201
|
Majidzadeh H, Araj-Khodaei M, Ghaffari M, Torbati M, Ezzati Nazhad Dolatabadi J, Hamblin MR. Nano-based delivery systems for berberine: A modern anti-cancer herbal medicine. Colloids Surf B Biointerfaces 2020; 194:111188. [DOI: 10.1016/j.colsurfb.2020.111188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/14/2020] [Accepted: 06/07/2020] [Indexed: 12/18/2022]
|
202
|
Correlation between assembly structure of a gamma irradiated albumin nanoparticle and its function as a drug delivery system. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
203
|
Huang WD, Xu X, Wang HL, Huang JX, Zuo XH, Lu XJ, Liu XL, Yu DG. Electrosprayed Ultra-Thin Coating of Ethyl Cellulose on Drug Nanoparticles for Improved Sustained Release. NANOMATERIALS 2020; 10:nano10091758. [PMID: 32899956 PMCID: PMC7557748 DOI: 10.3390/nano10091758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
In nanopharmaceutics, polymeric coating is a popular strategy for modifying the drug release kinetics and, thus, new methods for implementing the nanocoating processes are highly desired. In the present study, a modified coaxial electrospraying process was developed to formulate an ultra-thin layer of ethyl cellulose (EC) on a medicated composite core consisting of tamoxifen citrate (TAM) and EC. A traditional single-fluid blending electrospraying and its monolithic EC-TAM nanoparticles (NPs) were exploited to compare. The modified coaxial processes were demonstrated to be more continuous and robust. The created NPs with EC coating had a higher quality than the monolithic ones in terms of the shape, surface smoothness, and the uniform size distribution, as verified by the SEM and TEM results. XRD patterns suggested that TAM presented in all the NPs in an amorphous state thanks to the fine compatibility between EC and TAM, as indicated by the attenuated total reflection (ATR)-FTIR spectra. In vitro dissolution tests demonstrated that the NPs with EC coating required a time period of 7.58 h, 12.79 h, and 28.74 h for an accumulative release of 30%, 50%, and 90% of the loaded drug, respectively. The protocols reported here open a new way for developing novel medicated nanoparticles with functional coating.
Collapse
Affiliation(s)
- Wei-Dong Huang
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China; (W.-D.H.); (X.-H.Z.)
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China; (H.-L.W.); (J.-X.H.)
| | - Xizi Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Han-Lin Wang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China; (H.-L.W.); (J.-X.H.)
| | - Jie-Xun Huang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China; (H.-L.W.); (J.-X.H.)
| | - Xiao-Hua Zuo
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China; (W.-D.H.); (X.-H.Z.)
| | - Xiao-Ju Lu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China; (W.-D.H.); (X.-H.Z.)
- Correspondence: (X.-J.L.); (X.-L.L.); (D.-G.Y.); Tel.: +86-714-6348814 (X.-J.L.); +86-714-6368937 (X.-L.L.); +86-21-55270632 (D.-G.Y.)
| | - Xian-Li Liu
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China; (H.-L.W.); (J.-X.H.)
- Correspondence: (X.-J.L.); (X.-L.L.); (D.-G.Y.); Tel.: +86-714-6348814 (X.-J.L.); +86-714-6368937 (X.-L.L.); +86-21-55270632 (D.-G.Y.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Correspondence: (X.-J.L.); (X.-L.L.); (D.-G.Y.); Tel.: +86-714-6348814 (X.-J.L.); +86-714-6368937 (X.-L.L.); +86-21-55270632 (D.-G.Y.)
| |
Collapse
|
204
|
Rahban D, Doostan M, Salimi A. Cancer Therapy; Prospects for Application of Nanoparticles for Magnetic-Based Hyperthermia. Cancer Invest 2020; 38:507-521. [PMID: 32870068 DOI: 10.1080/07357907.2020.1817482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hyperthermic therapy is defined as increasing the temperature of tumor tissues to 40-43 °C that has been effective approach for destroying malignant cells in the field of cancer therapy. Recent line of research has applied different approaches along with hyperthermic treatment to obtain high efficiency and little side effects. Magnetic nanoparticle-based hyperthermia has demonstrated an improved functionality in targeting malignant cells and implement their therapeutic role by heating the tumor cells. Here in this review article, we clarify the diverse aspects of magnetic nanoparticles in the treatment of cancer.
Collapse
Affiliation(s)
- Dariuosh Rahban
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahtab Doostan
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
205
|
Sim T, Lim C, Hoang NH, Shin Y, Kim JC, Park JY, Her J, Lee ES, Youn YS, Oh KT. An On-Demand pH-Sensitive Nanocluster for Cancer Treatment by Combining Photothermal Therapy and Chemotherapy. Pharmaceutics 2020; 12:E839. [PMID: 32887273 PMCID: PMC7558381 DOI: 10.3390/pharmaceutics12090839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Combination therapy is considered to be a promising strategy for improving the therapeutic efficiency of cancer treatment. In this study, an on-demand pH-sensitive nanocluster (NC) system was prepared by the encapsulation of gold nanorods (AuNR) and doxorubicin (DOX) by a pH-sensitive polymer, poly(aspartic acid-graft-imidazole)-PEG, to enhance the therapeutic effect of chemotherapy and photothermal therapy. At pH 6.5, the NC systems formed aggregated structures and released higher drug amounts while sustaining a stable nano-assembly, structured with less systemic toxicity at pH 7.4. The NC could also increase antitumor efficacy as a result of improved accumulation and release of DOX from the NC system at pHex and pHen with locally applied near-infrared light. Therefore, an NC system would be a potent strategy for on-demand combination treatment to target tumors with less systemic toxicity and an improved therapeutic effect.
Collapse
Affiliation(s)
- Taehoon Sim
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Chaemin Lim
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Ngoc Ha Hoang
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Yuseon Shin
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Jae Chang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - June Yong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Jaewon Her
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea;
| | - Kyung Taek Oh
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| |
Collapse
|
206
|
Intracellular delivery of cytochrome C using hypoxia-responsive polypeptide micelles for efficient cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111069. [DOI: 10.1016/j.msec.2020.111069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/13/2023]
|
207
|
Bolla PK, Gote V, Singh M, Yellepeddi VK, Patel M, Pal D, Gong X, Sambalingam D, Renukuntla J. Preparation and characterization of lutein loaded folate conjugated polymeric nanoparticles. J Microencapsul 2020; 37:502-516. [PMID: 32842813 DOI: 10.1080/02652048.2020.1809724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM To prepare and characterise lutein-loaded polylactide-co-glycolide-polyethylene glycol-folate (PLGA-PEG-FOLATE) nanoparticles and evaluate enhanced uptake in SK-N-BE(2) cells. METHODS Nanoparticles were prepared using O/W emulsion solvent evaporation and characterised using DLS, SEM, DSC, FTIR and in-vitro release. Lutein-uptake in SK-N-BE(2) cells was determined using flow-cytometry, confocal-microscopy and HPLC. Control was lutein PLGA nanoparticles. RESULTS The size of lutein-loaded PLGA and PLGA-PEG-FOLATE nanoparticles were 189.6 ± 18.79 nm and 188.0 ± 4.06 nm, respectively. Lutein entrapment was ∼61%(w/w) and ∼73%(w/w) for PLGA and PLGA-PEG-FOLATE nanoparticles, respectively. DSC and FTIR confirmed encapsulation of lutein into nanoparticles. Cellular uptake studies showed ∼1.6 and ∼2-fold enhanced uptake of lutein from PLGA-PEG-FOLATE nanoparticles compared to PLGA nanoparticles and lutein, respectively. Cumulative release of lutein was higher in PLGA nanoparticles (100% (w/w) within 24 h) compared to PLGA-PEG-FOLATE nanoparticles (∼80% (w/w) in 48 h). CONCLUSION Lutein-loaded PLGA-PEG-FOLATE nanoparticles could be a potential treatment for hypoxic ischaemic encephalopathy.
Collapse
Affiliation(s)
- Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, El Paso, TX, USA.,Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, USA
| | - Mahima Singh
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Venkata Kashyap Yellepeddi
- Division of Clinical Pharmacology, Department of Paediatrics, University of UTAH, Salt Lake City, UT, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Manan Patel
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, USA
| | - Xiaoming Gong
- Division of Neonatology, Department of Paediatrics, Texas Tech University Health Sciences Centre, El Paso, TX, USA
| | - Devaraj Sambalingam
- Division of Neonatology, Department of Paediatrics, Texas Tech University Health Sciences Centre, El Paso, TX, USA
| | - Jwala Renukuntla
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| |
Collapse
|
208
|
Abolhasani A, Heidari F, Abolhasani H. Development and characterization of chitosan nanoparticles containing an indanonic tricyclic spiroisoxazoline derivative using ion-gelation method: an in vitro study. Drug Dev Ind Pharm 2020; 46:1604-1612. [PMID: 32812474 DOI: 10.1080/03639045.2020.1811304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biodegradable nanoparticulate carriers are potentially applicable compounds in the administration of therapeutic agents and drug delivery. They have received much attention due to their biological characteristics such as biodegradability, biocompatibility, and bioadhesive. The objectives of this work are first, investigating the impact of two important parameters (i.e. chitosan or sodium tripolyphosphate (TPP) solution concentration and chitosan to TPP mass ratio) on the chitosan nanoparticles (CNPs) formation by ionic-gelation method and then, the synthesis and characterization of chitosan-based, biodegradable drug-loaded nanoparticles in the encapsulation of novel 4'-(4-(methylsulfonyl)phenyl)-3'-(3,4,5-trimethoxyphenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one (MTS) indanonic tricyclic spiroisoxazoline, which is a potent anticancer drug. The particle size, shape, zeta potential, drug loading capacity, in vitro release characteristics, and stability of the formulated drug-loaded nanoparticles of the different drug:carrier ratio has been studied. The results indicated that the particle size increased at the higher chitosan or TPP concentration while the mass ratio did not appear to be a significant parameter during the cross-linking process. The particle diameter and zeta potential of CNPs including MTS were approximately in the range of 256-350 nm and 24.08-38.70 mV, respectively. The entrapment efficiency steadily increased with increasing the concentration of the polymer in formulizations. Throughout 24 h, the in vitro release behavior was provided a sustained release from all the drug-loaded formulizations. The optimal formulization of CNPs based on drug content with a drug:carrier ratio of 1:2 did not change appreciably during 60-day storage at either 4 °C or the ambient temperature.
Collapse
Affiliation(s)
- Ahmad Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.,Department of Chemical Engineering, University of Qom, Qom, Iran
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.,Department of Anatomy, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.,Department of Physiology and Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran.,Spiritual Health Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
209
|
Hong L, Cho CS, Kim WS, Choi YJ, Kang SK. Phthalyl starch nanoparticles as prebiotics enhanced nisin production in Lactococcus lactis through the induction of mild stress in probiotics. J Appl Microbiol 2020; 130:439-449. [PMID: 32500649 DOI: 10.1111/jam.14735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 02/19/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022]
Abstract
AIM OF THE STUDY Effect of internalized phthalyl starch nanoparticles (PSNs) on the antimicrobial ability of Lactococcus lactis (LL) KCTC 2013. METHODS AND RESULTS Phthalyl starch nanoparticles were prepared by self-assembly of phthalyl starch and the amount of the hydrophobic phthalic moieties were characterized by nuclear magnetic resonance: PSN1 (DS: 14·3 mol.%), PSN2 (DS: 17·8 mol.%) and PSN3 (DS: 30·4 mol.%). The sizes of PSN1, PSN2 and PSN3 measured by dynamic light scattering were 364·7, 248·4 and 213·4 nm, respectively, and the surface charges of PSNs measured by electrophoretic light scattering were negative charges and PSNs were spherical in shape according to scanning electron microscope. It was found that when PSNs were treated with LL, the PSNs were internalized into LL through nanoparticle size-, energy- and glucose transporter-dependent mechanisms. The internalization was confirmed by confocal laser scanning microscopy and fluorescence-activated cell sorting. Nisin was isolated and identified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Also, more nisin was produced from PSNs-treated LL than untreated- or starch-treated LL. Co-culture assay and agar diffusion test were performed to test the antimicrobial ability. Antimicrobial ability against Gram-negative Escherichia coli k88, Salmonella gallinarum and Gram-positive Listeria monocytogenes of LL treated with PSNs was higher than that of untreated or starch-treated group. Finally, it was found that the expression level of stress response genes dnaK, dnaJ and groES was significantly higher in PSNs-treated groups compared with starch-treated group or LL alone. CONCLUSION The internalization of PSNs into LL enhanced the production of nisin through mild intracellular stimulation, resulting in enhanced antimicrobial ability. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows the promising potential of PSNs as new prebiotics for increasing the production of nisin, thus demonstrating a new method for the biological production of such antimicrobial peptides.
Collapse
Affiliation(s)
- L Hong
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - C-S Cho
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - W-S Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Y-J Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - S-K Kang
- Institute of Green-Bio Science & Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do, Republic of Korea
| |
Collapse
|
210
|
Nanoparticle Therapy Is a Promising Approach in the Management and Prevention of Many Diseases: Does It Help in Curing Alzheimer Disease? JOURNAL OF NANOTECHNOLOGY 2020. [DOI: 10.1155/2020/8147080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treatment of brain diseases is always limited by the physiological nature of the highly selective blood-brain barrier (BBB) and the electrostatic charge of the nanoporous extracellular matrix. Nanomedical application provides a promising drug delivery revolution for the treatment of neurodegenerative diseases (NDDs). It depends on improving the pharmacokinetic distribution of drugs through the central nervous system. Nanotechnology offers various forms of nanoparticles, and these nanoparticles have brain-targeted and long-acting properties with minimal systemic adverse effects and motor complications. Gene delivery vehicles and nanocarriers including neurotrophic factors are promising therapeutics for many NDDs, and they can modulate neuronal survival and synaptic connectivity. Neurotrophic factors when integrated with the nanotechnological approaches can pass the BBB merely, representing a significant challenging track. Clinical trials proved that levodopa nanoparticles cause little motor complications which is a considerable drawback in treating Parkinson’s disease with levodopa. Recently, nanotechnology had patented new formulations and achieved various advanced procedures for management, and even prevention, of NDDs. Nanotechnology can be integrated into neuroscience to fight against neurodegenerative diseases. Primary research studies in using nanoparticles to cure Alzheimer disease (AD) are promising but are still in need for more investigations. The present paper aims to review, outline, and summarize various efforts done in the field of using nanoparticles in the management of Alzheimer.
Collapse
|
211
|
Haghshenas V, Sariri R, Naderi Sohi A, Nazari H. Encapsulation of Docetaxel into Diblock Polymeric Polymersome as a Nanodrug. ChemistrySelect 2020. [DOI: 10.1002/slct.202001251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Venus Haghshenas
- Department of Biology, Faculty of ScienceUniversity of Guilan Rasht Iran
| | - Reyhaneh Sariri
- Department of Biology, Faculty of ScienceUniversity of Guilan Rasht Iran
| | | | - Hojjatollah Nazari
- Research Center of Advanced Technologies in Cardiovascular MedicineTehran Heart Center, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
212
|
Wang X, Xuan Z, Zhu X, Sun H, Li J, Xie Z. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. J Nanobiotechnology 2020; 18:108. [PMID: 32746846 PMCID: PMC7397640 DOI: 10.1186/s12951-020-00668-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Drug delivery systems (DDSs) based on nanomaterials have shown a promise for cancer chemotherapy; however, it remains a great challenge to localize on-demand release of anticancer drugs in tumor tissues to improve therapeutic effects and minimize the side effects. In this regard, photoresponsive DDSs that employ light as an external stimulus can offer a precise spatiotemporal control of drug release at desired sites of interest. Most photoresponsive DDSs are only responsive to ultraviolet-visible light that shows phototoxicity and/or shallow tissue penetration depth, and thereby their applications are greatly restricted. To address these issues, near-infrared (NIR) photoresponsive DDSs have been developed. In this review, the development of NIR photoresponsive DDSs in last several years for cancer photo-chemotherapy are summarized. They can achieve on-demand release of drugs into tumors of living animals through photothermal, photodynamic, and photoconversion mechanisms, affording obviously amplified therapeutic effects in synergy with phototherapy. Finally, the existing challenges and further perspectives on the development of NIR photoresponsive DDSs and their clinical translation are discussed.
Collapse
Affiliation(s)
- Xiaoying Wang
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Zeliang Xuan
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Xiaofeng Zhu
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Haitao Sun
- Shanghai Institute of Medical Imaging, Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingchao Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Zongyu Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China.
| |
Collapse
|
213
|
Victorelli FD, Cardoso VMDO, Ferreira NN, Calixto GMF, Fontana CR, Baltazar F, Gremião MPD, Chorilli M. Chick embryo chorioallantoic membrane as a suitable in vivo model to evaluate drug delivery systems for cancer treatment: A review. Eur J Pharm Biopharm 2020; 153:273-284. [PMID: 32580050 DOI: 10.1016/j.ejpb.2020.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
|
214
|
Thakur S, Singh H, Singh A, Kaur S, Sharma A, Singh SK, kaur S, Kaur G, Jain SK. Thermosensitive injectable hydrogel containing carboplatin loaded nanoparticles: A dual approach for sustained and localized delivery with improved safety and therapeutic efficacy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
215
|
Sosa‐Hernández JE, Villalba‐Rodríguez AM, Romero‐Castillo KD, Zavala‐Yoe R, Bilal M, Ramirez‐Mendoza RA, Parra‐Saldivar R, Iqbal HMN. Poly‐3‐hydroxybutyrate‐based constructs with novel characteristics for drug delivery and tissue engineering applications—A review. POLYM ENG SCI 2020; 60:1760-1772. [DOI: 10.1002/pen.25470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 02/05/2023]
Abstract
AbstractHerein, we reviewed polymeric constructs of polyhydroxyalkanoates (PHAs) at large and poly‐3‐hydroxybutyrate (P3HB), in particular, for drug delivery and tissue engineering applications. Polymeric constructs that can efficiently respond to numerous variations in their surroundings have gained notable attention from different industrial sectors such as biomedical, clinical, pharmaceutical, and cosmeceutical. Among them, considerable importance is given to their drug delivery and tissue engineering applications. PHAs with peculiar reference to P3HB are gaining prominence attention as candidate materials with such requisite potentialities. The unique structural and functional characteristics of PHAs and P3HB are of supreme interest and being used to engineer novel constructs for efficient drug delivery and tissue regeneration purposes. So far, an array of methodological approaches, such as in vitro, in vivo, and ex vivo techniques have been exploited though using different materials with different geometries for a said purpose. However, a low‐level production majorly limits their proper exploitation. Various physiochemical characteristics and production strategies have been introduced in this review. The data have been summarized on PHAs production by several microorganisms aiming to cover the scope of the last 10 years. The present review highlights the recent applications of PHAs and P3HB‐based constructs, such as micro/nanoparticles, biocomposite, nanofibers, and hydrogels as novel drug carries for regenerative medicine and tissue engineering. In summary, drug delivery and tissue engineering potentialities of PHAs and P3HB‐based constructs are discussed with suitable examples and envisioned directions of future developments.
Collapse
Affiliation(s)
| | | | - Kenya D. Romero‐Castillo
- Tecnologico de Monterrey School of Engineering and Sciences, Campus Monterrey Monterrey Nuevo Leon Mexico
| | - Ricardo Zavala‐Yoe
- Instituto Tecnologico de Monterrey, Campus Ciudad de Mexico Mexico City Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian China
| | - Ricardo A. Ramirez‐Mendoza
- Tecnologico de Monterrey School of Engineering and Sciences, Campus Monterrey Monterrey Nuevo Leon Mexico
| | - Roberto Parra‐Saldivar
- Tecnologico de Monterrey School of Engineering and Sciences, Campus Monterrey Monterrey Nuevo Leon Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey School of Engineering and Sciences, Campus Monterrey Monterrey Nuevo Leon Mexico
| |
Collapse
|
216
|
Yan T, Zhu S, Hui W, He J, Liu Z, Cheng J. Chitosan based pH-responsive polymeric prodrug vector for enhanced tumor targeted co-delivery of doxorubicin and siRNA. Carbohydr Polym 2020; 250:116781. [PMID: 33049806 DOI: 10.1016/j.carbpol.2020.116781] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
The co-delivery of chemotherapeutic drugs and siRNA has gained increasing attentions owing to the enhanced antitumor efficacy over single administration. In this work, a chitosan-based pH-responsive prodrug vector was developed for the co-delivery of doxorubicin (DOX) and Bcl-2 siRNA. The accumulation of fabricated nanoparticles in hepatoma cells was enhanced by glycyrrhetinic acid receptor-mediated endocytosis. The cumulative release amount of the encapsulated DOX and siRNA reached 90.2 % and 81.3 % in 10 h, respectively. More strikingly, this nanoplatform can efficiently integrate gene- and chemo-therapies with a dramatically enhanced tumor inhibitory rate (88.0 %) in vivo. This co-delivery system may provide the latest strategy to meet the needs of combination therapies for tumors, offering safe and efficient improvements to the synergistic antitumor efficacy of gene-chemotherapies.
Collapse
Affiliation(s)
- Tingsheng Yan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Siyuan Zhu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Wenxue Hui
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jinmei He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jinju Cheng
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Food Science College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
217
|
Li S, Shan X, Wang Y, Chen Q, Sun J, He Z, Sun B, Luo C. Dimeric prodrug-based nanomedicines for cancer therapy. J Control Release 2020; 326:510-522. [PMID: 32721523 DOI: 10.1016/j.jconrel.2020.07.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023]
Abstract
With the rapid development of conjugation chemistry and biomedical nanotechnology, prodrug-based nanosystems (PNS) have emerged as promising drug delivery nanoplatforms. Dimeric prodrug, as an emerging branch of prodrug, has been widely investigated by covalently conjugating two same or different drug molecules. In recent years, great progress has been made in dimeric prodrug-based nanosystems (DPNS) for cancer therapy. Many advantages offered by DPNS have significantly facilitated the delivery efficiency of anticancer drugs, such as high drug loading capacity, favorable pharmacokinetics, tumor stimuli-sensitive drug release and facile combination theranostics. Given the rapid developments in this field, we here outline the latest updates of DPNS in cancer treatment, focusing on dimeric prodrug-encapsulated nanosystems, dimeric prodrug-nanoassemblies and tumor stimuli-responsive DPNS. Moreover, the design principle, advantages and challenges of DPNS for clinical cancer therapy are also highlighted.
Collapse
Affiliation(s)
- Shumeng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xinzhu Shan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, PR China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
218
|
Synthesis and Antitumor Activity of Doxycycline Polymeric Nanoparticles: Effect on Tumor Apoptosis in Solid Ehrlich Carcinoma. Molecules 2020; 25:molecules25143230. [PMID: 32679837 PMCID: PMC7396998 DOI: 10.3390/molecules25143230] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023] Open
Abstract
Objectives: The aim of this study was to prepare doxycycline polymeric nanoparticles (DOXY-PNPs) with hope to enhance its chemotherapeutic potential against solid Ehrlich carcinoma (SEC). Methods: Three DOXY-PNPs were formulated by nanoprecipitation method using hydroxypropyl methyl cellulose (HPMC) as a polymer. The prepared DOXY-PNPs were evaluated for the encapsulation efficiency (EE%), the drug loading capacity, particle size, zeta potential (ZP) and the in-vitro release for selection of the best formulation. PNP number 3 was selected for further biological testing based on the best pharmaceutical characters. PNP3 (5 and 10 mg/kg) was evaluated for the antitumor potential against SEC grown in female mice by measuring the tumor mass as well as the expression and immunohistochemical staining for the apoptosis markers; caspase 3 and BAX. Results: The biological study documented the greatest reduction in tumor mass in mice treated with PNP3. Importantly, treatment with 5 mg/kg of DOXY-PNPs produced a similar chemotherapeutic effect to that produced by 10 mg/kg of free DOXY. Further, a significant elevation in mRNA expression and immunostaining for caspase 3 and BAX was detected in mice group treated with DOXY-PNPs. Conclusions: The DOXY-PNPs showed greater antitumor potential against SEC grown in mice and greater values for Spearman’s correlation coefficients were detected when correlation with tumor mass or apoptosis markers was examined; this is in comparison to free DOXY. Hence, DOXY-PNPs should be tested in other tumor types to further determine the utility of the current technique in preparing chemotherapeutic agents and enhancing their properties.
Collapse
|
219
|
Zelepukin IV, Yaremenko AV, Yuryev MV, Mirkasymov AB, Sokolov IL, Deyev SM, Nikitin PI, Nikitin MP. Fast processes of nanoparticle blood clearance: Comprehensive study. J Control Release 2020; 326:181-191. [PMID: 32681949 DOI: 10.1016/j.jconrel.2020.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/29/2020] [Accepted: 07/11/2020] [Indexed: 11/16/2022]
Abstract
Blood circulation is the key parameter that determines the in vivo efficiency of nanoagents. Despite clinical success of the stealth liposomal agents with their inert and shielded surfaces, a great number of non-stealth nanomaterials is being developed due to their potential of enhanced functionality. By harnessing surface phenomena, such agents can offer advanced control over drug release through intricately designed nanopores, catalysis-propelled motion, computer-like analysis of several disease markers for precise target identification, etc. However, investigation of pharmacokinetic behavior of these agents becomes a great challenge due to ultra-short circulation (usually around several minutes) and impossibility to use the invasive blood-sampling techniques. Accordingly, the data on circulation of such agents has been scarce and irregular. Here, we demonstrate high-throughput capabilities of the developed magnetic particle quantification technique for nanoparticle circulation measurements and present a comprehensive investigation of factors that affect blood circulation of the non-stealth nanoparticles. Namely, we studied the following 9 factors: particle size, zeta-potential, coating, injection dose, repetitive administration, induction of anesthesia, mice strain, absence/presence of tumors, tumor size. Our fundamental findings demonstrate potential ways to extend the half-life of the agents in blood thereby giving them a better chance of achieving their goal in the organism. The study will be valuable for design of the next generation nanomaterials with advanced biomedical functionality.
Collapse
Affiliation(s)
- Ivan V Zelepukin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.
| | - Alexey V Yaremenko
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Mikhail V Yuryev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Aziz B Mirkasymov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ilya L Sokolov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - Maxim P Nikitin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Sirius University of Science and Technology, Sochi, Russia.
| |
Collapse
|
220
|
Choudhary S, Kumar R, Dalal U, Tomar S, Reddy SN. Green synthesis of nanometal impregnated biomass – antiviral potential. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110934. [DOI: 10.1016/j.msec.2020.110934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022]
|
221
|
Karimi N, Mansouri K, Soleiman-Beigi M, Fattahi A. All-Trans Retinoic Acid Grafted Poly Beta-Amino Ester Nanoparticles: A Novel Anti-angiogenic Drug Delivery System. Adv Pharm Bull 2020; 10:221-232. [PMID: 32373490 PMCID: PMC7191239 DOI: 10.34172/apb.2020.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose: Developing chemotherapy with nanoplatforms offers a promising strategy for effective cancer treatment. In the present study, we propose a novel all-trans retinoic acid (ATRA) grafted poly beta-amino ester (PBAE) copolymer for preparing nanoparticles (NPs). Methods: ATRA grafted PBAE (ATRA-g-PBAE) copolymer was synthesized by grafting ATRA to PBAE; it was characterized by proton nuclear magnetic resonance, Fourier transform infrared, and thermogravimetric analysis. ATRA-g-PBAE NPs were prepared by the solvent displacement method. Design-Expert software was employed to optimize size of NPs. The morphology was evaluated by transmission electron microscope, and ultraviolet-visible spectroscopy was applied for drug release. Cytotoxicity was evaluated toward HUVEC cell line, and the 3D collagencytodex model was used to evaluate anti-angiogenic property of PBAE, ATRA, and NPs. Results: The optimum size of the NPs was 139.4 ± 1.41 nm. After 21 days, 66.09% ± 1.39 and 42.14% ± 1.07 of ATRA were released from NPs at pH 5.8 and 7.4, respectively. Cell culture studies demonstrated antiangiogenic effects of ATRA-g-PBAE NPs. Anti-angiogenesis IC50 was 0.007 mg/mL for NPs (equal to 0.002 mg/mL of ATRA) and 0.005 mg/mL for free ATRA. Conclusion: This study proposes the ATRA-g-PBAE NPs with inherent anti-angiogenic effects as promising carrier for anticancer drugs with purpose of dual drug delivery.
Collapse
Affiliation(s)
- Nadia Karimi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, Ilam, Iran
| | - Kamaran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ali Fattahi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Current affiliation: School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
222
|
Shi L, Jin Y, Du W, Lai S, Shen Y, Zhou R. Diselenide-containing nonionic gemini polymeric micelles as a smart redox-responsive carrier for potential programmable drug release. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
223
|
Microbiologically extracted poly(hydroxyalkanoates) and its amalgams as therapeutic nano-carriers in anti-tumor therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110799. [DOI: 10.1016/j.msec.2020.110799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/09/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
|
224
|
Formulation, Characterization and Biological Activity Screening of Sodium Alginate-Gum Arabic Nanoparticles Loaded with Curcumin. Molecules 2020; 25:molecules25092244. [PMID: 32397633 PMCID: PMC7249151 DOI: 10.3390/molecules25092244] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 01/22/2023] Open
Abstract
The approach of drug delivery systems emphasizes the use of nanoparticles as a vehicle, offering the optional property of delivering drugs as a single dose rather than in multiple doses. The current study aims to improve antioxidant and drug release properties of curcumin loaded gum Arabic-sodium alginate nanoparticles (Cur/ALG-GANPs). The Cur/ALG-GANPs were prepared using the ionotropic gelation technique and further subjected to physico-chemical characterization using attenuated total reflectance–Fourier transform infrared (ATR-FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), size distribution, and transmission electron microscopy (TEM). The size of Cur/ALG-GANPs ranged between 10 ± 0.3 nm and 190 ± 0.1 nm and the zeta potential was –15 ± 0.2 mV. The antioxidant study of Cur/ALG-GANPs exhibited effective radical scavenging capacity for 1,1-diphenyl-2-picrylhydrazyl (DPPH) at concentrations that ranged between 30 and 500µg/mL. Cytotoxicity was performed using MTT assay to measure their potential in inhibiting the cell growth and the result demonstrated a significant anticancer activity of Cur/ALG-GANPs against human liver cancer cells (HepG2) than in colon cancer (HT29), lung cancer (A549) and breast cancer (MCF7) cells. Thus, this study indicates that Cur/ALG-GANPs have promising anticancer properties that might aid in future cancer therapy.
Collapse
|
225
|
Su T, Yang B, Gao T, Liu T, Li J. Polymer nanoparticle-assisted chemotherapy of pancreatic cancer. Ther Adv Med Oncol 2020; 12:1758835920915978. [PMID: 32426046 PMCID: PMC7222269 DOI: 10.1177/1758835920915978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a lethal disease characterized by highly dense stroma fibrosis. Only 15-20% of patients with pancreatic cancer have resectable tumors, and only around 20% of them survive to 5 years. Traditional cancer treatments have little effect on their prognosis, and successful surgical resection combined with effective perioperative therapy is the main method for maximizing long-term survival. For this reason, chemotherapy is an adjunct treatment for resectable cancer and is the main therapy for incurable pancreatic cancer, including metastatic pancreatic adenocarcinoma. However, there are various side effects of chemotherapeutic medicine and low drug penetration because the complex tumor microenvironment limits the application of chemotherapy. As a novel strategy, polymer nanoparticles make it possible to target the tumor microenvironment, release cytotoxic agents through various responsive reactions, and thus overcome the treatment barrier. As drug carriers, polymer nanoparticles show marked advantages, such as increased drug delivery and efficiency, controlled drug release, decreased side effects, prolonged half-life, and evasion of immunogenic blockade. In this review, we discuss the factors that cause chemotherapy obstacles in pancreatic cancer, and introduce the application of polymer nanoparticles to treat pancreatic cancer.
Collapse
Affiliation(s)
- Tianqi Su
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tianren Gao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tongjun Liu
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Jiannan Li
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| |
Collapse
|
226
|
Schneible JD, Shi K, Young AT, Ramesh S, He N, Dowdey CE, Dubnansky JM, Lilova RL, Gao W, Santiso E, Daniele M, Menegatti S. Modified gaphene oxide (GO) particles in peptide hydrogels: a hybrid system enabling scheduled delivery of synergistic combinations of chemotherapeutics. J Mater Chem B 2020; 8:3852-3868. [PMID: 32219269 PMCID: PMC7945679 DOI: 10.1039/d0tb00064g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The scheduled delivery of synergistic drug combinations is increasingly recognized as highly effective against advanced solid tumors. Of particular interest are composite systems that release a sequence of drugs with defined kinetics and molar ratios to enhance therapeutic effect, while minimizing the dose to patients. In this work, we developed a homogeneous composite comprising modified graphene oxide (GO) nanoparticles embedded in a Max8 peptide hydrogel, which provides controlled kinetics and molar ratios of release of doxorubicin (DOX) and gemcitabine (GEM). First, modified GO nanoparticles (tGO) were designed to afford high DOX loading and sustained release (18.9% over 72 h and 31.4% over 4 weeks). Molecular dynamics simulations were utilized to model the mechanism of DOX loading as a function of surface modification. In parallel, a Max8 hydrogel was developed to release GEM with faster kinetics and achieve a 10-fold molar ratio to DOX. The selected DOX/tGO nanoparticles were suspended in a GEM/Max8 hydrogel matrix, and the resulting composite was tested against a triple negative breast cancer cell line, MDA-MB-231. Notably, the composite formulation afforded a combination index of 0.093 ± 0.001, indicating a much stronger synergism compared to the DOX-GEM combination co-administered in solution (CI = 0.396 ± 0.034).
Collapse
Affiliation(s)
- John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Kaihang Shi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Ashlyn T Young
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Nanfei He
- Department of Textile Engineering, Chemistry, and Science, 1020 Main Campus Drive, Raleigh, North Carolina, USA
| | - Clay E Dowdey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Jean Marie Dubnansky
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Radina L Lilova
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Wei Gao
- Department of Textile Engineering, Chemistry, and Science, 1020 Main Campus Drive, Raleigh, North Carolina, USA
| | - Erik Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, USA and Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina, USA.
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| |
Collapse
|
227
|
Chen YF, Hsu MW, Su YC, Chang HM, Chang CH, Jan JS. Naturally derived DNA nanogels as pH- and glutathione-triggered anticancer drug carriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111025. [PMID: 32994007 DOI: 10.1016/j.msec.2020.111025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022]
Abstract
Conventional chemotherapeutic drugs are nonselective and harmful toward normal tissues, causing severe side effects. Therefore, the development of chemotherapeutics that can target cancer cells and improve therapeutic efficacy is of high priority. Biomolecules isolated from nature serve as green solutions for biomedical use, solving biocompatibility and cytotoxicity issues in human bodies. Herein, we use kiwifruit-derived DNA to encapsulate doxorubicin (DOX) using crosslinkers, eventually forming DNA-DOX nanogels (NGs). Drug releasing assays, cell viability and anticancer effects were analyzed to evaluate the DNA NGs' applications. The amount of DOX released by the DOX-loaded DNA (DNA-DOX) NGs at acidic pH was higher than that of neutral pH, and high glutathione (GSH) concentration also triggered more DOX to release in cancer cells, demonstrating pH- and GSH-triggered drug release characteristics of the DNA NGs. The IC50 of DNA-DOX NGs in cancer cells was lower than that of free DOX. Moreover, DOX uptake of cancer cells and apoptotic death were enhanced by the DNA-DOX NGs compared to free DOX. The results suggest that the DNA NGs cross-linked via nitrogen bases of the nucleotides in DNA and presenting pH- and GSH-dependent drug releasing behavior can be alternative biocompatible drug delivery systems for anticancer strategies and other biomedical applications.
Collapse
Affiliation(s)
- Yu-Fon Chen
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Ming-Wei Hsu
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Yu-Chu Su
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Ho-Min Chang
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan.
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan.
| |
Collapse
|
228
|
Colloidal (Gd0.98Nd0.02)2O3 nanothermometers operating in a cell culture medium within the first and second biological windows. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2019.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
229
|
Kurochkin MA, Sindeeva OA, Brodovskaya EP, Gai M, Frueh J, Su L, Sapelkin A, Tuchin VV, Sukhorukov GB. Laser-triggered drug release from polymeric 3-D micro-structured films via optical fibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110664. [DOI: 10.1016/j.msec.2020.110664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/25/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
|
230
|
Yu C, Wang L, Xu Z, Teng W, Wu Z, Xiong D. Smart micelles self-assembled from four-arm star polymers as potential drug carriers for pH-triggered DOX release. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02108-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
231
|
Uncharged water-soluble amide derivatives of pillar[5]arene: synthesis and supramolecular self-assembly with tetrazole-containing polymers. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
232
|
Al-Shalabi E, Alkhaldi M, Sunoqrot S. Development and evaluation of polymeric nanocapsules for cirsiliol isolated from Jordanian Teucrium polium L. as a potential anticancer nanomedicine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101544] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
233
|
Phan QT, Patil MP, Tu TT, Le CM, Kim GD, Lim KT. Polyampholyte-grafted single walled carbon nanotubes prepared via a green process for anticancer drug delivery application. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
234
|
Study on the release behaviors of berberine hydrochloride based on sandwich nanostructure and shape memory effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110541. [DOI: 10.1016/j.msec.2019.110541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 01/21/2023]
|
235
|
Al-Nadaf AH, Dahabiyeh LA, Bardaweel S, Mahmoud NN, Jawarneh S. Functionalized mesoporous silica nanoparticles by lactose and hydrophilic polymer as a hepatocellular carcinoma drug delivery system. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
236
|
Byrne CE, Astete CE, Vaithiyanathan M, Melvin AT, Moradipour M, Rankin SE, Knutson BL, Sabliov CM, Martin EC. Lignin-graft-PLGA drug-delivery system improves efficacy of MEK1/2 inhibitors in triple-negative breast cancer cell line. Nanomedicine (Lond) 2020; 15:981-1000. [DOI: 10.2217/nnm-2020-0010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Few targeted therapies are available for triple-negative breast cancer (TNBC) patients. Here, we propose a novel alkaline-lignin-conjugated-poly(lactic- co-glycolic acid) (L-PLGA) nanoparticle drug delivery system to improve the efficacy of targeted therapies. Materials & methods: L-PLGA nanoparticles (NPs) loaded with the MEK1/2 inhibitor GDC-0623 were characterized, tested in vitro on MDA-MB-231 TNBC cell line and compared with loaded PLGA NPs. Results: Loaded L-PLGA NPs were less than half the size of PLGA NPs, had slower drug release and improved the efficacy of GDC-0623 when tested in vitro. We demonstrated that GDC-0623 reversed epithelial-to-mesenchymal transition in TNBC. Conclusion: Our findings indicate that L-PLGA NPs are superior to PLGA NPs in delivering GDC-0623 to cancer cells for improved efficacy in vitro.
Collapse
Affiliation(s)
- C Ethan Byrne
- Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA
| | - Carlos E Astete
- Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA
| | | | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, LA 70803, USA
| | - Mahsa Moradipour
- Department of Chemical & Materials Engineering, University of Kentucky, KY 40506, USA
| | - Stephen E Rankin
- Department of Chemical & Materials Engineering, University of Kentucky, KY 40506, USA
| | - Barbara L Knutson
- Department of Chemical & Materials Engineering, University of Kentucky, KY 40506, USA
| | - Cristina M Sabliov
- Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA
| | - Elizabeth C Martin
- Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA
| |
Collapse
|
237
|
Yan G, Chen R, Xiong N, Song J, Wang X, Tang R. pH-sensitive small molecule nanodrug self-assembled from amphiphilic vitamin B6-E analogue conjugate for targeted synergistic cancer therapy. Colloids Surf B Biointerfaces 2020; 191:111000. [PMID: 32247946 DOI: 10.1016/j.colsurfb.2020.111000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
To promote the targeted cancer therapy, the pH-sensitive small molecule nanodrug self-assembled from amphiphilic vitamin B6-E analogue conjugate was successfully constructed. Herein, water-soluble vitamin B6 with pKa (5.6) was chemically conjugated to lipid-soluble vitamin E succinate (α-TOS), which showed selective cancer cell killing ability and this amphiphilic small molecule vitamin conjugate could self-assemble to be free nanoparticles (NPs) and doxorubicin-loaded NPs (α-TOS-B6-NPs-DOX). The small molecule nanodrugs could perform the following characteristic: (i) stability in the sodium dodecyl sulfonate (SDS) solution and long-term storage stability in PBS via surface negative charge; (ii) tumor accumulation by enhanced penetration and retention (EPR) effect; (iii) improved cellular internalization by means of vitamin B6 transporting membrane carrier (VTC); and (iv) facilitating endosomal escape and rapid drug release for synergistic toxicity to tumor cells via charge reversal and ester hydrolysis at intracellular pH and/or esterase. Moreover, α-TOS-B6-NPs-DOX exhibited long blood circulation stability and significant tumor accumulation and inhibition with the decreased side effects in vivo. Thus, the pH-sensitive small molecule nanodrug self-assembled from amphiphilic vitamin B6-E analogue conjugate could be the potential drug carriers in targeted synergistic cancer therapy.
Collapse
Affiliation(s)
- Guoqing Yan
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China
| | - Ran Chen
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China
| | - Nanchi Xiong
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China
| | - Jiayu Song
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China.
| |
Collapse
|
238
|
Shukla SK, Kulkarni NS, Farrales P, Kanabar DD, Parvathaneni V, Kunda NK, Muth A, Gupta V. Sorafenib Loaded Inhalable Polymeric Nanocarriers against Non-Small Cell Lung Cancer. Pharm Res 2020; 37:67. [PMID: 32166411 DOI: 10.1007/s11095-020-02790-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE This exploration is aimed at developing sorafenib (SF)-loaded cationically-modified polymeric nanoparticles (NPs) as inhalable carriers for improving the therapeutic efficacy of SF against non-small cell lung cancer (NSCLC). METHODS The NPs were prepared using a solvent evaporation technique while incorporating cationic agents. The optimized NPs were characterized by various physicochemical parameters and evaluated for their aerosolization properties. Several in-vitro evaluation studies were performed to determine the efficacy of our delivery carriers against NSCLC cells. RESULTS Optimized nanoparticles exhibited an entrapment efficiency of ~40%, <200 nm particle size and a narrow poly-dispersity index. Cationically-modified nanoparticles exhibited enhanced cellular internalization and cytotoxicity (~5-fold IC50 reduction vs SF) in various lung cancer cell types. The inhalable nanoparticles displayed efficient aerodynamic properties (MMAD ~ 4 μM and FPF >80%). In-vitro evaluation also resulted in a superior ability to inhibit cancer metastasis. 3D-tumor simulation studies further established the anti-cancer efficacy of NPs as compared to just SF. CONCLUSION The localized delivery of SF-loaded nanoparticles resulted in improved anti-tumor activity as compared to SF alone. Therefore, this strategy displays great potential as a novel treatment approach against certain lung cancers.
Collapse
Affiliation(s)
- Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Pamela Farrales
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Dipti D Kanabar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA.
| |
Collapse
|
239
|
Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ. Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities. Int J Nanomedicine 2020; 15:1437-1456. [PMID: 32184597 PMCID: PMC7060777 DOI: 10.2147/ijn.s236927] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
The development of therapeutics and theranostic nanodrug delivery systems have posed a challenging task for the current researchers due to the requirement of having various nanocarriers and active agents for better therapy, imaging, and controlled release of drugs efficiently in one platform. The conventional liver cancer chemotherapy has many negative effects such as multiple drug resistance (MDR), high clearance rate, severe side effects, unwanted drug distribution to the specific site of liver cancer and low concentration of drug that finally reaches liver cancer cells. Therefore, it is necessary to develop novel strategies and novel nanocarriers that will carry the drug molecules specific to the affected cancerous hepatocytes in an adequate amount and duration within the therapeutic window. Therapeutics and theranostic systems have advantages over conventional chemotherapy due to the high efficacy of drug loading or drug encapsulation efficiency, high cellular uptake, high drug release, and minimum side effects. These nanocarriers possess high drug accumulation in the tumor area while minimizing toxic effects on healthy tissues. This review focuses on the current research on nanocarrier-based therapeutics and theranostic drug delivery systems excluding the negative consequences of nanotechnology in the field of drug delivery systems. However, clinical developments of theranostics nanocarriers for liver cancer are considered outside of the scope of this article. This review discusses only the recent developments of nanocarrier-based drug delivery systems for liver cancer therapy and diagnosis. The negative consequences of individual nanocarrier in the drug delivery system will also not be covered in this review.
Collapse
Affiliation(s)
- Umme Ruman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Sharida Fakurazi
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience Universiti, Putra43400, Malaysia
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mas Jaffri Masarudin
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience Universiti, Putra43400, Malaysia
- Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| |
Collapse
|
240
|
Alfaifi MY, Shati AA, Elbehairi SEI, Fahmy UA, Alhakamy NA, Md S. Anti-tumor effect of PEG-coated PLGA nanoparticles of febuxostat on A549 non-small cell lung cancer cells. 3 Biotech 2020; 10:133. [PMID: 32154046 PMCID: PMC7036082 DOI: 10.1007/s13205-020-2077-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/18/2020] [Indexed: 12/31/2022] Open
Abstract
In the present study, febuxostat (FBX)-loaded PEG-coated PLGA nanoparticles (FBX-PLGA-PEG) were developed and its anticancer activity on lung cancer cells was evaluated. FBX-PLGA-PEG were prepared by nanoprecipitation technique and characterized for particle size, size distribution, entrapment efficiency, and in vitro drug release study. The optimized formulations were used to evaluate cell viability, apoptosis, cell cycle, and caspase activity in A549 lung cancer cells. The optimized formulation showed spherical particle with average particle size of 180 ± 4.72 nm, particle-size distribution 0.223 ± 0.003, entrapment efficiency (70 ± 2.56%), and drug release (99.1 ± 2.33%) at 12 h. MTT cytotoxicity assay showed better cytotoxic potential of FBX-NPs than FBX solution against NSCLC A549 cells. The lower IC50 of FBX-NP (52.62 ± 2.52 µg/mL) compared to FBX (68.0 ± 4.12 µg/mL) are suggestive of a potential cytotoxic effect of nano-formulation compared to the drug itself. Furthermore, flow cytometry analysis showed significantly higher percentage of total apoptotic cells in FBX-NPs (10.38 ± 1.57%) as compared to FBX solution (2.76 ± 0.17%) showed strong proapoptotic potential of FBX nano-formulation. The increased caspase activity and percent of cells at G2/M phase of cell cycle increased for FBX nanoparticles were more effective than FBX solution in increasing caspase activity and percent of cells at G2/M phase of cell cycle. Our studies with FBX nanoparticles exhibited promising outcome which could be used as a strategies to combat lung cancer.
Collapse
Affiliation(s)
- Mohammad Y. Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha, 9004 Saudi Arabia
| | - Ali A. Shati
- Department of Biology, Faculty of Science, King Khalid University, Abha, 9004 Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha, 9004 Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
241
|
Vasić K, Knez Ž, Konstantinova EA, Kokorin AI, Gyergyek S, Leitgeb M. Structural and magnetic characteristics of carboxymethyl dextran coated magnetic nanoparticles: From characterization to immobilization application. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
242
|
Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharm J 2020; 28:255-265. [PMID: 32194326 PMCID: PMC7078546 DOI: 10.1016/j.jsps.2020.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 01/19/2020] [Indexed: 11/24/2022] Open
Abstract
In the last decade, considerable attention has been devoted to the use of biodegradable polymeric materials as potential drug delivery carriers. However, bioavailability and drug release at the disease site remain uncontrollable even with the use of polymeric nanocarriers. To address this issue, successful methodologies have been developed to synthesize polymeric nanocarriers incorporated with regions exhibiting a response to stimuli such as redox potential, temperature, pH, and light. The resultant stimuli-responsive polymeric nanocarriers have shown tremendous promise in drug delivery applications, owing to their ability to enhance the bioavailability of drugs at the disease site. In such systems, drug release is controlled in response to specific stimuli, either exogenous or endogenous. This review reports recent advances in the design of stimuli-responsive nanocarriers for drug delivery in cancer therapy. In particular, the synthetic methodologies investigated to date to introduce different types of stimuli-responsive elements within the biomaterials are described. The sufficient understanding of these stimuli-responsive nanocarriers will allow the development of a better drug delivery system that will allow us to solve the challenges encountered in targeted cancer therapy.
Collapse
Affiliation(s)
- Mosa Alsehli
- Department of Chemistry, Taibah University, Madina, Saudi Arabia
| |
Collapse
|
243
|
Covalent polybenzimidazole-based triazine frameworks: A robust carrier for non-steroidal anti-inflammatory drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110482. [DOI: 10.1016/j.msec.2019.110482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/10/2019] [Accepted: 11/20/2019] [Indexed: 01/20/2023]
|
244
|
Lombardo D, Calandra P, Pasqua L, Magazù S. Self-assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1048. [PMID: 32110877 PMCID: PMC7084717 DOI: 10.3390/ma13051048] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
In this paper, we survey recent advances in the self-assembly processes of novel functional platforms for nanomaterials and biomaterials applications. We provide an organized overview, by analyzing the main factors that influence the formation of organic nanostructured systems, while putting into evidence the main challenges, limitations and emerging approaches in the various fields of nanotechology and biotechnology. We outline how the building blocks properties, the mutual and cooperative interactions, as well as the initial spatial configuration (and environment conditions) play a fundamental role in the construction of efficient nanostructured materials with desired functional properties. The insertion of functional endgroups (such as polymers, peptides or DNA) within the nanostructured units has enormously increased the complexity of morphologies and functions that can be designed in the fabrication of bio-inspired materials capable of mimicking biological activity. However, unwanted or uncontrollable effects originating from unexpected thermodynamic perturbations or complex cooperative interactions interfere at the molecular level with the designed assembly process. Correction and harmonization of unwanted processes is one of the major challenges of the next decades and requires a deeper knowledge and understanding of the key factors that drive the formation of nanomaterials. Self-assembly of nanomaterials still remains a central topic of current research located at the interface between material science and engineering, biotechnology and nanomedicine, and it will continue to stimulate the renewed interest of biologist, physicists and materials engineers by combining the principles of molecular self-assembly with the concept of supramolecular chemistry.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
| | - Pietro Calandra
- Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy;
| | - Luigi Pasqua
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende, Italy;
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, 98166 Messina, Italy;
| |
Collapse
|
245
|
Gadade DD, Pekamwar SS. Cyclodextrin Based Nanoparticles for Drug Delivery and Theranostics. Adv Pharm Bull 2020; 10:166-183. [PMID: 32373486 PMCID: PMC7191229 DOI: 10.34172/apb.2020.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Colloidal nanoparticulate technology has been described in the literature as a versatile drug delivery system. But it possesses some inherent lacunae in their formulation. Cyclodextrins (CDs) have been extensively reported for the solubility enhancement of poorly water-soluble drugs. The CDs can cause intervention in aspects related to nanoparticles (NPs) that include improving drug loading in nano-system, improving stability, site-specific/targeted drug delivery, improving solubility profile and absorption of the drug in nanosystem with consequent improvement in bioavailability, with the possibility of controlled release, safety and efficacy. They find application in for simultaneous diagnosis and therapeutics for better treatment procedures. The current communication is focused on the application of CDs to overcome troubles in nanoparticulate formulation and enhancement of their performance. It also envisages the theranostic aspects of CDs.
Collapse
Affiliation(s)
- Dipak Dilip Gadade
- Department of Pharmaceutics, Shri Bhagwan College of Pharmacy, CIDCO, N-6, Dr. Y.S. Khedkar Marg, Aurangabad-431001, India.,School of Pharmacy, SRTM University,Vishnupuri, Nanded- 431606, India
| | | |
Collapse
|
246
|
Synthesis of zwitterionic redox-responsive nanogels by one-pot amine-thiol-ene reaction for anticancer drug release application. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
247
|
Perveen K, Masood F, Hameed A. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. Int J Biol Macromol 2020; 144:259-266. [DOI: 10.1016/j.ijbiomac.2019.12.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022]
|
248
|
Magnetic nanocarriers: Emerging tool for the effective targeted treatment of lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
249
|
Yang Y, Long Y, Wang Y, Ren K, Li M, Zhang Z, Xiang B, He Q. Enhanced anti-tumor and anti-metastasis therapy for triple negative breast cancer by CD44 receptor-targeted hybrid self-delivery micelles. Int J Pharm 2020; 577:119085. [PMID: 32001290 DOI: 10.1016/j.ijpharm.2020.119085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Tumor growth and metastasis are multistep processes regulated by multiple signaling pathways. The successful treatment of cancer largely depends on the ability to inhibit metastatic process. Multiphase inhibition of metastasis is a promising approach. Here, we described a targeting delivery system which was constructed by mixing hyaluronic acid-d-α-tocopheryl succinate (HA-TOS, HT) and low molecular weight heparin-TOS (LMWH-TOS, LT) to form a stable hybrid micelle (HT-LT), encapsulating chemotherapeutic drug doxorubicin (DOX). The prepared HT-LT NPs was about 125 nm in diameter with high drug encapsulation rate and continuous drug release behavior. We confirmed that HT-LT NPs exhibited an effective targeting ability both in vitro and in vivo using a 4T1 model that was attributed to HA binding to CD44 receptors. In addition, HT-LT NPs acted on different phases of the invasion-metastasis cascade and inhibited tumor cell migration and invasion, thus inhibiting tumor metastasis. This combinatorial strategy provided an alternative approach for triple negative breast cancer therapy.
Collapse
Affiliation(s)
- Yiliang Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yang Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kebai Ren
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Bing Xiang
- Department of Hematology, Hematology Research Laboratory, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
250
|
Hernández-Giottonini KY, Rodríguez-Córdova RJ, Gutiérrez-Valenzuela CA, Peñuñuri-Miranda O, Zavala-Rivera P, Guerrero-Germán P, Lucero-Acuña A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: effects of formulation parameters. RSC Adv 2020; 10:4218-4231. [PMID: 35495261 PMCID: PMC9049000 DOI: 10.1039/c9ra10857b] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
This study presents the influence of the primary formulation parameters on the formation of poly-dl-lactic-co-glycolic nanoparticles by the emulsification-solvent evaporation, and the nanoprecipitation techniques. In the emulsification-solvent evaporation technique, the polymer and tensoactive concentrations, the organic solvent fraction, and the sonication amplitude effects were analyzed. Similarly, in the nanoprecipitation technique the polymer and tensoactive concentrations, the organic solvent fraction and the injection speed were varied. Additionally, the agitation speed during solvent evaporation, the centrifugation speeds and the use of cryoprotectants in the freeze-drying process were analyzed. Nanoparticles were characterized by dynamic light scattering, laser Doppler electrophoresis, and scanning electron microscopy, and the results were evaluated by statistical analysis. Nanoparticle physicochemical characteristics can be adjusted by varying the formulation parameters to obtain specific sizes and stable nanoparticles. Also, by adjusting these parameters, the nanoparticle preparation processes have the potential to be tuned to yield nanoparticles with specific characteristics while maintaining reproducible results.
Collapse
Affiliation(s)
| | | | | | - Omar Peñuñuri-Miranda
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| | - Paul Zavala-Rivera
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| | - Patricia Guerrero-Germán
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| | - Armando Lucero-Acuña
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| |
Collapse
|