201
|
Abstract
John Cacioppo has compared loneliness to hunger or thirst in that it signals that one needs to act and repair what is lacking. This paper reviews Cacioppo's and others' contributions to our understanding of neural mechanisms underlying social motivation in humans and in other social species. We focus particularly on the dopaminergic reward system and try to integrate evidence from animal models and human research. In rodents, objective social isolation leads to increased social motivation, mediated by the brains' mesolimbic dopamine system. In humans, social rejection can lead to either increased or decreased social motivation, and is associated with activity in the insular cortex; while chronic loneliness is typically associated with decreased social motivation but has been associated with altered dopaminergic responses in the striatum. This mixed pattern of cross-species similarities and differences may arise from the substantially different methods used to study unmet social needs across species, and suggests the need for more direct and deliberate cross-species comparative research in this critically important domain.
Collapse
Affiliation(s)
- Livia Tomova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kay Tye
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rebecca Saxe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
202
|
Yoest KE, Cummings JA, Becker JB. Ovarian Hormones Mediate Changes in Adaptive Choice and Motivation in Female Rats. Front Behav Neurosci 2019; 13:250. [PMID: 31780908 PMCID: PMC6861187 DOI: 10.3389/fnbeh.2019.00250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/14/2019] [Indexed: 11/13/2022] Open
Abstract
In female rodents, sexual receptivity is coordinated with cyclic changes in the release of gonadal hormones. Increases in estradiol (E) and progesterone (P) during proestrus and estrus not only induce ovulation but also modulate behaviors that increase the likelihood that the female will find a mate and reproduce. This includes changes in receptive behaviors, such as lordosis, as well as changes in appetitive or proceptive behaviors, including motivation. Interestingly, the direction of these changes in motivation is dependent on the type of reward that is being pursued. While induction of sexual receptivity by E and P increases motivation for access to a male, motivation for a palatable food reward is decreased. These concurrent changes may facilitate adaptive choice across the estrous cycle; females bias their choice for sex when fertilization is most likely to occur, but for food when copulation is unlikely to result in impregnation. In order to test this hypothesis, we developed a novel paradigm to measure the motivated choice between a palatable food reward and access to a male conspecific. Ovariectomized, hormone primed females were trained to operantly respond for both food and sex on a fixed interval (FI) schedule. After training, unprimed and primed females were tested in a chamber that allows them to choose between food and sex while still requiring responding on the FI schedule for reach reward. From this we can not only determine the impact of hormone priming on female choice for food or sex, but also how this is reflected by changes in motivation for each specific reward, as measured by the average number of responses made during each fixed interval. Induction of sexual receptivity by hormone priming biases choice toward sex over food and this change is accompanied by an increase in motivation for sex but a decrease in motivation for food. This work provides evidence in support of a novel framework for understanding how the release of ovarian hormones over the course of the estrous cycle modulates adaptive behavioral choice in females by directly assessing motivation via operant responding when multiple rewards are available.
Collapse
Affiliation(s)
- Katie E Yoest
- Department of Psychology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States.,Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Jennifer A Cummings
- Department of Psychology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Jill B Becker
- Department of Psychology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
203
|
Coussens NP, Sittampalam GS, Jonson SG, Hall MD, Gorby HE, Tamiz AP, McManus OB, Felder CC, Rasmussen K. The Opioid Crisis and the Future of Addiction and Pain Therapeutics. J Pharmacol Exp Ther 2019; 371:396-408. [PMID: 31481516 PMCID: PMC6863454 DOI: 10.1124/jpet.119.259408] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Opioid misuse and addiction are a public health crisis resulting in debilitation, deaths, and significant social and economic impact. Curbing this crisis requires collaboration among academic, government, and industrial partners toward the development of effective nonaddictive pain medications, interventions for opioid overdose, and addiction treatments. A 2-day meeting, The Opioid Crisis and the Future of Addiction and Pain Therapeutics: Opportunities, Tools, and Technologies Symposium, was held at the National Institutes of Health (NIH) to address these concerns and to chart a collaborative path forward. The meeting was supported by the NIH Helping to End Addiction Long-TermSM (HEAL) Initiative, an aggressive, trans-agency effort to speed scientific solutions to stem the national opioid crisis. The event was unique in bringing together two research disciplines, addiction and pain, in order to create a forum for crosscommunication and collaboration. The output from the symposium will be considered by the HEAL Initiative; this article summarizes the scientific presentations and key takeaways. Improved understanding of the etiology of acute and chronic pain will enable the discovery of novel targets and regulatable pain circuits for safe and effective therapeutics, as well as relevant biomarkers to ensure adequate testing in clinical trials. Applications of improved technologies including reagents, assays, model systems, and validated probe compounds will likely increase the delivery of testable hypotheses and therapeutics to enable better health outcomes for patients. The symposium goals were achieved by increasing interdisciplinary collaboration to accelerate solutions for this pressing public health challenge and provide a framework for focused efforts within the research community. SIGNIFICANCE STATEMENT: This article summarizes key messages and discussions resulting from a 2-day symposium focused on challenges and opportunities in developing addiction- and pain-related medications. Speakers and attendees came from 40 states in the United States and 15 countries, bringing perspectives from academia, industry, government, and healthcare by researchers, clinicians, regulatory experts, and patient advocates.
Collapse
Affiliation(s)
- Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - G Sitta Sittampalam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Samantha G Jonson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Heather E Gorby
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Amir P Tamiz
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Owen B McManus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Christian C Felder
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Kurt Rasmussen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| |
Collapse
|
204
|
Three Rostromedial Tegmental Afferents Drive Triply Dissociable Aspects of Punishment Learning and Aversive Valence Encoding. Neuron 2019; 104:987-999.e4. [PMID: 31627985 DOI: 10.1016/j.neuron.2019.08.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/27/2019] [Accepted: 08/24/2019] [Indexed: 11/23/2022]
Abstract
Persistence of reward seeking despite punishment or other negative consequences is a defining feature of mania and addiction, and numerous brain regions have been implicated in such punishment learning, but in disparate ways that are difficult to reconcile. We now show that the ability of an aversive punisher to inhibit reward seeking depends on coordinated activity of three distinct afferents to the rostromedial tegmental nucleus (RMTg) arising from cortex, brainstem, and habenula that drive triply dissociable RMTg responses to aversive cues, outcomes, and prediction errors, respectively. These three pathways drive correspondingly dissociable aspects of punishment learning. The RMTg in turn drives negative, but not positive, valence encoding patterns in the ventral tegmental area (VTA). Hence, punishment learning involves pathways and functions that are highly distinct, yet tightly coordinated.
Collapse
|
205
|
Hypothalamic neuronal circuits regulating hunger-induced taste modification. Nat Commun 2019; 10:4560. [PMID: 31594935 PMCID: PMC6783447 DOI: 10.1038/s41467-019-12478-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/09/2019] [Indexed: 01/20/2023] Open
Abstract
The gustatory system plays a critical role in sensing appetitive and aversive taste stimuli for evaluating food quality. Although taste preference is known to change depending on internal states such as hunger, a mechanistic insight remains unclear. Here, we examine the neuronal mechanisms regulating hunger-induced taste modification. Starved mice exhibit an increased preference for sweetness and tolerance for aversive taste. This hunger-induced taste modification is recapitulated by selective activation of orexigenic Agouti-related peptide (AgRP)-expressing neurons in the hypothalamus projecting to the lateral hypothalamus, but not to other regions. Glutamatergic, but not GABAergic, neurons in the lateral hypothalamus function as downstream neurons of AgRP neurons. Importantly, these neurons play a key role in modulating preferences for both appetitive and aversive tastes by using distinct pathways projecting to the lateral septum or the lateral habenula, respectively. Our results suggest that these hypothalamic circuits would be important for optimizing feeding behavior under fasting. Hunger modulates perception of good and bad tastes. Here, the authors report that orexigenic AgRP neurons in the hypothalamus mediate these effects through glutamatergic lateral hypothalamic neurons that send distinct projections to the lateral septum and lateral habenula.
Collapse
|
206
|
Abstract
The gustatory system plays a critical role in sensing appetitive and aversive taste stimuli for evaluating food quality. Although taste preference is known to change depending on internal states such as hunger, a mechanistic insight remains unclear. Here, we examine the neuronal mechanisms regulating hunger-induced taste modification. Starved mice exhibit an increased preference for sweetness and tolerance for aversive taste. This hunger-induced taste modification is recapitulated by selective activation of orexigenic Agouti-related peptide (AgRP)-expressing neurons in the hypothalamus projecting to the lateral hypothalamus, but not to other regions. Glutamatergic, but not GABAergic, neurons in the lateral hypothalamus function as downstream neurons of AgRP neurons. Importantly, these neurons play a key role in modulating preferences for both appetitive and aversive tastes by using distinct pathways projecting to the lateral septum or the lateral habenula, respectively. Our results suggest that these hypothalamic circuits would be important for optimizing feeding behavior under fasting.
Collapse
|
207
|
Coccurello R. Anhedonia in depression symptomatology: Appetite dysregulation and defective brain reward processing. Behav Brain Res 2019; 372:112041. [DOI: 10.1016/j.bbr.2019.112041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
208
|
Kearney MG, Warren TL, Hisey E, Qi J, Mooney R. Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds. Neuron 2019; 104:559-575.e6. [PMID: 31447169 DOI: 10.1016/j.neuron.2019.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/24/2019] [Accepted: 07/18/2019] [Indexed: 11/28/2022]
Abstract
Virtuosic motor performance requires the ability to evaluate and modify individual gestures within a complex motor sequence. Where and how the evaluative and premotor circuits operate within the brain to enable such temporally precise learning is poorly understood. Songbirds can learn to modify individual syllables within their complex vocal sequences, providing a system for elucidating the underlying evaluative and premotor circuits. We combined behavioral and optogenetic methods to identify 2 afferents to the ventral tegmental area (VTA) that serve evaluative roles in syllable-specific learning and to establish that downstream cortico-basal ganglia circuits serve a learning role that is only premotor. Furthermore, song performance-contingent optogenetic stimulation of either VTA afferent was sufficient to drive syllable-specific learning, and these learning effects were of opposite valence. Finally, functional, anatomical, and molecular studies support the idea that these evaluative afferents bidirectionally modulate VTA dopamine neurons to enable temporally precise vocal learning.
Collapse
Affiliation(s)
- Matthew Gene Kearney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy L Warren
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Erin Hisey
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiaxuan Qi
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
209
|
Siemian JN, Borja CB, Sarsfield S, Kisner A, Aponte Y. Lateral hypothalamic fast-spiking parvalbumin neurons modulate nociception through connections in the periaqueductal gray area. Sci Rep 2019; 9:12026. [PMID: 31427712 PMCID: PMC6700312 DOI: 10.1038/s41598-019-48537-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
A pivotal role of the lateral hypothalamus (LH) in regulating appetitive and reward-related behaviors has been evident for decades. However, the contributions of LH circuits to other survival behaviors have been less explored. Here we examine how lateral hypothalamic neurons that express the calcium-binding protein parvalbumin (PVALB; LHPV neurons), a small cluster of neurons within the LH glutamatergic circuitry, modulate nociception in mice. We find that photostimulation of LHPV neurons suppresses nociception to an acute, noxious thermal stimulus, whereas photoinhibition potentiates thermal nociception. Moreover, we demonstrate that LHPV axons form functional excitatory synapses on neurons in the ventrolateral periaqueductal gray (vlPAG), and photostimulation of these axons mediates antinociception to both thermal and chemical visceral noxious stimuli. Interestingly, this antinociceptive effect appears to occur independently of opioidergic mechanisms, as antagonism of μ-opioid receptors with systemically-administered naltrexone does not abolish the antinociception evoked by activation of this LHPV→vlPAG pathway. This study directly implicates LHPV neurons in modulating nociception, thus expanding the repertoire of survival behaviors regulated by LH circuits.
Collapse
Affiliation(s)
- Justin N Siemian
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Cara B Borja
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Sarah Sarsfield
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Alexandre Kisner
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Yeka Aponte
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA. .,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
210
|
Effect of flavor on neuronal responses of the hypothalamus and ventral tegmental area. Sci Rep 2019; 9:11250. [PMID: 31375749 PMCID: PMC6677894 DOI: 10.1038/s41598-019-47771-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/23/2019] [Indexed: 11/08/2022] Open
Abstract
Although it is well known that food intake is affected by the palatability of food, the actual effect of flavoring on regulation of energy-homeostasis and reward perception by the brain, remains unclear. We investigated the effect of ethyl-butyrate (EB), a common non-caloric food flavoring, on the blood oxygen level dependent (BOLD) response in the hypothalamus (important in regulating energy homeostasis) and ventral tegmental area (VTA; important in reward processes). The 16 study participants (18-25 years, BMI 20-23 kg/m2) drank four study stimuli on separate visits using a crossover design during an fMRI setup in a randomized order. The stimuli were; plain water, water with EB, glucose solution (50gram/300 ml) and glucose solution with EB. BOLD responses to ingestion of the stimuli were determined in the hypothalamus and VTA as a measure of changes in neuronal activity after ingestion. In the hypothalamus and VTA, glucose had a significant effect on the BOLD response but EB flavoring did not. Glucose with and without EB led to similar decrease in hypothalamic BOLD response and glucose with EB resulted in a decrease in VTA BOLD response. Our results suggest that the changes in neuronal activity in the hypothalamus are mainly driven by energy ingestion and EB does not influence the hypothalamic response. Significant changes in VTA neuronal activity are elicited by energy combined with flavor.
Collapse
|
211
|
Godfrey N, Borgland SL. Diversity in the lateral hypothalamic input to the ventral tegmental area. Neuropharmacology 2019; 154:4-12. [DOI: 10.1016/j.neuropharm.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 12/29/2022]
|
212
|
Mangieri LR, Jiang Z, Lu Y, Xu Y, Cassidy RM, Justice N, Xu Y, Arenkiel BR, Tong Q. Defensive Behaviors Driven by a Hypothalamic-Ventral Midbrain Circuit. eNeuro 2019; 6:ENEURO.0156-19.2019. [PMID: 31331938 PMCID: PMC6664144 DOI: 10.1523/eneuro.0156-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
The paraventricular hypothalamus (PVH) regulates stress, feeding behaviors and other homeostatic processes, but whether PVH also drives defensive states remains unknown. Here we showed that photostimulation of PVH neurons in mice elicited escape jumping, a typical defensive behavior. We mapped PVH outputs that densely terminate in the ventral midbrain (vMB) area, and found that activation of the PVH→vMB circuit produced profound defensive behavioral changes, including escape jumping, hiding, hyperlocomotion, and learned aversion. Electrophysiological recordings showed excitatory postsynaptic input onto vMB neurons via PVH fiber activation, and in vivo studies demonstrated that glutamate transmission from PVH→vMB was required for the evoked behavioral responses. Photostimulation of PVH→vMB fibers induced cFos expression mainly in non-dopaminergic neurons. Using a dual optogenetic-chemogenetic strategy, we further revealed that escape jumping and hiding were partially contributed by the activation of midbrain glutamatergic neurons. Taken together, our work unveils a hypothalamic-vMB circuit that encodes defensive properties, which may be implicated in stress-induced defensive responses.
Collapse
Affiliation(s)
- Leandra R Mangieri
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
- Graduate Program in Neuroscience of MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Zhiying Jiang
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Yungang Lu
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Ryan M Cassidy
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
- Graduate Program in Neuroscience of MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Nicholas Justice
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
- Graduate Program in Neuroscience of MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Benjamin R Arenkiel
- Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
- Graduate Program in Neuroscience of MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
213
|
Fang YY, Yamaguchi T, Song SC, Tritsch NX, Lin D. A Hypothalamic Midbrain Pathway Essential for Driving Maternal Behaviors. Neuron 2019; 98:192-207.e10. [PMID: 29621487 DOI: 10.1016/j.neuron.2018.02.019] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/11/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023]
Abstract
Maternal behaviors are essential for the survival of the young. Previous studies implicated the medial preoptic area (MPOA) as an important region for maternal behaviors, but details of the maternal circuit remain incompletely understood. Here we identify estrogen receptor alpha (Esr1)-expressing cells in the MPOA as key mediators of pup approach and retrieval. Reversible inactivation of MPOAEsr1+ cells impairs those behaviors, whereas optogenetic activation induces immediate pup retrieval. In vivo recordings demonstrate preferential activation of MPOAEsr1+ cells during maternal behaviors and changes in MPOA cell responses across reproductive states. Furthermore, channelrhodopsin-assisted circuit mapping reveals a strong inhibitory projection from MPOAEsr1+ cells to ventral tegmental area (VTA) non-dopaminergic cells. Pathway-specific manipulations reveal that this projection is essential for driving pup approach and retrieval and that VTA dopaminergic cells are reliably activated during those behaviors. Altogether, this study provides new insight into the neural circuit that generates maternal behaviors.
Collapse
Affiliation(s)
- Yi-Ya Fang
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Takashi Yamaguchi
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Soomin C Song
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, 1 Park Avenue, New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
214
|
Schiffino FL, Siemian JN, Petrella M, Laing BT, Sarsfield S, Borja CB, Gajendiran A, Zuccoli ML, Aponte Y. Activation of a lateral hypothalamic-ventral tegmental circuit gates motivation. PLoS One 2019; 14:e0219522. [PMID: 31291348 PMCID: PMC6619795 DOI: 10.1371/journal.pone.0219522] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Across species, motivated states such as food-seeking and consumption are essential for survival. The lateral hypothalamus (LH) is known to play a fundamental role in regulating feeding and reward-related behaviors. However, the contributions of neuronal subpopulations in the LH have not been thoroughly identified. Here we examine how lateral hypothalamic leptin receptor-expressing (LHLEPR) neurons, a subset of GABAergic cells, regulate motivation in mice. We find that LHLEPR neuronal activation significantly increases progressive ratio (PR) performance, while inhibition decreases responding. Moreover, we mapped LHLEPR axonal projections and demonstrated that they target the ventral tegmental area (VTA), form functional inhibitory synapses with non-dopaminergic VTA neurons, and their activation promotes motivation for food. Finally, we find that LHLEPR neurons also regulate motivation to obtain water, suggesting that they may play a generalized role in motivation. Together, these results identify LHLEPR neurons as modulators within a hypothalamic-ventral tegmental circuit that gates motivation.
Collapse
Affiliation(s)
- Felipe L. Schiffino
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Justin N. Siemian
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Michele Petrella
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino (MC), Italy
| | - Brenton T. Laing
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah Sarsfield
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Cara B. Borja
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Anjali Gajendiran
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Maria Laura Zuccoli
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yeka Aponte
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
215
|
|
216
|
Zhou Z, Liu X, Chen S, Zhang Z, Liu Y, Montardy Q, Tang Y, Wei P, Liu N, Li L, Song R, Lai J, He X, Chen C, Bi G, Feng G, Xu F, Wang L. A VTA GABAergic Neural Circuit Mediates Visually Evoked Innate Defensive Responses. Neuron 2019; 103:473-488.e6. [PMID: 31202540 DOI: 10.1016/j.neuron.2019.05.027] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Innate defensive responses are essential for animal survival and are conserved across species. The ventral tegmental area (VTA) plays important roles in learned appetitive and aversive behaviors, but whether it plays a role in mediating or modulating innate defensive responses is currently unknown. We report that VTAGABA+ neurons respond to a looming stimulus. Inhibition of VTAGABA+ neurons reduced looming-evoked defensive flight behavior, and photoactivation of these neurons resulted in defense-like flight behavior. Using viral tracing and electrophysiological recordings, we show that VTAGABA+ neurons receive direct excitatory inputs from the superior colliculus (SC). Furthermore, we show that glutamatergic SC-VTA projections synapse onto VTAGABA+ neurons that project to the central nucleus of the amygdala (CeA) and that the CeA is involved in mediating the defensive behavior. Our findings demonstrate that aerial threat-related visual information is relayed to VTAGABA+ neurons mediating innate behavioral responses, suggesting a more general role of the VTA.
Collapse
Affiliation(s)
- Zheng Zhou
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemei Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shanping Chen
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Zhang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuanming Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Quentin Montardy
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yongqiang Tang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Wei
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Nan Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Ru Song
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Juan Lai
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiaobin He
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chen Chen
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Guoqiang Bi
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fuqiang Xu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
217
|
He MC, Shi Z, Sha NN, Chen N, Peng SY, Liao DF, Wong MS, Dong XL, Wang YJ, Yuan TF, Zhang Y. Paricalcitol alleviates lipopolysaccharide-induced depressive-like behavior by suppressing hypothalamic microglia activation and neuroinflammation. Biochem Pharmacol 2019; 163:1-8. [DOI: 10.1016/j.bcp.2019.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
|
218
|
Gründemann J, Bitterman Y, Lu T, Krabbe S, Grewe BF, Schnitzer MJ, Lüthi A. Amygdala ensembles encode behavioral states. Science 2019; 364:364/6437/eaav8736. [PMID: 31000636 DOI: 10.1126/science.aav8736] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022]
Abstract
Internal states, including affective or homeostatic states, are important behavioral motivators. The amygdala regulates motivated behaviors, yet how distinct states are represented in amygdala circuits is unknown. By longitudinally imaging neural calcium dynamics in freely moving mice across different environments, we identified opponent changes in activity levels of two major, nonoverlapping populations of basal amygdala principal neurons. This population signature does not report global anxiety but predicts switches between exploratory and nonexploratory, defensive states. Moreover, the amygdala separately processes external stimuli and internal states and broadcasts state information via several output pathways to larger brain networks. Our findings extend the concept of thalamocortical "brain-state" coding to include affective and exploratory states and provide an entry point into the state dependency of brain function and behavior in defined circuits.
Collapse
Affiliation(s)
- Jan Gründemann
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, Basel, Switzerland
| | - Yael Bitterman
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland
| | - Tingjia Lu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland
| | - Sabine Krabbe
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland
| | - Benjamin F Grewe
- Institute of Neuroinformatics, University and ETH Zürich, Winterthurerstrasse 190, Zürich, Switzerland.,Department of Electrical Engineering and Information Technology, ETH Zürich, Switzerland
| | - Mark J Schnitzer
- Howard Hughes Medical Institute, CNC Program, James H. Clark Center for Biomedical Engineering and Sciences, Stanford University, Stanford, CA, USA
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland. .,University of Basel, 4000 Basel, Switzerland
| |
Collapse
|
219
|
Su XY, Chen M, Yuan Y, Li Y, Guo SS, Luo HQ, Huang C, Sun W, Li Y, Zhu MX, Liu MG, Hu J, Xu TL. Central Processing of Itch in the Midbrain Reward Center. Neuron 2019; 102:858-872.e5. [PMID: 31000426 DOI: 10.1016/j.neuron.2019.03.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/28/2018] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
Itch is an aversive sensation that evokes a desire to scratch. Paradoxically, scratching the itch also produces a hedonic experience. The specific brain circuits processing these different aspects of itch, however, remain elusive. Here, we report that GABAergic (GABA) and dopaminergic (DA) neurons in the ventral tegmental area (VTA) are activated with different temporal patterns during acute and chronic itch. DA neuron activation lags behind GABA neurons and is dependent on scratching of the itchy site. Optogenetic manipulations of VTA GABA neurons rapidly modulated scratching behaviors through encoding itch-associated aversion. In contrast, optogenetic manipulations of VTA DA neurons revealed their roles in sustaining recurrent scratching episodes through signaling scratching-induced reward. A similar dichotomy exists for the role of VTA in chronic itch. These findings advance understanding of circuit mechanisms of the unstoppable itch-scratch cycles and shed important insights into chronic itch therapy.
Collapse
Affiliation(s)
- Xin-Yu Su
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Yuan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Su-Shan Guo
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huo-Qing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chen Huang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenzhi Sun
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Yong Li
- Collaborative Innovation Center for Brain Science, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ming-Gang Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China.
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China.
| |
Collapse
|
220
|
van Opstal A, Kaal I, van den Berg-Huysmans A, Hoeksma M, Blonk C, Pijl H, Rombouts S, van der Grond J. Dietary sugars and non-caloric sweeteners elicit different homeostatic and hedonic responses in the brain. Nutrition 2019; 60:80-86. [DOI: 10.1016/j.nut.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/10/2018] [Accepted: 09/10/2018] [Indexed: 01/16/2023]
|
221
|
Ventral tegmental area astrocytes orchestrate avoidance and approach behavior. Nat Commun 2019; 10:1455. [PMID: 30926783 PMCID: PMC6440962 DOI: 10.1038/s41467-019-09131-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/22/2019] [Indexed: 12/28/2022] Open
Abstract
The ventral tegmental area (VTA) is a heterogeneous midbrain structure, containing neurons and astrocytes, that coordinates behaviors by integrating activity from numerous afferents. Within neuron-astrocyte networks, astrocytes control signals from distinct afferents in a circuit-specific manner, but whether this capacity scales up to drive motivated behavior has been undetermined. Using genetic and optical dissection strategies we report that VTA astrocytes tune glutamatergic signaling selectively on local inhibitory neurons to drive a functional circuit for learned avoidance. In this circuit, astrocytes facilitate excitation of VTA GABA neurons to increase inhibition of dopamine neurons, eliciting real-time and learned avoidance behavior that is sufficient to impede expression of preference for reward. Loss of one glutamate transporter (GLT-1) from VTA astrocytes selectively blocks these avoidance behaviors and spares preference for reward. Thus, VTA astrocytes selectively regulate excitation of local GABA neurons to drive a distinct avoidance circuit that opposes approach behavior. Astrocytes can dynamically control glutamate availability at specific active synapses through the glutamate transporter, GLT-1. Here, the authors show that astrocytes in the VTA selectively facilitate excitation of VTA GABAergic neurons to inhibit dopamine neurons and drive avoidance behavior via GLT-1.
Collapse
|
222
|
Matthews GA, Tye KM. Neural mechanisms of social homeostasis. Ann N Y Acad Sci 2019; 1457:5-25. [PMID: 30875095 DOI: 10.1111/nyas.14016] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/15/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
Social connections are vital to survival throughout the animal kingdom and are dynamic across the life span. There are debilitating consequences of social isolation and loneliness, and social support is increasingly a primary consideration in health care, disease prevention, and recovery. Considering social connection as an "innate need," it is hypothesized that evolutionarily conserved neural systems underlie the maintenance of social connections: alerting the individual to their absence and coordinating effector mechanisms to restore social contact. This is reminiscent of a homeostatic system designed to maintain social connection. Here, we explore the identity of neural systems regulating "social homeostasis." We review findings from rodent studies evaluating the rapid response to social deficit (in the form of acute social isolation) and propose that parallel, overlapping circuits are engaged to adapt to the vulnerabilities of isolation and restore social connection. By considering the neural systems regulating other homeostatic needs, such as energy and fluid balance, we discuss the potential attributes of social homeostatic circuitry. We reason that uncovering the identity of these circuits/mechanisms will facilitate our understanding of how loneliness perpetuates long-term disease states, which we speculate may result from sustained recruitment of social homeostatic circuits.
Collapse
Affiliation(s)
- Gillian A Matthews
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kay M Tye
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts.,The Salk Institute for Biological Sciences, La Jolla, California
| |
Collapse
|
223
|
Francke P, Tiedemann LJ, Menz MM, Beck J, Büchel C, Brassen S. Mesolimbic white matter connectivity mediates the preference for sweet food. Sci Rep 2019; 9:4349. [PMID: 30867529 PMCID: PMC6416305 DOI: 10.1038/s41598-019-40935-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/26/2019] [Indexed: 12/26/2022] Open
Abstract
Dopaminergic brain structures like the nucleus accumbens (NAc) are thought to encode the incentive salience of palatable foods motivating appetitive behaviour. Animal studies have identified neural networks mediating the regulation of hedonic feeding that comprise connections of the NAc with the ventral tegmental area (VTA) and the lateral hypothalamus (LH). Here, we investigated how structural connectivity of these pathways relates to individual variability in decisions on sweet food consumption in humans. We therefore combined probabilistic tractography on diffusion imaging data from 45 overnight fasted lean to overweight participants with real decisions about high and low sugar food consumption. Across all individuals, sugar preference and connectivity strength were not directly related, however, multiple regression analysis revealed interaction of mesolimbic structure and sugar preference to depend on individuals’ BMI score. In overweight individuals (BMI: ≥25 kg/m², N = 22) higher sugar preference was thereby specifically related to stronger connectivity within the VTA-NAc pathway while the opposite pattern emerged in participants with normal BMI (BMI: <25 kg/m², N = 23). Our structural results complement previous functional findings on the critical role of the human mesolimbic system for regulating hedonic eating in overweight individuals.
Collapse
Affiliation(s)
- Paul Francke
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Lena J Tiedemann
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Mareike M Menz
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Judith Beck
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Stefanie Brassen
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| |
Collapse
|
224
|
Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, Naparstek JR, Robson P, Jackson AC. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat Neurosci 2019; 22:642-656. [PMID: 30858605 DOI: 10.1038/s41593-019-0349-8] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
Abstract
The lateral hypothalamic area (LHA) coordinates an array of fundamental behaviors, including sleeping, waking, feeding, stress and motivated behavior. The wide spectrum of functions ascribed to the LHA may be explained by a heterogeneous population of neurons, the full diversity of which is poorly understood. We employed a droplet-based single-cell RNA-sequencing approach to develop a comprehensive census of molecularly distinct cell types in the mouse LHA. Neuronal populations were classified based on fast neurotransmitter phenotype and expression of neuropeptides, transcription factors and synaptic proteins, among other gene categories. We define 15 distinct populations of glutamatergic neurons and 15 of GABAergic neurons, including known and novel cell types. We further characterize a novel population of somatostatin-expressing neurons through anatomical and behavioral approaches, identifying a role for these neurons in specific forms of innate locomotor behavior. This study lays the groundwork for better understanding the circuit-level underpinnings of LHA function.
Collapse
Affiliation(s)
- Laura E Mickelsen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, USA
| | - Mohan Bolisetty
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Bristol-Myers Squibb, Pennington, NJ, USA
| | - Brock R Chimileski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Akie Fujita
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Eric J Beltrami
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - James T Costanzo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jacob R Naparstek
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA. .,Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA. .,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, USA. .,Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
225
|
Mlost J, Wąsik A, Starowicz K. Role of endocannabinoid system in dopamine signalling within the reward circuits affected by chronic pain. Pharmacol Res 2019; 143:40-47. [PMID: 30831242 DOI: 10.1016/j.phrs.2019.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
The association between chronic pain, depression and anxiety has gained particular attention due to high rates of comorbidity. Recent data demonstrated that the mesolimbic reward circuitry is involved in the pathology of chronic pain. Interestingly, the mesolimbic reward circuit participates both in pain perception and in pain relief. The endocannabinoid system (ECS) has emerged as a highly relevant player involved in both pain perception and reward processing. Targeting ECS could become a novel treatment strategy for chronic pain patients. However, little is known about the underlying mechanisms of action of cannabinoids at the intersection of neurochemical changes in reward circuits and chronic pain. Because understanding the benefits and risks of cannabinoids is paramount, the aim of this review is to evaluate the state-of-art knowledge about the involvement of the ECS in dopamine signalling within the reward circuits affected by chronic pain.
Collapse
Affiliation(s)
- Jakub Mlost
- Institute of Pharmacology, Department of Neurochemistry, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Wąsik
- Institute of Pharmacology, Department of Neurochemistry, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Starowicz
- Institute of Pharmacology, Department of Neurochemistry, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
226
|
Nicoletti CF, Delfino HBP, Ferreira FC, Pinhel MADS, Nonino CB. Role of eating disorders-related polymorphisms in obesity pathophysiology. Rev Endocr Metab Disord 2019; 20:115-125. [PMID: 30924001 DOI: 10.1007/s11154-019-09489-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human biological system provides innumerable neuroendocrine inputs for food intake control, with effects on appetite's modulation and the satiety signs. Its regulation is very complex, engaging several molecular interactions with many tissues, hormones, and neural circuits. Thus, signaling molecules that control food intake are critical for normal energy homeostasis and a deregulation of these pathways can lead to eating disorders and obesity. In line of this, genetic factors have a significantly influence of the regulation of neural circuits controlling the appetite and satiety pathways, as well as the regulation of brain reward systems. Single Nucleotide Polymorphisms (SNPs) in genes related to hypothalamic appetite and satiety mechanisms, further in multiple neurotransmitter systems may contribute to the development of major Eating Disorders (EDs) related to obesity, among them Binge Eating Disorder (BED) and Bulimia Nervosa (BN), which are discussed in this review.
Collapse
Affiliation(s)
- Carolina Ferreira Nicoletti
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Flávia Campos Ferreira
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcela Augusta de Souza Pinhel
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Laboratory of Studies in Biochemistry and Molecular Biology, Department of Molecular Biology, São José do Rio Preto Medical School, São Paulo, Brazil
| | - Carla Barbosa Nonino
- Department of Health Sciences, Ribeirão Preto Medical School - FMRP/USP - Laboratory of Nutrigenomic Studies, University of São Paulo, Av Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP, CEP: 14049-900, Brazil.
| |
Collapse
|
227
|
Pisanello M, Pisano F, Hyun M, Maglie E, Balena A, De Vittorio M, Sabatini BL, Pisanello F. The Three-Dimensional Signal Collection Field for Fiber Photometry in Brain Tissue. Front Neurosci 2019; 13:82. [PMID: 30863275 PMCID: PMC6399578 DOI: 10.3389/fnins.2019.00082] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Fiber photometry is used to monitor signals from fluorescent indicators in genetically-defined neural populations in behaving animals. Recently, fiber photometry has rapidly expanded and it now provides researchers with increasingly powerful means to record neural dynamics and neuromodulatory action. However, it is not clear how to select the optimal fiber optic given the constraints and goals of a particular experiment. Here, using combined confocal/2-photon microscope, we quantitatively characterize the fluorescence collection properties of various optical fibers in brain tissue. We show that the fiber size plays a major role in defining the volume of the optically sampled brain region, whereas numerical aperture impacts the total amount of collected signal and, marginally, the shape and size of the collection volume. We show that ~80% of the effective signal arises from 105 to 106 μm3 volume extending ~200 μm from the fiber facet for 200 μm core optical fibers. Together with analytical and ray tracing collection maps, our results reveal the light collection properties of different optical fibers in brain tissue, allowing for an accurate selection of the fibers for photometry and helping for a more precise interpretation of measurements in terms of sampled volume.
Collapse
Affiliation(s)
- Marco Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
| | - Minsuk Hyun
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Emanuela Maglie
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
- Dipartimento di Ingeneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Antonio Balena
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
- Dipartimento di Ingeneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
- Dipartimento di Ingeneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Lecce, Italy
| |
Collapse
|
228
|
Distinct Subsets of Lateral Hypothalamic Neurotensin Neurons are Activated by Leptin or Dehydration. Sci Rep 2019; 9:1873. [PMID: 30755658 PMCID: PMC6372669 DOI: 10.1038/s41598-018-38143-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023] Open
Abstract
The lateral hypothalamic area (LHA) is essential for ingestive behavior but it remains unclear how LHA neurons coordinate feeding vs. drinking. Most LHA populations promote food and water consumption but LHA neurotensin (Nts) neurons preferentially induce water intake while suppressing feeding. We identified two molecularly and projection-specified subpopulations of LHA Nts neurons that are positioned to coordinate either feeding or drinking. One subpopulation co-expresses the long form of the leptin receptor (LepRb) and is activated by the anorectic hormone leptin (NtsLepRb neurons). A separate subpopulation lacks LepRb and is activated by dehydration (NtsDehy neurons). These molecularly distinct LHA Nts subpopulations also differ in connectivity: NtsLepRb neurons project to the ventral tegmental area and substantia nigra compacta but NtsDehy neurons do not. Intriguingly, the LHA Nts subpopulations cannot be discriminated via their classical neurotransmitter content, as we found that all LHA Nts neurons are GABAergic. Collectively, our data identify two molecularly- and projection-specified subpopulations of LHA Nts neurons that intercept either leptin or dehydration cues, and which conceivably could regulate feeding vs. drinking behavior. Selective regulation of these LHA Nts subpopulations might be useful to specialize treatment for ingestive disorders such as polydipsia or obesity.
Collapse
|
229
|
Noritake A, Nakamura K. Encoding prediction signals during appetitive and aversive Pavlovian conditioning in the primate lateral hypothalamus. J Neurophysiol 2019; 121:396-417. [DOI: 10.1152/jn.00247.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The lateral hypothalamus (LH), which plays a role in homeostatic functions such as appetite regulation, is also linked to arousal and motivational behavior. However, little is known about how these components are encoded in the LH. Thus cynomolgus monkeys were conditioned with two distinct contexts, i.e., an appetitive context with available rewards and an aversive context with predicted air puffs. Different LH neuron groups encoded different degrees of expectation, predictability, and risks of rewards in a specific manner. A nearly equal number of one-third of the recorded LH neurons showed a positive or negative correlation between their response to visual conditioned stimuli (CS) that predicted the probabilistic delivery of rewards (0%, 50%, and 100%) and the associative values. For another one-third of recorded neurons, a nearly equal number showed a positive or negative correlation between their responses to rewards [appetitive unconditioned stimulus (US)] and reward predictability. Some neurons exhibited their highest or lowest trace-period responses in the 50% reward trials. These response modulations were represented independently and overlaid on a consistent excitatory or inhibitory response across the conditioning events. LH neurons also showed consistent responses in the aversive context. However, the responses to aversive conditioning events depending on the air puff value and predictability were less common. The multifaceted modulation of consistent activity related to outcome predictions may reflect motivational and arousal signals. Furthermore, it may underlie the role the LH plays in the integration and relay of signals to cortices for adaptive and goal-directed physiological and behavioral responses to environmental changes. NEW & NOTEWORTHY The lateral hypothalamus (LH) is implicated in motivational and arousal behavior; however, the detailed information carried by single LH neurons remains unclear. We demonstrate that primate LH neurons encode multiple combinations of signals concerning different degrees of expectation, appreciation, and uncertainty of rewards in consistent responses across conditioning events and between different contexts. This multifaceted modulation of activity may underlie the role of the LH as a critical node integrating motivational signals with arousal signals.
Collapse
Affiliation(s)
- Atsushi Noritake
- Department of Physiology, Kansai Medical University, Hirakata-city, Osaka, Japan
- National Institute for Physiological Sciences, Okazaki-city, Aichi, Japan
| | - Kae Nakamura
- Department of Physiology, Kansai Medical University, Hirakata-city, Osaka, Japan
| |
Collapse
|
230
|
Siciliano CA, Tye KM. Leveraging calcium imaging to illuminate circuit dysfunction in addiction. Alcohol 2019; 74:47-63. [PMID: 30470589 PMCID: PMC7575247 DOI: 10.1016/j.alcohol.2018.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022]
Abstract
Alcohol and drug use can dysregulate neural circuit function to produce a wide range of neuropsychiatric disorders, including addiction. To understand the neural circuit computations that mediate behavior, and how substances of abuse may transform them, we must first be able to observe the activity of circuits. While many techniques have been utilized to measure activity in specific brain regions, these regions are made up of heterogeneous sub-populations, and assessing activity from neuronal populations of interest has been an ongoing challenge. To fully understand how neural circuits mediate addiction-related behavior, we must be able to reveal the cellular granularity within brain regions and circuits by overlaying functional information with the genetic and anatomical identity of the cells involved. The development of genetically encoded calcium indicators, which can be targeted to populations of interest, allows for in vivo visualization of calcium dynamics, a proxy for neuronal activity, thus providing an avenue for real-time assessment of activity in genetically and anatomically defined populations during behavior. Here, we highlight recent advances in calcium imaging technology, compare the current technology with other state-of-the-art approaches for in vivo monitoring of neural activity, and discuss the strengths, limitations, and practical concerns for observing neural circuit activity in preclinical addiction models.
Collapse
Affiliation(s)
- Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; The Salk Institute for Biological Sciences, 10010 N Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
231
|
Li H, Pullmann D, Cho JY, Eid M, Jhou TC. Generality and opponency of rostromedial tegmental (RMTg) roles in valence processing. eLife 2019; 8:41542. [PMID: 30667358 PMCID: PMC6361585 DOI: 10.7554/elife.41542] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022] Open
Abstract
The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine (DA) neurons, has been hypothesized to be broadly activated by aversive stimuli. However, this encoding pattern has only been demonstrated for a limited number of stimuli, and the RMTg influence on ventral tegmental (VTA) responses to aversive stimuli is untested. Here, we found that RMTg neurons are broadly excited by aversive stimuli of different sensory modalities and inhibited by reward-related stimuli. These stimuli include visual, auditory, somatosensory and chemical aversive stimuli, as well as “opponent” motivational states induced by removal of sustained rewarding or aversive stimuli. These patterns are consistent with broad encoding of negative valence in a subset of RMTg neurons. We further found that valence-encoding RMTg neurons preferentially project to the DA-rich VTA versus other targets, and excitotoxic RMTg lesions greatly reduce aversive stimulus-induced inhibitions in VTA neurons, particularly putative DA neurons, while also impairing conditioned place aversion to multiple aversive stimuli. Together, our findings indicate a broad RMTg role in encoding aversion and driving VTA responses and behavior.
Collapse
Affiliation(s)
- Hao Li
- Department of Neuroscience, Medical University of South Carolina, Charleston, United States
| | - Dominika Pullmann
- Department of Neuroscience, Medical University of South Carolina, Charleston, United States
| | - Jennifer Y Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, United States
| | - Maya Eid
- Department of Neuroscience, Medical University of South Carolina, Charleston, United States
| | | |
Collapse
|
232
|
Butler MJ, Eckel LA. Eating as a motivated behavior: modulatory effect of high fat diets on energy homeostasis, reward processing and neuroinflammation. Integr Zool 2019; 13:673-686. [PMID: 29851251 DOI: 10.1111/1749-4877.12340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eating is a basic motivated behavior that provides fuel for the body and supports brain function. To ensure survival, the brain's feeding circuits are tuned to monitor peripheral energy balance and promote food-seeking behavior when energy stores are low. The brain's bias toward a positive energy state, which is necessary to ensure adequate nutrition during times of food scarcity, is evolutionarily conserved across mammalian species and is likely to drive overeating in the presence of a palatable, energy-dense diet. Animal models of diet-induced overeating have played a vital role in investigating how the drive to consume palatable food may override the homeostatic processes that serve to maintain energy balance. These animal models have provided valuable insights into the neurobiological mechanisms underlying homeostatic and non-homeostatic eating, motivation and food reward, and the development of obesity and related comorbidities. Here, we provide a brief review of this literature and discuss how diet-induced inflammation in the central nervous system impacts the neural control of food intake and regulation of body weight. The connection between diet and the immune system provides an exciting new direction for the study of ingestive behavior and the pathophysiology of obesity.
Collapse
Affiliation(s)
- Michael J Butler
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Lisa A Eckel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
233
|
Acute and chronic methylphenidate administration in intact and VTA-specific and nonspecific lesioned rats. J Neural Transm (Vienna) 2019; 126:173-182. [PMID: 30617502 DOI: 10.1007/s00702-018-1963-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/07/2018] [Indexed: 01/12/2023]
Abstract
Methylphenidate (MPD) is a psychostimulant used for the treatment of ADHD and works by increasing the bioavailability of dopamine (DA) in the brain. As a major source of DA, the ventral tegmental area (VTA) served as the principal target in this study as we aimed to understand its role in modulating the acute and chronic MPD effect. Forty-eight male Sprague-Dawley rats were divided into control, sham, electrical lesion, and 6-OHDA lesion groups. Given the VTA's implication in the locomotive circuit, three locomotor indices-horizontal activity, number of stereotypy, and total distance-were used to measure the animals' behavioral response to the drug. Baseline recording was obtained on experimental day 1 (ED 1) followed by surgery on ED 2. After recovery, the behavioral recordings were resumed on ED 8. All groups received daily intraperitoneal injections of 2.5 mg/kg MPD for six days after which the animals received no treatment for 3 days. On ED 18, 2.5 mg/kg MPD was re-administered to assess for the chronic effect of the psychostimulant. Except for one index, there was an increase in locomotive activity in all experimental groups after surgery (in comparison to baseline activity), acute MPD exposure, induction with six daily doses, and after MPD re-challenge. Furthermore, the increase was greatest in the electrical VTA lesion group and lowest in the 6-OHDA VTA lesion group. In conclusion, the results of this study suggest that the VTA may not be the primary nucleus of MPD action, and the VTA plays an inhibitory role in the locomotive circuit.
Collapse
|
234
|
Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 2019; 22:106-119. [PMID: 30559475 PMCID: PMC6390936 DOI: 10.1038/s41593-018-0288-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/09/2018] [Indexed: 11/08/2022]
Abstract
We screened for novel circuits in the mouse brain that promote wakefulness. Chemogenetic activation experiments and electroencephalogram recordings pointed to glutamatergic/nitrergic (NOS1) and GABAergic neurons in the ventral tegmental area (VTA). Activating glutamatergic/NOS1 neurons, which were wake- and rapid eye movement (REM) sleep-active, produced wakefulness through projections to the nucleus accumbens and the lateral hypothalamus. Lesioning the glutamate cells impaired the consolidation of wakefulness. By contrast, activation of GABAergic VTA neurons elicited long-lasting non-rapid-eye-movement-like sleep resembling sedation. Lesioning these neurons produced an increase in wakefulness that persisted for at least 4 months. Surprisingly, these VTA GABAergic neurons were wake- and REM sleep-active. We suggest that GABAergic VTA neurons may limit wakefulness by inhibiting the arousal-promoting VTA glutamatergic and/or dopaminergic neurons and through projections to the lateral hypothalamus. Thus, in addition to its contribution to goal- and reward-directed behaviors, the VTA has a role in regulating sleep and wakefulness.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Life Sciences, Imperial College London, London, UK
| | - Wen Li
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Ying Ma
- Department of Life Sciences, Imperial College London, London, UK
| | - Kyoko Tossell
- Department of Life Sciences, Imperial College London, London, UK
| | - Julia J Harris
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Edward C Harding
- Department of Life Sciences, Imperial College London, London, UK
| | - Wei Ba
- Department of Life Sciences, Imperial College London, London, UK
| | - Giulia Miracca
- Department of Life Sciences, Imperial College London, London, UK
| | - Dan Wang
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Long Li
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Juan Guo
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Ming Chen
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yuqi Li
- Department of Life Sciences, Imperial College London, London, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Zürich, Switzerland
| | | | - Qianzi Yang
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Hailong Dong
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China.
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, UK.
- Centre for Neurotechnology, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK.
- Centre for Neurotechnology, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
| |
Collapse
|
235
|
Abstract
Encoding and predicting aversive events are critical functions of circuits that support survival and emotional well-being. Maladaptive circuit changes in emotional valence processing can underlie the pathophysiology of affective disorders. The lateral habenula (LHb) has been linked to aversion and mood regulation through modulation of the dopamine and serotonin systems. We have defined the identity and function of glutamatergic (Vglut2) control of the LHb, comparing the role of inputs originating in the globus pallidus internal segment (GPi), and lateral hypothalamic area (LHA), respectively. We found that LHb-projecting LHA neurons, and not the proposed GABA/glutamate co-releasing GPi neurons, are responsible for encoding negative value. Monosynaptic rabies tracing of the presynaptic organization revealed a predominantly limbic input onto LHA Vglut2 neurons, while sensorimotor inputs were more prominent onto GABA/glutamate co-releasing GPi neurons. We further recorded the activity of LHA Vglut2 neurons, by imaging calcium dynamics in response to appetitive versus aversive events in conditioning paradigms. LHA Vglut2 neurons formed activity clusters representing distinct reward or aversion signals, including a population that responded to mild foot shocks and predicted aversive events. We found that the LHb-projecting LHA Vglut2 neurons encode negative valence and rapidly develop a prediction signal for negative events. These findings establish the glutamatergic LHA-LHb circuit as a critical node in value processing.
Collapse
|
236
|
Ostroumov A, Dani JA. Inhibitory Plasticity of Mesocorticolimbic Circuits in Addiction and Mental Illness. Trends Neurosci 2018; 41:898-910. [PMID: 30149979 PMCID: PMC6252277 DOI: 10.1016/j.tins.2018.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Behavioral adaptations occur through remodeling of brain circuits, as arising, for instance, from experience-dependent synaptic plasticity. Drugs of abuse and aversive stimuli, such as stress, act on the mesocorticolimbic system, dysregulating adaptive mechanisms and leading to a variety of aberrant behaviors associated with neuropsychiatric disorders. Until recently, research in the field has commonly focused on experience-dependent synaptic plasticity at excitatory synapses. However, there is growing evidence that synaptic plasticity within inhibitory circuits is an important contributor to maladaptive behaviors. We speculate that restoring normal inhibitory synaptic transmission is a promising therapeutic target for correcting some of the circuit abnormalities underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA.
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
237
|
Weele CMV, Siciliano CA, Tye KM. Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Res 2018; 1713:16-31. [PMID: 30513287 DOI: 10.1016/j.brainres.2018.11.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Abstract
Decades of research suggest that the mesocortical dopamine system exerts powerful control over mPFC physiology and function. Indeed, dopamine signaling in the medial prefrontal cortex (mPFC) is implicated in a vast array of processes, including working memory, stimulus discrimination, stress responses, and emotional and behavioral control. Consequently, even slight perturbations within this delicate system result in profound disruptions of mPFC-mediated processes. Many neuropsychiatric disorders are associated with dysregulation of mesocortical dopamine, including schizophrenia, depression, attention deficit hyperactivity disorder, post-traumatic stress disorder, among others. Here, we review the anatomy and functions of the mesocortical dopamine system. In contrast to the canonical role of striatal dopamine in reward-related functions, recent work has revealed that mesocortical dopamine fine-tunes distinct efferent projection populations in a manner that biases subsequent behavior towards responding to stimuli associated with potentially aversive outcomes. We propose a framework wherein dopamine can serve as a signal for switching mPFC states by orchestrating how information is routed to the rest of the brain.
Collapse
Affiliation(s)
- Caitlin M Vander Weele
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
238
|
Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2018; 154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The lateral hypothalamus (LH) is a functionally and anatomically complex brain region that is involved in the regulation of many behavioral and physiological processes including feeding, arousal, energy balance, stress, reward and motivated behaviors, pain perception, body temperature regulation, digestive functions and blood pressure. Despite noteworthy experimental efforts over the past decades, the circuit, cellular and synaptic bases by which these different processes are regulated by the LH remains incompletely understood. This knowledge gap links in large part to the high cellular heterogeneity of the LH. Fortunately, the rapid evolution of newer genetic and electrophysiological tools is now permitting the selective manipulation, typically genetically-driven, of discrete LH cell populations. This, in turn, permits not only assignment of function to discrete cell groups, but also reveals that considerable synergistic and antagonistic interactions exist between key LH cell populations that regulate feeding and arousal. For example, we now know that while LH melanin-concentrating hormone (MCH) and orexin/hypocretin neurons both function as sensors of the internal metabolic environment, their roles regulating sleep and arousal are actually opposing. Additional studies have uncovered similarly important roles for subpopulations of LH GABAergic cells in the regulation of both feeding and arousal. Herein we review the role of LH MCH, orexin/hypocretin and GABAergic cell populations in the regulation of energy homeostasis (including feeding) and sleep-wake and discuss how these three cell populations, and their subpopulations, may interact to optimize and coordinate metabolism, sleep and arousal. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Melissa J S Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
239
|
de Jong JW, Afjei SA, Pollak Dorocic I, Peck JR, Liu C, Kim CK, Tian L, Deisseroth K, Lammel S. A Neural Circuit Mechanism for Encoding Aversive Stimuli in the Mesolimbic Dopamine System. Neuron 2018; 101:133-151.e7. [PMID: 30503173 DOI: 10.1016/j.neuron.2018.11.005] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
Ventral tegmental area (VTA) dopamine (DA) neurons play a central role in mediating motivated behaviors, but the circuitry through which they signal positive and negative motivational stimuli is incompletely understood. Using in vivo fiber photometry, we simultaneously recorded activity in DA terminals in different nucleus accumbens (NAc) subnuclei during an aversive and reward conditioning task. We find that DA terminals in the ventral NAc medial shell (vNAcMed) are excited by unexpected aversive outcomes and to cues that predict them, whereas DA terminals in other NAc subregions are persistently depressed. Excitation to reward-predictive cues dominated in the NAc lateral shell and was largely absent in the vNAcMed. Moreover, we demonstrate that glutamatergic (VGLUT2-expressing) neurons in the lateral hypothalamus represent a key afferent input for providing information about aversive outcomes to vNAcMed-projecting DA neurons. Collectively, we reveal the distinct functional contributions of separate mesolimbic DA subsystems and their afferent pathways underlying motivated behaviors. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Seyedeh Atiyeh Afjei
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Iskra Pollak Dorocic
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James R Peck
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christine Liu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christina K Kim
- Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
240
|
Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli. Nature 2018; 563:397-401. [PMID: 30405240 PMCID: PMC6645392 DOI: 10.1038/s41586-018-0682-1] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 09/04/2018] [Indexed: 01/07/2023]
Abstract
Despite abundant evidence that dopamine (DA) modulates medial prefrontal cortex (mPFC) activity to mediate diverse behavioral functions1,2, the precise circuit computations remain elusive. One potentially unifying model by which DA can underlie a diversity of functions is to modulate the signal-to-noise ratio (SNR) in subpopulations of mPFC neurons3–6, where neural activity conveying sensory information (signal) is amplified relative to spontaneous firing (noise). Here, we demonstrate that DA increases the SNR of responses to aversive stimuli in mPFC neurons projecting to the dorsal periaqueductal gray (dPAG). Using electrochemical approaches, we reveal the precise time course of pinch-evoked DA release in the mPFC, and show that mPFC DA biases behavioral responses to aversive stimuli. Activation of mPFC-dPAG neurons is sufficient to drive place avoidance and defensive behaviors. mPFC-dPAG neurons displayed robust shock-induced excitations, as visualized by single-cell, projection-defined microendoscopic calcium imaging. Finally, photostimulation of DA terminals in the mPFC revealed an increase in SNR in mPFC-dPAG responses to aversive stimuli. Together, these data highlight how mPFC DA can route sensory information in a valence-specific manner to different downstream circuits.
Collapse
|
241
|
Qualls-Creekmore E, Münzberg H. Modulation of Feeding and Associated Behaviors by Lateral Hypothalamic Circuits. Endocrinology 2018; 159:3631-3642. [PMID: 30215694 PMCID: PMC6195675 DOI: 10.1210/en.2018-00449] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
Our ability to modulate and observe neuronal activity in defined neurons in freely moving animals has revolutionized neuroscience research in recent years. Findings in the lateral hypothalamus (LHA) highlighted the existence of many neuronal circuits that regulate distinct phenotypes of feeding behavior, emotional valence, and locomotor activity. Several of these neuronal circuits do not fit into a common model of neuronal integration and highlight the need to improve working models for complex behaviors. This review will specifically focus on recent literature that distinguishes LHA circuits based on their molecular and anatomical characteristics and studies their role in feeding, associated behaviors (e.g., arousal and locomotion), and emotional states (e.g., emotional valences).
Collapse
Affiliation(s)
- Emily Qualls-Creekmore
- Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
242
|
Tye KM. Neural Circuit Motifs in Valence Processing. Neuron 2018; 100:436-452. [PMID: 30359607 PMCID: PMC6590698 DOI: 10.1016/j.neuron.2018.10.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023]
Abstract
How do our brains determine whether something is good or bad? How is this computational goal implemented in biological systems? Given the critical importance of valence processing for survival, the brain has evolved multiple strategies to solve this problem at different levels. The psychological concept of "emotional valence" is now beginning to find grounding in neuroscience. This review aims to bridge the gap between psychology and neuroscience on the topic of emotional valence processing. Here, I highlight a subset of studies that exemplify circuit motifs that repeatedly appear as implementational systems in valence processing. The motifs I identify as being important in valence processing include (1) Labeled Lines, (2) Divergent Paths, (3) Opposing Components, and (4) Neuromodulatory Gain. Importantly, the functionality of neural substrates in valence processing is dynamic, context-dependent, and changing across short and long timescales due to synaptic plasticity, competing mechanisms, and homeostatic need.
Collapse
Affiliation(s)
- Kay M Tye
- Picower Institute for Learning and Memory, Dept of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Salk Institute for Biological Sciences, La Jolla, CA 92037, USA.
| |
Collapse
|
243
|
Stamatakis AM, Schachter MJ, Gulati S, Zitelli KT, Malanowski S, Tajik A, Fritz C, Trulson M, Otte SL. Simultaneous Optogenetics and Cellular Resolution Calcium Imaging During Active Behavior Using a Miniaturized Microscope. Front Neurosci 2018; 12:496. [PMID: 30087590 PMCID: PMC6066578 DOI: 10.3389/fnins.2018.00496] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
The ability to precisely monitor and manipulate neural circuits is essential to understand the brain. Advancements over the last decade in optical techniques such as calcium imaging and optogenetics have empowered researchers to gain insight into brain function by systematically manipulating or monitoring defined neural circuits. Combining these cutting-edge techniques enables a more direct mechanism for ascribing neural dynamics to behavior. Here, we developed a miniaturized integrated microscope that allows for simultaneous optogenetic manipulation and cellular-resolution calcium imaging within the same field of view in freely behaving mice. The integrated microscope has two LEDs, one filtered with a 435-460 nm excitation filter for imaging green calcium indicators, and a second LED filtered with a 590-650 nm excitation filter for optogenetic modulation of red-shifted opsins. We developed and tested this technology to minimize biological and optical crosstalk. We observed insignificant amounts of biological and optical crosstalk with regards to the optogenetic LED affecting calcium imaging. We observed some amounts of residual crosstalk of the imaging light on optogenetic manipulation. Despite residual crosstalk, we have demonstrated the utility of this technology by probing the causal relationship between basolateral amygdala (BLA) -to- nucleus accumbens (NAc) circuit function, behavior, and network dynamics. Using this integrated microscope we were able to observe both a significant behavioral and cellular calcium response of the optogenetic modulation on the BLA-to-NAc circuit. This integrated strategy will allow for routine investigation of the causality of circuit manipulation on cellular-resolution network dynamics and behavior.
Collapse
|
244
|
Functions of medial hypothalamic and mesolimbic dopamine circuitries in aggression. Curr Opin Behav Sci 2018; 24:104-112. [PMID: 30746430 DOI: 10.1016/j.cobeha.2018.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aggression is a crucial survival behavior: it is employed to defend territory, compete for food and mating opportunities, protect kin, and resolve disputes. Although widely differing in its behavioral expression, aggression is observed across many species. The neural substrates of aggression have been investigated for nearly a century and two highly conserved circuitries emerge as critical substrates for generating and modulating aggression. One circuitry centers on the medial hypothalamus. Activity of the medial hypothalamic cells closely correlates with attacks and can bi-directionally modulate aggressive behaviors. The other aggression-related circuit involves the mesolimbic dopamine cells. Dopaminergic antagonists are the most commonly used treatment for suppressing human aggression in psychotic patients. Animal studies support essential roles of dopaminergic signaling in the nucleus accumbens in assessing the reward value of aggression and reinforcing the aggressive behaviors. In this review, we will provide an overview regarding the functions of medial hypothalamus and dopaminergic system in mediating aggressive behaviors and the potential interactions between these two circuitries.
Collapse
|
245
|
Schneeberger M, Tan K, Nectow AR, Parolari L, Caglar C, Azevedo E, Li Z, Domingos A, Friedman JM. Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons. Mol Metab 2018; 13:83-89. [PMID: 29843980 PMCID: PMC6026325 DOI: 10.1016/j.molmet.2018.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake and body weight, glucose metabolism and convey the reward value of sucrose. In this report, we set out to establish the respective roles of MCH and conventional neurotransmitters in these neurons. METHODS MCH neurons were profiled using Cre-dependent molecular profiling technologies (vTRAP). MCHCre mice crossed to Vglut2fl/flmice or to DTRfl/flwere used to identify the role of glutamate in MCH neurons. We assessed metabolic parameters such as body composition, glucose tolerance, or sucrose preference. RESULTS We found that nearly all MCH neurons in the LH are glutamatergic and that a loss of glutamatergic signaling from MCH neurons from a glutamate transporter (VGlut2) knockout leads to a reduced weight, hypophagia and hyperkinetic behavior with improved glucose tolerance and a loss of sucrose preference. These effects are indistinguishable from those seen after ablation of MCH neurons. These findings are in contrast to those seen in mice with a knockout of the MCH neuropeptide, which show normal glucose preference and do not have improved glucose tolerance. CONCLUSIONS Overall, these data show that the vast majority of MCH neurons are glutamatergic, and that glutamate and MCH signaling mediate partially overlapping functions by these neurons, presumably by activating partially overlapping postsynaptic populations. The diverse functional effects of MCH neurons are thus mediated by a composite of glutamate and MCH signaling.
Collapse
Affiliation(s)
- Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Keith Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA; A*Star Institute of Medical Biology, 1 Fusionopolis Way, #20-10 Connexis North Tower, Singapore, 138632, Singapore
| | - Alexander R Nectow
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA; Princeton Neuroscience institute, Princeton University, Princeton, NJ, 08544-2098, USA
| | - Luca Parolari
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Caner Caglar
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Estefania Azevedo
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Zhiying Li
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Ana Domingos
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
246
|
Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018; 9:413. [PMID: 29928253 PMCID: PMC5997825 DOI: 10.3389/fneur.2018.00413] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023] Open
Abstract
The lateral hypothalamus is comprised of a heterogeneous mix of neurons that serve to integrate and regulate sleep, feeding, stress, energy balance, reward, and motivated behavior. Within these populations, the hypocretin/orexin neurons are among the most well studied. Here, we provide an overview on how these neurons act as a central hub integrating sensory and physiological information to tune arousal and motivated behavior accordingly. We give special attention to their role in sleep-wake states and conditions of hyper-arousal, as is the case with stress-induced anxiety. We further discuss their roles in feeding, drug-seeking, and sexual behavior, which are all dependent on the motivational state of the animal. We further emphasize the application of powerful techniques, such as optogenetics, chemogenetics, and fiber photometry, to delineate the role these neurons play in lateral hypothalamic functions.
Collapse
Affiliation(s)
- Susan M Tyree
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Jeremy C Borniger
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
247
|
Gibson GD, Prasad AA, Jean-Richard-dit-Bressel P, Yau JO, Millan EZ, Liu Y, Campbell EJ, Lim J, Marchant NJ, Power JM, Killcross S, Lawrence AJ, McNally GP. Distinct Accumbens Shell Output Pathways Promote versus Prevent Relapse to Alcohol Seeking. Neuron 2018; 98:512-520.e6. [DOI: 10.1016/j.neuron.2018.03.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/30/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022]
|
248
|
Coccurello R, Maccarrone M. Hedonic Eating and the "Delicious Circle": From Lipid-Derived Mediators to Brain Dopamine and Back. Front Neurosci 2018; 12:271. [PMID: 29740277 PMCID: PMC5928395 DOI: 10.3389/fnins.2018.00271] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
Palatable food can be seductive and hedonic eating can become irresistible beyond hunger and negative consequences. This is witnessed by the subtle equilibrium between eating to provide energy intake for homeostatic functions, and reward-induced overeating. In recent years, considerable efforts have been devoted to study neural circuits, and to identify potential factors responsible for the derangement of homeostatic eating toward hedonic eating and addiction-like feeding behavior. Here, we examined recent literature on “old” and “new” players accountable for reward-induced overeating and possible liability to eating addiction. Thus, the role of midbrain dopamine is positioned at the intersection between selected hormonal signals involved in food reward information processing (namely, leptin, ghrelin, and insulin), and lipid-derived neural mediators such as endocannabinoids. The impact of high fat palatable food and dietary lipids on endocannabinoid formation is reviewed in its pathogenetic potential for the derangement of feeding homeostasis. Next, endocannabinoid signaling that regulates synaptic plasticity is discussed as a key mechanism acting both at hypothalamic and mesolimbic circuits, and affecting both dopamine function and interplay between leptin and ghrelin signaling. Outside the canonical hypothalamic feeding circuits involved in energy homeostasis and the notion of “feeding center,” we focused on lateral hypothalamus as neural substrate able to confront food-associated homeostatic information with food salience, motivation to eat, reward-seeking, and development of compulsive eating. Thus, the lateral hypothalamus-ventral tegmental area-nucleus accumbens neural circuitry is reexamined in order to interrogate the functional interplay between ghrelin, dopamine, orexin, and endocannabinoid signaling. We suggested a pivotal role for endocannabinoids in food reward processing within the lateral hypothalamus, and for orexin neurons to integrate endocrine signals with food reinforcement and hedonic eating. In addition, the role played by different stressors in the reinstatement of preference for palatable food and food-seeking behavior is also considered in the light of endocannabinoid production, activation of orexin receptors and disinhibition of dopamine neurons. Finally, type-1 cannabinoid receptor-dependent inhibition of GABA-ergic release and relapse to reward-associated stimuli is linked to ghrelin and orexin signaling in the lateral hypothalamus-ventral tegmental area-nucleus accumbens network to highlight its pathological potential for food addiction-like behavior.
Collapse
Affiliation(s)
- Roberto Coccurello
- Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy.,Laboratory of Neurochemistry of Lipids, European Center for Brain Research (CERC), IRRCS Santa Lucia Foundation, Rome, Italy
| | - Mauro Maccarrone
- Laboratory of Neurochemistry of Lipids, European Center for Brain Research (CERC), IRRCS Santa Lucia Foundation, Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
249
|
Ko MY, Jang EY, Lee JY, Kim SP, Whang SH, Lee BH, Kim HY, Yang CH, Cho HJ, Gwak YS. The Role of Ventral Tegmental Area Gamma-Aminobutyric Acid in Chronic Neuropathic Pain after Spinal Cord Injury in Rats. J Neurotrauma 2018; 35:1755-1764. [PMID: 29466910 DOI: 10.1089/neu.2017.5381] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) frequently results in chronic neuropathic pain (CNP). However, the understanding of brain neural circuits in CNP modulation is unclear. The present study examined the changes of ventral tegmental area (VTA) putative GABAergic and dopaminergic neuronal activity with CNP attenuation in rats. SCI was established by T10 clip compression injury (35 g, 1 min) in rats, and neuropathic pain behaviors, in vivo extracellular single-cell recording of putative VTA gamma-aminobutyric acid (GABA)/dopamine neurons, extracellular GABA level, glutamic acid decarboxylase (GAD), and vesicular GABA transporters (VGATs) were measured in the VTA, respectively. The results revealed that extracellular GABA level was significantly increased in the CNP group (50.5 ± 18.9 nM) compared to the sham control group (10.2 ± 1.7 nM). In addition, expression of GAD65/67, c-Fos, and VGAT exhibited significant increases in the SCI groups compared to the sham control group. With regard to neuropathic pain behaviors, spontaneous pain measured by ultrasound vocalizations (USVs) and evoked pain measured by paw withdrawal thresholds showed significant alteration, which was reversed by intravenous (i.v.) administration of morphine (0.5-5.0 mg/kg). With regard to in vivo electrophysiology, VTA putative GABAergic neuronal activity (13.6 ± 1.7 spikes/sec) and putative dopaminergic neuronal activity (2.4 ± 0.8 spikes/sec) were increased and decreased, respectively, in the SCI group compared to the sham control group. These neuronal activities were reversed by i.v. administration of morphine. The present study suggests that chronic increase of GABAergic neuronal activity suppresses dopaminergic neuronal activity in the VTA and is responsible for negative emotion and motivation for attenuation of SCI-induced CNP.
Collapse
Affiliation(s)
- Moon Yi Ko
- 1 Department of Aroma Application Industry, Daegu Hanny University , Kyungsansi, South Korea
| | - Eun Young Jang
- 2 Department of Physiology, College of Korean Medicine, Daegu Haany University , Daegu, South Korea
| | - June Yeon Lee
- 2 Department of Physiology, College of Korean Medicine, Daegu Haany University , Daegu, South Korea
| | - Soo Phil Kim
- 2 Department of Physiology, College of Korean Medicine, Daegu Haany University , Daegu, South Korea
| | - Sung Hun Whang
- 3 Department of Anatomy, School of Medicine, Kyungpook National University , Daegu, South Korea
| | - Bong Hyo Lee
- 2 Department of Physiology, College of Korean Medicine, Daegu Haany University , Daegu, South Korea
| | - Hee Young Kim
- 2 Department of Physiology, College of Korean Medicine, Daegu Haany University , Daegu, South Korea
| | - Chae Ha Yang
- 2 Department of Physiology, College of Korean Medicine, Daegu Haany University , Daegu, South Korea
| | - Hee Jung Cho
- 3 Department of Anatomy, School of Medicine, Kyungpook National University , Daegu, South Korea
| | - Young S Gwak
- 2 Department of Physiology, College of Korean Medicine, Daegu Haany University , Daegu, South Korea
| |
Collapse
|
250
|
The biological and behavioral computations that influence dopamine responses. Curr Opin Neurobiol 2018; 49:123-131. [PMID: 29505948 PMCID: PMC6095465 DOI: 10.1016/j.conb.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/06/2023]
Abstract
Phasic dopamine responses demonstrate remarkable simplicity; they code for the differences between received and predicted reward values. Yet this simplicity belies the subtle complexity of the psychological, computational, and contextual factors that influence this signal. Advances in behavioral paradigms and models, in monkeys and rodents, have demonstrated that phasic dopamine responses reflect numerous behavioral computations and factors including choice, subjective value, confidence, and context. The application of optogenetics has provided evidence that dopamine reward prediction error responses cause value learning. Furthermore, studies using advanced circuit tracing techniques have begun to uncover the biological network implementation of the reward learning algorithm. The purpose of this review is to summarize the recent advances in dopamine neurophysiology and synthesize an updated account of the behavioral function of dopamine signals.
Collapse
|