201
|
Mortazavi M, Zarenezhad M, Gholamzadeh S, Alavian SM, Ghorbani M, Dehghani R, Malekpour A, Meshkibaf M, Fakhrzad A. Bioinformatic Identification of Rare Codon Clusters (RCCs) in HBV Genome and Evaluation of RCCs in Proteins Structure of Hepatitis B Virus. HEPATITIS MONTHLY 2016; 16:e39909. [PMID: 27882067 PMCID: PMC5116127 DOI: 10.5812/hepatmon.39909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/10/2016] [Accepted: 09/24/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) as an infectious disease that has nine genotypes (A - I) and a 'putative' genotype J. OBJECTIVES The aim of this study was to identify the rare codon clusters (RCC) in the HBV genome and to evaluate these RCCs in the HBV proteins structure. METHODS For detection of protein family accession numbers (Pfam) in HBV proteins, the UniProt database and Pfam search tool were used. Protein family accession numbers is a comprehensive and accurate collection of protein domains and families. It contains annotation of each family in the form of textual descriptions, links to other resources and literature references. Genome projects have used Pfam extensively for large-scale functional annotation of genomic data; Pfam database is a large collection of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). The Pfam search tools are databases that identify Pfam of proteins. These Pfam IDs were analyzed in Sherlocc program and the location of RCCs in HBV genome and proteins were detected and reported as translated EMBL nucleotide sequence data library (TrEMBL) entries. The TrEMBL is a computer-annotated supplement of SWISS-PROT that contains all the translations of European molecular biology laboratory (EMBL) nucleotide sequence entries not yet integrated in SWISS-PROT. Furthermore, the structures of TrEMBL entries proteins were studied in the PDB database and 3D structures of the HBV proteins and locations of RCCs were visualized and studied using Swiss PDB Viewer software®. RESULTS The Pfam search tool found nine protein families in three frames. Results of Pfams studies in the Sherlocc program showed that this program has not identified RCCs in the external core antigen (PF08290) and truncated HBeAg gene (PF08290) of HBV. By contrast, the RCCs were identified in gene of hepatitis core antigen (PF00906 and the residues 224 - 234 and 251 - 255), large envelope protein S (PF00695 and the residues 53-56 and 70 - 84), X protein (PF00739 and the residues 10 - 24, 29 - 83, 95 - 99. 122 - 129, 139 - 143), DNA polymerase (viral) N-terminal domain (PF00242 and the residues 59 - 62, 214 - 217, 407 - 413) and protein P (Pf00336 and the residues 225 - 228). In HBV genome, seven RCCs were identified in the gene area of hepatitis core antigen, large envelope protein S and DNA polymerase, while protein structures of TrEMBL entries sequences found in Sherlocc program outputs were not complete. CONCLUSIONS Based on the location of detected RCCs in the structure of HBV proteins, it was found that these RCCs may have a critical role in correct folding of HBV proteins and can be considered as drug targets. The results of this study provide new and deep perspectives about structure of HBV proteins for further researches and designing new drugs for treatment of HBV.
Collapse
Affiliation(s)
- Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, IR Iran
| | - Mohammad Zarenezhad
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Legal Medicine Research Center, Legal Medicine Organization of Iran, Tehran, IR Iran
| | - Saeid Gholamzadeh
- Legal Medicine Research Center, Legal Medicine Organization of Iran, Tehran, IR Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Middle East Liver Disease Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Ghorbani
- Department of Pathology, School of Medicine, Fasa University of Medical Sciences, Fasa, IR Iran
| | - Reza Dehghani
- Pharmacology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Abdorrasoul Malekpour
- Legal Medicine Research Center, Legal Medicine Organization of Iran, Tehran, IR Iran
| | - Mohammadhasan Meshkibaf
- Department of Biochemistry, School of Medicine, Fasa University of Medical Sciences, Fasa, IR Iran
| | - Ali Fakhrzad
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|
202
|
Zolotukhin I, Markusic DM, Palaschak B, Hoffman BE, Srikanthan MA, Herzog RW. Potential for cellular stress response to hepatic factor VIII expression from AAV vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16063. [PMID: 27738644 PMCID: PMC5040172 DOI: 10.1038/mtm.2016.63] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/08/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
Hemophilia A and B are coagulation disorders resulting from the loss of functional coagulation factor VIII (FVIII) or factor IX proteins, respectively. Gene therapy for hemophilia with adeno-associated virus vectors has shown efficacy in hemophilia B patients. Although hemophilia A patients are more prevalent, the development of therapeutic adeno-associated virus vectors has been impeded by the size of the F8 cDNA and impaired secretion of FVIII protein. Further, it has been reported that over-expression of the FVIII protein induces endoplasmic reticulum stress and activates the unfolded protein response pathway both in vitro and in hepatocytes in vivo, presumably due to retention of misfolded FVIII protein within the endoplasmic reticulum. Engineering of the F8 transgene, including removal of the B domain (BDD-FVIII) and codon optimization, now allows for the generation of adeno-associated virus vectors capable of expressing therapeutic levels of FVIII. Here we sought to determine if the risks of inducing the unfolded protein response in murine hepatocytes extend to adeno-associated virus gene transfer. Although our data show a mild activation of unfolded protein response markers following F8 gene delivery at a certain vector dose in C57BL/6 mice, it was not augmented upon further elevated dosing, did not induce liver pathology or apoptosis, and did not impact FVIII immunogenicity.
Collapse
Affiliation(s)
- Irene Zolotukhin
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - David M Markusic
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Brett Palaschak
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Brad E Hoffman
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Meera A Srikanthan
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| |
Collapse
|
203
|
Ulmer JB, Geall AJ. Recent innovations in mRNA vaccines. Curr Opin Immunol 2016; 41:18-22. [DOI: 10.1016/j.coi.2016.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/05/2016] [Accepted: 05/12/2016] [Indexed: 01/16/2023]
|
204
|
Jacobson GN, Clark PL. Quality over quantity: optimizing co-translational protein folding with non-'optimal' synonymous codons. Curr Opin Struct Biol 2016; 38:102-10. [PMID: 27318814 PMCID: PMC5010456 DOI: 10.1016/j.sbi.2016.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022]
Abstract
Protein folding occurs on a time scale similar to peptide bond formation by the ribosome, which has long sparked speculation that altering translation rate could alter the folding mechanism or even the final folded structure of a protein in vivo. Recent results have provided strong support for this model: synonymous substitutions to codons with different usage frequency, which are often translated at different rates, have been shown to significantly alter the co-translational folding mechanism of some proteins, leading to altered cell function. Here we review recent progress towards understanding the connections between synonymous codon usage, translation rate and co-translational protein folding mechanisms.
Collapse
Affiliation(s)
- Giselle N Jacobson
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
205
|
Rhoads RE. Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences. Methods Mol Biol 2016; 1428:3-27. [PMID: 27236789 DOI: 10.1007/978-1-4939-3625-0_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances have made it possible to synthesize mRNA in vitro that is relatively stable when introduced into mammalian cells, has a diminished ability to activate the innate immune response against exogenous (virus-like) RNA, and can be efficiently translated into protein. Synthetic methods have also been developed to produce mRNA with unique investigational properties such as photo-cross-linking, fluorescence emission, and attachment of ligands through click chemistry. Synthetic mRNA has been proven effective in numerous applications beneficial for human health such as immunizing patients against cancer and infections diseases, alleviating diseases by restoring deficient proteins, converting somatic cells to pluripotent stem cells to use in regenerative medicine therapies, and engineering the genome by making specific alterations in DNA. This introductory chapter provides background information relevant to the following 20 chapters of this volume that present protocols for these applications of synthetic mRNA.
Collapse
Affiliation(s)
- Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| |
Collapse
|
206
|
Abstract
In the two decades since their initial discovery, DNA vaccines technologies have come a long way. Unfortunately, when applied to human subjects inadequate immunogenicity is still the biggest challenge for practical DNA vaccine use. Many different strategies have been tested in preclinical models to address this problem, including novel plasmid vectors and codon optimization to enhance antigen expression, new gene transfection systems or electroporation to increase delivery efficiency, protein or live virus vector boosting regimens to maximise immune stimulation, and formulation of DNA vaccines with traditional or molecular adjuvants. Better understanding of the mechanisms of action of DNA vaccines has also enabled better use of the intrinsic host response to DNA to improve vaccine immunogenicity. This review summarizes recent advances in DNA vaccine technologies and related intracellular events and how these might impact on future directions of DNA vaccine development.
Collapse
Affiliation(s)
- Lei Li
- a Vaxine Pty Ltd, Bedford Park , Adelaide , Australia.,b Department of Diabetes and Endocrinology , Flinders University, Flinders Medical Centre , Adelaide , SA , Australia
| | - Nikolai Petrovsky
- a Vaxine Pty Ltd, Bedford Park , Adelaide , Australia.,b Department of Diabetes and Endocrinology , Flinders University, Flinders Medical Centre , Adelaide , SA , Australia
| |
Collapse
|
207
|
Kauffman KJ, Webber MJ, Anderson DG. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Control Release 2015; 240:227-234. [PMID: 26718856 DOI: 10.1016/j.jconrel.2015.12.032] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023]
Abstract
Though therapeutics based on messenger RNA (mRNA) have broad potential in applications such as protein replacement therapy, cancer immunotherapy, and genomic engineering, their effective intracellular delivery remains a challenge. A chemically diverse suite of delivery materials with origins as materials for cellular transfection of DNA and small interfering RNAs (siRNAs) has recently been reported to have promise as non-viral delivery agents for mRNA. These materials include covalent conjugates, protamine complexes, nanoparticles based on lipids or polymers, and hybrid formulations. This review will highlight the use of delivery materials for mRNA, with a specific focus on their mechanisms of action, routes of administration, and dosages. Additionally, strategies in which these materials can be adapted and optimized to address challenges specific to mRNA delivery are also discussed. The technologies included have shown varying promise for therapeutic use, specifically having been used to deliver mRNA in vivo or exhibiting characteristics that could make in vivo use a possibility. In so doing, it is the intention of this review to provide a comprehensive look at the progress and possibilities in applying nucleic acid delivery technology specifically toward the emerging area of mRNA therapeutics.
Collapse
Affiliation(s)
- Kevin J Kauffman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Matthew J Webber
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, USA; Department of Anesthesiology, Boston Children's Hospital, Boston, 02122, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, USA; Department of Anesthesiology, Boston Children's Hospital, Boston, 02122, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 02139, USA; Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA.
| |
Collapse
|
208
|
Decoding mechanisms by which silent codon changes influence protein biogenesis and function. Int J Biochem Cell Biol 2015; 64:58-74. [PMID: 25817479 DOI: 10.1016/j.biocel.2015.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/02/2015] [Accepted: 03/14/2015] [Indexed: 02/07/2023]
Abstract
SCOPE Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. PURPOSE This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. PHYSIOLOGICAL AND MEDICAL RELEVANCE Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies.
Collapse
|
209
|
Niederer HA, Bangham CRM. Integration site and clonal expansion in human chronic retroviral infection and gene therapy. Viruses 2014; 6:4140-64. [PMID: 25365582 PMCID: PMC4246213 DOI: 10.3390/v6114140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/09/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022] Open
Abstract
Retroviral vectors have been successfully used therapeutically to restore expression of genes in a range of single-gene diseases, including several primary immunodeficiency disorders. Although clinical trials have shown remarkable results, there have also been a number of severe adverse events involving malignant outgrowth of a transformed clonal population. This clonal expansion is influenced by the integration site profile of the viral integrase, the transgene expressed, and the effect of the viral promoters on the neighbouring host genome. Infection with the pathogenic human retrovirus HTLV-1 also causes clonal expansion of cells containing an integrated HTLV-1 provirus. Although the majority of HTLV-1-infected people remain asymptomatic, up to 5% develop an aggressive T cell malignancy. In this review we discuss recent findings on the role of the genomic integration site in determining the clonality and the potential for malignant transformation of cells carrying integrated HTLV-1 or gene therapy vectors, and how these results have contributed to the understanding of HTLV-1 pathogenesis and to improvements in gene therapy vector safety.
Collapse
Affiliation(s)
- Heather A Niederer
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK.
| | - Charles R M Bangham
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK.
| |
Collapse
|