201
|
Vieira PG, Krause MR, Pack CC. tACS entrains neural activity while somatosensory input is blocked. PLoS Biol 2020; 18:e3000834. [PMID: 33001971 PMCID: PMC7553316 DOI: 10.1371/journal.pbio.3000834] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/13/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) modulates brain activity by passing electrical current through electrodes that are attached to the scalp. Because it is safe and noninvasive, tACS holds great promise as a tool for basic research and clinical treatment. However, little is known about how tACS ultimately influences neural activity. One hypothesis is that tACS affects neural responses directly, by producing electrical fields that interact with the brain’s endogenous electrical activity. By controlling the shape and location of these electric fields, one could target brain regions associated with particular behaviors or symptoms. However, an alternative hypothesis is that tACS affects neural activity indirectly, via peripheral sensory afferents. In particular, it has often been hypothesized that tACS acts on sensory fibers in the skin, which in turn provide rhythmic input to central neurons. In this case, there would be little possibility of targeted brain stimulation, as the regions modulated by tACS would depend entirely on the somatosensory pathways originating in the skin around the stimulating electrodes. Here, we directly test these competing hypotheses by recording single-unit activity in the hippocampus and visual cortex of alert monkeys receiving tACS. We find that tACS entrains neuronal activity in both regions, so that cells fire synchronously with the stimulation. Blocking somatosensory input with a topical anesthetic does not significantly alter these neural entrainment effects. These data are therefore consistent with the direct stimulation hypothesis and suggest that peripheral somatosensory stimulation is not required for tACS to entrain neurons. Transcranial alternating current stimulation (tACS) modulates brain activity by passing electrical current through electrodes that are attached to the scalp. However, whereas one hypothesis is that tACS affects neural responses directly, another is that tACS affects neural activity indirectly, via sensory fibers in the skin. This study demonstrates that tACS directly affects neurons within the brain, rather than relying on a peripheral route.
Collapse
Affiliation(s)
- Pedro G. Vieira
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Matthew R. Krause
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
202
|
McFadden J. Integrating information in the brain's EM field: the cemi field theory of consciousness. Neurosci Conscious 2020; 2020:niaa016. [PMID: 32995043 PMCID: PMC7507405 DOI: 10.1093/nc/niaa016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023] Open
Abstract
A key aspect of consciousness is that it represents bound or integrated information, prompting an increasing conviction that the physical substrate of consciousness must be capable of encoding integrated information in the brain. However, as Ralph Landauer insisted, ‘information is physical’ so integrated information must be physically integrated. I argue here that nearly all examples of so-called ‘integrated information’, including neuronal information processing and conventional computing, are only temporally integrated in the sense that outputs are correlated with multiple inputs: the information integration is implemented in time, rather than space, and thereby cannot correspond to physically integrated information. I point out that only energy fields are capable of integrating information in space. I describe the conscious electromagnetic information (cemi) field theory which has proposed that consciousness is physically integrated, and causally active, information encoded in the brain’s global electromagnetic (EM) field. I here extend the theory to argue that consciousness implements algorithms in space, rather than time, within the brain’s EM field. I describe how the cemi field theory accounts for most observed features of consciousness and describe recent experimental support for the theory. I also describe several untested predictions of the theory and discuss its implications for the design of artificial consciousness. The cemi field theory proposes a scientific dualism that is rooted in the difference between matter and energy, rather than matter and spirit.
Collapse
Affiliation(s)
- Johnjoe McFadden
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 5XH, UK
| |
Collapse
|
203
|
Asan AS, Lang EJ, Sahin M. Entrainment of cerebellar purkinje cells with directional AC electric fields in anesthetized rats. Brain Stimul 2020; 13:1548-1558. [PMID: 32919090 PMCID: PMC7722055 DOI: 10.1016/j.brs.2020.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/06/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation (tES) shows promise to treat neurological disorders. Knowledge of how the orthogonal components of the electric field (E-field) alter neuronal activity is required for strategic placement of transcranial electrodes. Yet, essentially no information exists on this relationship for mammalian cerebellum in vivo, despite the cerebellum being a target for clinical tES studies. OBJECTIVE To characterize how cerebellar Purkinje cell (PC) activity varies with the intensity, frequency, and direction of applied AC and DC E-fields. METHODS Extracellular recordings were obtained from vermis lobule 7 PCs in anesthetized rats. AC (2-100 Hz) or DC E-fields were generated in a range of intensities (0.75-30 mV/mm) in three orthogonal directions. Field-evoked PC simple spike activity was characterized in terms of firing rate modulation and phase-locking as a function of these parameters. t-tests were used for statistical comparisons. RESULTS The effect of applied E-fields was direction and intensity dependent, with rostrocaudally directed fields causing stronger modulations than dorsoventral fields and mediolaterally directed ones causing little to no effect, on average. The directionality dependent modulation suggests that PC is the primary cell type affected the most by electric stimulation, and this effect was probably given rise by a large dendritic tree and a soma. AC stimulation entrained activity in a frequency dependent manner, with stronger phase-locking to the stimulus cycle at higher frequencies. DC fields produced a modulation consisting of strong transients at current onset and offset with an intervening plateau. CONCLUSION Orientation of the exogenous E-field critically determines the modulation depth of cerebellar cortical output. With properly oriented fields, PC simple spike activity can strongly be entrained by AC fields, overriding the spontaneous firing pattern.
Collapse
Affiliation(s)
- Ahmet S Asan
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, Science Building, New York, NY, 07102, USA
| | - Mesut Sahin
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA.
| |
Collapse
|
204
|
Zarubin G, Gundlach C, Nikulin V, Villringer A, Bogdan M. Transient Amplitude Modulation of Alpha-Band Oscillations by Short-Time Intermittent Closed-Loop tACS. Front Hum Neurosci 2020; 14:366. [PMID: 33100993 PMCID: PMC7500443 DOI: 10.3389/fnhum.2020.00366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) techniques such as transcranial alternating current stimulation (tACS) have recently become extensively utilized due to their potential to modulate ongoing neuronal oscillatory activity and consequently to induce cortical plasticity relevant for various cognitive functions. However, the neurophysiological basis for stimulation effects as well as their inter-individual differences is not yet understood. In the present study, we used a closed-loop electroencephalography-tACS(EEG-tACS) protocol to examine the modulation of alpha oscillations generated in occipito-parietal areas. In particular, we investigated the effects of a repeated short-time intermittent stimulation protocol (1 s in every trial) applied over the visual cortex (Cz and Oz) and adjusted according to the phase and frequency of visual alpha oscillations on the amplitude of these oscillations. Based on previous findings, we expected higher increases in alpha amplitudes for tACS applied in-phase with ongoing oscillations as compared to an application in anti-phase and this modulation to be present in low-alpha amplitude states of the visual system (eyes opened, EO) but not high (eyes closed, EC). Contrary to our expectations, we found a transient suppression of alpha power in inter-individually derived spatially specific parieto-occipital components obtained via the estimation of spatial filters by using the common spatial patterns approach. The amplitude modulation was independent of the phase relationship between the tACS signal and alpha oscillations, and the state of the visual system manipulated via closed- and open-eye conditions. It was also absent in conventionally analyzed single-channel and multi-channel data from an average parieto-occipital region. The fact that the tACS modulation of oscillations was phase-independent suggests that mechanisms driving the effects of tACS may not be explained by entrainment alone, but rather require neuroplastic changes or transient disruption of neural oscillations. Our study also supports the notion that the response to tACS is subject-specific, where the modulatory effects are shaped by the interplay between the stimulation and different alpha generators. This favors stimulation protocols as well as analysis regimes exploiting inter-individual differences, such as spatial filters to reveal otherwise hidden stimulation effects and, thereby, comprehensively induce and study the effects and underlying mechanisms of tACS.
Collapse
Affiliation(s)
- Georgy Zarubin
- Technical Informatics Department, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christopher Gundlach
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychology, University of Leipzig, Leipzig, Germany
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
- Mind Brain Body Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Bogdan
- Technical Informatics Department, Leipzig University, Leipzig, Germany
| |
Collapse
|
205
|
Mosayebi-Samani M, Melo L, Agboada D, Nitsche MA, Kuo MF. Ca2+ channel dynamics explain the nonlinear neuroplasticity induction by cathodal transcranial direct current stimulation over the primary motor cortex. Eur Neuropsychopharmacol 2020; 38:63-72. [PMID: 32768154 DOI: 10.1016/j.euroneuro.2020.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/13/2020] [Accepted: 07/20/2020] [Indexed: 01/05/2023]
Abstract
Transcranial direct current stimulation (tDCS) induces polarity-dependent neuroplasticity: with conventional protocols, anodal tDCS results in excitability enhancement while cathodal stimulation reduces excitability. However, partially non-linear responses are observed with increased stimulation intensity and/or duration. Cathodal tDCS with 2 mA for 20 min reverses the excitability-diminishing plasticity induced by stimulation with 1 mA into excitation, while cathodal tDCS with 3 mA again results in excitability diminution. Since tDCS generates NMDA receptor-dependent neuroplasticity, such non-linearity could be explained by different levels of calcium concentration changes, which have been demonstrated in animal models to control for the directionality of plasticity. In this study, we tested the calcium dependency of non-linear cortical plasticity induced by cathodal tDCS in human subjects in a placebo controlled, double-blind and randomized design. The calcium channel blocker flunarizine was applied in low (2.5 mg), medium (5 mg) or high (10 mg) dosages before 20 min cathodal motor cortex tDCS with 3 mA in 12 young healthy subjects. After-effects of stimulation were monitored with TMS-induced motor evoked potentials (MEPs) until 2 h after stimulation. The results show that motor cortical excitability-diminishing after-effects of stimulation were unchanged, diminished, or converted to excitability enhancement with low, medium and high dosages of flunarizine. These results suggest a calcium-dependency of the directionality of tDCS-induced neuroplasticity, which may have relevant implications for future basic and clinical research.
Collapse
Affiliation(s)
- Mohsen Mosayebi-Samani
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany; Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany
| | - Lorena Melo
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany; International Graduate School of Neuroscience, IGSN, Ruhr University Bochum, Bochum, Germany
| | - Desmond Agboada
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany; International Graduate School of Neuroscience, IGSN, Ruhr University Bochum, Bochum, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany; Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - Min-Fang Kuo
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany.
| |
Collapse
|
206
|
Johnson L, Alekseichuk I, Krieg J, Doyle A, Yu Y, Vitek J, Johnson M, Opitz A. Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. SCIENCE ADVANCES 2020; 6:eaaz2747. [PMID: 32917605 PMCID: PMC7467690 DOI: 10.1126/sciadv.aaz2747] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/16/2020] [Indexed: 05/07/2023]
Abstract
Weak extracellular electric fields can influence spike timing in neural networks. Approaches to noninvasively impose these fields on the brain have high therapeutic potential in neurology and psychiatry. Transcranial alternating current stimulation (TACS) is hypothesized to affect spike timing and cause neural entrainment. However, the conditions under which these effects occur in vivo are unknown. Here, we recorded single-unit activity in the neocortex in awake nonhuman primates during TACS and found dose-dependent neural entrainment to the stimulation waveform. Cluster analysis of changes in interspike intervals identified two main types of neural responses to TACS-increased burstiness and phase entrainment. Our results uncover key mechanisms of TACS and show that the stimulation affects spike timing in the awake primate brain at intensities feasible in humans. Thus, novel TACS protocols tailored to ongoing brain activity may be a tool to normalize spike timing in maladaptive brain networks and neurological disease.
Collapse
Affiliation(s)
- Luke Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jordan Krieg
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex Doyle
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jerrold Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
207
|
Hesp C. Beyond connectionism: A neuronal dance of ephaptic and synaptic interactions: Commentary on "The growth of cognition: Free energy minimization and the embryogenesis of cortical computation" by Wright and Bourke (2020). Phys Life Rev 2020; 36:40-43. [PMID: 32807647 DOI: 10.1016/j.plrev.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Casper Hesp
- Department of Psychology, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Amsterdam Brain and Cognition Centre, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Institute for Advanced Study, University of Amsterdam, Oude Turfmarkt 147, 1012 GC Amsterdam, Netherlands; Wellcome Centre for Human Neuroimaging, University College London, WC1N 3BG, London, UK.
| |
Collapse
|
208
|
Abstract
Rhythms are a fundamental and defining feature of neuronal activity in animals including humans. This rhythmic brain activity interacts in complex ways with rhythms in the internal and external environment through the phenomenon of 'neuronal entrainment', which is attracting increasing attention due to its suggested role in a multitude of sensory and cognitive processes. Some senses, such as touch and vision, sample the environment rhythmically, while others, like audition, are faced with mostly rhythmic inputs. Entrainment couples rhythmic brain activity to external and internal rhythmic events, serving fine-grained routing and modulation of external and internal signals across multiple spatial and temporal hierarchies. This interaction between a brain and its environment can be experimentally investigated and even modified by rhythmic sensory stimuli or invasive and non-invasive neuromodulation techniques. We provide a comprehensive overview of the topic and propose a theoretical framework of how neuronal entrainment dynamically structures information from incoming neuronal, bodily and environmental sources. We discuss the different types of neuronal entrainment, the conceptual advances in the field, and converging evidence for general principles.
Collapse
Affiliation(s)
- Peter Lakatos
- Translational Neuroscience Laboratories, Nathan Kline Institute, Old Orangeburg Road 140, Orangeburg, New York 10962, USA; Department of Psychiatry, New York University School of Medicine, One, 8, Park Ave, New York, NY 10016, USA.
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany; Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| | - Gregor Thut
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| |
Collapse
|
209
|
Battaglini L, Mena F, Ghiani A, Casco C, Melcher D, Ronconi L. The Effect of Alpha tACS on the Temporal Resolution of Visual Perception. Front Psychol 2020; 11:1765. [PMID: 32849045 PMCID: PMC7412991 DOI: 10.3389/fpsyg.2020.01765] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 01/03/2023] Open
Abstract
We experience the world around us as a smooth and continuous flow. However, there is growing evidence that the stream of sensory inputs is not elaborated in an analog way but is instead organized in discrete or quasi-discrete temporal processing windows. These discrete windows are suggested to depend on rhythmic neural activity in the alpha (and theta) frequency bands, which in turn reflect changes in neural activity within, and coupling between, cortical areas. In the present study, we investigated a possible causal link between oscillatory brain activity in the alpha range (8-12 Hz) and the temporal resolution of visual perception, which determines whether sequential stimuli are perceived as distinct entities or combined into a single representation. To this aim, we employed a two-flash fusion task while participants received focal transcranial alternating current stimulation (tACS) in extra-striate visual regions including V5/MT of the right hemisphere. Our findings show that 10-Hz tACS, as opposed to a placebo (sham tACS), reduces the temporal resolution of perception, inducing participants to integrate the two stimuli into a unique percept more often. This pattern was observed only in the contralateral visual hemifield, providing further support for a specific effect of alpha tACS. The present findings corroborate the idea of a causal link between temporal windows of integration/segregation and oscillatory alpha activity in V5/MT and extra-striate visual regions. They also stimulate future research on possible ways to shape the temporal resolution of human vision in an individualized manner.
Collapse
Affiliation(s)
- Luca Battaglini
- Department of General Psychology, University of Padua, Padua, Italy.,Neuro.Vis. U.S. Laboratory, University of Padua, Padua, Italy
| | - Federica Mena
- Department of General Psychology, University of Padua, Padua, Italy
| | - Andrea Ghiani
- Department of General Psychology, University of Padua, Padua, Italy
| | - Clara Casco
- Department of General Psychology, University of Padua, Padua, Italy.,Neuro.Vis. U.S. Laboratory, University of Padua, Padua, Italy
| | - David Melcher
- Center for Mind/Brain Sciences, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
210
|
Kasten FH, Wendeln T, Stecher HI, Herrmann CS. Hemisphere-specific, differential effects of lateralized, occipital-parietal α- versus γ-tACS on endogenous but not exogenous visual-spatial attention. Sci Rep 2020; 10:12270. [PMID: 32703961 PMCID: PMC7378174 DOI: 10.1038/s41598-020-68992-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/28/2020] [Indexed: 11/09/2022] Open
Abstract
Orienting spatial attention has been associated with interhemispheric asymmetry of power in the α- and γ-band. Specifically, increased α-power has been linked to the inhibition of unattended sensory streams (e.g. the unattended visual field), while increased γ-power is associated with active sensory processing. Here, we aimed to differentially modulate endogenous and exogenous visual-spatial attention using transcranial alternating current stimulation (tACS). In a single-blind, within-subject design, participants performed several blocks of a spatial cueing task comprised of endogenous and exogenous cues while receiving lateralized α- or γ-tACS or no stimulation over left or right occipital-parietal areas. We found a significant, differential effect of α- and γ-tACS on endogenous (top-down) spatial attention but not on exogenous (bottom-up) attention. The effect was specific to tACS applied to the left hemisphere and driven by a modulation of attentional disengagement and re-orientation as measured during invalid trials. Our results indicate a causal role of α-/γ-oscillations for top-down (endogenous) attention. They may further suggest a left hemispheric dominance in controlling interhemispheric α-/γ-power asymmetry. The absence of an effect on exogenous attention may be indicative of a differential role of α-/γ-oscillations during different attention types or spatially distinct attentional subsystems.
Collapse
Affiliation(s)
- Florian H Kasten
- Experimental Psychology Lab, Department of Psychology, Cluster for Excellence "Hearing for All", European Medical School, Carl Von Ossietzky University, Ammerlaender Heerstr. 114-118, 26129, Oldenburg, Germany
- Neuroimaging Unit, European Medical School, Carl Von Ossietzky University, Oldenburg, Germany
| | - Tea Wendeln
- Experimental Psychology Lab, Department of Psychology, Cluster for Excellence "Hearing for All", European Medical School, Carl Von Ossietzky University, Ammerlaender Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Heiko I Stecher
- Experimental Psychology Lab, Department of Psychology, Cluster for Excellence "Hearing for All", European Medical School, Carl Von Ossietzky University, Ammerlaender Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster for Excellence "Hearing for All", European Medical School, Carl Von Ossietzky University, Ammerlaender Heerstr. 114-118, 26129, Oldenburg, Germany.
- Neuroimaging Unit, European Medical School, Carl Von Ossietzky University, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl Von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
211
|
Erkens J, Schulte M, Vormann M, Herrmann CS. Lacking Effects of Envelope Transcranial Alternating Current Stimulation Indicate the Need to Revise Envelope Transcranial Alternating Current Stimulation Methods. Neurosci Insights 2020; 15:2633105520936623. [PMID: 32685924 PMCID: PMC7343360 DOI: 10.1177/2633105520936623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, several studies have reported beneficial effects of transcranial alternating current stimulation (tACS) in experiments regarding sound and speech perception. A new development in this field is envelope-tACS: The goal of this method is to improve cortical entrainment to the speech signal by stimulating with a waveform based on the speech envelope. One challenge of this stimulation method is timing; the electrical stimulation needs to be phase-aligned with the naturally occurring cortical entrainment to the auditory stimuli. Due to individual differences in anatomy and processing speed, the optimal time-lag between presentation of sound and applying envelope-tACS varies between participants. To better investigate the effects of envelope-tACS, we performed a speech comprehension task with a larger amount of time-lags than previous experiments, as well as an equal amount of sham conditions. No significant difference between optimal stimulation time-lag condition and best sham condition was found. Further investigation of the data revealed a significant difference between the positive and negative half-cycles of the stimulation conditions but not for sham. However, we also found a significant learning effect over the course of the experiment which was of comparable size to the effects of envelope-tACS found in previous auditory tACS studies. In this article, we discuss possible explanations for why our findings did not match up with those of previous studies and the issues that come with researching and developing envelope-tACS.
Collapse
Affiliation(s)
- Jules Erkens
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence 'Hearing4All', European Medical School, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | | | | | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence 'Hearing4All', European Medical School, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
212
|
Sheheitli H, Jirsa VK. A mathematical model of ephaptic interactions in neuronal fiber pathways: Could there be more than transmission along the tracts? Netw Neurosci 2020; 4:595-610. [PMID: 32885117 PMCID: PMC7462434 DOI: 10.1162/netn_a_00134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/26/2020] [Indexed: 01/10/2023] Open
Abstract
While numerous studies of ephaptic interactions have focused on either axons of peripheral nerves or on cortical structures, no attention has been given to the possibility of ephaptic interactions in white matter tracts. Inspired by the highly organized, tightly packed geometry of axons in fiber pathways, we aim to investigate the potential effects of ephaptic interactions along these structures that are resilient to experimental probing. We use axonal cable theory to derive a minimal model of a sheet of N ephaptically coupled axons. Numerical solutions of the proposed model are explored as ephaptic coupling is varied. We demonstrate that ephaptic interactions can lead to local phase locking between adjacent traveling impulses and that, as coupling is increased, traveling impulses trigger new impulses along adjacent axons, resulting in finite size traveling fronts. For strong enough coupling, impulses propagate laterally and backwards, resulting in complex spatiotemporal patterns. While common large-scale brain network models often model fiber pathways as simple relays of signals between different brain regions, our work calls for a closer reexamination of the validity of such a view. The results suggest that in the presence of significant ephaptic interactions, the brain fiber tracts can act as a dynamic active medium. Starting from the FitzHugh-Nagumo cable model, we derive a system of nonlinear coupled partial differential equations (PDEs) to model a sheet of N ephaptically coupled axons. We also present a continuous limit approximation transforming the model into a two-dimensional field equation. We numerically solve the equations exploring the dynamics as coupling strength is varied. We observe phase locking of adjacent impulses and coordination of subthreshold dynamics. Strong enough coupling generates complex spatiotemporal patterns as new impulses form traveling fronts propagating laterally and backwards. The transition between different dynamic regimes happens abruptly at critical values of parameter. The results put into question the validity of assuming the role of fiber pathways to be that of mere interneuronal transmission and call for further investigation of the matter.
Collapse
Affiliation(s)
- Hiba Sheheitli
- Aix-Marseille University, Inserm, INS UMR_S 1106, Marseille, France
| | - Viktor K Jirsa
- Aix-Marseille University, Inserm, INS UMR_S 1106, Marseille, France
| |
Collapse
|
213
|
Kayarian FB, Jannati A, Rotenberg A, Santarnecchi E. Targeting Gamma-Related Pathophysiology in Autism Spectrum Disorder Using Transcranial Electrical Stimulation: Opportunities and Challenges. Autism Res 2020; 13:1051-1071. [PMID: 32468731 PMCID: PMC7387209 DOI: 10.1002/aur.2312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
A range of scalp electroencephalogram (EEG) abnormalities correlates with the core symptoms of autism spectrum disorder (ASD). Among these are alterations of brain oscillations in the gamma-frequency EEG band in adults and children with ASD, whose origin has been linked to dysfunctions of inhibitory interneuron signaling. While therapeutic interventions aimed to modulate gamma oscillations are being tested for neuropsychiatric disorders such as schizophrenia, Alzheimer's disease, and frontotemporal dementia, the prospects for therapeutic gamma modulation in ASD have not been extensively studied. Accordingly, we discuss gamma-related alterations in the setting of ASD pathophysiology, as well as potential interventions that can enhance gamma oscillations in patients with ASD. Ultimately, we argue that transcranial electrical stimulation modalities capable of entraining gamma oscillations, and thereby potentially modulating inhibitory interneuron circuitry, are promising methods to study and mitigate gamma alterations in ASD. Autism Res 2020, 13: 1051-1071. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Brain functions are mediated by various oscillatory waves of neuronal activity, ranging in amplitude and frequency. In certain neuropsychiatric disorders, such as schizophrenia and Alzheimer's disease, reduced high-frequency oscillations in the "gamma" band have been observed, and therapeutic interventions to enhance such activity are being explored. Here, we review and comment on evidence of reduced gamma activity in ASD, arguing that modalities used in other disorders may benefit individuals with ASD as well.
Collapse
Affiliation(s)
- Fae B. Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
214
|
Fröhlich F, Lustenberger C. Neuromodulation of sleep rhythms in schizophrenia: Towards the rational design of non-invasive brain stimulation. Schizophr Res 2020; 221:71-80. [PMID: 32354662 PMCID: PMC7316586 DOI: 10.1016/j.schres.2020.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
Abstract
Brain function critically depends on oscillatory synchronization of neuronal populations both during wake and sleep. Originally, neural oscillations have been discounted as an epiphenomenon. More recently, specific deficits in the structure of brain oscillations have been linked to psychiatric diseases. For example, schizophrenia is hallmarked by abnormalities in different brain oscillations. Key sleep rhythms during NEM sleep such as sleep spindles, which are implicated in memory consolidation and are related to cognitive functions, are strongly diminished in these patients compared to healthy controls. To date, it remains unclear whether these reductions in sleep oscillations are causal for the functional impairments observed in schizophrenia. The application of non-invasive brain stimulation permits the causal examination of brain network dynamics and will help to establish the causal association of sleep oscillations and symptoms of schizophrenia. To accomplish this, stimulation paradigms that selectively engage specific network targets such as sleep spindles or slow waves are needed. We propose that the successful development and application of these non-invasive brain stimulation approaches will require rational design that takes network dynamics and neuroanatomical information into account. The purpose of this article is to prepare the grounds for the next steps towards such rational design of non-invasive stimulation, with a special focus on electrical and auditory stimulation. First, we briefly summarize the deficits in network dynamics during sleep in schizophrenia. Then, we discuss today's and tomorrow's non-invasive brain stimulation modalities to engage these network targets.
Collapse
Affiliation(s)
- Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
215
|
Alpha-tACS effect on inhibitory control and feasibility of administration in community outpatient substance use treatment. Drug Alcohol Depend 2020; 213:108132. [PMID: 32593154 PMCID: PMC8815795 DOI: 10.1016/j.drugalcdep.2020.108132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Deficits in inhibitory control (IC) and distress tolerance (DT) are associated with substance use disorders (SUD) and post-treatment return to substance use. Transcranial alternating current stimulation (tACS) modulates the neural oscillations that are associated with the cognitive and affective mechanisms contributing to IC and DT. The aims of the current study were to examine the feasibility and acceptability of administering tACS in a community-based SUD treatment setting, and to test the effect of alpha-tACS on IC and DT. METHOD A double-blind, randomized, active sham-controlled trial of treatment-seeking adults with a SUD (N = 30, Meanage = 43.2 years, 70.0% male). Participants attended two sessions and completed computerized inhibitory control and distress tolerance tasks while receiving tACS targeting the bilateral dorsolateral prefrontal cortex (DLPFC). Participants received sham-tACS and were then randomized to receive sham-, alpha-, or gamma-tACS within 2-3 days. RESULTS Treatment retention was 87%. Participant self-reported belief of having received tACS and mean side effect intensity ratings did not differ across conditions, with all side effect ratings in the absent to mild range. There was a large (d = 0.83) and significant effect of alpha-tACS on inhibitory control compared to sham-tACS (β = 1.78, SE = 0.65, 95 % CI: 0.41, 3.14, p<0.01). There were no significant effects of condition on distress tolerance. CONCLUSIONS To our knowledge, this is the first study of tACS in adults with a SUD. Our findings provide preliminary evidence for recruitment, retention, and administration feasibility of tACS in a community-based substance use treatment program and a beneficial effect of alpha-tACS on inhibitory control.
Collapse
|
216
|
Bergmann TO, Hartwigsen G. Inferring Causality from Noninvasive Brain Stimulation in Cognitive Neuroscience. J Cogn Neurosci 2020; 33:195-225. [PMID: 32530381 DOI: 10.1162/jocn_a_01591] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation or transcranial direct and alternating current stimulation, are advocated as measures to enable causal inference in cognitive neuroscience experiments. Transcending the limitations of purely correlative neuroimaging measures and experimental sensory stimulation, they allow to experimentally manipulate brain activity and study its consequences for perception, cognition, and eventually, behavior. Although this is true in principle, particular caution is advised when interpreting brain stimulation experiments in a causal manner. Research hypotheses are often oversimplified, disregarding the underlying (implicitly assumed) complex chain of causation, namely, that the stimulation technique has to generate an electric field in the brain tissue, which then evokes or modulates neuronal activity both locally in the target region and in connected remote sites of the network, which in consequence affects the cognitive function of interest and eventually results in a change of the behavioral measure. Importantly, every link in this causal chain of effects can be confounded by several factors that have to be experimentally eliminated or controlled to attribute the observed results to their assumed cause. This is complicated by the fact that many of the mediating and confounding variables are not directly observable and dose-response relationships are often nonlinear. We will walk the reader through the chain of causation for a generic cognitive neuroscience NIBS study, discuss possible confounds, and advise appropriate control conditions. If crucial assumptions are explicitly tested (where possible) and confounds are experimentally well controlled, NIBS can indeed reveal cause-effect relationships in cognitive neuroscience studies.
Collapse
Affiliation(s)
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
217
|
Guerra A, Asci F, D'Onofrio V, Sveva V, Bologna M, Fabbrini G, Berardelli A, Suppa A. Enhancing Gamma Oscillations Restores Primary Motor Cortex Plasticity in Parkinson's Disease. J Neurosci 2020; 40:4788-4796. [PMID: 32430296 PMCID: PMC7294804 DOI: 10.1523/jneurosci.0357-20.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/26/2020] [Accepted: 04/26/2020] [Indexed: 11/21/2022] Open
Abstract
In humans, γ oscillations in cortical motor areas reflect asynchronous synaptic activity and contribute to plasticity processes. In Parkinson's disease (PD), γ oscillatory activity in the basal ganglia-thalamo-cortical network is altered and the LTP-like plasticity elicited by intermittent theta burst stimulation (iTBS) is reduced in the primary motor cortex (M1). In this study, we tested whether transcranial alternating current stimulation (tACS) delivered at γ frequency promotes iTBS-induced LTP-like plasticity in M1 in PD patients. Sixteen patients (OFF condition) and 16 healthy subjects (HSs) underwent iTBS during γ-tACS (iTBS-γ tACS) and during sham-tACS (iTBS-sham tACS) in two sessions. Motor-evoked potentials (MEPs) evoked by single-pulse transcranial magnetic stimulation and short-interval intracortical inhibition (SICI) were recorded before and after the costimulation. A subgroup of patients also underwent iTBS during β tACS. iTBS-sham tACS facilitated single-pulse MEPs in HSs, but not in patients. iTBS-γ tACS induced a larger MEP facilitation than iTBS-sham tACS in both groups, with similar values in patients and HSs. In patients, SICI improved after iTBS-γ tACS. The effect produced by iTBS-γ tACS on single-pulse MEPs correlated with disease duration, while changes in SICI correlated with Unified Parkinson's Disease Rating Scale Part III scores. The effect of iTBS-β tACS on both single-pulse MEPs and SICI was similar to that obtained in the iTBS-sham tACS session. Our data suggest that γ oscillations have a role in the pathophysiology of the abnormal LTP-like plasticity in PD. Entraining M1 neurons at the γ rhythm through tACS may be an effective method to restore impaired plasticity.SIGNIFICANCE STATEMENT In Parkinson's disease, the LTP-like plasticity of the primary motor cortex is impaired, and γ oscillations are altered in the basal ganglia-thalamo-cortical network. Using a combined transcranial magnetic stimulation-transcranial alternating current stimulation approach (iTBS-γ tACS costimulation), we demonstrate that driving γ oscillations restores the LTP-like plasticity in patients with Parkinson's disease. The effects correlate with clinical characteristics of patients, being more evident in less affected patients and weaker in patients with longer disease duration. These findings suggest that cortical γ oscillations play a beneficial role in modulating the LTP-like plasticity of M1 in Parkinson's disease. The iTBS-γ tACS approach may be potentially useful in rehabilitative settings in patients.
Collapse
Affiliation(s)
| | - Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Valentina D'Onofrio
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Valerio Sveva
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Antonio Suppa
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
218
|
Asan AS, Sahin M. Modulation of Multiunit Spike Activity by Transcranial AC Stimulation (tACS) in the Rat Cerebellar Cortex. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5192-5195. [PMID: 31947028 DOI: 10.1109/embc.2019.8856830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcranial electrical stimulation (tES) techniques have garnered significant interest due to their non-invasiveness and potential to offer a treatment option in a wide variety of brain disorders. Among several modulation techniques, transcranial alternating current stimulation (tACS) is favored for its ability to entrain the neural oscillations. The cerebellum is one of the targeted sites because of its involvement in motor and cognitive functions. However, animal studies are lacking in the literature looking into the mechanism of action in cerebellar tACS. In this study, we used a rat model and monitored the activity of the cerebellar cortex, which sculpts the cerebellar output by adjusting the firing rate and timing of the neurons in the deep cerebellar nuclei (DCN). For neural recording, a tungsten electrode was inserted into the cerebellar cortex through a craniotomy hole located over the right paramedian lobule (PML). A helical Ag/AgCl wire electrode was placed atop the skull near the caudal edge to inject a 1 Hz biphasic sinusoidal current. Our results showed that the multiunit activity (MUA) of the cerebellar cortex was strongly modulated by tACS. The negative phase of the electric current enhanced the neural firing rate while the positive phase suppressed the activity. Furthermore, the spike rate showed modulation by the instantaneous strength of the injected current within the sinusoidal cycle. This warrants research to further look into the mechanism of tACS acting on the cerebellar cortex at the cellular level.
Collapse
|
219
|
Ruffini G, Salvador R, Tadayon E, Sanchez-Todo R, Pascual-Leone A, Santarnecchi E. Realistic modeling of mesoscopic ephaptic coupling in the human brain. PLoS Comput Biol 2020; 16:e1007923. [PMID: 32479496 PMCID: PMC7289436 DOI: 10.1371/journal.pcbi.1007923] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/11/2020] [Accepted: 05/01/2020] [Indexed: 11/29/2022] Open
Abstract
Several decades of research suggest that weak electric fields may influence neural processing, including those induced by neuronal activity and proposed as a substrate for a potential new cellular communication system, i.e., ephaptic transmission. Here we aim to model mesoscopic ephaptic activity in the human brain and explore its trajectory during aging by characterizing the electric field generated by cortical dipoles using realistic finite element modeling. Extrapolating from electrophysiological measurements, we first observe that modeled endogenous field magnitudes are comparable to those in measurements of weak but functionally relevant self-generated fields and to those produced by noninvasive transcranial brain stimulation, and therefore possibly able to modulate neuronal activity. Then, to evaluate the role of these fields in the human cortex in large MRI databases, we adapt an interaction approximation that considers the relative orientation of neuron and field to estimate the membrane potential perturbation in pyramidal cells. We use this approximation to define a simplified metric (EMOD1) that weights dipole coupling as a function of distance and relative orientation between emitter and receiver and evaluate it in a sample of 401 realistic human brain models from healthy subjects aged 16-83. Results reveal that ephaptic coupling, in the simplified mesoscopic modeling approach used here, significantly decreases with age, with higher involvement of sensorimotor regions and medial brain structures. This study suggests that by providing the means for fast and direct interaction between neurons, ephaptic modulation may contribute to the complexity of human function for cognition and behavior, and its modification across the lifespan and in response to pathology.
Collapse
Affiliation(s)
- Giulio Ruffini
- Neuroelectrics Corporation, Cambridge, Massachusetts, United States of America
- Neuroelectrics Barcelona, Barcelona, Spain
- Starlab Barcelona, Barcelona, Spain
| | | | - Ehsan Tadayon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, Massachusetts, United States of America
- Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
220
|
Kösem A, Bosker HR, Jensen O, Hagoort P, Riecke L. Biasing the Perception of Spoken Words with Transcranial Alternating Current Stimulation. J Cogn Neurosci 2020; 32:1428-1437. [PMID: 32427072 DOI: 10.1162/jocn_a_01579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent neuroimaging evidence suggests that the frequency of entrained oscillations in auditory cortices influences the perceived duration of speech segments, impacting word perception [Kösem, A., Bosker, H. R., Takashima, A., Meyer, A., Jensen, O., & Hagoort, P. Neural entrainment determines the words we hear. Current Biology, 28, 2867-2875, 2018]. We further tested the causal influence of neural entrainment frequency during speech processing, by manipulating entrainment with continuous transcranial alternating current stimulation (tACS) at distinct oscillatory frequencies (3 and 5.5 Hz) above the auditory cortices. Dutch participants listened to speech and were asked to report their percept of a target Dutch word, which contained a vowel with an ambiguous duration. Target words were presented either in isolation (first experiment) or at the end of spoken sentences (second experiment). We predicted that the tACS frequency would influence neural entrainment and therewith how speech is perceptually sampled, leading to a perceptual overestimation or underestimation of the vowel's duration. Whereas results from Experiment 1 did not confirm this prediction, results from Experiment 2 suggested a small effect of tACS frequency on target word perception: Faster tACS leads to more long-vowel word percepts, in line with the previous neuroimaging findings. Importantly, the difference in word perception induced by the different tACS frequencies was significantly larger in Experiment 1 versus Experiment 2, suggesting that the impact of tACS is dependent on the sensory context. tACS may have a stronger effect on spoken word perception when the words are presented in continuous speech as compared to when they are isolated, potentially because prior (stimulus-induced) entrainment of brain oscillations might be a prerequisite for tACS to be effective.
Collapse
Affiliation(s)
- Anne Kösem
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands.,Université Lyon 1
| | - Hans Rutger Bosker
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands
| | | | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
221
|
Guerra A, Ranieri F, Falato E, Musumeci G, Di Santo A, Asci F, Di Pino G, Suppa A, Berardelli A, Di Lazzaro V. Detecting cortical circuits resonant to high-frequency oscillations in the human primary motor cortex: a TMS-tACS study. Sci Rep 2020; 10:7695. [PMID: 32376946 PMCID: PMC7203184 DOI: 10.1038/s41598-020-64717-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/17/2020] [Indexed: 11/19/2022] Open
Abstract
Corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) consist of high-frequency bursts (≈667 and ≈333 Hz). However, intracortical circuits producing such corticospinal high-frequency bursts are unknown. We here investigated whether neurons activated by single TMS pulses over M1 are resonant to high-frequency oscillations, using a combined transcranial alternating current stimulation (tACS)-TMS approach. We applied 667, 333 Hz or sham-tACS and, concurrently, we delivered six single-pulse TMS protocols using monophasic or biphasic pulses, different stimulation intensities, muscular states, types and orientations of coils. We recorded motor evoked potentials (MEPs) before, during and after tACS. 333 Hz tACS facilitated MEPs evoked by biphasic TMS through a figure-of-eight coil at active motor threshold (AMT), and by monophasic TMS with anterior-to-posterior-induced current in the brain. 333 Hz tACS also facilitated MEPs evoked by monophasic TMS through a circular coil at AMT, an effect that weakly persisted after the stimulation. 667 Hz tACS had no effects. 333 Hz, but not 667 Hz, tACS may have reinforced the synchronization of specific neurons to high-frequency oscillations enhancing this activity, and facilitating MEPs. Our findings suggest that different bursting modes of corticospinal neurons are produced by separate circuits with different oscillatory properties.
Collapse
Affiliation(s)
- Andrea Guerra
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, (IS), Italy
| | - Federico Ranieri
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, P.le L.A. Scuro 10, 37134, Verona, Italy
| | - Emma Falato
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Gabriella Musumeci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Alessandro Di Santo
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Giovanni Di Pino
- Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction, Department of Medicine, University Campus Bio-Medico, via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Antonio Suppa
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, via Álvaro del Portillo 21, 00128, Rome, Italy.
| |
Collapse
|
222
|
Castellano M, Ibañez-Soria D, Kroupi E, Acedo J, Campolo M, Soria-Frisch A, Valls-Sole J, Verma A, Ruffini G. Intermittent tACS during a visual task impacts neural oscillations and LZW complexity. Exp Brain Res 2020; 238:1411-1422. [PMID: 32367144 DOI: 10.1007/s00221-020-05820-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/21/2020] [Indexed: 11/30/2022]
Abstract
Little is known about how transcranial alternating current stimulation (tACS) interacts with brain activity. Here, we investigate the effects of tACS using an intermittent tACS-EEG protocol and use, in addition to classical metrics, Lempel-Ziv-Welch complexity (LZW) to characterize the interactions between task, endogenous and exogenous oscillations. In a cross-over study, EEG was recorded from thirty participants engaged in a change-of-speed detection task while receiving multichannel tACS over the visual cortex at 10 Hz, 70 Hz and a control condition. In each session, tACS was applied intermittently during 5 s events interleaved with EEG recordings over multiple trials. We found that, with respect to control, stimulation at 10 Hz ([Formula: see text]) enhanced both [Formula: see text] and [Formula: see text] power, [Formula: see text]-LZW complexity and [Formula: see text] but not [Formula: see text] phase locking value with respect to tACS onset ([Formula: see text]-PLV, [Formula: see text]-PLV), and increased reaction time (RT). [Formula: see text] increased RT with little impact on other metrics. As trials associated with larger [Formula: see text]-power (and lower [Formula: see text]-LZW) predicted shorter RT, we argue that [Formula: see text] produces a disruption of functionally relevant fast oscillations through an increase in [Formula: see text]-band power, slowing behavioural responses and increasing the complexity of gamma oscillations. Our study highlights the complex interaction between tACS and endogenous brain dynamics, and suggests the use of algorithmic complexity inspired metrics to characterize cortical dynamics in a behaviorally relevant timescale.
Collapse
Affiliation(s)
- Marta Castellano
- Starlab Barcelona SL, Av. del Tibidabo 47 bis, 08035, Barcelona, Spain
| | | | - Eleni Kroupi
- Starlab Barcelona SL, Av. del Tibidabo 47 bis, 08035, Barcelona, Spain
| | - Javier Acedo
- Neuroelectrics SLU, Av. del Tibidabo 47 bis, 08035, Barcelona, Spain
| | - Michela Campolo
- EMG Unit, Neurology Department, Hospital Clinic and IDIBAPS (Institut d'Inveatigació Agustí Pi i Sunyer), Facultat de Medicina, University of Barcelona, Barcelona, Spain
| | | | - Josep Valls-Sole
- EMG Unit, Neurology Department, Hospital Clinic and IDIBAPS (Institut d'Inveatigació Agustí Pi i Sunyer), Facultat de Medicina, University of Barcelona, Barcelona, Spain
| | - Ajay Verma
- Biogen Inc., 225 Binney St, Cambridge, MA, USA
| | - Giulio Ruffini
- Neuroelectrics Corp., 2 10 Broadway, Suite 201, Cambridge, MA, 02139, USA.
| |
Collapse
|
223
|
Analyzing the advantages of subcutaneous over transcutaneous electrical stimulation for activating brainwaves. Sci Rep 2020; 10:7360. [PMID: 32355172 PMCID: PMC7193608 DOI: 10.1038/s41598-020-64378-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
Transcranial electrical stimulation (TES) is a widely accepted neuromodulation modality for treating brain disorders. However, its clinical efficacy is fundamentally limited due to the current shunting effect of the scalp and safety issues. A newer electrical stimulation technique called subcutaneous electrical stimulation (SES) promises to overcome the limitations of TES by applying currents directly at the site of the disorder through the skull. While SES seems promising, the electrophysiological effect of SES compared to TES is still unknown, thus limiting its broader application. Here we comprehensively analyze the SES and TES to demonstrate the effectiveness and advantages of SES. Beagles were bilaterally implanted with subdural strips for intracranial electroencephalography and electric field recording. For the intracerebral electric field prediction, we designed a 3D electromagnetic simulation framework and simulated TES and SES. In the beagle model, SES induces three to four-fold larger cerebral electric fields compared to TES, and significant changes in power ratio of brainwaves were observed only in SES. Our prediction framework suggests that the field penetration of SES would be several-fold larger than TES in human brains. These results demonstrate that the SES would significantly enhance the neuromodulatory effects compared to conventional TES and overcome the TES limitations.
Collapse
|
224
|
Biophysically grounded mean-field models of neural populations under electrical stimulation. PLoS Comput Biol 2020; 16:e1007822. [PMID: 32324734 PMCID: PMC7200022 DOI: 10.1371/journal.pcbi.1007822] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 05/05/2020] [Accepted: 03/24/2020] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation of neural systems is a key tool for understanding neural dynamics and ultimately for developing clinical treatments. Many applications of electrical stimulation affect large populations of neurons. However, computational models of large networks of spiking neurons are inherently hard to simulate and analyze. We evaluate a reduced mean-field model of excitatory and inhibitory adaptive exponential integrate-and-fire (AdEx) neurons which can be used to efficiently study the effects of electrical stimulation on large neural populations. The rich dynamical properties of this basic cortical model are described in detail and validated using large network simulations. Bifurcation diagrams reflecting the network's state reveal asynchronous up- and down-states, bistable regimes, and oscillatory regions corresponding to fast excitation-inhibition and slow excitation-adaptation feedback loops. The biophysical parameters of the AdEx neuron can be coupled to an electric field with realistic field strengths which then can be propagated up to the population description. We show how on the edge of bifurcation, direct electrical inputs cause network state transitions, such as turning on and off oscillations of the population rate. Oscillatory input can frequency-entrain and phase-lock endogenous oscillations. Relatively weak electric field strengths on the order of 1 V/m are able to produce these effects, indicating that field effects are strongly amplified in the network. The effects of time-varying external stimulation are well-predicted by the mean-field model, further underpinning the utility of low-dimensional neural mass models.
Collapse
|
225
|
Oscillations in the auditory system and their possible role. Neurosci Biobehav Rev 2020; 113:507-528. [PMID: 32298712 DOI: 10.1016/j.neubiorev.2020.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
GOURÉVITCH, B., C. Martin, O. Postal, J.J. Eggermont. Oscillations in the auditory system, their possible role. NEUROSCI BIOBEHAV REV XXX XXX-XXX, 2020. - Neural oscillations are thought to have various roles in brain processing such as, attention modulation, neuronal communication, motor coordination, memory consolidation, decision-making, or feature binding. The role of oscillations in the auditory system is less clear, especially due to the large discrepancy between human and animal studies. Here we describe many methodological issues that confound the results of oscillation studies in the auditory field. Moreover, we discuss the relationship between neural entrainment and oscillations that remains unclear. Finally, we aim to identify which kind of oscillations could be specific or salient to the auditory areas and their processing. We suggest that the role of oscillations might dramatically differ between the primary auditory cortex and the more associative auditory areas. Despite the moderate presence of intrinsic low frequency oscillations in the primary auditory cortex, rhythmic components in the input seem crucial for auditory processing. This allows the phase entrainment between the oscillatory phase and rhythmic input, which is an integral part of stimulus selection within the auditory system.
Collapse
|
226
|
Sabel BA, Thut G, Haueisen J, Henrich-Noack P, Herrmann CS, Hunold A, Kammer T, Matteo B, Sergeeva EG, Waleszczyk W, Antal A. Vision modulation, plasticity and restoration using non-invasive brain stimulation – An IFCN-sponsored review. Clin Neurophysiol 2020; 131:887-911. [DOI: 10.1016/j.clinph.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
|
227
|
Martinez-Banaclocha M. Astroglial Isopotentiality and Calcium-Associated Biomagnetic Field Effects on Cortical Neuronal Coupling. Cells 2020; 9:cells9020439. [PMID: 32069981 PMCID: PMC7073214 DOI: 10.3390/cells9020439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Synaptic neurotransmission is necessary but does not sufficiently explain superior cognitive faculties. Growing evidence has shown that neuron-astroglial chemical crosstalk plays a critical role in the processing of information, computation, and memory. In addition to chemical and electrical communication among neurons and between neurons and astrocytes, other nonsynaptic mechanisms called ephaptic interactions can contribute to the neuronal synchronization from different brain regions involved in the processing of information. New research on brain astrocytes has clearly shown that the membrane potential of these cells remains very stable among neighboring and distant astrocytes due to the marked bioelectric coupling between them through gap junctions. This finding raises the possibility that the neocortical astroglial network exerts a guiding template modulating the excitability and synchronization of trillions of neurons by astroglial Ca2+-associated bioelectromagnetic interactions. We propose that bioelectric and biomagnetic fields of the astroglial network equalize extracellular local field potentials (LFPs) and associated local magnetic field potentials (LMFPs) in the cortical layers of the brain areas involved in the processing of information, contributing to the adequate and coherent integration of external and internal signals. This article reviews the current knowledge of ephaptic interactions in the cerebral cortex and proposes that the isopotentiality of cortical astrocytes is a prerequisite for the maintenance of the bioelectromagnetic crosstalk between neurons and astrocytes in the neocortex.
Collapse
|
228
|
Fresnoza S, Christova M, Bieler L, Körner C, Zimmer U, Gallasch E, Ischebeck A. Age-Dependent Effect of Transcranial Alternating Current Stimulation on Motor Skill Consolidation. Front Aging Neurosci 2020; 12:25. [PMID: 32116653 PMCID: PMC7016219 DOI: 10.3389/fnagi.2020.00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is the application of subthreshold, sinusoidal current to modulate ongoing brain rhythms related to sensory, motor and cognitive processes. Electrophysiological studies suggested that the effect of tACS applied at an alpha frequency (8–12 Hz) was state-dependent. The effects of tACS, that is, an increase in parieto-occipital electroencephalography (EEG) alpha power and magnetoencephalography (MEG) phase coherence, was only observed when the eyes were open (low alpha power) and not when the eyes were closed (high alpha power). This state-dependency of the effects of alpha tACS might extend to the aging brain characterized by general slowing and decrease in spectral power of the alpha rhythm. We additionally hypothesized that tACS will influence the motor cortex, which is involved in motor skill learning and consolidation. A group of young and old healthy adults performed a serial reaction time task (SRTT) with their right hand before and after the tACS stimulation. Each participant underwent three sessions of stimulation: sham, stimulation applied at the individual participant’s alpha peak frequency or individual alpha peak frequency (iAPF; α-tACS) and stimulation with iAPF plus 2 Hz (α2-tACS) to the left motor cortex for 10 min (1.5 mA). We measured the effect of stimulation on general motor skill (GMS) and sequence-specific skill (SS) consolidation. We found that α-tACS and α2-tACS improved GMS and SS consolidation in the old group. In contrast, α-tACS minimally improved GMS consolidation but impaired SS consolidation in the young group. On the other hand, α2-tACS was detrimental to the consolidation of both skills in the young group. Our results suggest that individuals with aberrant alpha rhythm such as the elderly could benefit more from tACS stimulation, whereas for young healthy individuals with intact alpha rhythm the stimulation could be detrimental.
Collapse
Affiliation(s)
- Shane Fresnoza
- Institute of Psychology University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Monica Christova
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria.,Institute of Physiotherapy, University of Applied Sciences FH-JOANNEUM, Graz, Austria
| | - Lara Bieler
- Institute of Psychology University of Graz, Graz, Austria.,Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Christof Körner
- Institute of Psychology University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Ulrike Zimmer
- Institute of Psychology University of Graz, Graz, Austria.,Faculty of Human Sciences, Medical School Hamburg (MSH), Hamburg, Germany
| | - Eugen Gallasch
- BioTechMed, Graz, Austria.,Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Anja Ischebeck
- Institute of Psychology University of Graz, Graz, Austria.,Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
229
|
Zabrecky G, Shahrampour S, Whitely C, Alizadeh M, Conklin C, Wintering N, Doghramji K, Zhan T, Mohamed F, Newberg A, Monti D. An fMRI Study of the Effects of Vibroacoustic Stimulation on Functional Connectivity in Patients with Insomnia. SLEEP DISORDERS 2020; 2020:7846914. [PMID: 32089894 PMCID: PMC7024098 DOI: 10.1155/2020/7846914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/23/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND It is well known that vibratory and auditory stimuli from vehicles such as cars and trains can help induce sleep. More recent literature suggests that specific types of vibratory and acoustic stimulation might help promote sleep, but this has not been tested with neuroimaging. Thus, the purpose of this study was to observe the effects of vibroacoustic stimulation (providing both vibratory and auditory stimuli) on functional connectivity changes in the brain using resting state functional magnetic resonance imaging (rs-fMRI), and compare these changes to improvements in sleep in patients with insomnia. METHODS For this study, 30 patients with insomnia were randomly assigned to receive one month of a vibroacoustic stimulation or be placed in a waitlist control. Patients were evaluated pre- and postprogram with qualitative sleep questionnaires and measurement of sleep duration with an actigraphy watch. In addition, patients underwent rs-fMRI to assess functional connectivity. RESULTS The results demonstrated that those patients receiving the vibroacoustic stimulation had significant improvements in measured sleep minutes as well as in scores on the Insomnia Severity Index questionnaire. In addition, significant changes were noted in functional connectivity in association with the vermis, cerebellar hemispheres, thalamus, sensorimotor area, nucleus accumbens, and prefrontal cortex. CONCLUSIONS The results of this study show that vibroacoustic stimulation alters the brain's functional connectivity as well as improves sleep in patients with insomnia.
Collapse
Affiliation(s)
- George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shiva Shahrampour
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cutler Whitely
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mahdi Alizadeh
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chris Conklin
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karl Doghramji
- Sleep Disorders Center, Department of Psychiatry and Human Behavior, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Tingting Zhan
- Department of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Feroze Mohamed
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew Newberg
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel Monti
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
230
|
Pilot Study on the Effect of Biophysical Therapy on Salivary Alpha-Amylase as a Surrogate Measure of Anxiety/Stress: In Search of a Novel Noninvasive Molecular Approach for the Management of Stress. Int J Mol Sci 2020; 21:ijms21020415. [PMID: 31936495 PMCID: PMC7014022 DOI: 10.3390/ijms21020415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
Anxiety and depression impact dramatically on public health, underlying the importance of alternative cost-effective treatments. Previous studies have shown that biophysical treatment can significantly reduce anxiety symptoms and recently, salivary alpha-amylase (SAA) has been identified as an objective correlate of the sympathetic-parasympathetic imbalance related to increased stress burden, defined as allostatic load. The aim of this study was to evaluate the effect of biophysical therapy on SAA levels, in addition to the Depression Anxiety Stress Scale (DASS)-21 questionnaire. Twenty-four workers (sales representatives) presenting with mild anxiety/stress symptoms (Generalized Anxiety Disorder 7-item scale of > 5) were randomized to biophysical treatment (N = 12) or placebo control (N = 12). The biophysical group underwent electromagnetic information transfer through an aqueous system procedure, with daily self-administration for one month. SAA collection and the DASS-21 questionnaire were undertaken at baseline and after one month in all patients. Clinical characteristics and baseline DASS-21 subscale scores were similar between placebo and biophysical group at baseline. After one month, patients receiving biophysical therapy had significantly reduced SAA levels compared to the placebo group (27.8 ± 39.4 vs. 116.8 ± 114.9 U/mL, p = 0.019). All three DASS-21 subscales, depression (9.3 ± 5.1 vs. 5.7 ± 5.5, p = 0.1), anxiety (6.7 ± 25 vs. 3.7 ± 2.2, p = 0.0049) and stress (10.8 ± 4.2 vs. 7.3 ± 3.7, p = 0.041) were also decreased after biophysical treatment compared to placebo after one month. Our findings suggest that biophysical therapy can benefit workers with mild (subclinical) anxiety/stress. These results were also validated by the concomitant reduction of SAA levels and an improvement in DASS-21 subscales. The underlying molecular mechanisms of this therapy remain to be characterized.
Collapse
|
231
|
Abstract
One of the fundamental questions in neuroscience is how brain activity relates to conscious experience. Even though self-consciousness is considered an emergent property of the brain network, a quantum physics-based theory assigns a momentum of consciousness to the single neuron level. In this work, we present a brain self theory from an evolutionary biological perspective by analogy with the immune self. In this scheme, perinatal reactivity to self inputs would guide the selection of neocortical neurons within the subplate, similarly to T lymphocytes in the thymus. Such self-driven neuronal selection would enable effective discrimination of external inputs and avoid harmful "autoreactive" responses. Multiple experimental and clinical evidences for this model are provided. Based on this self tenet, we outline the postulates of the so-called autophrenic diseases, to then make the case for schizophrenia, an archetypic disease with rupture of the self. Implications of this model are discussed, along with potential experimental verification.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, ENT and Ophthalmology, Complutense University School of Medicine, Madrid, Spain
| | - Florence Faure
- INSERM U932, PSL Research University, Institut Curie, Paris, France
| |
Collapse
|
232
|
Kar K, Ito T, Cole MW, Krekelberg B. Transcranial alternating current stimulation attenuates BOLD adaptation and increases functional connectivity. J Neurophysiol 2020; 123:428-438. [PMID: 31825706 PMCID: PMC6985864 DOI: 10.1152/jn.00376.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is used as a noninvasive tool for cognitive enhancement and clinical applications. The physiological effects of tACS, however, are complex and poorly understood. Most studies of tACS focus on its ability to entrain brain oscillations, but our behavioral results in humans and extracellular recordings in nonhuman primates support the view that tACS at 10 Hz also affects brain function by reducing sensory adaptation. Our primary goal in the present study is to test this hypothesis using blood oxygen level-dependent (BOLD) imaging in human subjects. Using concurrent functional magnetic resonance imaging (fMRI) and tACS, and a motion adaptation paradigm developed to quantify BOLD adaptation, we show that tACS significantly attenuates adaptation in the human motion area (hMT+). In addition, an exploratory analysis shows that tACS increases functional connectivity of the stimulated hMT+ with the rest of the brain and the dorsal attention network in particular. Based on field estimates from individualized head models, we relate these changes to the strength of tACS-induced electric fields. Specifically, we report that functional connectivity (between hMT+ and any other region of interest) increases in proportion to the field strength in the region of interest. These findings add support for the claim that weak 10-Hz currents applied to the scalp modulate both local and global measures of brain activity.NEW & NOTEWORTHY Concurrent transcranial alternating current stimulation (tACS) and functional MRI show that tACS affects the human brain by attenuating adaptation and increasing functional connectivity in a dose-dependent manner. This work is important for our basic understanding of what tACS does, but also for therapeutic applications, which need insight into the full range of ways in which tACS affects the brain.
Collapse
Affiliation(s)
- Kohitij Kar
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Takuya Ito
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| |
Collapse
|
233
|
Electric Phenomenon: A Disregarded Tool in Tissue Engineering and Regenerative Medicine. Trends Biotechnol 2020; 38:24-49. [DOI: 10.1016/j.tibtech.2019.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
|
234
|
Excitatory and inhibitory lateral interactions effects on contrast detection are modulated by tRNS. Sci Rep 2019; 9:19274. [PMID: 31848412 PMCID: PMC6917720 DOI: 10.1038/s41598-019-55602-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Abstract
Contrast sensitivity for a Gabor signal is affected by collinear high-contrast Gabor flankers. The flankers reduce (inhibitory effect) or increase (facilitatory effect) sensitivity, at short (2λ) and intermediate (6λ) target-to-flanker separation respectively. We investigated whether these inhibitory/facilitatory sensitivity effects are modulated by transcranial random noise stimulation (tRNS) applied to the occipital and frontal cortex of human observers during task performance. Signal detection theory was used to measure sensitivity (d’) and the Criterion (C) in a contrast detection task, performed with sham or tRNS applied over the occipital or the frontal cortex. After occipital stimulation results show a tRNS-dependent increased sensitivity for the single Gabor signal of low but not high contrast. Moreover, results suggest a dissociation of the tRNS effect when the Gabor signal is presented with the flankers, consisting in a general increased sensitivity at 2λ where the flankers had an inhibitory effect (reduction of inhibition) and a decreased sensitivity at 6λ where the flankers had a facilitatory effect on the Gabor signal (reduction of facilitation). After a frontal stimulation, no specific effect of the tRNS was found. We account for these complex interactions between tRNS and flankers by assuming that tRNS not only enhances feedforward input from the Gabor signal to the cortex, but also enhances the excitatory or inhibitory lateral intracortical input from the flankers. The boosted lateral input depends on the excitation-inhibition (E/I) ratio, namely when the lateral input is weak, it is boosted by tRNS with consequent modification of the contrast-dependent E/I ratio.
Collapse
|
235
|
Battaglini L, Ghiani A, Casco C, Ronconi L. Parietal tACS at beta frequency improves vision in a crowding regime. Neuroimage 2019; 208:116451. [PMID: 31821867 DOI: 10.1016/j.neuroimage.2019.116451] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022] Open
Abstract
Visual crowding is the inability to discriminate objects when presented with nearby flankers and sets a fundamental limit for conscious perception. Beta oscillations in the parietal cortex were found to be associated to crowding, with higher beta amplitude related to better crowding resilience. An open question is whether beta activity directly and selectively modulates crowding. We employed Transcranial Alternating Current Stimulation (tACS) in the beta band (18-Hz), in the alpha band (10-Hz) or in a sham regime, asking whether 18-Hz tACS would selectively improve the perception of crowded stimuli by increasing parietal beta activity. Resting-state electroencephalography (EEG) was measured before and after stimulation to test the influence of tACS on endogenous oscillations. Consistently with our predictions, we found that 18-Hz tACS, as compared to 10-Hz tACS and sham stimulation, reduced crowding. This improvement was found specifically in the contralateral visual hemifield and was accompanied by an increased amplitude of EEG beta oscillations, confirming an effect on endogenous brain rhythms. These results support a causal relationship between parietal beta oscillations and visual crowding and provide new insights into the precise oscillatory mechanisms involved in human vision.
Collapse
Affiliation(s)
- Luca Battaglini
- Department of General Psychology, University of Padova, Italy; Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Andrea Ghiani
- Department of General Psychology, University of Padova, Italy
| | - Clara Casco
- Department of General Psychology, University of Padova, Italy; Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Luca Ronconi
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
236
|
Mansouri F, Shanbour A, Mazza F, Fettes P, Zariffa J, Downar J. Effect of Theta Transcranial Alternating Current Stimulation and Phase-Locked Transcranial Pulsed Current Stimulation on Learning and Cognitive Control. Front Neurosci 2019; 13:1181. [PMID: 31798397 PMCID: PMC6867974 DOI: 10.3389/fnins.2019.01181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/18/2019] [Indexed: 12/03/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) is emerging as a robust treatment alternative for major depressive disorder, with a potential for achieving higher remission rates by providing targeted stimulation to underlying brain networks, such as the salience network (SN). Growing evidence suggests that these therapeutic effects are dependent on the frequency and phase synchrony between SN oscillations and stimulation as well as the task-specific state of the SN during stimulation. However, the development of phase-synchronized non-invasive stimulation has proved challenging until recently. Here, we use a phase-locked pulsed brain stimulation approach to study the effects of two NIBS methods: transcranial alternating current stimulation (tACS) versus phase-locked transcranial pulsed current stimulation (tPCS), on the SN during an SN activating task. 20 healthy volunteers participated in the study. Each volunteer partook in four sessions, receiving one stimulation type at random (theta-tACS, peak tPCS, trough tPCS or sham) while undergoing a learning game, followed by an unstimulated test based on learned material. Each session lasted approximately 1.5 h, with an interval of at least 2 days to allow for washout and to avoid cross-over effects. Our results showed no statistically significant effect of stimulation on the event related potential (ERP) recordings, resting electroencephalogram (EEG), and the performance of the volunteers. While stimulation effects were not apparent in this study, the nominal performance of the phase-locking algorithm offers a technical foundation for further research in determining effective stimulation paradigms and conditions. Specifically, future work should investigate stronger stimulation and true task-specific stimulation of SN nodes responsible for the task as well as their recording. If refined, NIBS could offer an effective, homebased treatment option.
Collapse
Affiliation(s)
- Farrokh Mansouri
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Alaa Shanbour
- Department of Psychiatry, Central Michigan University, Mount Pleasant, MI, United States.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Frank Mazza
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Peter Fettes
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - José Zariffa
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,KITE, Toronto Rehab, University Health Network, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Mental Health, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
237
|
Kasten FH, Duecker K, Maack MC, Meiser A, Herrmann CS. Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nat Commun 2019; 10:5427. [PMID: 31780668 PMCID: PMC6882891 DOI: 10.1038/s41467-019-13417-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/06/2019] [Indexed: 01/08/2023] Open
Abstract
Transcranial electrical stimulation (tES) of the brain can have variable effects, plausibly driven by individual differences in neuroanatomy and resulting differences of the electric fields inside the brain. Here, we integrated individual simulations of electric fields during tES with source localization to predict variability of transcranial alternating current stimulation (tACS) aftereffects on α-oscillations. In two experiments, participants received 20-min of either α-tACS (1 mA) or sham stimulation. Magnetoencephalogram (MEG) was recorded for 10-min before and after stimulation. tACS caused a larger power increase in the α-band compared to sham. The variability of this effect was significantly predicted by measures derived from individual electric field modeling. Our results directly link electric field variability to variability of tACS outcomes, underline the importance of individualizing stimulation protocols, and provide a novel approach to analyze tACS effects in terms of dose-response relationships.
Collapse
Affiliation(s)
- Florian H Kasten
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany.,Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Katharina Duecker
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany
| | - Marike C Maack
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany
| | - Arnd Meiser
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany. .,Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany. .,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
238
|
Frequency-dependent entrainment of spontaneous Ca transients in the dendritic tufts of CA1 pyramidal cells in rat hippocampal slice preparations by weak AC electric field. Brain Res Bull 2019; 153:202-213. [DOI: 10.1016/j.brainresbull.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 07/12/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022]
|
239
|
After-effects of 10 Hz tACS over the prefrontal cortex on phonological word decisions. Brain Stimul 2019; 12:1464-1474. [DOI: 10.1016/j.brs.2019.06.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/13/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022] Open
|
240
|
Bland NS, Sale MV. Current challenges: the ups and downs of tACS. Exp Brain Res 2019; 237:3071-3088. [DOI: 10.1007/s00221-019-05666-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
|
241
|
Chakraborty D, Truong DQ, Bikson M, Kaphzan H. Neuromodulation of Axon Terminals. Cereb Cortex 2019; 28:2786-2794. [PMID: 28655149 DOI: 10.1093/cercor/bhx158] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/07/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding which cellular compartments are influenced during neuromodulation underpins any rational effort to explain and optimize outcomes. Axon terminals have long been speculated to be sensitive to polarization, but experimentally informed models for CNS stimulation are lacking. We conducted simultaneous intracellular recording from the neuron soma and axon terminal (blebs) during extracellular stimulation with weak sustained (DC) uniform electric fields in mouse cortical slices. Use of weak direct current stimulation (DCS) allowed isolation and quantification of changes in axon terminal biophysics, relevant to both suprathreshold (e.g., deep brain stimulation, spinal cord stimulation, and transcranial magnetic stimulation) and subthreshold (e.g., transcranial DCS and transcranial alternating current stimulation) neuromodulation approaches. Axon terminals polarized with sensitivity (mV of membrane polarization per V/m electric field) 4 times than somas. Even weak polarization (<2 mV) of axon terminals significantly changes action potential dynamics (including amplitude, duration, conduction velocity) in response to an intracellular pulse. Regarding a cellular theory of neuromodulation, we explain how suprathreshold CNS stimulation activates the action potential at terminals while subthreshold approaches modulate synaptic efficacy through axon terminal polarization. We demonstrate that by virtue of axon polarization and resulting changes in action potential dynamics, neuromodulation can influence analog-digital information processing.
Collapse
Affiliation(s)
| | - Dennis Q Truong
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
242
|
Naskar S, Kumaran V, Markandeya YS, Mehta B, Basu B. Neurogenesis-on-Chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials 2019; 226:119522. [PMID: 31669894 DOI: 10.1016/j.biomaterials.2019.119522] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
A number of bioengineering strategies, using biophysical stimulation, are being explored to guide the human mesenchymal stem cells (hMScs) into different lineages. In this context, we have limited understanding on the transdifferentiation of matured cells to another functional-cell type, when grown with stem cells, in a constrained cellular microenvironment under biophysical stimulation. While addressing such aspects, the present work reports the influence of the electric field (EF) stimulation on the phenotypic and functionality modulation of the coculture of murine myoblasts (C2C12) with hMScs [hMSc:C2C12=1:10] in a custom designed polymethylmethacrylate (PMMA) based microfluidic device with in-built metal electrodes. The quantitative and qualitative analysis of the immunofluorescence study confirms that the cocultured cells in the conditioned medium with astrocytic feed, exhibit differentiation towards neural-committed cells under biophysical stimulation in the range of the endogenous physiological electric field strength (8 ± 0.06 mV/mm). The control experiments using similar culture protocols revealed that while C2C12 monoculture exhibited myotube-like fused structures, the hMScs exhibited the neurosphere-like clusters with SOX2, nestin, βIII-tubulin expression. The electrophysiological study indicates the significant role of intercellular calcium signalling among the differentiated cells towards transdifferentiation. Furthermore, the depolarization induced calcium influx strongly supports neural-like behaviour for the electric field stimulated cells in coculture. The intriguing results are explained in terms of the paracrine signalling among the transdifferentiated cells in the electric field stimulated cellular microenvironment. In summary, the present study establishes the potential for neurogenesis on-chip for the coculture of hMSc and C2C12 cells under tailored electric field stimulation, in vitro.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India
| | - Viswanathan Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Yogananda S Markandeya
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India.
| |
Collapse
|
243
|
Obleser J, Kayser C. Neural Entrainment and Attentional Selection in the Listening Brain. Trends Cogn Sci 2019; 23:913-926. [PMID: 31606386 DOI: 10.1016/j.tics.2019.08.004] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023]
Abstract
The streams of sounds we typically attend to abound in acoustic regularities. Neural entrainment is seen as an important mechanism that the listening brain exploits to attune to these regularities and to enhance the representation of attended sounds. We delineate the neurophysiology underlying this mechanism and review entrainment alongside its more pragmatic signature, often called 'speech tracking'. The latter has become a popular analytical approach to trace the reflection of acoustic and linguistic information at different levels of granularity, from neurophysiology to neuroimaging. As we discuss, the concept of entrainment offers both a putative neurophysiological mechanism for selective listening and a versatile window onto the neural basis of hearing and speech comprehension.
Collapse
Affiliation(s)
- Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany.
| | - Christoph Kayser
- Department for Cognitive Neuroscience and Cognitive Interaction Technology, Center of Excellence, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
244
|
Recovering Brain Dynamics During Concurrent tACS-M/EEG: An Overview of Analysis Approaches and Their Methodological and Interpretational Pitfalls. Brain Topogr 2019; 32:1013-1019. [DOI: 10.1007/s10548-019-00727-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/20/2019] [Indexed: 12/27/2022]
|
245
|
Wagner J, Makeig S, Hoopes D, Gola M. Can Oscillatory Alpha-Gamma Phase-Amplitude Coupling be Used to Understand and Enhance TMS Effects? Front Hum Neurosci 2019; 13:263. [PMID: 31427937 PMCID: PMC6689956 DOI: 10.3389/fnhum.2019.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
Recent applications of simultaneous scalp electroencephalography (EEG) and transcranial magnetic stimulation (TMS) suggest that adapting stimulation to underlying brain states may enhance neuroplastic effects of TMS. It is often assumed that longer-lasting effects of TMS on brain function may be mediated by phasic interactions between TMS pulses and endogenous cortical oscillatory dynamics. The mechanisms by which TMS exerts its neuromodulatory effects, however, remain unknown. Here, we discuss evidence concerning the functional effects on synaptic plasticity of oscillatory cross-frequency coupling in cortical networks as a potential framework for understanding the neuromodulatory effects of TMS. We first discuss evidence for interactions between endogenous oscillatory brain dynamics and externally induced electromagnetic field activity. Alpha band (8-12 Hz) activities are of special interest here because of the wide application and therapeutic effectiveness of rhythmic TMS (rTMS) using a stimulus repetition frequency at or near 10 Hz. We discuss the large body of literature on alpha oscillations suggesting that alpha oscillatory cycles produce periodic inhibition or excitation of neuronal processing through phase-amplitude coupling (PAC) of low-frequency oscillations with high-frequency broadband (or gamma) bursting. Such alpha-gamma coupling may reflect excitability of neuronal ensembles underlying neuroplasticity effects of TMS. We propose that TMS delivery with simultaneous EEG recording and near real-time estimation of source-resolved alpha-gamma PAC might be used to select the precise timing of TMS pulse deliveries so as to enhance the neuroplastic effects of TMS therapies.
Collapse
Affiliation(s)
- Johanna Wagner
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States
| | - Scott Makeig
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States
| | - David Hoopes
- Department of Radiation Medicine and Applied Sciences, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Mateusz Gola
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States.,Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
246
|
Development of wirelessly-powered, extracranial brain activator (ECBA) in a large animal model for the future non-invasive human neuromodulation. Sci Rep 2019; 9:10906. [PMID: 31358822 PMCID: PMC6662771 DOI: 10.1038/s41598-019-47383-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023] Open
Abstract
As transcranial electrical stimulation (tES) is an emerging and promising technique for neuromodulation, we developed a novel device; wirelessly-powered, extracranial brain activator (ECBA), which is mounted subcutaneously, and its neuromodulation effect was investigated. The oscillatory changes in electrocorticography (EcoG) were analyzed from two types of stimulation. Two weeks prior to the recording experiment, we underwent surgery for implantation of subdural strips and ECBA module over centroparietal regions of anesthetized beagles. Low-frequency stimulation (LFS) and subsequent high-frequency stimulation (HFS) protocols (600 pulses respectively) were applied. Then, the power changes before and after each stimulation in five different bands were compared. A significantly larger voltage difference with subcutaneous than transcutaneous stimulation measured at EcoG channels indicated a substantial current attenuation between the skin and skull. Compared with the baseline, all subjects showed consistently decreased delta power and increased gamma power after HFS. LFS also induced a similar, but opposite, pattern of power change in four beagles. The results from this study indicate that LFS and HFS with our novel ECBA can consistently and effectively modulate neural activity of the cortex, inducing neural inhibition and facilitation functions, respectively. Future studies are necessary to further ensuring a consistent efficacy and long-term safety.
Collapse
|
247
|
Guerra A, Suppa A, Asci F, De Marco G, D'Onofrio V, Bologna M, Di Lazzaro V, Berardelli A. LTD-like plasticity of the human primary motor cortex can be reversed by γ-tACS. Brain Stimul 2019; 12:1490-1499. [PMID: 31289014 DOI: 10.1016/j.brs.2019.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cortical oscillatory activities play a role in regulating several brain functions in humans. However, whether motor resonant oscillations (i.e. β and γ) modulate long-term depression (LTD)-like plasticity of the primary motor cortex (M1) is still unclear. OBJECTIVE To address this issue, we combined transcranial alternating current stimulation (tACS), a technique able to entrain cortical oscillations, with continuous theta burst stimulation (cTBS), a transcranial magnetic stimulation (TMS) protocol commonly used to induce LTD-like plasticity in M1. METHODS Motor evoked potentials (MEPs) elicited by single-pulse TMS, short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were evaluated before and 5, 15 and 30 min after cTBS alone or cTBS delivered during β-tACS (cTBS-β) or γ-tACS (cTBS-γ). Moreover, we tested the effects of β-tACS (alone) on short-latency afferent inhibition (SAI) and γ-tACS on SICI in order to verify whether tACS-related interneuronal modulation contributes to the effects of tACS-cTBS co-stimulation. RESULTS cTBS-γ turned the expected after-effects of cTBS from inhibition to facilitation. By contrast, responses to cTBS-β were similar to those induced by cTBS alone. β- and γ-tACS did not change MEPs evoked by single-pulse TMS. β-tACS reduced SAI and γ-tACS reduced SICI. However, the degree of γ-tACS-induced modulation of SICI did not correlate with the effects of cTBS-γ. CONCLUSION γ-tACS reverses cTBS-induced plasticity of the human M1. γ-oscillations may therefore regulate LTD-like plasticity mechanisms.
Collapse
Affiliation(s)
- Andrea Guerra
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy
| | - Antonio Suppa
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Giovanna De Marco
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Valentina D'Onofrio
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy.
| |
Collapse
|
248
|
Clancy KJ, Baisley SK, Albizu A, Kartvelishvili N, Ding M, Li W. Lasting connectivity increase and anxiety reduction via transcranial alternating current stimulation. Soc Cogn Affect Neurosci 2019; 13:1305-1316. [PMID: 30380131 PMCID: PMC6277743 DOI: 10.1093/scan/nsy096] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022] Open
Abstract
Growing evidence of transcranial alternating current stimulation (tACS) modulating intrinsic neural oscillations has spawned interest in applying tACS to treat psychiatric disorders associated with aberrant neural oscillations. The alpha rhythmic activity is known to dominate neural oscillations at the awake, restful state, while attenuated resting-state alpha activity has been implicated in anxious mood. Administering repeated alpha-frequency tACS (α-tACS; at individual peak alpha frequency; 8–12 Hz) over four consecutive days (in the experiment group, sham stimulation in the control group), we demonstrated immediate and lasting (>24 h) increases in resting-state posterior ➔frontal connectivity in the alpha frequency, quantified by Granger causality. Critically, this connectivity enhancement was accompanied by sustained reductions in both anxious arousal and negative perception of sensory stimuli. Resting-state alpha power also increased, albeit only transiently, reversing to the baseline level within 24 h after tACS. Therefore, the lasting enhancement of long-range alpha connectivity due to α-tACS differs from local alpha activity that is nonetheless conserved, highlighting the adaptability of alpha oscillatory networks. In light of increasing recognition of large-scale network dysfunctions as a transdiagnostic pathophysiology of psychiatric disorders, this enduring connectivity plasticity, along with the behavioral improvements, paves the way for tACS applications in clinical interventions of psychiatric ‘oscillopathies’.
Collapse
Affiliation(s)
- Kevin J Clancy
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Sarah K Baisley
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Alejandro Albizu
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | | | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Wen Li
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
249
|
Alekseichuk I, Falchier AY, Linn G, Xu T, Milham MP, Schroeder CE, Opitz A. Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. Nat Commun 2019; 10:2573. [PMID: 31189931 PMCID: PMC6561925 DOI: 10.1038/s41467-019-10581-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/20/2019] [Indexed: 11/29/2022] Open
Abstract
Neural oscillations play a crucial role in communication between remote brain areas. Transcranial electric stimulation with alternating currents (TACS) can manipulate these brain oscillations in a non-invasive manner. Recently, TACS using multiple electrodes with phase shifted stimulation currents were developed to alter long-range connectivity. Typically, an increase in coordination between two areas is assumed when they experience an in-phase stimulation and a disorganization through an anti-phase stimulation. However, the underlying biophysics of multi-electrode TACS has not been studied in detail. Here, we leverage direct invasive recordings from two non-human primates during multi-electrode TACS to characterize electric field magnitude and phase as a function of the phase of stimulation currents. Further, we report a novel "traveling wave" stimulation where the location of the electric field maximum changes over the stimulation cycle. Our results provide a mechanistic understanding of the biophysics of multi-electrode TACS and enable future developments of novel stimulation protocols.
Collapse
Affiliation(s)
- Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Arnaud Y Falchier
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, 10962, NY, USA
| | - Gary Linn
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, 10962, NY, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, 10022, NY, USA
| | - Michael P Milham
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, 10962, NY, USA
- Center for the Developing Brain, Child Mind Institute, New York, 10022, NY, USA
| | - Charles E Schroeder
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, 10962, NY, USA
- Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, 10032, NY, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, MN, USA.
| |
Collapse
|
250
|
Balogh V, Szádeczky-Kardoss K, Varró P, Világi I, Borbély S. Analysis of Propagation of Slow Rhythmic Activity Induced in Ex Vivo Rat Brain Slices. Brain Connect 2019; 9:649-660. [PMID: 31179725 DOI: 10.1089/brain.2018.0650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Slow wave oscillation is a synchronous oscillatory mechanism that is a characteristic wave type of the cerebral cortex during physiological deep sleep or anesthesia. It may play an important role in cortical analysis of sensory input. Our goal was (1) to develop optimal conditions for the induction of this slow rhythmic activity in adult rat cortical slices, (2) to identify connections through which the activity propagates between coupled cortical regions, and (3) to study the pattern of horizontal and vertical flow of activity developed spontaneously in cortical slices. Experiments were performed on intact or differently incised rat cortical slices. According to our results, spontaneous cortical activity develops reliably in slightly modified artificial cerebrospinal fluid, first in the entorhinal cortical region of horizontally cut slices and then it spreads directly to the perirhinal (PRh) cortex. The activity readily generated in layer 2/3 of the entorhinal cortex then quickly spreads vertically to upper layer 2-3 in the same area and to the neighboring regions, that is, to the PRh cortex. Synchronization of activity in neighboring cortical areas occurs through both callosal connections and layer 2-3 intrinsic network, which are important in the propagation of spontaneous, inherent cortical slow wave activity.
Collapse
Affiliation(s)
- Veronika Balogh
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Petra Varró
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Ildikó Világi
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Sándor Borbély
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|