204 DOI: 10.1242/jcs.214346] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
The rate at which ribosomes translate mRNAs regulates protein expression by controlling co-translational protein folding and mRNA stability. Many factors regulate translation elongation, including tRNA levels, codon usage and phosphorylation of eukaryotic elongation factor 2 (eEF2). Current methods to measure translation elongation lack single-cell resolution, require expression of multiple transgenes and have never been successfully applied ex vivo Here, we show, by using a combination of puromycilation detection and flow cytometry (a method we call 'SunRiSE'), that translation elongation can be measured accurately in primary cells in pure or heterogenous populations isolated from blood or tissues. This method allows for the simultaneous monitoring of multiple parameters, such as mTOR or S6K1/2 signaling activity, the cell cycle stage and phosphorylation of translation factors in single cells, without elaborated, costly and lengthy purification procedures. We took advantage of SunRiSE to demonstrate that, in mouse embryonic fibroblasts, eEF2 phosphorylation by eEF2 kinase (eEF2K) mostly affects translation engagement, but has a surprisingly small effect on elongation, except after proteotoxic stress induction.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rafael J Argüello
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Marisa Reverendo
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Andreia Mendes
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Voahirana Camosseto
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Adrian G Torres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Lluis Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain.,Catalan Institute for Research and Advanced Studies (ICREA), P/Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Serge A van de Pavert
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France.,Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France .,Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
208
|
Abstract
Protein folding begins co-translationally within the restricted space of the peptide exit tunnel of the ribosome. We have already shown that the N-terminal α-helical domain of the universally conserved N5-glutamine methyltransferase HemK is compacted within the exit tunnel and rearranges into the native fold upon emerging from the ribosome. However, the exact folding pathway of the domain remained unclear. Here we analyzed the rapid kinetics of translation and folding monitored by fluorescence resonance energy transfer and photoinduced electron transfer using global fitting to a model for synthesis of the 112-amino acid HemK fragment. Our results suggest that the co-translational folding trajectory of HemK starts within the tunnel and passes through four kinetically distinct folding intermediates that may represent sequential docking of helices to a growing compact core. The kinetics of the process is defined entirely by translation. The results show how analysis of ensemble kinetic data can be used to dissect complex trajectories of rapid conformational rearrangements in multicomponent systems.
Collapse
Affiliation(s)
- Evan Mercier
- Department of Physical Biochemistry , Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , D-37077 Goettingen , Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry , Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , D-37077 Goettingen , Germany
| |
Collapse
|
209
|
Hamed G, Marey M, Amin SES, Tolba MF. Hybrid, randomized and high capacity conservative mutations DNA-based steganography for large sized data. Biosystems 2018; 167:47-61. [PMID: 29608931 DOI: 10.1016/j.biosystems.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/16/2022]
Abstract
In this paper, a well secured, high capacity, preserved algorithm is proposed through integrating the cryptography and steganography concepts with the molecular biology concepts. We achieved this by first encrypting the confidential data using the DNA Playfair cipher to avoid extra information sent to the receiver and it consequently acts as a trap for an attacker. Second, it achieves a randomized steganography process by exploiting the DNA conservative mutations. The DNA conservative mutations are utilized in a way that allows a DNA base to be substituted by another base to allow carrying two bits. Consequently, a high capacity feature is obtained with no payload for the used sequence. There are three main achieved contributions in this work. First, is hiding high capacity of data within DNA by exploiting each codon to hide two bits whilst preserving the sequence properties of protein after the steganography process, which is a trade off in the field. Secondly, using the conservative mutation with all its valid biological permutations, leads to the lowest cracking probability achieved and published till now, as proven in the security analysis section. Finally, a comparison is conducted between the proposed algorithm and five recent substitution based algorithms using large sized data up to three megabytes, to prove the algorithm's scalability.
Collapse
Affiliation(s)
- Ghada Hamed
- Department of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt.
| | - Mohammed Marey
- Department of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt
| | - Safaa El-Sayed Amin
- Department of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt
| | - Mohamed Fahmy Tolba
- Department of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt
| |
Collapse
|
210
|
Properties of the ternary complex formed by yeast eIF4E, p20 and mRNA. Sci Rep 2018; 8:6707. [PMID: 29712996 PMCID: PMC5928113 DOI: 10.1038/s41598-018-25273-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/17/2018] [Indexed: 11/25/2022] Open
Abstract
Yeast p20 is a small, acidic protein that binds eIF4E, the cap-binding protein. It has been proposed to affect mRNA translation and degradation, however p20′s function as an eIF4E-binding protein (4E-BP) and its physiological significance has not been clearly established. In this paper we present data demonstrating that p20 is capable of binding directly to mRNA due to electrostatic interaction of a stretch of arginine and histidine residues in the protein with negatively charged phosphates in the mRNA backbone. This interaction contributes to formation of a ternary eIF4E/p20/capped mRNA complex that is more stable than complexes composed of capped mRNA bound to eIF4E in the absence of p20. eIF4E/p20 complex was found to have a more pronounced stimulatory effect on capped mRNA translation than purified eIF4E alone. Addition of peptides containing the eIF4E-binding domains present in p20 (motif YTIDELF), in eIF4G (motif YGPTFLL) or Eap1 (motif YSMNELY) completely inhibited eIF4E-dependent capped mRNA translation (in vitro), but had a greatly reduced inhibitory effect when eIF4E/p20 complex was present. We propose that the eIF4E/p20/mRNA complex serves as a stable depository of mRNAs existing in a dynamic equilibrium with other complexes such as eIF4E/eIF4G (required for translation) and eIF4E/Eap1 (required for mRNA degradation).
Collapse
|
211
|
Fritch B, Kosolapov A, Hudson P, Nissley DA, Woodcock HL, Deutsch C, O'Brien EP. Origins of the Mechanochemical Coupling of Peptide Bond Formation to Protein Synthesis. J Am Chem Soc 2018; 140:5077-5087. [PMID: 29577725 DOI: 10.1021/jacs.7b11044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mechanical forces acting on the ribosome can alter the speed of protein synthesis, indicating that mechanochemistry can contribute to translation control of gene expression. The naturally occurring sources of these mechanical forces, the mechanism by which they are transmitted 10 nm to the ribosome's catalytic core, and how they influence peptide bond formation rates are largely unknown. Here, we identify a new source of mechanical force acting on the ribosome by using in situ experimental measurements of changes in nascent-chain extension in the exit tunnel in conjunction with all-atom and coarse-grained computer simulations. We demonstrate that when the number of residues composing a nascent chain increases, its unstructured segments outside the ribosome exit tunnel generate piconewtons of force that are fully transmitted to the ribosome's P-site. The route of force transmission is shown to be through the nascent polypetide's backbone, not through the wall of the ribosome's exit tunnel. Utilizing quantum mechanical calculations we find that a consequence of such a pulling force is to decrease the transition state free energy barrier to peptide bond formation, indicating that the elongation of a nascent chain can accelerate translation. Since nascent protein segments can start out as largely unfolded structural ensembles, these results suggest a pulling force is present during protein synthesis that can modulate translation speed. The mechanism of force transmission we have identified and its consequences for peptide bond formation should be relevant regardless of the source of the pulling force.
Collapse
Affiliation(s)
- Benjamin Fritch
- Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Andrey Kosolapov
- Department of Physiology , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Phillip Hudson
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States.,Laboratory of Computational Biology , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Daniel A Nissley
- Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - H Lee Woodcock
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Carol Deutsch
- Department of Physiology , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Edward P O'Brien
- Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States.,Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
212
|
Steele EJ, Al-Mufti S, Augustyn KA, Chandrajith R, Coghlan JP, Coulson SG, Ghosh S, Gillman M, Gorczynski RM, Klyce B, Louis G, Mahanama K, Oliver KR, Padron J, Qu J, Schuster JA, Smith WE, Snyder DP, Steele JA, Stewart BJ, Temple R, Tokoro G, Tout CA, Unzicker A, Wainwright M, Wallis J, Wallis DH, Wallis MK, Wetherall J, Wickramasinghe DT, Wickramasinghe JT, Wickramasinghe NC, Liu Y. Cause of Cambrian Explosion - Terrestrial or Cosmic? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 136:3-23. [PMID: 29544820 DOI: 10.1016/j.pbiomolbio.2018.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We review the salient evidence consistent with or predicted by the Hoyle-Wickramasinghe (H-W) thesis of Cometary (Cosmic) Biology. Much of this physical and biological evidence is multifactorial. One particular focus are the recent studies which date the emergence of the complex retroviruses of vertebrate lines at or just before the Cambrian Explosion of ∼500 Ma. Such viruses are known to be plausibly associated with major evolutionary genomic processes. We believe this coincidence is not fortuitous but is consistent with a key prediction of H-W theory whereby major extinction-diversification evolutionary boundaries coincide with virus-bearing cometary-bolide bombardment events. A second focus is the remarkable evolution of intelligent complexity (Cephalopods) culminating in the emergence of the Octopus. A third focus concerns the micro-organism fossil evidence contained within meteorites as well as the detection in the upper atmosphere of apparent incoming life-bearing particles from space. In our view the totality of the multifactorial data and critical analyses assembled by Fred Hoyle, Chandra Wickramasinghe and their many colleagues since the 1960s leads to a very plausible conclusion - life may have been seeded here on Earth by life-bearing comets as soon as conditions on Earth allowed it to flourish (about or just before 4.1 Billion years ago); and living organisms such as space-resistant and space-hardy bacteria, viruses, more complex eukaryotic cells, fertilised ova and seeds have been continuously delivered ever since to Earth so being one important driver of further terrestrial evolution which has resulted in considerable genetic diversity and which has led to the emergence of mankind.
Collapse
Affiliation(s)
- Edward J Steele
- CY O'Connor ERADE Village Foundation, Piara Waters, WA, Australia; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka.
| | - Shirwan Al-Mufti
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Kenneth A Augustyn
- Center for the Physics of Living Organisms, Department of Physics, Michigan Technological University, Michigan, United States
| | | | - John P Coghlan
- University of Melbourne, Office of the Dean, Faculty Medicine, Dentistry and Health Sciences, 3rd Level, Alan Gilbert Building, Australia
| | - S G Coulson
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Sudipto Ghosh
- Metallurgical & Materials Engineering IIT, Kanpur, India
| | - Mark Gillman
- South African Brain Research Institute, 6 Campbell Street, Waverly, Johannesburg, South Africa
| | - Reginald M Gorczynski
- University Toronto Health Network, Toronto General Hospital, University of Toronto, Canada
| | - Brig Klyce
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Godfrey Louis
- Department of Physics, Cochin University of Science and Technology Cochin, India
| | | | - Keith R Oliver
- School of Veterinary and Life Sciences Murdoch University, Perth, WA, Australia
| | - Julio Padron
- Studio Eutropi, Clinical Pathology and Nutrition, Via Pompei 46, Ardea, 00040, Rome, Italy
| | - Jiangwen Qu
- Department of Infectious Disease Control, Tianjin Center for Disease Control and Prevention, China
| | - John A Schuster
- School of History and Philosophy of Science, Faculty of Science, University of Sydney, Sydney, Australia
| | - W E Smith
- Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Duane P Snyder
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Julian A Steele
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Brent J Stewart
- CY O'Connor ERADE Village Foundation, Piara Waters, WA, Australia
| | - Robert Temple
- The History of Chinese Culture Foundation, Conway Hall, London, UK
| | - Gensuke Tokoro
- Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Christopher A Tout
- Institute of Astronomy, The Observatories, Madingley Road, Cambridge, CB3 0HA, UK
| | | | - Milton Wainwright
- Buckingham Centre for Astrobiology, University of Buckingham, UK; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka
| | - Jamie Wallis
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Daryl H Wallis
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Max K Wallis
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - John Wetherall
- School of Biomedical Sciences, Perth, Curtin University, WA, Australia
| | - D T Wickramasinghe
- College of Physical and Mathematical Sciences, Australian National University, Canberra, Australia
| | | | - N Chandra Wickramasinghe
- Buckingham Centre for Astrobiology, University of Buckingham, UK; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
213
|
Lu YW, Chiu TS. Factors affecting synonymous codon usage of housekeeping genes in Drosophila melanogaster. ACTA BIOLOGICA HUNGARICA 2018; 69:58-71. [PMID: 29575916 DOI: 10.1556/018.68.2018.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Housekeeping genes (HK genes) are required for cell survival and the maintenance of basic cellular functions. The investigation of factors affecting codon usage patterns in HK genes of insects can help in understanding the molecular evolution of insects and aid the development of insect pest management strategies. In this study, we employed bioinformatics approaches to analyze the codon usage bias (CUB) of HK genes in the insect model organism, Drosophila melanogaster. A comparison of CUB between 1107 HK genes and 1084 high tissue specificity genes suggested that HK genes have higher CUB in D. melanogaster. In addition, we found that CUB inversely correlates with the non-synonymous substitution rate of HK genes. Therefore, we attempted to identify the factors that potentially influence the codon usage pattern of HK genes. Our results suggest that mutation pressure and natural selection highly correlate with CUB in the HK genes of D. melanogaster and that two topological properties of HK proteins (proportion of protein interacting length and protein connectivity) also correlate with CUB in the HK genes of D. melanogaster. This study provides insight into CUB in the HK genes of D. melanogaster, and the results can support future investigations of potential applications in agricultural and biomedical field.
Collapse
Affiliation(s)
- Yi Wen Lu
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Tai Sheng Chiu
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
214
|
Natan E, Endoh T, Haim-Vilmovsky L, Flock T, Chalancon G, Hopper JTS, Kintses B, Horvath P, Daruka L, Fekete G, Pál C, Papp B, Oszi E, Magyar Z, Marsh JA, Elcock AH, Babu MM, Robinson CV, Sugimoto N, Teichmann SA. Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins. Nat Struct Mol Biol 2018; 25:279-288. [PMID: 29434345 PMCID: PMC5995306 DOI: 10.1038/s41594-018-0029-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/10/2018] [Indexed: 01/11/2023]
Abstract
Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in Escherichia coli and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization.
Collapse
Affiliation(s)
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan
| | - Liora Haim-Vilmovsky
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Tilman Flock
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Bálint Kintses
- Synthetic and System Biology Unit, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Peter Horvath
- Synthetic and System Biology Unit, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Lejla Daruka
- Synthetic and System Biology Unit, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and System Biology Unit, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Csaba Pál
- Synthetic and System Biology Unit, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Balázs Papp
- Synthetic and System Biology Unit, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Erika Oszi
- Institute of Plant Biology, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Center of the Hungarian Academia of Sciences, Szeged, Hungary
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
215
|
Non-equilibrium coupling of protein structure and function to translation-elongation kinetics. Curr Opin Struct Biol 2018; 49:94-103. [PMID: 29414517 DOI: 10.1016/j.sbi.2018.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023]
Abstract
Protein folding research has been dominated by the assumption that thermodynamics determines protein structure and function. And that when the folding process is compromised in vivo the proteostasis machinery-chaperones, deaggregases, the proteasome-work to restore proteins to their soluble, functional form or degrade them to maintain the cellular pool of proteins in a quasi-equilibrium state. During the past decade, however, more and more proteins have been identified for which altering only their speed of synthesis alters their structure and function, the efficiency of the down-stream processes they take part in, and cellular phenotype. Indeed, evidence has emerged that evolutionary selection pressures have encoded translation-rate information into mRNA molecules to coordinate diverse co-translational processes. Thus, non-equilibrium physics can play a fundamental role in influencing nascent protein behavior, mRNA sequence evolution, and disease. Here, we discuss how our understanding of this phenomenon is being advanced by the application of theoretical tools from the physical sciences.
Collapse
|
216
|
Qi F, Motz M, Jung K, Lassak J, Frishman D. Evolutionary analysis of polyproline motifs in Escherichia coli reveals their regulatory role in translation. PLoS Comput Biol 2018; 14:e1005987. [PMID: 29389943 PMCID: PMC5811046 DOI: 10.1371/journal.pcbi.1005987] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/13/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Translation of consecutive prolines causes ribosome stalling, which is alleviated but cannot be fully compensated by the elongation factor P. However, the presence of polyproline motifs in about one third of the E. coli proteins underlines their potential functional importance, which remains largely unexplored. We conducted an evolutionary analysis of polyproline motifs in the proteomes of 43 E. coli strains and found evidence of evolutionary selection against translational stalling, which is especially pronounced in proteins with high translational efficiency. Against the overall trend of polyproline motif loss in evolution, we observed their enrichment in the vicinity of translational start sites, in the inter-domain regions of multi-domain proteins, and downstream of transmembrane helices. Our analysis demonstrates that the time gain caused by ribosome pausing at polyproline motifs might be advantageous in protein regions bracketing domains and transmembrane helices. Polyproline motifs might therefore be crucial for co-translational folding and membrane insertion. Polyproline motifs induce ribosome stalling during translation, but the functional significance of this effect remains unclear. Our evolutionary analysis of polyproline motifs reveals that they are disfavored in E. coli proteomes as a consequence of the reduced translation efficiency, supporting the conjecture that translation efficiency-based evolutionary pressure shapes protein sequences. Enrichment of polyproline motifs in the protein regions bracketing structural domains and transmembrane helices indicates their regulatory role in co-translational protein folding and transmembrane helix insertion. Polyproline motifs could thus serve as protein-level cis-acting elements, which directly regulate the rate of translation elongation.
Collapse
Affiliation(s)
- Fei Qi
- Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Magdalena Motz
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jürgen Lassak
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, Freising, Germany.,St Petersburg State Polytechnic University, St Petersburg, Russia
| |
Collapse
|
217
|
She R, Jarosz DF. Mapping Causal Variants with Single-Nucleotide Resolution Reveals Biochemical Drivers of Phenotypic Change. Cell 2018; 172:478-490.e15. [PMID: 29373829 PMCID: PMC5788306 DOI: 10.1016/j.cell.2017.12.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/21/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Abstract
Understanding the sequence determinants that give rise to diversity among individuals and species is the central challenge of genetics. However, despite ever greater numbers of sequenced genomes, most genome-wide association studies cannot distinguish causal variants from linked passenger mutations spanning many genes. We report that this inherent challenge can be overcome in model organisms. By pushing the advantages of inbred crossing to its practical limit in Saccharomyces cerevisiae, we improved the statistical resolution of linkage analysis to single nucleotides. This "super-resolution" approach allowed us to map 370 causal variants across 26 quantitative traits. Missense, synonymous, and cis-regulatory mutations collectively gave rise to phenotypic diversity, providing mechanistic insight into the basis of evolutionary divergence. Our data also systematically unmasked complex genetic architectures, revealing that multiple closely linked driver mutations frequently act on the same quantitative trait. Single-nucleotide mapping thus complements traditional deletion and overexpression screening paradigms and opens new frontiers in quantitative genetics.
Collapse
Affiliation(s)
- Richard She
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
218
|
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17:261-279. [PMID: 29326426 DOI: 10.1038/nrd.2017.243] [Citation(s) in RCA: 2695] [Impact Index Per Article: 385.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael J Hogan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Frederick W Porter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
219
|
Smith TE, Pond CD, Pierce E, Harmer ZP, Kwan J, Zachariah MM, Harper MK, Wyche TP, Matainaho TK, Bugni TS, Barrows LR, Ireland CM, Schmidt EW. Accessing chemical diversity from the uncultivated symbionts of small marine animals. Nat Chem Biol 2018; 14:179-185. [PMID: 29291350 PMCID: PMC5771842 DOI: 10.1038/nchembio.2537] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
Abstract
Chemistry drives many biological interactions between the microbiota and host animals, yet it is often challenging to identify the chemicals involved. This poses a problem, as such small molecules are excellent sources of potential pharmaceuticals, pretested by nature for animal compatibility. We discovered anti-HIV compounds from small, marine tunicates from the Eastern Fields of Papua New Guinea. Tunicates are a reservoir for novel bioactive chemicals, yet their small size often impedes identification or even detection of the chemicals within. We solved this problem by combining chemistry, metagenomics, and synthetic biology to directly identify and synthesize the natural products. We show that these anti-HIV compounds, the divamides, are a novel family of lanthipeptides produced by symbiotic bacteria living in the tunicate. Neighboring animal colonies contain structurally related divamides that differ starkly in their biological properties, suggesting a role for biosynthetic plasticity in a native context where biological interactions take place.
Collapse
Affiliation(s)
- Thomas E Smith
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Christopher D Pond
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Elizabeth Pierce
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Zachary P Harmer
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Jason Kwan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Malcolm M Zachariah
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Thomas P Wyche
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Teatulohi K Matainaho
- Discipline of Pharmacology, School of Medicine and Health Sciences, University of Papua New Guinea, National Capital District 111, Papua New Guinea
| | - Tim S Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Louis R Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Chris M Ireland
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
220
|
Abstract
Saturation mutagenesis is conveniently located between the two extremes of protein engineering, namely random mutagenesis, and rational design. It involves mutating a confined number of target residues to other amino acids, and hence requires knowledge regarding the sites for mutagenesis, but not their final identity. There are many different strategies for performing and designing such experiments, ranging from simple single degenerate codons to codon collections that code for distinct sets of amino acids. Here, we provide detailed information on the Dynamic Management for Codon Compression (DYNAMCC) approaches that allow us to precisely define the desired amino acid composition to be introduced to a specific target site. DYNAMCC allows us to set usage thresholds and to eliminate undesirable stop and wild-type codons, thus allowing us to control library size and subsequently downstream screening efforts. The DYNAMCC algorithms are free of charge and are implemented in a website for easy access and usage: www.dynamcc.com .
Collapse
Affiliation(s)
- Gur Pines
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA. .,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA.,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
221
|
Komar AA. Unraveling co-translational protein folding: Concepts and methods. Methods 2017; 137:71-81. [PMID: 29221924 DOI: 10.1016/j.ymeth.2017.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Advances in techniques such as nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and single-molecule and time-resolved fluorescent approaches are transforming our ability to study co-translational protein folding both in vivo in living cells and in vitro in reconstituted cell-free translation systems. These approaches provide comprehensive information on the spatial organization and dynamics of nascent polypeptide chains and the kinetics of co-translational protein folding. This information has led to an improved understanding of the process of protein folding in living cells and should allow remaining key questions in the field, such as what structures are formed within nascent chains during protein synthesis and when, to be answered. Ultimately, studies using these techniques will facilitate development of a unified concept of protein folding, a process that is essential for proper cell function and organism viability. This review describes current methods for analysis of co-translational protein folding with an emphasis on some of the recently developed techniques that allow monitoring of co-translational protein folding in real-time.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA; Department of Biochemistry and the Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
222
|
Trovato F, Fumagalli G. Molecular simulations of cellular processes. Biophys Rev 2017; 9:941-958. [PMID: 29185136 DOI: 10.1007/s12551-017-0363-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is, nowadays, possible to simulate biological processes in conditions that mimic the different cellular compartments. Several groups have performed these calculations using molecular models that vary in performance and accuracy. In many cases, the atomistic degrees of freedom have been eliminated, sacrificing both structural complexity and chemical specificity to be able to explore slow processes. In this review, we will discuss the insights gained from computer simulations on macromolecule diffusion, nuclear body formation, and processes involving the genetic material inside cell-mimicking spaces. We will also discuss the challenges to generate new models suitable for the simulations of biological processes on a cell scale and for cell-cycle-long times, including non-equilibrium events such as the co-translational folding, misfolding, and aggregation of proteins. A prominent role will be played by the wise choice of the structural simplifications and, simultaneously, of a relatively complex energetic description. These challenging tasks will rely on the integration of experimental and computational methods, achieved through the application of efficient algorithms. Graphical abstract.
Collapse
Affiliation(s)
- Fabio Trovato
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195, Berlin, Germany.
| | - Giordano Fumagalli
- Nephrology and Dialysis Unit, USL Toscana Nord Ovest, 55041, Lido di Camaiore, Lucca, Italy
| |
Collapse
|
223
|
Rodriguez A, Wright G, Emrich S, Clark PL. %MinMax: A versatile tool for calculating and comparing synonymous codon usage and its impact on protein folding. Protein Sci 2017; 27:356-362. [PMID: 29090506 DOI: 10.1002/pro.3336] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022]
Abstract
Most amino acids can be encoded by more than one synonymous codon, but these are rarely used with equal frequency. In many coding sequences the usage patterns of rare versus common synonymous codons is nonrandom and under selection. Moreover, synonymous substitutions that alter these patterns can have a substantial impact on the folding efficiency of the encoded protein. This has ignited broad interest in exploring synonymous codon usage patterns. For many protein chemists, biophysicists and structural biologists, the primary motivation for codon analysis is identifying and preserving usage patterns most likely to impact high-yield production of functional proteins. Here we describe the core functions and new features of %MinMax, a codon usage calculator freely available as a web-based portal and downloadable script (http://www.codons.org). %MinMax evaluates the relative usage frequencies of the synonymous codons used to encode a protein sequence of interest and compares these results to a rigorous null model. Crucially, for analyzing codon usage in common host organisms %MinMax requires only the coding sequence as input; with a user-input codon frequency table, %MinMax can be used to evaluate synonymous codon usage patterns for any coding sequence from any fully sequenced genome. %MinMax makes no assumptions regarding the impact of transfer ribonucleic acid concentrations or other molecular-level interactions on translation rates, yet its output is sufficient to predict the effects of synonymous codon substitutions on cotranslational folding mechanisms. A simple calculation included within %MinMax can be used to harmonize codon usage frequencies for heterologous gene expression.
Collapse
Affiliation(s)
- Anabel Rodriguez
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Gabriel Wright
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Scott Emrich
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556.,Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, 46556
| |
Collapse
|
224
|
Zhao F, Yu CH, Liu Y. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Res 2017; 45:8484-8492. [PMID: 28582582 PMCID: PMC5737824 DOI: 10.1093/nar/gkx501] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/26/2017] [Indexed: 11/14/2022] Open
Abstract
Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms.
Collapse
Affiliation(s)
- Fangzhou Zhao
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chien-Hung Yu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
225
|
Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 2017; 19:20-30. [PMID: 29018283 DOI: 10.1038/nrm.2017.91] [Citation(s) in RCA: 487] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of ribosome profiling and other tools to probe mRNA translation has revealed that codon bias - the uneven use of synonymous codons in the transcriptome - serves as a secondary genetic code: a code that guides the efficiency of protein production, the fidelity of translation and the metabolism of mRNAs. Recent advancements in our understanding of mRNA decay have revealed a tight coupling between ribosome dynamics and the stability of mRNA transcripts; this coupling integrates codon bias into the concept of codon optimality, or the effects that specific codons and tRNA concentrations have on the efficiency and fidelity of the translation machinery. In this Review, we first discuss the evidence for codon-dependent effects on translation, beginning with the basic mechanisms through which translation perturbation can affect translation efficiency, protein folding and transcript stability. We then discuss how codon effects are leveraged by the cell to tailor the proteome to maintain homeostasis, execute specific gene expression programmes of growth or differentiation and optimize the efficiency of protein production.
Collapse
Affiliation(s)
- Gavin Hanson
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
226
|
Abstract
Recent experiments and simulations have demonstrated that proteins can fold on the ribosome. However, the extent and generality of fitness effects resulting from cotranslational folding remain open questions. Here we report a genome-wide analysis that uncovers evidence of evolutionary selection for cotranslational folding. We describe a robust statistical approach to identify loci within genes that are both significantly enriched in slowly translated codons and evolutionarily conserved. Surprisingly, we find that domain boundaries can explain only a small fraction of these conserved loci. Instead, we propose that regions enriched in slowly translated codons are associated with cotranslational folding intermediates, which may be smaller than a single domain. We show that the intermediates predicted by a native-centric model of cotranslational folding account for the majority of these loci across more than 500 Escherichia coli proteins. By making a direct connection to protein folding, this analysis provides strong evidence that many synonymous substitutions have been selected to optimize translation rates at specific locations within genes. More generally, our results indicate that kinetics, and not just thermodynamics, can significantly alter the efficiency of self-assembly in a biological context.
Collapse
|
227
|
Claassens NJ, Siliakus MF, Spaans SK, Creutzburg SCA, Nijsse B, Schaap PJ, Quax TEF, van der Oost J. Improving heterologous membrane protein production in Escherichia coli by combining transcriptional tuning and codon usage algorithms. PLoS One 2017; 12:e0184355. [PMID: 28902855 PMCID: PMC5597330 DOI: 10.1371/journal.pone.0184355] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/22/2017] [Indexed: 12/27/2022] Open
Abstract
High-level, recombinant production of membrane-integrated proteins in Escherichia coli is extremely relevant for many purposes, but has also been proven challenging. Here we study a combination of transcriptional fine-tuning in E. coli LEMO21(DE3) with different codon usage algorithms for heterologous production of membrane proteins. The overexpression of 6 different membrane proteins is compared for the wild-type gene codon usage variant, a commercially codon-optimized variant, and a codon-harmonized variant. We show that transcriptional fine-tuning plays a major role in improving the production of all tested proteins. Moreover, different codon usage variants significantly improved production of some of the tested proteins. However, not a single algorithm performed consistently best for the membrane-integrated production of the 6 tested proteins. In conclusion, for improving heterologous membrane protein production in E. coli, the major effect is accomplished by transcriptional tuning. In addition, further improvements may be realized by attempting different codon usage variants, such as codon harmonized variants, which can now be easily generated through our online Codon Harmonizer tool.
Collapse
Affiliation(s)
- Nico J. Claassens
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Melvin F. Siliakus
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sebastiaan K. Spaans
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Tessa E. F. Quax
- Institut für Biologie II, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
228
|
Auboeuf D. Genome evolution is driven by gene expression-generated biophysical constraints through RNA-directed genetic variation: A hypothesis. Bioessays 2017; 39. [DOI: 10.1002/bies.201700069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Didier Auboeuf
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210; Laboratory of Biology and Modelling of the Cell; Site Jacques Monod; Lyon France
| |
Collapse
|
229
|
Athey J, Alexaki A, Osipova E, Rostovtsev A, Santana-Quintero LV, Katneni U, Simonyan V, Kimchi-Sarfaty C. A new and updated resource for codon usage tables. BMC Bioinformatics 2017; 18:391. [PMID: 28865429 PMCID: PMC5581930 DOI: 10.1186/s12859-017-1793-7] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/15/2017] [Indexed: 01/24/2023] Open
Abstract
Background Due to the degeneracy of the genetic code, most amino acids can be encoded by multiple synonymous codons. Synonymous codons naturally occur with different frequencies in different organisms. The choice of codons may affect protein expression, structure, and function. Recombinant gene technologies commonly take advantage of the former effect by implementing a technique termed codon optimization, in which codons are replaced with synonymous ones in order to increase protein expression. This technique relies on the accurate knowledge of codon usage frequencies. Accurately quantifying codon usage bias for different organisms is useful not only for codon optimization, but also for evolutionary and translation studies: phylogenetic relations of organisms, and host-pathogen co-evolution relationships, may be explored through their codon usage similarities. Furthermore, codon usage has been shown to affect protein structure and function through interfering with translation kinetics, and cotranslational protein folding. Results Despite the obvious need for accurate codon usage tables, currently available resources are either limited in scope, encompassing only organisms from specific domains of life, or greatly outdated. Taking advantage of the exponential growth of GenBank and the creation of NCBI’s RefSeq database, we have developed a new database, the High-performance Integrated Virtual Environment-Codon Usage Tables (HIVE-CUTs), to present and analyse codon usage tables for every organism with publicly available sequencing data. Compared to existing databases, this new database is more comprehensive, addresses concerns that limited the accuracy of earlier databases, and provides several new functionalities, such as the ability to view and compare codon usage between individual organisms and across taxonomical clades, through graphical representation or through commonly used indices. In addition, it is being routinely updated to keep up with the continuous flow of new data in GenBank and RefSeq. Conclusion Given the impact of codon usage bias on recombinant gene technologies, this database will facilitate effective development and review of recombinant drug products and will be instrumental in a wide area of biological research. The database is available at hive.biochemistry.gwu.edu/review/codon. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1793-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John Athey
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, USA
| | - Aikaterini Alexaki
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, USA
| | - Ekaterina Osipova
- High Performance Integrated Environment, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, USA
| | - Alexandre Rostovtsev
- High Performance Integrated Environment, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, USA
| | - Luis V Santana-Quintero
- High Performance Integrated Environment, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, USA
| | - Upendra Katneni
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, USA
| | - Vahan Simonyan
- High Performance Integrated Environment, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, USA
| | - Chava Kimchi-Sarfaty
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, USA.
| |
Collapse
|
230
|
Kanduc D. Rare Human Codons and HCMV Translational Regulation. J Mol Microbiol Biotechnol 2017; 27:213-216. [PMID: 28858877 DOI: 10.1159/000478093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/06/2017] [Indexed: 11/19/2022] Open
Abstract
Restriction of protein synthesis characterizes human cytomegalovirus (HCMV) latency in the human host. In analyzing the molecular factors that hinder HCMV expression, the present study shows that HCMV genes frequently use 6 rare codons, i.e., GCG (Ala), CCG (Pro), CGT (Arg), CGC (Arg), TCG (Ser), and ACG (Thr). In some instances, the rare host codons are clustered along viral nucleotide sequences and represent the majority in sequences encoding short alanine and proline repeats. Given the positive correlation between codon usage, tRNA content, and protein production, the results support the hypothesis that HCMV usage of rare human codons might hinder HCMV protein synthesis, in this way leading to HCMV latency.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
231
|
Predicting synonymous codon usage and optimizing the heterologous gene for expression in E. coli. Sci Rep 2017; 7:9926. [PMID: 28855614 PMCID: PMC5577221 DOI: 10.1038/s41598-017-10546-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/11/2017] [Indexed: 11/27/2022] Open
Abstract
Of the 20 common amino acids, 18 are encoded by multiple synonymous codons. These synonymous codons are not redundant; in fact, all of codons contribute substantially to protein expression, structure and function. In this study, the codon usage pattern of genes in the E. coli was learned from the sequenced genomes of E. coli. A machine learning based method, Presyncodon was proposed to predict synonymous codon selection in E. coli based on the learned codon usage patterns of the residue in the context of the specific fragment. The predicting results indicate that Presycoden could be used to predict synonymous codon selection of the gene in the E. coli with the high accuracy. Two reporter genes (egfp and mApple) were designed with a combination of low- and high-frequency-usage codons by the method. The fluorescence intensity of eGFP and mApple expressed by the (egfp and mApple) designed by this method was about 2.3- or 1.7- folds greater than that from the genes with only high-frequency-usage codons in E. coli. Therefore, both low- and high-frequency-usage codons make positive contributions to the functional expression of the heterologous proteins. This method could be used to design synthetic genes for heterologous gene expression in biotechnology.
Collapse
|
232
|
Fast Protein Translation Can Promote Co- and Posttranslational Folding of Misfolding-Prone Proteins. Biophys J 2017; 112:1807-1819. [PMID: 28494952 DOI: 10.1016/j.bpj.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023] Open
Abstract
Chemical kinetic modeling has previously been used to predict that fast-translating codons can enhance cotranslational protein folding by helping to avoid misfolded intermediates. Consistent with this prediction, protein aggregation in yeast and worms was observed to increase when translation was globally slowed down, possibly due to increased cotranslational misfolding. Observation of similar behavior in molecular simulations would confirm predictions from the simpler chemical kinetic model and provide a molecular perspective on cotranslational folding, misfolding, and the impact of translation speed on these processes. All-atom simulations cannot reach the timescales relevant to protein synthesis, and most conventional structure-based coarse-grained models do not allow for nonnative structure formation. Here, we introduce a protocol to incorporate misfolding using the functional forms of publicly available force fields. With this model we create two artificial proteins that are capable of undergoing structural transitions between a native and a misfolded conformation and simulate their synthesis by the ribosome. Consistent with the chemical kinetic predictions, we find that rapid synthesis of misfolding-prone nascent-chain segments increases the fraction of folded proteins by kinetically partitioning more molecules through on-pathway intermediates, decreasing the likelihood of sampling misfolded conformations. Novel to this study, to our knowledge, we observe that differences in protein dynamics, arising from different translation-elongation schedules, can persist long after the nascent protein has been released from the ribosome, and that a sufficient level of energetic frustration is needed for fast-translating codons to be beneficial for folding. These results provide further evidence that fast-translating codons can be as biologically important as pause sites in coordinating cotranslational folding.
Collapse
|
233
|
Vazquez L, e Lima LMTDR, Almeida MDS. Comprehensive structural analysis of designed incomplete polypeptide chains of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus. PLoS One 2017; 12:e0182132. [PMID: 28750053 PMCID: PMC5531528 DOI: 10.1371/journal.pone.0182132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
The cotranslational folding is recognized as a very cooperative process that occurs after the nearly completion of the polypeptide sequence of a domain. Here we investigated the challenges faced by polypeptide segments of a non-vectorial β-barrel fold. Besides the biological interest behind the SARS coronavirus non-structural protein 1 (nsp1, 117 amino acids), this study model has two structural features that motivated its use in this work: 1- its recombinant production is dependent on the temperature, with greater solubility when expressed at low temperatures. This is an indication of the cotranslational guidance to the native protein conformation. 2- Conversely, nsp1 has a six-stranded, mixed parallel/antiparallel β-barrel with intricate long-range interactions, indicating it will need the full-length protein to fold properly. We used non-denaturing purification conditions that allowed the characterization of polypeptide chains of different lengths, mimicking the landscape of the cotranslational fold of a β-barrel, and avoiding the major technical hindrances of working with the nascent polypeptide bound to the ribosome. Our results showed partially folded states formed as soon as the amino acids of the second β-strand were present (55 amino acids). These partially folded states are different based on the length of polypeptide chain. The native α-helix (amino acids 24-37) was identified as a transient structure (~20-30% propensity). We identified the presence of regular secondary structure after the fourth native β-strand is present (89 amino acids), in parallel to the collapse to a non-native 3D structure. Interestingly the polypeptide sequences of the native strands β2, β3 and β4 have characteristics of α-helices. Our comprehensive analyses support the idea that incomplete polypeptide chains, such as the ones of nascent proteins much earlier than the end of the translation, adopt an abundance of specific transient folds, instead of disordered conformations.
Collapse
Affiliation(s)
- Leonardo Vazquez
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Marcius da Silva Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
234
|
Marino J, Holzhüter K, Kuhn B, Geertsma ER. Efficient Screening and Optimization of Membrane Protein Production in Escherichia coli. Methods Enzymol 2017; 594:139-164. [PMID: 28779839 DOI: 10.1016/bs.mie.2017.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Escherichia coli is one of the most widely used expression hosts for membrane proteins. However, establishing conditions for its recombinant production of membrane proteins remains difficult. Attempts to produce membrane proteins frequently result in either no expression or expression as misfolded aggregates. We developed an efficient pipeline for improving membrane protein overexpression in E. coli that is based on two approaches. The first involves transcriptional fusions, small additional RNA sequences upstream of the target open reading frame, to overcome no or poor overall expression levels. The other is based on a tunable promoter in combination with a fusion to green fluorescent protein serving as a reporter for the folding state of the target membrane protein. The latter combination allows adjusting the membrane protein expression rate to the downstream folding capacity, in order to decrease the formation of protein aggregates. This pipeline has proven successful for the efficient and parallel optimization of a diverse set of membrane proteins.
Collapse
Affiliation(s)
| | | | - Benedikt Kuhn
- Goethe University Frankfurt, Frankfurt/Main, Germany
| | | |
Collapse
|
235
|
Abstract
Cysteine thiols are among the most reactive functional groups in proteins, and their pairing in disulfide linkages is a common post-translational modification in proteins entering the secretory pathway. This modest amino acid alteration, the mere removal of a pair of hydrogen atoms from juxtaposed cysteine residues, contrasts with the substantial changes that characterize most other post-translational reactions. However, the wide variety of proteins that contain disulfides, the profound impact of cross-linking on the behavior of the protein polymer, the numerous and diverse players in intracellular pathways for disulfide formation, and the distinct biological settings in which disulfide bond formation can take place belie the simplicity of the process. Here we lay the groundwork for appreciating the mechanisms and consequences of disulfide bond formation in vivo by reviewing chemical principles underlying cysteine pairing and oxidation. We then show how enzymes tune redox-active cofactors and recruit oxidants to improve the specificity and efficiency of disulfide formation. Finally, we discuss disulfide bond formation in a cellular context and identify important principles that contribute to productive thiol oxidation in complex, crowded, dynamic environments.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
236
|
Sardis MF, Tsirigotaki A, Chatzi KE, Portaliou AG, Gouridis G, Karamanou S, Economou A. Preprotein Conformational Dynamics Drive Bivalent Translocase Docking and Secretion. Structure 2017. [DOI: 10.1016/j.str.2017.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
237
|
Abstract
Codon usage is one of the factors influencing recombinant protein expression. We were interested in the codon usage of an antibody Fab fragment gene exhibiting extreme toxicity in the E. coli host. The toxic synthetic human Fab gene contained domains optimized by the “one amino acid-one codon” method. We redesigned five segments of the Fab gene with a “codon harmonization” method described by Angov et al. and studied the effects of these changes on cell viability, Fab yield and display on filamentous phage using different vectors and bacterial strains. The harmonization considerably reduced toxicity, increased Fab expression from negligible levels to 10 mg/l, and restored the display on phage. Testing the impact of the individual redesigned segments revealed that the most significant effects were conferred by changes in the constant domain of the light chain. For some of the Fab gene variants, we also observed striking differences in protein yields when cloned from a chloramphenicol resistant vector into an identical vector, except with ampicillin resistance. In conclusion, our results show that the expression of a heterodimeric secretory protein can be improved by harmonizing selected DNA segments by synonymous codons and reveal additional complexity involved in heterologous protein expression.
Collapse
|
238
|
Cripwell RA, Rose SH, van Zyl WH. Expression and comparison of codon optimised Aspergillus tubingensis amylase variants in Saccharomyces cerevisiae. FEMS Yeast Res 2017. [DOI: 10.1093/femsyr/fox040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
239
|
Prabhakar A, Choi J, Wang J, Petrov A, Puglisi JD. Dynamic basis of fidelity and speed in translation: Coordinated multistep mechanisms of elongation and termination. Protein Sci 2017; 26:1352-1362. [PMID: 28480640 DOI: 10.1002/pro.3190] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
As the universal machine that transfers genetic information from RNA to protein, the ribosome synthesizes proteins with remarkably high fidelity and speed. This is a result of the accurate and efficient decoding of mRNA codons via multistep mechanisms during elongation and termination stages of translation. These mechanisms control how the correct sense codon is recognized by a tRNA for peptide elongation, how the next codon is presented to the decoding center without change of frame during translocation, and how the stop codon is discriminated for timely release of the nascent peptide. These processes occur efficiently through coupling of chemical energy expenditure, ligand interactions, and conformational changes. Understanding this coupling in detail required integration of many techniques that were developed in the past two decades. This multidisciplinary approach has revealed the dynamic nature of translational control and uncovered how external cellular factors such as tRNA abundance and mRNA modifications affect the synthesis of the protein product. Insights from these studies will aid synthetic biology and therapeutic approaches to translation.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305.,Program in Biophysics, Stanford University, Stanford, California, 94305
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305.,Department of Applied Physics, Stanford University, Stanford, California, 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305
| | - Alexey Petrov
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305
| |
Collapse
|
240
|
Liu K, Rehfus JE, Mattson E, Kaiser CM. The ribosome destabilizes native and non-native structures in a nascent multidomain protein. Protein Sci 2017; 26:1439-1451. [PMID: 28474852 DOI: 10.1002/pro.3189] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 11/07/2022]
Abstract
Correct folding is a prerequisite for the biological activity of most proteins. Folding has largely been studied using in vitro refolding assays with isolated small, robustly folding proteins. A substantial fraction of all cellular proteomes is composed of multidomain proteins that are often not amenable to this approach, and their folding remains poorly understood. These large proteins likely begin to fold during their synthesis by the ribosome, a large molecular machine that translates the genetic code. The ribosome affects how folding proceeds, but the underlying mechanisms remain largely obscure. We have utilized optical tweezers to study the folding of elongation factor G, a multidomain protein composed of five domains. We find that interactions among unfolded domains interfere with productive folding in the full-length protein. The N-terminal G-domain constitutes an independently folding unit that, upon in vitro refolding, adopts two similar states that correspond to the natively folded and a non-native, possibly misfolded structure. The ribosome destabilizes both of these states, suggesting a mechanism by which terminal misfolding into highly stable, non-native structures is avoided. The ribosome may thus directly contribute to efficient folding by modulating the folding of nascent multidomain proteins.
Collapse
Affiliation(s)
- Kaixian Liu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland.,Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Joseph E Rehfus
- Department of Biology, Johns Hopkins University, Baltimore, Maryland.,Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Elliot Mattson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland.,Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland.,Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland.,Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
241
|
Kirchner S, Cai Z, Rauscher R, Kastelic N, Anding M, Czech A, Kleizen B, Ostedgaard LS, Braakman I, Sheppard DN, Ignatova Z. Alteration of protein function by a silent polymorphism linked to tRNA abundance. PLoS Biol 2017; 15:e2000779. [PMID: 28510592 PMCID: PMC5433685 DOI: 10.1371/journal.pbio.2000779] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/13/2017] [Indexed: 01/22/2023] Open
Abstract
Synonymous single nucleotide polymorphisms (sSNPs) are considered neutral for protein function, as by definition they exchange only codons, not amino acids. We identified an sSNP that modifies the local translation speed of the cystic fibrosis transmembrane conductance regulator (CFTR), leading to detrimental changes to protein stability and function. This sSNP introduces a codon pairing to a low-abundance tRNA that is particularly rare in human bronchial epithelia, but not in other human tissues, suggesting tissue-specific effects of this sSNP. Up-regulation of the tRNA cognate to the mutated codon counteracts the effects of the sSNP and rescues protein conformation and function. Our results highlight the wide-ranging impact of sSNPs, which invert the programmed local speed of mRNA translation and provide direct evidence for the central role of cellular tRNA levels in mediating the actions of sSNPs in a tissue-specific manner. Synonymous single nucleotide polymorphisms (sSNPs) occur at high frequency in the human genome and are associated with ~50 diseases in humans; the responsible molecular mechanisms remain enigmatic. Here, we investigate the impact of the common sSNP, T2562G, on cystic fibrosis transmembrane conductance regulator (CFTR). Although this sSNP, by itself, does not cause cystic fibrosis (CF), it is prevalent in patients with CFTR-related disorders. T2562G sSNP modifies the local translation speed at the Thr854 codon, leading to changes in CFTR stability and channel function. This sSNP introduces a codon pairing to a low-abundance tRNA, which is particularly rare in human bronchial epithelia, but not in other human tissues, suggesting a tissue-specific effect of this sSNP. Enhancement of the cellular concentration of the tRNA cognate to the mutant ACG codon rescues the stability and conduction defects of T2562G-CFTR. These findings reveal an unanticipated mechanism—inverting the programmed local speed of mRNA translation in a tRNA-dependent manner—for sSNP-associated diseases.
Collapse
Affiliation(s)
- Sebastian Kirchner
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Zhiwei Cai
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Robert Rauscher
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Nicolai Kastelic
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Melanie Anding
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Andreas Czech
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Bertrand Kleizen
- Cellular Protein Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Lynda S. Ostedgaard
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ineke Braakman
- Cellular Protein Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - David N. Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- * E-mail: (ZI); (DNS)
| | - Zoya Ignatova
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
- * E-mail: (ZI); (DNS)
| |
Collapse
|
242
|
Chaney JL, Steele A, Carmichael R, Rodriguez A, Specht AT, Ngo K, Li J, Emrich S, Clark PL. Widespread position-specific conservation of synonymous rare codons within coding sequences. PLoS Comput Biol 2017; 13:e1005531. [PMID: 28475588 PMCID: PMC5438181 DOI: 10.1371/journal.pcbi.1005531] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 05/19/2017] [Accepted: 04/21/2017] [Indexed: 02/01/2023] Open
Abstract
Synonymous rare codons are considered to be sub-optimal for gene expression because they are translated more slowly than common codons. Yet surprisingly, many protein coding sequences include large clusters of synonymous rare codons. Rare codons at the 5’ terminus of coding sequences have been shown to increase translational efficiency. Although a general functional role for synonymous rare codons farther within coding sequences has not yet been established, several recent reports have identified rare-to-common synonymous codon substitutions that impair folding of the encoded protein. Here we test the hypothesis that although the usage frequencies of synonymous codons change from organism to organism, codon rarity will be conserved at specific positions in a set of homologous coding sequences, for example to tune translation rate without altering a protein sequence. Such conservation of rarity–rather than specific codon identity–could coordinate co-translational folding of the encoded protein. We demonstrate that many rare codon cluster positions are indeed conserved within homologous coding sequences across diverse eukaryotic, bacterial, and archaeal species, suggesting they result from positive selection and have a functional role. Most conserved rare codon clusters occur within rather than between conserved protein domains, challenging the view that their primary function is to facilitate co-translational folding after synthesis of an autonomous structural unit. Instead, many conserved rare codon clusters separate smaller protein structural motifs within structural domains. These smaller motifs typically fold faster than an entire domain, on a time scale more consistent with translation rate modulation by synonymous codon usage. While proteins with conserved rare codon clusters are structurally and functionally diverse, they are enriched in functions associated with organism growth and development, suggesting an important role for synonymous codon usage in organism physiology. The identification of conserved rare codon clusters advances our understanding of distinct, functional roles for otherwise synonymous codons and enables experimental testing of the impact of synonymous codon usage on the production of functional proteins. Proteins are long linear polymers that must fold into complex three-dimensional shapes in order to carry out their cellular functions. Every protein is synthesized by the ribosome, which decodes each trinucleotide codon in an mRNA coding sequence in order to select the amino acid residue that will occupy each position in the protein sequence. Most amino acids can be encoded by more than one codon, but these synonymous codons are not used with equal frequency. Rare codons are associated with generally slower rates for protein synthesis, and for this reason have traditionally been considered mildly deleterious for efficient protein production. However, because synonymous codon substitutions do not change the sequence of the encoded protein, the majority view is that they merely reflect genomic ‘background noise’. To the contrary, here we show that the positions of many synonymous rare codons are conserved in mRNA sequences that encode structurally similar proteins from a diverse range of organisms. These results suggest that rare codons have a functional role related to the production of functional proteins, potentially to regulate the rate of protein synthesis and the earliest steps of protein folding, while synthesis is still underway.
Collapse
Affiliation(s)
- Julie L. Chaney
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Aaron Steele
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Rory Carmichael
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Anabel Rodriguez
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Alicia T. Specht
- Department of Applied and Computational Mathematics & Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kim Ngo
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jun Li
- Department of Applied and Computational Mathematics & Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Scott Emrich
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail: (PLC); (SE)
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail: (PLC); (SE)
| |
Collapse
|
243
|
Po P, Delaney E, Gamper H, Szantai-Kis DM, Speight L, Tu L, Kosolapov A, Petersson EJ, Hou YM, Deutsch C. Effect of Nascent Peptide Steric Bulk on Elongation Kinetics in the Ribosome Exit Tunnel. J Mol Biol 2017; 429:1873-1888. [PMID: 28483649 DOI: 10.1016/j.jmb.2017.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/17/2022]
Abstract
All proteins are synthesized by the ribosome, a macromolecular complex that accomplishes the life-sustaining tasks of faithfully decoding mRNA and catalyzing peptide bond formation at the peptidyl transferase center (PTC). The ribosome has evolved an exit tunnel to host the elongating new peptide, protect it from proteolytic digestion, and guide its emergence. It is here that the nascent chain begins to fold. This folding process depends on the rate of translation at the PTC. We report here that besides PTC events, translation kinetics depend on steric constraints on nascent peptide side chains and that confined movements of cramped side chains within and through the tunnel fine-tune elongation rates.
Collapse
Affiliation(s)
- Pengse Po
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin Delaney
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - D Miklos Szantai-Kis
- Department of Biochemistry and Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lee Speight
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - LiWei Tu
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrey Kosolapov
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
244
|
Koubek J, Chang YC, Yang SYC, Huang JJT. Trigger Factor-Induced Nascent Chain Dynamics Changes Suggest Two Different Chaperone-Nascent Chain Interactions during Translation. J Mol Biol 2017; 429:1733-1745. [PMID: 28385637 DOI: 10.1016/j.jmb.2017.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 11/25/2022]
Abstract
Protein biogenesis is poorly understood due to the ribosome that perturbs measurement attempted on the ribosome-bound nascent chain (RNC). Investigating nascent chain dynamics may provide invaluable insight into the co-translational processes such as structure formation or interaction with a chaperone [e.g., the bacterial trigger factor (TF)]. In this study, we aim to establish a platform for studying nascent chain dynamics by exploring the local environment near the fluorescent dye on site-specifically labeled RNCs with time-resolved fluorescence anisotropy. To prepare a quantitative model of fluorescence depolarization, we utilized intrinsically disordered protein bound to ribosome, which helped us couple the sub-nanosecond depolarization with the motion of the nascent chain backbone. This was consistent with zinc-finger-domain-containing RNCs, where the extent of sub-nanosecond motion decreased upon the addition of zinc when the fluorophore was in close proximity of the domain. After the characterization of disordered nascent chain dynamics, we investigated the synthesis of a model cytosolic protein, Entner-Doudoroff aldolase, labeled at different sites during various stages of translation. Depending on the stage of translation, the addition of the TF to the nascent chain led to two different responses in the nascent chain dynamics serendipitously, suggesting steric hindrance between the nascent chain and the chaperone as a mechanism for TF dissociation from the ribosome during translation. Overall, our study demonstrates the possible use of site-specific labeling and time-resolved anisotropy to gain insight on chaperone binding event at various stages of translation and hints on TF co-translational mechanism.
Collapse
Affiliation(s)
- Jiří Koubek
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, 11529, R.O.C
| | - Yi-Che Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, 11529, R.O.C
| | | | | |
Collapse
|
245
|
McCarthy C, Carrea A, Diambra L. Bicodon bias can determine the role of synonymous SNPs in human diseases. BMC Genomics 2017; 18:227. [PMID: 28288557 PMCID: PMC5347174 DOI: 10.1186/s12864-017-3609-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/04/2017] [Indexed: 01/09/2023] Open
Abstract
Background For a long time synonymous single nucleotide polymorphisms were considered as silent mutations. However, nowadays it is well known that they can affect protein conformation and function, leading to altered disease susceptibilities, differential prognosis and/or drug responses, among other clinically relevant genetic traits. This occurs through different mechanisms: by disrupting the splicing signals of precursor mRNAs, affecting regulatory binding-sites of transcription factors and miRNAs, or by modifying the secondary structure of mRNAs. Results In this paper we considered 22 human genetic diseases or traits, linked to 35 synonymous single nucleotide polymorphisms in 27 different genes. We performed a local sequence context analysis in terms of the ribosomal pause propensity affected by synonymous single nucleotide polymorphisms. We found that synonymous mutations related to the above mentioned mechanisms presented small pause propensity changes, whereas synonymous mutations that were not related to those mechanisms presented large pause propensity changes. On the other hand, we did not observe large variations in the codon usage of codons associated with these mutations. Furthermore, we showed that the changes in the pause propensity associated with benign sSNPs are significantly lower than the pause propensity changes related to sSNPs associated to diseases. Conclusions These results suggest that the genetic diseases or traits related to synonymous mutations with large pause propensity changes, could be the consequence of another mechanism underlying non-silent synonymous mutations. Namely, alternative protein configuration related, in turn, to alterations in the ribosome-mediated translational attenuation program encoded by pairs of consecutive codons, not codons. These findings shed light on the latter mechanism based on the perturbation of the co-translational folding process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3609-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina McCarthy
- Centro Regional de Estudio Génomicos, Universidad Nacional de La Plata, Boulevard 120, La Plata, Argentina.,CONICET, Buenos Aires, Argentina.,Departamento de Informática y Tecnología, Escuela de Ciencias Agrarias, Naturales y Ambientales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
| | - Alejandra Carrea
- Centro Regional de Estudio Génomicos, Universidad Nacional de La Plata, Boulevard 120, La Plata, Argentina.,CONICET, Buenos Aires, Argentina
| | - Luis Diambra
- Centro Regional de Estudio Génomicos, Universidad Nacional de La Plata, Boulevard 120, La Plata, Argentina. .,CONICET, Buenos Aires, Argentina.
| |
Collapse
|
246
|
Synonymous Codons: Choose Wisely for Expression. Trends Genet 2017; 33:283-297. [PMID: 28292534 DOI: 10.1016/j.tig.2017.02.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
Abstract
The genetic code, which defines the amino acid sequence of a protein, also contains information that influences the rate and efficiency of translation. Neither the mechanisms nor functions of codon-mediated regulation were well understood. The prevailing model was that the slow translation of codons decoded by rare tRNAs reduces efficiency. Recent genome-wide analyses have clarified several issues. Specific codons and codon combinations modulate ribosome speed and facilitate protein folding. However, tRNA availability is not the sole determinant of rate; rather, interactions between adjacent codons and wobble base pairing are key. One mechanism linking translation efficiency and codon use is that slower decoding is coupled to reduced mRNA stability. Changes in tRNA supply mediate biological regulationfor instance,, changes in tRNA amounts facilitate cancer metastasis.
Collapse
|
247
|
Diambra LA. Differential bicodon usage in lowly and highly abundant proteins. PeerJ 2017; 5:e3081. [PMID: 28289571 PMCID: PMC5346287 DOI: 10.7717/peerj.3081] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/10/2017] [Indexed: 01/23/2023] Open
Abstract
Degeneracy in the genetic code implies that different codons can encode the same amino acid. Usage preference of synonymous codons has been observed in all domains of life. There is much evidence suggesting that this bias has a major role on protein elongation rate, contributing to differential expression and to co-translational folding. In addition to codon usage bias, other preference variations have been observed such as codon pairs. In this paper, I report that codon pairs have significant different frequency usage for coding either lowly or highly abundant proteins. These usage preferences cannot be explained by the frequency usage of the single codons. The statistical analysis of coding sequences of nine organisms reveals that in many cases bicodon preferences are shared between related organisms. Furthermore, it is observed that misfolding in the drug-transport protein, encoded by MDR1 gene, is better explained by a big change in the pause propensity due to the synonymous bicodon variant, rather than by a relatively small change in codon usage. These findings suggest that codon pair usage can be a more powerful framework to understand translation elongation rate, protein folding efficiency, and to improve protocols to optimize heterologous gene expression.
Collapse
Affiliation(s)
- Luis A. Diambra
- Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| |
Collapse
|
248
|
Siggs OM, Javadiyan S, Sharma S, Souzeau E, Lower KM, Taranath DA, Black J, Pater J, Willoughby JG, Burdon KP, Craig JE. Partial duplication of the CRYBB1-CRYBA4 locus is associated with autosomal dominant congenital cataract. Eur J Hum Genet 2017; 25:711-718. [PMID: 28272538 DOI: 10.1038/ejhg.2017.33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Congenital cataract is a rare but severe paediatric visual impediment, often caused by variants in one of several crystallin genes that produce the bulk of structural proteins in the lens. Here we describe a pedigree with autosomal dominant isolated congenital cataract and linkage to the crystallin gene cluster on chromosome 22. No rare single nucleotide variants or short indels were identified by exome sequencing, yet copy number variant analysis revealed a duplication spanning both CRYBB1 and CRYBA4. While the CRYBA4 duplication was complete, the CRYBB1 duplication was not, with the duplicated CRYBB1 product predicted to create a gain of function allele. This association suggests a new genetic mechanism for the development of isolated congenital cataract.
Collapse
Affiliation(s)
- Owen M Siggs
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Shari Javadiyan
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, Flinders University, Bedford Park, South Australia, Australia
| | - Deepa A Taranath
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Jo Black
- Department of Ophthalmology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - John Pater
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia.,Department of Ophthalmology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - John G Willoughby
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
249
|
Inada T. The Ribosome as a Platform for mRNA and Nascent Polypeptide Quality Control. Trends Biochem Sci 2017; 42:5-15. [DOI: 10.1016/j.tibs.2016.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022]
|
250
|
Simhadri VL, Hamasaki-Katagiri N, Lin BC, Hunt R, Jha S, Tseng SC, Wu A, Bentley AA, Zichel R, Lu Q, Zhu L, Freedberg DI, Monroe DM, Sauna ZE, Peters R, Komar AA, Kimchi-Sarfaty C. Single synonymous mutation in factor IX alters protein properties and underlies haemophilia B. J Med Genet 2016; 54:338-345. [PMID: 28007939 DOI: 10.1136/jmedgenet-2016-104072] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/15/2016] [Accepted: 11/27/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Haemophilia B is caused by genetic aberrations in the F9 gene. The majority of these are non-synonymous mutations that alter the primary structure of blood coagulation factor IX (FIX). However, a synonymous mutation c.459G>A (Val107Val) was clinically reported to result in mild haemophilia B (FIX coagulant activity 15%-20% of normal). The F9 mRNA of these patients showed no skipping or retention of introns and/or change in mRNA levels, suggesting that mRNA integrity does not contribute to the origin of the disease in affected individuals. The aim of this study is to elucidate the molecular mechanisms that can explain disease manifestations in patients with this synonymous mutation. METHODS We analyse the molecular mechanisms underlying the FIX deficiency through in silico analysis and reproducing the c.459G>A (Val107Val) mutation in stable cell lines. Conformation and non-conformation sensitive antibodies, limited trypsin digestion, activity assays for FIX, interaction with other proteins and post-translation modifications were used to evaluate the biophysical and biochemical consequences of the synonymous mutation. RESULTS The Val107Val synonymous mutation in F9 was found to significantly diminish FIX expression. Our results suggest that this mutation slows FIX translation and affects its conformation resulting in decreased extracellular protein level. The altered conformation did not change the specific activity of the mutated protein. CONCLUSIONS The pathogenic basis for one synonymous mutation (Val107Val) in the F9 gene associated with haemophilia B was determined. A mechanistic understanding of this synonymous variant yields potential for guiding and developing future therapeutic treatments.
Collapse
Affiliation(s)
- Vijaya L Simhadri
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nobuko Hamasaki-Katagiri
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Brian C Lin
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ryan Hunt
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sujata Jha
- Department of Biological, Geological & Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Sandra C Tseng
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Andrew Wu
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Amber A Bentley
- Department of Biological, Geological & Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Ran Zichel
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Qi Lu
- Hematology Research, Cambridge, Massachusetts, USA
| | - Lily Zhu
- Hematology Research, Cambridge, Massachusetts, USA
| | - Darón I Freedberg
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Products and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Dougald M Monroe
- Department of Hematology/Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zuben E Sauna
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Anton A Komar
- Department of Biological, Geological & Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Chava Kimchi-Sarfaty
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|